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Abstract Understanding the patterns of interconnections be-

tween neurons in complex networks is an enormous challenge

using traditional physiological approaches. Here we combine

the use of an information theoretic approach with intracellular

recording to establish patterns of connections between layers

of interneurons in a neural network responsible for mediating

reflex movements of the hind limb of an insect. By analysing

delayed mutual information of the synaptic and spiking re-

sponses of sensory neurons, spiking and nonspiking interneu-

rons in response to movement of a joint receptor that monitors

the position of the tibia relative to the femur, we are able to

predict the patterns of interconnections between the layers of

sensory neurons and interneurons in the network, with results

matching closely those known from the literature. In addition,

we use cross-correlation methods to establish the sign of those

interconnections and show that they also show a high degree

of similarity with those established for these networks over the

last 30 years. The method proposed in this paper has great

potential to elucidate functional connectivity at the neuronal

level in many different neuronal networks.

Keywords Delayedmutual information . Information flow .

Interneuron . Locust limb control . Reflex

1 Introduction

Knowing the structural connectivity of neural networks in the

brain provides us with an understanding of their function and

interaction, however establishing maps of connectivity using

traditional physiological recording approaches is a technically

demanding and time consuming process (Bressler and Seth

2011; Stetter et al. 2012). Moreover, sampling bias is inevita-

ble as we can never fully reveal the connections of one neuron

with all of its presynaptic and postsynaptic targets. While

connectomics aims to understand the connectivity of neurons,

synapses and pathways in the brain using anatomical tech-

niques, relatively new statistical approaches have been pro-

posed to model neurobiological systems. Using these methods

the connectivity can be inferred from the activity of individual

neurons and their directional interactions to provide a deeper

insight of the function of neurons and pathways, and the un-

derlying processes that drive the networks (Sommerlade et al.

2011). These statistical approaches, however, are often based

on surrogate or simulated data with few focusing on real neu-

ral networks (Gerhard et al. 2013) or how good such models

are at predicting, or inferring, their neuronal interactions.

The analysis of signals measured from such complex bio-

logical systems has many methodological challenges (Müller

et al. 2003), mostly due to the non-linear relationships be-

tween input and output, and the stochastic nature of neural

responses. Under these circumstance the usefulness of
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techniques based on conventional analysis (including spectral)

of time series tends to limit the understanding of the biological

system (Mars and van Arragon 1982) and hence different

approaches have been sought. A number of studies have in-

vestigated the causal relationships, or influences, between sig-

nals in order to quantify the strength of interaction

(Hlavácková-Schindler et al. 2007; Shibuya et al. 2009).

Many causality measures have been proposed that make pos-

sible the explicit evaluation of a causal relationship between

signals (Pearl 2009). In particular, Wiener-Granger Causality

has been commonly used in neuroscience even though such

causality measures only capture the linear features of time

series data (Bressler and Seth 2011), and that there is a require-

ment for stationarity in the time series; something that seldom

occurs in neural signals (Dewhirst et al. 2013).

An alternative approach to analyze non-linear and stochas-

tic signals is based on information theory (Bialek et al. 2001;

Cover and Thomas 2006; Schreiber and Schmitz 2000; Shan-

non 1948). In particular, mutual information has been used as

a measure of the statistical dependency between two variables

and may be interpreted as a generalization of the correlation of

non-linear relationships between multiple processes with arbi-

trary probability distributions (Erdogmus and Principe 2006;

Li 1990). The main limitation to mutual information is its

inability to differentiate the association direction between

two signals (Schreiber 2000). To overcome this limitation

Schreiber (2000) introduced a quantity called information

transfer that shares some of the desired properties of mutual

information but takes into account the dynamics of informa-

tion transfer. Such an approach is now widely used to analyse

data from econometrics (Marschinski and Kantz 2002) to bio-

medical engineering (Jin et al. 2010; Li and Ouyang 2010;

Ward and Mazaheri 2008).

In general information theoretic approaches make no as-

sumptions about the relationship among the system vari-

ables (e.g., strict stationarity, Nichols 2006). Time-

delayed mutual information quantifies the co-dependence

between variables by considering shared previous information

content as a function of time (Nichols et al. 2005; Palus et al.

2001; Vastano and Harry 1988). Here we analyse the delayed

mutual information (DMI) estimated from a large multivariate

neurobiological data set obtained by Angarita-Jaimes et al.

