Delayed Nondeterminism in Model Checking Embedded Systems Assembly Code

Thomas Noll¹ Bastian Schlich²

¹Software Modelling and Verification Group ²Software for Embedded Systems RWTH Aachen University noll@cs.rwth-aachen.de

Haifa Verification Conference, October 25, 2007

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - o ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - . .
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems, .
- ⇒ Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...'
 - embedded assembly code
 - interrupts
 - .
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems,
- ⇒ Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - ...
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems, ...

⇒ Base model checking on assembly code

- Most microcontroller software written in C
- Many model checkers accept (ANSI) C programs: BLAST, CBMC, MAGIC, ...
- Often restricted support of C constructs:
 - no expressions with side effects
 - no recursion
 - only integer variables
 - ...
- Many microcontroller features not considered in ANSI C:
 - direct hardware access (registers, ...)
 - embedded assembly code
 - interrupts
 - ...
- Case studies from industrial applications contain errors which
 - passed all tests and reviews
 - are only observable on assembly level
 - caused by forgotten interrupt enabling/disabling, reentrance problems, ...
- ⇒ Base model checking on assembly code

C Code Before Preprocessing

```
int main (void) {
  init();// call initialization
  sei();
  while(1) {
    inputs = PINA & 0x0F;
   cli();
    if (direction < 5) {
      if (inputs & (1 << 1)) {// down
        if (direction = 2 || direction = 3) {
          TCCR1B = 0x00;
          TIFR = 0xFF;
          TCNT1 = 0x00;
          TIMSK = (1 << OCIE1A);
          TCCR1B = 0x05;
          direction = 1;
```

C Code After Preprocessing

```
int main (void) {
  init();
 __asm__ _volatile__ ("sei" ::);
 while(1) {
    inputs = (*(volatile uint8_t *)((0x19) + 0x20)) & 0x0F;
   asm volatile ("cli" ::);
    if (direction < 5) {
      if (inputs & (1 << 1)) {
        if (direction = 2 | | direction = 3) {
          (*(volatile uint8_t *)((0x2E) + 0x20)) = 0x00;
          (*(volatile uint8_t *)((0x38) + 0x20)) = 0xFF;
          (*(volatile uint16 t *)((0x2C) + 0x20)) = 0x00;
          (*(volatile uint8 t *)((0x39) + 0x20)) = (1 << 4);
          (*(volatile uint8 t *)((0x2E) + 0x20)) = 0x05;
          direction = 1;
```

Pros and Cons of Using Assembly Code

Advantages:

- Errors of all development stages detectable:
 - (C) programming errors
 - compiler errors
 - errors invisible in the C code (reentrance problems, ...)
 - errors in handling the hardware (interrupts, ...)
- Instructions (relatively) easy to handle
- Clean and well documented semantics
- Implementation close to actual execution

Disadvantages:

- ◆ Hardware dependency
 ⇒ compiler-generating approach
- Bigger state spaces (finer granularity)
 abstraction techniques

Pros and Cons of Using Assembly Code

Advantages:

- Errors of all development stages detectable:
 - (C) programming errors
 - compiler errors
 - errors invisible in the C code (reentrance problems, ...)
 - errors in handling the hardware (interrupts, ...)
- Instructions (relatively) easy to handle
- Clean and well documented semantics
- Implementation close to actual execution

Disadvantages:

- Hardware dependency
 - ⇒ compiler-generating approach
- Bigger state spaces (finer granularity)
 - ⇒ abstraction techniques

The [mc]square Model Checker

The ATMEL ATmega16 Microcontroller

- 8-bit microcontroller
- 16 KB flash memory
- 1KByte internal SRAM
- 512 bytes EEPROM
- 3 timer/counter units
- 4 I/O Ports 8-bit
- 20 vectorized interrupts

Sources of Nondeterminism

- I/O ports
- Timer
- SPI
- TWI
- USART
- ..