(2012), Kondoh et al. (1995), Newland and Kondoh

(1997a,b) and Vidal-Gadea et al. (2010) from a neural network

that produces and controls movements of the hind leg of an

insect, the desert locust. We utilize the nervous system of the

locust for analysis due to its relative simplicity, accessible

nervous system and extensive background of physiological

and morphological studies (see Burrows 1996). We establish

the time delays in mutual information and channel capacities

of interneurons in different layers of a proprioceptive network

and ask whether they can be used as predictors of synaptic

connectivity.

2 Material and methods

Adult male and female desert locusts, Schistocerca gregaria

(Forskål) were used for all experiments. Locusts were

mounted ventral-side-uppermost in modelling clay and the

apodeme of the FeCO exposed by opening a small window

of cuticle in the distal anterior femur (Kondoh et al. 1995),

grasped between the tips of fine forceps attached to a shaker

(Ling Altec 101) and cut distal to the forceps. The metatho-

racic ganglion was exposed by making a small window in the

ventral thorax, supported on a wax covered silver platform,

and the sheath treated with protease (Sigma type XIV) for

1 min before recording. Microelectrodes filled with potassium

acetate and with DC resistances of 50–80 MΩ were driven

through the sheath and into the neuropilar processes of the

nonspiking local interneurons, the axons of sensory neurons,

or the somata of spiking local interneurons and intracellular

recordings (Fig. 1) made using an Axoclamp 2A amplifier

(Axon Instruments, USA).

The forceps holding the chordotonal organ apodeme were

moved with a GWN (Gaussian White Noise) signal produced

by filtering a pseudorandom binary sequence (CG-742, NF

Circuit Design Block) band-limited to 27 Hz with low-pass

filters (SR-4BL, NF Circuit Design Block) with a decay of

24 dB/octave (Fig. 1c,d). This generated a GWN signal that

had a Gaussian probability density function in the bandwidth

of interest. Stimulus and evoked responses of the interneurons

were stored onmagnetic tape using a PCM-DAT data recorder

(RD-101 T, TEAC, Japan). Subsequently, all signals were

sampled at a rate of 10 kHz offline to a personal computer

for later analysis.

2.1 Analysis

The algorithms were developed in Python 2.7 running on a

Linux (Ubuntu 13.10) i7 computer with the code utilising the

resources of parallel programming in the IPython environment

(Pérez and Granger 2007).

The data set consisted of recordings from 36 different

nonspiking, and 25 spiking, local interneurons and 12

sensory neurons. The responses of all neurons were

evoked by stimulation of the FeCO with a GWN band

limited to 27 Hz for at least 40s applied to the FeCO

apodeme. Only the stationary segment following an ini-

tial transient at the onset of stimulation was analyzed

(Dewhirst et al. 2013).

The estimation of probability density used a histogram ap-

proach, while for joint probability distributions bidimensional

histograms were used. In both cases the number of bins was

fixed at 32 and their length depended on the range of variables

under analysis. The DMI and mutual information were calcu-

lated for a range of lag values.
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2.2 Association measurements

Mutual information (MI) is a measure of the association be-

tween two random variables (Cover and Thomas 2006;

Dionisio et al. 2004) and quantifies the shared information

based on measures of uncertainty given the conditional entro-

py of the two variables. The equation for MI is described as

follows (Shannon 1948):

I X ; Yð Þ
¼ H Yð Þ −H Y jXð Þ
¼ H Xð Þ þ H Yð Þ −H X ; Yð Þ

ð1Þ

where H(Y|X) is the conditional entropy of Y given X.

To evaluate MI we used an estimate of the probability den-

sity function of the signals described by the following Eq. 2

(Cover and Thomas 2006):

I X ; Yð Þ ¼ ∑
χ∈χ

∑
y∈γ

p x; yð Þ log2
p x; yð Þ

p xð Þ : p yð Þ
ð2Þ

where p(x), p(y) are the marginal probabilities of X and Y,

respectively, and p(x, y) of the joint probability distribution

of these two variables. X is a discrete random variable with

alphabet, χ, and probability density function p(x)=Pr{X=x},

x ∈ χ and Y is a discrete random variable with alphabet, γ, and

probability density function p(y)=Pr{Y=y}, y ∈ . Thus, the

mutual information I (X; Y) is the reduction in the uncertainty

of X due to the knowledge of Y (Cover and Thomas 2006).

Nichols (2006) and Alonso et al. (2007) examined dynamic

structures based on the delay yn-τ with respect to xn of the

mutual information. The DMI quantifies the dependence be-

tween random variables by obtaining the information shared

on the basis of the displacement time, τ, between X and Yτ.

Assuming that X and Yτ are stationary signals that depend on

the joint probability of the delay time, τ, Eq. 3 describes the

DMI, according to Nichols (2006):

I X ; Y τð Þ ¼ ∑
xn∈χ

∑
yn−τ∈γ

p xn; yn−τð Þ log2
p xn;

yn−τ
� �

p xnð Þ : p yn−τð Þ
ð3Þ

where Yτ=(y1-τ, y2-τ,…, yn-τ) are random variables and p(xn)

and p(yn-τ) are the probability density functions (pdf) of X and

marginal Yτ, respectively. The joint pdf is given by p(xn, yn-τ),

which is a function of the delay time, τ.

The peak value of the DMI quantifies the channel capacity

(Proakis and Salehi 2008) which was tested by generating

surrogate data with the same power spectra and amplitude

distribution as the real and simulated data, but with values

Fig. 1 Neural network

underlying reflex movements of

the tibia of a hind leg. a. The

FeCO in the distal femur is

displaced when its apodeme is

stretched and relaxed by tibial

movements. b. Sensory neurons

in the FeCO send axons to neural

networks in the metathoracic

ganglion where signals are

processed (modified from

Burrows 1996). c. A spiking local

interneuron receives excitatory

inputs and spikes during

displacement of the FeCO

apodeme with GWN. d. A

nonspiking local interneuron

receives a barrage of large

depolarising excitatory potentials

in parallel with depolarisation of

the slow extensor motor neuron

(SETi) and the posterior slow

flexor tibiae motor neuron during

displacement of the apodemewith

Gaussian White Noise. c and d

are from different animals
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randomized in time to make the signals independent (i.e., with

zero mutual information). The surrogate algorithm imple-

mented was based on that of Venema et al. (2006) as a Sto-

chastic Iterative Amplitude Adjustment process shown in

Fig. 2b.

The estimates of DMI from the surrogate data represent the

values expected when the input and output do not share any

connectivity (Fig, 2a, example in red) . We fitted a Gaussian

distribution to the 30 surrogate data estimates at t=τ and thus

obtained critical values at the 97% probability level, which

were compared with DMI estimates from the recorded neural

data.

2.3 Cross-correlation for association between two variables

Cross-correlation was used to identify the sign of interaction

between neurons that were underpinned by inhibitory and

excitatory linear interactions. We used cross-correlation be-

tween the GWN input and the neural response (spikes and

synaptic potentials) to analyze the sign of the interactions.

This measures the strength of the linear relationship between

two variables (Therrien 1992), and the sign of the correlation

coefficient.

2.4 Channel capacities

Channel capacity is defined (from Cover and Thomas

2006) as:

C ¼ maxI X ; Yð Þ ð4Þ

where C is computed in bits. The estimation of transmission

rate, R, [bits/s] is based on channel capacity,C, from Shannon-

Hartley Law (Proakis and Salehi 2008):

R ¼ 2:BW :C ð5Þ

where BW is the bandwidth in Hz [1/sec] and was evaluated

based on rise time, according to Levine (1996):

BW :T rise ¼ 0:35 ð6Þ

From the data set, we estimate that Trise is approximately

50 μs. The test for spurious association was based on the

significance level for surrogate data and a power test

(Schreiber and Schmitz 2000). The relationship between the

number of surrogate data (N) and the probability of false re-

jection (α), corresponding to the level of significance

(Therrien 1992) is:

N ¼
K

α
−1 ð7Þ

where K=1 for a one sided test. For α=0.03 and N=30 we

used 97% for the significance level of channel capacity.

Fig. 2 Data analysis and

significance levels. a. Algorithms

for estimating the mutual

information between input and

output signals were tested on real

and simulated biological data and

significance levels tested at 97%

against random probabilities

generated from surrogate data

with the same power spectra and

amplitude distribution as real

data. Analysis of one nonspiking

local interneuron revealed a peak

in DMI at t=τ with an amplitude

dependent on channel capacity. b.