I/O Ports

- Basic means to monitor and control external hardware
- Each 8 I/O pins (byte access)
- Bidirectional

Monitoring, access and control of I/O port via three special registers for each port:

- Data Direction Register (DDR):
 specifies input (= 0) or output (= 1)
 property of corresponding pin
- Port Register (PORT): specifies values of output pins
- Port Input Register (PIN): contains values of input pins (read-only)

I/O Ports

- Basic means to monitor and control external hardware
- Each 8 I/O pins (byte access)
- Bidirectional

Monitoring, access and control of I/O ports via three special registers for each port:

- Data Direction Register (DDR):
 specifies input (= 0) or output (= 1)
 property of corresponding pin
- Port Register (PORT): specifies values of output pins
- Port Input Register (PIN): contains values of input pins (read-only)

Impact on State Space I

Impact on State Space II

PORTA: 1 1 0 0 1 1 1 0

$$\begin{array}{c|c}
\hline
 & \cdots \\
\hline
 & \text{IN R18 PINA} \\
\hline
 & R18 = 206
\end{array}$$

Impact on State Space III

DDRA: 1 1 1 1 1 0 0

PORTA: 0 0 0 0 0 0 0 0

Delayed Nondeterminism

The Formal Model: State Space

- Bits: $\mathbb{B} := \{0, 1\}$
- Bytes: $\mathbb{C} := \mathbb{B}^8$
- Memory addresses: $A := \mathbb{C}^m$ (here: m = 2)
- Nondeterministic bit value: *
- $\bullet \ \mathbb{B}_* := \mathbb{B} \cup \{*\}, \mathbb{C}_* := \mathbb{B}^8_*$
- Deterministic addresses $D \subseteq A$ (certain registers, variables in formula, ...)
- Memory states: $V := \{v \mid v : A \to \mathbb{C}_*\}$ where $v(a) \in \mathbb{C}$ for every $a \in D$
- Control locations: Q (here: program counter)
- (System) states: $S := Q \times V$

In every cycle:

- run environment handler $g_1; ...; g_k$ (introduces nondeterministic values where necessary),
- if necessary, apply interrupt dispatcher $e_1: q_1 > ... > e_l: q_l$ (reaction to extraordinary events such as interrupts); otherwise
- **apply instruction handler** $q: h_1: q'_1 > \ldots > h_m: q'_n$ for current location $q \in Q$ (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \to x_1 := e_1, \dots, x_n := e_n$$

(e_j value expressions, x_j address expressions)

In every cycle:

- run environment handler $g_1; ...; g_k$ (introduces nondeterministic values where necessary),
- ② if necessary, apply interrupt dispatcher $e_1: q_1 > ... > e_l: q_l$ (reaction to extraordinary events such as interrupts) otherwise
- **apply instruction handler** $q: h_1: q'_1 > \ldots > h_m: q'_n$ for current location $q \in Q$ (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \to x_1 := e_1, \dots, x_n := e_n$$

(e_j value expressions, x_j address expressions)

In every cycle:

- run environment handler $g_1; ...; g_k$ (introduces nondeterministic values where necessary),
- ② if necessary, apply interrupt dispatcher $e_1: q_1 > ... > e_l: q_l$ (reaction to extraordinary events such as interrupts); otherwise
- **apply instruction handler** $q: h_1: q_1' > \ldots > h_m: q_m'$ for current location $q \in Q$ (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \to x_1 := e_1, \dots, x_n := e_n$$

(e_i value expressions, x_i address expressions)

In every cycle:

- run environment handler $g_1; ...; g_k$ (introduces nondeterministic values where necessary),
- ② if necessary, apply interrupt dispatcher $e_1: q_1 > ... > e_l: q_l$ (reaction to extraordinary events such as interrupts); otherwise
- **apply instruction handler** $q: h_1: q_1' > \ldots > h_m: q_m'$ for current location $q \in Q$ (normal execution of machine instructions)

Here each g_i , h_i is a guarded assignment of the form

$$e_0 \to x_1 := e_1, \dots, x_n := e_n$$

(e_j value expressions, x_j address expressions)