The iterative process to generate

surrogate data with the same

power spectra and amplitude

distribution as real biological data

430 J Comput Neurosci (2015) 38:427–438



2.5 Delayed mutual information

From the recordings of neural responses we estimated the

DMI (Fig. 2a), and from its peak value the delay and channel

capacity. While the results presented here are based on biolog-

ical data, the algorithms were also tested on simulated data

(see Jin et al. 2010). Simulated data were generated from

stochastic time series, Xt and Yt, based on:

Xt ¼ ax:Xt‐1 þ nX
Yt ¼ ay:Yt‐1 þ ζXY: f Xt‐1ð Þ þ nY

ð8Þ

where nX and nY are independent Gaussian white noise. The

level of coupling between the two synthetic time series is

defined by ζXY and the functional dependence of variables

given by f (x)=x2. The level of coupling ranged in the interval

0.0≤ζXY≤1.0, and the size of each time series ranged from

eight to one hundred thousand samples. We then analysed the

data to determine the levels of mutual information which gave

rise to delayed peaks of mutual information at t=τ, with am-

plitudes depending on channel capacity (Fig. 2a). To test the

significance of these peaks we generated surrogate data with

the same power spectra and amplitude distribution as the real

data (Fig. 2b). The surrogate algorithm implemented was

based on that of Venema et al. (2006) as a Stochastic Iterative

Amplitude Adjustment process. The significance of peaks in

the estimates of DMI were tested against surrogate data.

Both biological and surrogate data were used to test the

significance of the delayed mutual information peaks. As the

surrogate data were not correlated with the system input, they

represented bias and noise association (shown in red in

Fig. 2a).We fitted a Gaussian distribution to the surrogate data

at t=τ and statistically compared that to the likelihood that a

peak in DMI would occur with a 97% probability. We selected

this high significance level to ensure accurate predictions of

connectivity.

3 Results

3.1 Local networks controlling limb movement

Movements of the tibia relative to the femur of a hind leg of

the locust are detected by a proprioceptor, the femoral

chordotonal organ (FeCO) located within the distal end of

the femur and whose apodeme is stretched when the tibia is

flexed (Fig. 1a) (Usherwood et al. 1967). The FeCO is respon-

sible for mediating reflex movements of the leg. The approx-

imately 90 sensory neurons encoding the dynamics of the

movement of the tibia (Kondoh et al. 1995; Matheson 1990)

embedded in the FeCO project to the metathoracic ganglion

that contains the local networks that produce and control the

movements of the leg. These neural networks (Fig. 1b) con-

tain a number of layers of local interneurons that communicate

by both digital signalling, the spiking local interneurons

(Fig. 1c), and by analogue signalling, the nonspiking local

interneurons (Fig. 1d) that generate graded potentials that in

turn control sets of motor neurons (Burrows 1996). Other

spiking intersegmental interneurons have axons and project

to adjacent ganglia in the segmental chain (Newland 1990)

coordinating the local networks for each leg.

3.2 Nonspiking local interneurons

The algorithm was applied to the synaptic responses of the

nonspiking interneurons. Analyses of the dataset revealed in-

terneurons with three distinct time delays in mutual informa-

tion between mechanical excitation of the FeCO and the neu-

ronal responses. In the first group (11 out of 36 interneurons

recorded) (Fig. 3ai), interneurons had mean delays of mutual

information of 14.2±0.4 ms (mean±SEM) (Fig. 3b). These

delays were well defined and peaks in DMI were significant

(at the 97% level) when compared with surrogate data. A

second group (Fig. 3aii) included 17 interneurons that exhib-

ited peaks of mutual information at 25.7±1.3 ms. A third

group containing 8 interneurons, (Fig. 3aiii) had two pro-

nounced peaks of DMI occurring at 31.8±0.9 ms and 45.3±

1.5 ms (Fig. 3c). The peaks in DMI of the second and third

groups were again found to be significant at the 97% level

when compared to surrogate data (Schreiber and Schmitz

1996).