Example: Environment Handler

```
 \begin{split} & \texttt{TCCR0}[\texttt{CS02}] = 1 \lor \texttt{TCCR0}[\texttt{CS01}] = 1 \lor \texttt{TCCR0}[\texttt{CS00}] = 1 \\ & \to \texttt{TIFR}[\texttt{TOV0}] := \textit{nd}(\texttt{TIFR}[\texttt{TOV0}]); \\ & \texttt{DDRB}[\texttt{DDB2}] = 0 \to \texttt{GIFR}[\texttt{INTF2}] := \textit{nd}(\texttt{GIFR}[\texttt{INTF2}]); \ldots \end{aligned}
```

- Timer overflow interrupt possible if timer activated
- External interrupt possible if input enabled
- Here: nd(*) := *, nd(0) := *, and <math>nd(1) := 1

Example: Environment Handler

```
\begin{split} & \texttt{TCCR0[CS02]} = 1 \lor \texttt{TCCR0[CS01]} = 1 \lor \texttt{TCCR0[CS00]} = 1 \\ & \to \texttt{TIFR[TOV0]} := nd(\texttt{TIFR[TOV0]}); \\ & \texttt{DDRB[DDB2]} = 0 \to \texttt{GIFR[INTF2]} := nd(\texttt{GIFR[INTF2]}); \ldots \end{split}
```

- Timer overflow interrupt possible if timer activated
- External interrupt possible if input enabled
- Here: nd(*) := *, nd(0) := *, and <math>nd(1) := 1

- Timer interrupt raised if
 - interrupts are globally enabled and
 - timer interrupt not masked and
 - timer overflow has occurred
- Effect: jump to interrupt handler at address 18

$$\begin{split} &\text{SREG[I]} = 1 \land \texttt{TIMSK[TOIE0]} = 1 \land \texttt{TIFR[TOV0]} = 1:18 > \\ &\text{SREG[I]} = 1 \land \texttt{GICR[INT2]} = 1 \land \texttt{GIFR[INTF2]} = 1:36 > \dots \end{split}$$

- Timer interrupt raised if
 - interrupts are globally enabled and
 - timer interrupt not masked and
 - timer overflow has occurred
- Effect: jump to interrupt handler at address 18

$$\begin{split} &\text{SREG}[\text{I}] = 1 \land \text{TIMSK}[\text{TOIE0}] = 1 \land \text{TIFR}[\text{TOV0}] = 1 : 18 > \\ &\text{SREG}[\text{I}] = 1 \land \text{GICR}[\text{INT2}] = 1 \land \text{GIFR}[\text{INTF2}] = 1 : 36 > \dots \end{split}$$

- Timer interrupt raised if
 - interrupts are globally enabled and
 - timer interrupt not masked and
 - timer overflow has occurred
- Effect: jump to interrupt handler at address 18

$$\begin{split} &\text{SREG}[\text{I}] = 1 \land \text{TIMSK}[\text{TOIE0}] = 1 \land \text{TIFR}[\text{TOV0}] = 1: \textcolor{red}{18} > \\ &\text{SREG}[\text{I}] = 1 \land \text{GICR}[\text{INT2}] = 1 \land \text{GIFR}[\text{INTF2}] = 1: 36 > \dots \end{split}$$

- Timer interrupt raised if
 - interrupts are globally enabled and
 - timer interrupt not masked and
 - timer overflow has occurred
- Effect: jump to interrupt handler at address 18

Example: Adding Instruction

ADD Ri, Rj at address q:

$$q: \mathbb{R}i := \mathbb{R}i + \mathbb{R}j$$
, $SREG[\mathbb{Z}] := (\mathbb{R}i + \mathbb{R}j = 0)$, $SREG[\mathbb{C}] := \dots, \dots : q + 2$

- Adds contents of registers Ri and Rj and stores result in Ri
- Sets flags in status register SREG
 - zero flag Z (= 0)
 - carry flag C = 1
 - ...
- $\bullet \ .+.: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$
- \bullet . = 0 : $\mathbb{C} \to \mathbb{B}$

Example: Adding Instruction

ADD Ri, Rj at address q:

$$q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := ..., ... : q + 2$$

- Adds contents of registers Ri and Rj and stores result in Ri
- Sets flags in status register SREG:
 - zero flag Z (= 0)
 - carry flag C (= 1)
 - ...
- ullet . $+ . : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$
- ullet . = 0 : $\mathbb{C} \to \mathbb{B}$