To determine the rate of information transfer of the inter-

neurons we analyzed their channel capacities (Proakis and

Salehi 2008) and found that they fell into three distinct cate-

gories corresponding to each time delay. Interneurons in the

first group had mutual information of 7.2±1.5 (×10−2) bits,

while in the second and third groups the mutual information

were found to be 6.0±2.2 (×10−2) and 5.5±0.7 (×10−2) bits

respectively (statistically significant at the 97% level). Assum-

ing a bandwidth transmission of 350Hz based on slew rate and

rise time of the neural signals (Levine 1996) and channel

capacities in bits/s per bandwidth (Proakis and Salehi 2008),

then the channel capacity of the first group of interneurons

was 28.8±2.5 bits/s, and for the second and third groups were

21.0±3.8 bits/s and 19.3±1.2 bits/s, respectively (Fig. 3c).

Given the different time delays and mutual information we

asked whether the nonspiking local interneurons could be

grouped into distinct clusters using a method based on the

Bayesian Information Criterion (BIC). Analysis revealed that

the nonspiking interneuron clustered into three distinct groups

(Fig. 3d).

Previous detailed physiological studies have analyzed the

synaptic connections between FeCO sensory neurons and

nonspiking interneurons (Fig. 4) and revealed that there are

three known pathways through which the sensory neurons

J Comput Neurosci (2015) 38:427–438 431



activate this class of interneuron. First, FeCO sensory neurons

excite nonspiking local interneurons via monosynaptic cho-

linergic connections (Burrows et al. 1988). Second,

nonspiking interneurons are inhibited by the FeCO sensory

neurons via interposed spiking local interneurons from a mid-

line population with GABAergic (Watson and Burrows 1987)

inhibitory outputs onto the nonspiking interneurons (Burrows

et al. 1988). A third known pathway results in an excitation of

the nonspiking local interneurons through two layers of

GABAergic spiking local interneurons, each with inhibitory

outputs, thereby resulting in a disinhibition of the nonspiking

interneurons (Burrows et al. 1988).

3.3 Spiking local interneurons

We then tested the hypothesis that the different groups of

nonspiking local interneurons found based on DMI were re-

lated to the known synaptic pathways by analyzing the syn-

aptic responses of a midline population of spiking local inter-

neurons. The midline spiking local interneurons have been

studied in extraordinary detail, from their integration of sen-

sory signals and their output effects during a range of move-

ments (Burrows et al. 1988), to the arrangement of their input

and output synapses (Watson and Burrows 1987) and their

dynamics (Vidal-Gadea et al. 2010).

Fig. 3 Analysis of nonspiking

local interneurons. a.

Representative examples of DMI

revealed in three different groups

of interneurons (i-iii). b. Mean

times to peak of mutual

information in 36 nonspiking

local interneurons. c. The channel

capacities of each group of

interneurons were estimated

based on a bandwidth

transmission of 350 Hz, and

declined with increasing time

delay. d. A BIC analysis of all 36

interneurons revealed 3 distinct

clusters of interneuron based on

time delays and channel

capacities

Fig. 4 Identified synaptic pathways between FeCO sensory neurons and

nonspiking local interneurons (modified from Burrows et al. (1988)).

Nonspiking interneurons can be excited directly by FeCO sensory

neurons, inhibited indirectly through a single layer of GABAergic

spiking local interneuron or dis-inhibited indi- rectly through two layers

of GABergic spiking local interneurons

432 J Comput Neurosci (2015) 38:427–438



We analysed the synaptic responses of 25 spiking local

interneurons, which revealed that they also showed clearly

defined peaks of DMI (Fig. 5a), that occurredwith two distinct

mean delays in different interneurons of 17.0±1.3 ms and

29.2±1.1 ms (Fig. 5b) and with mutual information of 2.7±

0.6 (×10−2) bits and 1.8±0.2 (×10−2) bits. Again, by assuming

a bandwidth of 350Hz, the channel capacity of the first group

of spiking local interneurons was 9.5±1.9 bits/s and in the

second group 6.3±0.6 bits/s (Fig. 5c). A subsequent BIC anal-

ysis confirmed that the spiking local interneurons grouped

into two distinct clusters (Fig. 5d) based on the time delay

and mutual information.

Furthermore, we compared the time delays to the first 2

peaks of the nonspiking interneurons with those of the spiking

local interneurons. Given that both classes of interneuron re-

ceive monosynaptic cholinergic inputs (Burrows 1996) from

the FeCO sensory neurons it would be expected that the times

to the positive, excitatory, first peak of each interneuron would

not be different. The mean time to first peak in the nonspiking

interneurons was 14.22±0.46 ms, whereas that to the first

peak of the spiking interneurons was 17.04±1.3 ms. A stu-

dents T test indicated that these two peak times were not sig-

nificantly different (t=1.765, d.f. = 22, P<0.05), as would be

expected if they were both generated by monosynaptic inputs.

The second negative, inhibitory, peak of each class of in-

terneuron is hypothesized to be mediated by a single layer of

GABAergic inhibitory spiking interneurons. Thus the times to

second peak would not be expected to differ between the two

types of interneuron. Results show that the mean time to sec-

ond peak in the nonspiking interneurons was 26.23±1.31 ms,

n=16, whereas that to the second peak of the spiking inter-

neurons was 29.36±1.09 ms, n=16. A students T test indicat-

ed that these two peak times were not significantly different

(t=1.836, d.f. = 30, P<0.05), as would be expected if they

Fig. 5 Analysis of spiking local

interneurons. a. Examples of

delayed mutual information

revealed in two different

interneurons (i-ii). b.Mean times

to peak of mutual information in

25 spiking local interneurons. c.

Interneurons with the shortest

delayed mutual information had

the highest channel capacities

(based on a bandwidth of

350 Hz). d. A BIC analysis

revealed two distinct clusters of

interneuron based on time delay

and channel capacity

J Comput Neurosci (2015) 38:427–438 433



were both mediated through a single layer of interposed in-

hibitory spiking local interneurons.

3.4 Sensory neurons

Further confirmation that the peaks in mutual information

were related to position in the neural network were obtained

by analyzing the response properties of the FeCO sensory

neurons. Given technical difficulties related to recording their

intracellular responses from their somata in the FeCO their

spikes are commonly recorded in their axons as they enter

the metathoracic ganglion (Matheson 1990). We recorded

the spike responses of a small subset (n=12) of the sensory

neurons while moving the FeCO apodeme with a GWNwave-

form (Fig. 6a).

Analysis of the mutual information of the sensory neurons

revealed a single peak occurring with a mean time delay of

12.8±0.5 ms, with a mean of mutual information of 11.2±1.8

(×10−2) bits (mean±SEM, n=12) and channel capacity of

39.2±3.1 bits/s.

3.5 Sign of connections

Further evidence to support the hypothesis that the delays

in mutual information were related to the number of layers

in the network preceding the neuron being studied was

sought by identifying the polarity of the interactions, i.e.,

whether the interactions were excitatory or inhibitory. As

indicated above, DMI does not identify the sign of the

association between signals and hence we carried out a

cross-correlation between the GWN and the responses of

the sensory neurons and local interneurons to establish the

sign of connections (Fig. 7). We found that, for sensory

neurons, the peak in correlation.

was positive in all 12 sensory neurons tested, while for the

spiking local interneurons, the first peak was positive in 100%

(9 from 9 interneurons) of all neurons with significant peaks in

mutual information (n=12), while the second peak was nega-

tive in 60% of interneurons (9 from 16 interneurons). For the

nonspiking interneurons the first peak was positive in 64% of

interneurons (7 from 11 interneurons), negative for the second

peak in 76% of interneurons (13 from 17 interneurons) and

positive for the third peak in 75% of tests (6 from 8

interneurons).

4 Discussion

A number of neural networks in both vertebrates (Alle

and Geiger 2006) and invertebrates (Büschges 1990;

Burrows 1996) function with neurons that do not spike.

While an understanding of how these circuits are anatom-

ically organized has been pursued for many years, partic-

ularly in the invertebrates, few studies have utilized the

benefits of computational approaches to better understand

their connectivity. We asked whether information theoret-

ic approaches could provide insights into neuron connec-

tivity within multi-layered networks with a complex input

and output organization. In particular we focused on a

well-studied and understood local network responsible

for producing and controlling the movements of the tibia

about the femur of the hind leg of the locust. By

analysing the synaptic potentials of different classes of

interneurons we found distinct peaks in DMI whose chan-

nel capacities declined with the time delay to peak.

Nonspiking local interneurons fell into three distinct clus-

ters following a cluster analysis using Bayesian Informa-

tion Criterion (BIC) based on channel capacity and time

delay, whereas spiking local interneurons fell into two

distinct categories.

Fig. 6 Delayed mutual information in sensory neurons of the FeCO. a.