Example: Input Instruction

IN Ri, A at address q:

$$q: Ri := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$$

- Copies contents of registers PORTA/PINA according to mask DDRA
- \bullet . \wedge . : $\mathbb{C} \times \mathbb{C}_* \to \mathbb{C}_*$
- ullet . \lor . : $\mathbb{C}_* \times \mathbb{C}_* \to \mathbb{C}_*$
- ullet \neg . : $\mathbb{C} \to \mathbb{C}$

Example: "Skip If Bit Cleared" Instruction

SBRC \mathbb{R}_i , b at address q:

$$q: \operatorname{R}i[b] = 0 \rightarrow : q+3 >$$

 $\operatorname{R}i[b] = 1 \rightarrow : q+2$

• Branches control according to bth bit in register Ri

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[e_0]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - ① evaluating every right-hand side expression e_i
 - taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
 - $v' := v[[x_i]]_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq [[e_i]]_v$ for all $1 \le i \le n$
- $\bullet \sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

 \implies Yields concrete transition system $T^{\circ} = (S, \bigcup_{g \in G} \xrightarrow{\longrightarrow}, s_0)$

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[e_0]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{s} (q', v')$ for every $v' \in V$ obtained by
 - evaluating every right-hand side expression e_i
 - taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
- $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$ • $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)
- \Rightarrow Yields concrete transition system $T^c = (S, | \int_{a \in G} \xrightarrow{s}, s_0$

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[\![e_0]\!]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{s} (q', v')$ for every $v' \in V$ obtained by
 - evaluating every right-hand side expression e_i
 - taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
- $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$ • $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)
- \Rightarrow rights concrete transition system $T = (s, \bigcup_{g \in G} \longrightarrow, s_0)$

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \rightarrow x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[e_0]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - lacktriangledown evaluating every right-hand side expression e_i
 - taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:

• $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$ • $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V) • Yields concrete transition system $T^c = (S, \bigcup_{g \in G} \xrightarrow{g}, s_0)$

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[\![e_0]\!]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - lacktriangledown evaluating every right-hand side expression e_i
 - 2 taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
 - $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
 - $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

Immediate Instantiation I

Immediate Instantiation

Each assignment of nondeterministic bit values is resolved by assigning all possible combinations of concrete values.

- Thus: only deterministic values are allowed to be stored
- Still $v(a) \in \mathbb{C}_* \setminus \mathbb{C}$ possible for specific addresses $a \in A \setminus D$ (e.g., a = PINA)
- Guarded assignment $g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$ enabled in state $(q, v) \in S$ if $[e_0]_v = 1$
- Gives rise to concrete transition $(q, v) \xrightarrow{g} (q', v')$ for every $v' \in V$ obtained by
 - lacktriangledown evaluating every right-hand side expression e_i
 - 2 taking every possible instantiation of nondeterministic bit values
 - updating v accordingly
- Formally:
 - $v' := v[\llbracket x_i \rrbracket_v \mapsto c_i; 1 \le i \le n]$ with $\mathbb{C} \cup \mathbb{B} \ni c_i \sqsubseteq \llbracket e_i \rrbracket_v$ for all $1 \le i \le n$
 - $\sqsubseteq \subseteq \mathbb{B}_* \times \mathbb{B}_*$ given by $0 \sqsubseteq *$ and $1 \sqsubseteq *$ (pointwise lifted to \mathbb{C}_* and V)

Immediate Instantiation II

- v(DDRA) = 11111100, v(PORTA) = 00000000,v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:

$$q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$$

- Transitions from (q, v) to
 - ① $(q+2, v[R1 \mapsto 00000000])$
 - $(q+2, v[R1 \mapsto 00000001])$
 - (a) $(q+2, v[R1 \mapsto 00000010])$
 - $(q+2, v[R1 \mapsto 00000011])$

Immediate Instantiation II

- v(DDRA) = 11111100, v(PORTA) = 00000000,v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:

$$q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$$

- Transitions from (q, v) to
 - $(q+2, v[R1 \mapsto 00000000])$
 - $(q+2, v[R1 \mapsto 00000001])$
 - $(q+2, v[R1 \mapsto 00000010])$
 - ① $(q+2, v[R1 \mapsto 00000011])$