Intracellular recording of the spike activity of a sensory neuron recorded

in its axon in nerve 5, just as it enters the metathoracic ganglion. The

apodeme of the FeCO was moved with a GWN signal with a cut off

frequency of 27 Hz. b. An example of a peak of delayed mutual

information in a sensory neuron with a time to peak of 11 ms

434 J Comput Neurosci (2015) 38:427–438



4.1 Interpretation of time delays and channel capacities

Burrows (1987), in a detailed analysis of the properties of

synaptic inputs to spiking local interneurons, suggested that

excitatory FeCO inputs onto a midline population of were

monosynaptic and chemically mediated. He also showed that

the minimum time to evoke a reflex response was approxi-

mately 13 ms for afferents with the fastest conduction veloc-

ities of 4 m.s−1, allowing for conduction of the afferent spike

from the FeCO to the nervous system, a central synaptic delay

and activation of a motor neuron. Approximately 10ms of this

time is taken simply to the start of an EPSP in a motor neuron.

A similar delay of approximately 10 ms occurs to monosyn-

aptic EPSPs in spiking local interneurons (Burrows 1987) and

nonspiking local interneurons (Burrows et al. 1988). Given

that proprioceptive afferents have conduction velocities from

2.8 – 4 m.s−1 considerably longer delays might be expected

(Burrows 1987) for sensory afferents with lower conduction

velocities. Since the FeCO afferents make monosynaptic con-

nections with both classes of interneuron it would be reason-

able to conclude from the synaptic delays given above that the

information transfer times would be of the same order of mag-

nitude, which indeed is what we have found in this study with

peaks of mutual information with delays of 17.0±1.3 ms for

spiking interneurons and 14.2±0.4 ms for nonspiking

interneurons.

Given the patterns of connection illustrated here in Fig. 4,

the work of Burrows (1987) also provides us with clues as to

the origin of the second peaks in both classes of interneuron

and the third peak in nonspiking interneurons. He showed that

the time from initial depolarization to a spike in a spiking local

interneuron is approximately 10-14 ms. Allowing for a further

0.5-1.0 ms for conduction of the spike within the cell to its

output synapses and a further 0.5-1.5 ms for central synaptic

delay then we would expect a further 11–16.5 ms for each

layer of spiking local interneurons in the network. Indeed

these synaptic delays match well with the observed mutual

information delays found here.

On this basis our working hypothesis is that the delays in

mutual information in an interneuron are related to its position

in a network. Support for this hypothesis comes from infor-

mation regarding the sign of interactions between the different

Fig. 7 Cross-correlation reveals

polarity of connections of neurons

in a local network. a. The peak in

mutual information on the

sensory neuron was always

positive (excitatory) in all 12

sensory neurons tested. b. In

spiking local interneurons the first

peak was always positive

(excitatory) but the second peak

was negative (inhibitory) in most

interneurons. c. In nonspiking

interneurons the first peak was

generally positive, the second

negative and the third positive

(excitatory). Arrowheads indicate

the times of peak DMI.

Correlation coefficients of 1 and

n1 represent maximum

correlation
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layers of interneurons. Proprioceptive afferents make excitato-

ry monosynaptic connections with both spiking (Burrows

1987) and nonspiking interneurons (Burrows et al. 1988).

Thus the first peaks in mutual information of both types of

interneuron would be expected to be excitatory. Our cross-

correlation analysis showed that 100% of the first peaks of

mutual information of spiking interneurons are excitatory

while 64% of the first peaks in nonspiking interneurons are

excitatory. The second peak of the spiking and nonspiking

interneurons could be accounted for by inhibitory GABAergic

interneurons that are known to be interposed between these

closes of interneuron (Burrows 1996) that would mean that

these second peaks would be inhibitory in nature. Our cross-

correlation analysis also predicted that 76% of second peaks

of nonspiking interneurons and 60% of spiking interneurons

would be inhibitory. Finally, the third peak in mutual informa-

tion in nonspiking interneurons could be produced by two

layers of GABAergic inhibitory interneurons (Burrows et al.

1988) resulting in a disinhibition of the nonspiking interneu-

rons. Our cross correlation analysis again predicts the third

peak results from a positive interaction in 75% of

interneurons.

We should however consider why these probabilities are

not all at the 100% level. Part of the problem resides in the fact

we do not yet know all of the pathways between layers of

interneurons, or that others also have a major contribution.

While Burrows et al. (1988) described the potential pathways

that existed between sensory neurons and nonspiking

interneurons, an earlier study by Burrows (1979) showed that

there are synaptic interactions between nonspiking local inter-

neurons themselves so that one nonspiking interneuron can

exert a graded control over the membrane potential of another.

Synaptic connections between interneurons are principally in-

hibitory and one way (Burrows 1996). Given that the

nonspiking interneurons can have both inhibitory GABAergic

outputs (Watson and Burrows 1987; Wildman et al. 2002) and

excitatory outputs then it is likely that the second peak of the

nonspiking interneurons could also be positive in some

nonspiking interneurons. Indeed our results indicate that in

18% of nonspiking interneurons there are positive interactions

at the level of the second peak. This in turn would have effects

on downstream interneurons. Such complexity in the path-

ways may therefore underlie the known dynamic groups of

nonspiking interneurons described by Angarita-Jaimes et al.

(2012). Thus our results not only predict the known patterns of

connectivity already established so far but point to further

interneuron interactions that have yet to be demonstrated at

the physiological level.

4.2 Nonspiking communication

Nonspiking communication has been known for many years

in invertebrates and is found at many levels in neural

networks, from sensory neurons in crabs (DiCaprio 2004) to

interneurons in crustaceans (Nagayama et al. 1984;

Samarandache-Wellmann et al. 2013) and insects (Burrows

1996; Büschges 1990). In recent years it has become apparent

that nonspiking communication is an important component of

effective network action in vertebrates as well. For example,

Alle and Geiger (2006) described spiking (digital) and ana-

logue communication in hippocampal mossy fibres, while

Shu et al. (2006) showed that synaptic signaling results from

a mixture of spikes and analogue signals that modulate the

amplitude and duration of action potentials through Ca2+ de-

pendent mechanisms.

It is thought that the advantage of analogue transmission

resides in the increased bit rate afforded by such transmission

(Laughlin et al., 1998) although over long distances this is not

the case. For example, Dicaprio (2004) showed that transmis-

sion in nonspiking stretch receptors in the crab was over 2,500

bits/s, however this declined sharply with conduction dis-

tance. Here we find that transfer rates are several orders of

magnitude lower, potentially due to the energy demands of

signal transfer (Laughlin et al. 1998) but also due to their

function in orchestrating sets of motor neurons to produce

appropriate movements of the limb, where digital signalling

would require many more neurons to generate a smooth and

continuous control over motor neuron activity.

A study by de Ruyter van Steveninck and Laughin (1996)

presents the rates of information transfer for spiking and

nonspiking neurons in the visual system of the blowfly. Com-

paring transmission rates in pre- and post-synaptic cells, they

estimate that each synaptic active zone transmits at approxi-

mately 50bits/s and that the graded responses of nonspiking

cells transmit at a rate five times higher than spiking interneu-

rons. Our results also show a higher rate of information trans-

fer in nonspiking compared to spiking interneurons in a pro-

prioceptive network, in a range similar to that described by

DiCaprio (2004).

4.3 Computational models and network inference

It is now clear that there is no single universal approach to

understanding connectivity in the brain (Amblard and Michel

2011) and approaches extend from non-directional measures

such as mutual information (Jirsa andMcIntosh 2007) to mea-

sures that utilize directional information flow such as transfer

entropy (Lungarella and Sporns 2006). Lungarella and Sporns

(2006) show that there is a distinct link between the morphol-

ogy of sensors and information flow and that coding depends

on the morphology and dynamics of sensory systems. Topo-

graphical maps are commonplace in the neural networks of

many animals, including the locust (Burrows and Newland

1993; Matheson 1990; Newland 1991), and methods that in-

corporate these features of networks, and their network dy-

namics (Vidal-Gadea et al. 2010), are crucial to understand
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better neural network function. Gerhard et al. (2013) devel-

oped a network inference algorithm in a relatively simple three

motor neuron oscillatory network in the stomatogastric gan-

glion of the crab. We go a step further and use computational

approaches to reveal pathways of information flow between

layers of interneurons in a more complex neural network that

utilises both digital and analogue signaling and show that this

method achieves a high degree of inference about

connectivity.

The current paper demonstrates the promise of this compu-

tational approach leading to results highly compatible with

those obtained from previous physiological studies, and thus

serves to independently confirm their results. The method also

demonstrates the potential of this approach to gain additional

insights into more complex connectivity patterns, based on

relatively simple stimulation and recording procedures.
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