Immediate Instantiation II

- v(DDRA) = 111111100, v(PORTA) = 000000000,v(PINA) = * * * * * * * *
- Execution of IN R1, A at address q:

$$q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$$

- Transitions from (q, v) to
 - $(q+2, v[R1 \mapsto 00000000])$
 - ② $(q+2, v[R1 \mapsto 00000001])$
 - **3** $(q+2, v[R1 \mapsto 00000010])$
 - $(q+2, v[R1 \mapsto 00000011])$

Delayed Nondeterminism

Replace nondeterministic by concrete values only if and when this is required by a subsequent computation step.

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument,
- some x_i dereferences a, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- ① $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1, \text{ and }$
- ① $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[\llbracket x_i \rrbracket_{v_3} \mapsto \llbracket e_i \rrbracket_{v_3}; 1 \le i \le n], \text{ and } v_4 := v_3[\llbracket x_i \rrbracket_{v_3} \mapsto \llbracket e_i \rrbracket_{v_3}]$
- $v' \le v_4 \text{ with } v'(a,b) \ne * \text{ if}$ $[x_i]_{v_4} \in \{a,(a,b)\} \text{ for some } i,a \in D$

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument,
- some x_i dereferences a, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1, \text{ and }$
- ① $v_2 \sqsubseteq v_1$ with $v_2(a,b) \neq *$ if some $e_i = op(y_1,\ldots,y_n), op: T_1 \times \ldots \times T_n \to T_0,$ and (a,b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\},$ and
- ① $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[[x_i]_{v_3} \mapsto [e_i]_{v_3}; 1 \le i \le n], \text{ and } v_4 := v_3[[x_i]_{v_3} \mapsto [e_i]_{v_3}; 1 \le i \le n]$
- $v' \le v_4 \text{ with } v'(a,b) \neq * \text{ if}$ $[x_i]_{v_4} \in \{a,(a,b)\} \text{ for some } i,a \in D$

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some x_i dereferences a, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1$, and
- **③** $v_2 \sqsubseteq v_1$ with $v_2(a,b) \neq *$ if some $e_i = op(y_1, \ldots, y_n), op : T_1 \times \ldots \times T_n \rightarrow T_0$, and (a,b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\}$, and
- ① $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[[x_i]]_{v_3} \mapsto [e_i]_{v_3}; 1 \le i \le n], \text{ and}$
- $v' \le v_4 \text{ with } v'(a,b) \neq * \text{ if}$ $[x_i]_{v_4} \in \{a,(a,b)\} \text{ for some } i, a \in D$

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some x_i dereferences a,
 or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1, \text{ and }$
- **③** $v_2 \sqsubseteq v_1$ with $v_2(a,b) \neq *$ if some $e_i = op(y_1, \ldots, y_n), op : T_1 \times \ldots \times T_n \rightarrow T_0$, and (a,b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\}$, and
- $v_3 \sqsubseteq v_2 \text{ with } v_3(a,b) \neq * \text{ if some } x_i = a \downarrow + d, \text{ and}$
- **5** $v_4 := v_3[\llbracket x_i \rrbracket_{v_3} \mapsto \llbracket e_i \rrbracket_{v_3}; 1 \le i \le n]$, and
- $v' \le v_4 \text{ with } v'(a,b) \ne * \text{ if}$ $[x_i]_{v_4} \in \{a,(a,b)\} \text{ for some } i, a \in D$

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some x_i dereferences a, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1, \text{ and }$
- ③ $v_2 \sqsubseteq v_1$ with $v_2(a,b) \neq *$ if some $e_i = op(y_1, \ldots, y_n), op : T_1 \times \ldots \times T_n \rightarrow T_0$, and (a,b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\}$, and
- 4 $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- $v_4 := v_3[\llbracket x_i \rrbracket_{v_3} \mapsto \llbracket e_i \rrbracket_{v_3}; 1 \le i \le n], \text{ and }$
- **6** $v' \le v_4$ with $v'(a,b) \ne *$ if $[x_i]_{v_4} \in \{a,(a,b)\}$ for some $i,a \in D$

Informally: instantiation of $v(a)[b] = * \text{ in } (q, v) \in S$ required when ex.

$$g = q : e_0 \to x_1 := e_1, \dots, x_n := e_n : q'$$
 s.t.

- (a,b) referred by e_0 , or
- g enabled and some e_i refers to (a, b) in a deterministic argument, or
- some x_i dereferences a, or
- some e_i yields * and x_i deterministic

Formally: g induces abstract transition $(q, v) \stackrel{g}{\Longrightarrow} (q', v')$ if ex. $v_1, v_2, v_3, v_4 \in V$ s.t.

- $v_1 \sqsubseteq v$ with $v_1(a,b) \neq *$ if (a,b) referred by e_0 , and
- $[e_0]_{v_1} = 1$, and
- ③ $v_2 \sqsubseteq v_1$ with $v_2(a,b) \neq *$ if some $e_i = op(y_1, \ldots, y_n), op : T_1 \times \ldots \times T_n \rightarrow T_0$, and (a,b) referred by some y_j where $T_j \in \{\mathbb{C}, \mathbb{B}\}$, and
- 4 $v_3 \sqsubseteq v_2$ with $v_3(a,b) \neq *$ if some $x_i = a \downarrow + d$, and
- **5** $v_4 := v_3[[x_i]_{v_3} \mapsto [e_i]_{v_3}; 1 \le i \le n]$, and
- **o** $v' \le v_4$ with $v'(a,b) \ne *$ if $[x_i]_{v_4} \in \{a,(a,b)\}$ for some $i, a \in D$
- \implies Yields abstract transition system $T^a = (S, \bigcup_{g \in G} \stackrel{g}{\Longrightarrow}, s_0)$

- v(DDRA) = 111111100, v(PORTA) = 000000000,v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:
 - $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$
 - yields transition $(q, v) \Longrightarrow (q+2, v[R1 \mapsto 000000 **])$
- Execution of SBRC R1, 0 at address q':
 - $q' : R1[0] = 0 \rightarrow : q' + 3$
 - $q': \mathtt{R1}[0] = 1 \rightarrow : q' + 2$
 - yields $(q', v') \Longrightarrow (q' + 3, v[R1 \mapsto 000000 * 0])$ and $(q', v') \Longrightarrow (q' + 2, v[R1 \mapsto 000000 * 1])$

- v(DDRA) = 11111100, v(PORTA) = 00000000,v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:
 - $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$
 - yields transition $(q, v) \Longrightarrow (\underbrace{q+2}_{q'}, \underbrace{v[\mathbb{R}1 \mapsto 000000 * *]}_{v'})$
- Execution of SBRC R1, 0 at address q':
 - $q' : R1[0] = 0 \rightarrow : q' + 3$
 - $q': R1[0] = 1 \rightarrow : q' + 2$
 - yields $(q', v') \Longrightarrow (q' + 3, v[R1 \mapsto 000000 * 0])$ and $(q', v') \Longrightarrow (q' + 2, v[R1 \mapsto 000000 * 1])$

- v(DDRA) = 111111100, v(PORTA) = 000000000,v(PINA) = * * * * * * *
- Execution of IN R1, A at address q:
 - $q: R1 := (DDRA \land PORTA) \lor (\neg DDRA \land PINA) : q + 2$
 - yields transition $(q, v) \Longrightarrow (\underbrace{q+2}_{q'}, \underbrace{v[\mathbb{R}1 \mapsto 000000 * *]}_{v'})$
- Execution of SBRC R1, 0 at address q':
 - $q' : R1[0] = 0 \rightarrow : q' + 3$ $q' : R1[0] = 1 \rightarrow : q' + 2$
 - yields $(q', v') \Longrightarrow (q' + 3, v[R1 \mapsto 000000 * 0])$ and $(q', v') \Longrightarrow (q' + 2, v[R1 \mapsto 000000 * 1])$

Soundness of Abstraction I

- Property specification given by temporal formula φ over set P of bit value expressions
- Defines labeling $\lambda: S \to 2^P: (q, v) \mapsto \{p \in P \mid \llbracket p \rrbracket_v = 1\}$
 - concrete LTS: $L^c = (S, \bigcup_{g \in G} \xrightarrow{g}, s_0, \lambda)$
 - abstract LTS: $L^a = (S, \bigcup_{g \in G} \stackrel{g}{\Longrightarrow}, s_0, \lambda)$
 - note: $[\![p]\!]_v$ always defined since $Var(\varphi) \subseteq D$
- Connection between L^* and L^* given by simulation: a binary relation $\rho \subseteq S \times S$ such that $s_0 \rho s_0$ and, whenever $s_1 \rho s_2$,
 - $\lambda(s_1) = \lambda(s_2)$ and
 - for every transition $s_1 \stackrel{g}{\longrightarrow} s_1'$ there exists $s_2' \in S$
 - such that $s_2 \stackrel{g}{\Longrightarrow} s_2'$ and $s_1' \rho s_2'$

Soundness of Abstraction I

- Property specification given by temporal formula φ over set P of bit value expressions
- Defines labeling $\lambda: S \to 2^P: (q, v) \mapsto \{p \in P \mid \llbracket p \rrbracket_v = 1\}$
 - concrete LTS: $L^c = (S, \bigcup_{g \in G} \xrightarrow{g}, s_0, \lambda)$
 - abstract LTS: $L^a = (S, \bigcup_{g \in G} \stackrel{g}{\Longrightarrow}, s_0, \lambda)$
 - note: $[\![p]\!]_v$ always defined since $Var(\varphi) \subseteq D$
- Connection between L^c and L^a given by simulation: a binary relation $\rho \subseteq S \times S$ such that $s_0 \rho s_0$ and, whenever $s_1 \rho s_2$,
 - $\lambda(s_1) = \lambda(s_2)$ and
 - for every transition $s_1 \xrightarrow{g} s'_1$ there exists $s'_2 \in S$ such that $s_2 \xrightarrow{g} s'_2$ and $s'_1 \rho s'_2$

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof

Simulation relation given by partial order on bit values:

$$(q_1, v_1)\rho(q_2, v_2)$$
 iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

$$L^a \models \varphi \text{ implies } L^c \models \varphi$$

(i.e., no false positives)

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof.

Simulation relation given by partial order on bit values:

$$(q_1, v_1)\rho(q_2, v_2)$$
 iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

$$L^a \models \varphi \text{ implies } L^c \models \varphi$$

(i.e., no false positives)

Soundness of Abstraction II

Theorem

 L^a simulates L^c .

Proof.

Simulation relation given by partial order on bit values:

$$(q_1, v_1)\rho(q_2, v_2)$$
 iff $q_1 = q_2$ and $v_1 \sqsubseteq v_2$

Corollary

Delayed nondeterminism is sound w.r.t. "path-universal" temporal logics such as LTL or ACTL:

$$L^a \models \varphi \text{ implies } L^c \models \varphi$$

(i.e., no false positives)

Empirical Results

Program	Instantiation	# states stored	# states created	Size [MB]	Time [s]	Reduction
light switch	immediate	6,624	9,050	2	0.2	-
	delayed	352	380	< 1	0.01	95%
plant	immediate	801,616	854,203	256	23.19	-
	delayed	188,404	195,955	61	5.05	76%
reentrance problem	immediate	107,649	110,961	33	2.8	-
	delayed	107,649	110,961	33	2.8	0%
traffic light	immediate	35,613	38,198	11	0.92	-
	delayed	10,004	10,520	3	0.28	72%
window lift	immediate	10,100,400	11,196,174	2,049	416.98	-
	delayed	323,450	444,191	102	10.78	97%

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

- Delayed Nondeterminism: abstraction technique for explicit-state model checking of microcontroller code (similar to "X-valued simulation" in hardware verification)
- Significant reduction of state space in concrete examples
- Over-approximation:
 - sound for path-universal logics (simulation)
 - generally incomplete (false negatives due to copying of nondeterminism)
- Future work:
 - handle more microcontrollers (Infineon Tricore, Intel MC, ...)
 - establish bisimulation by introducing identities for nondeterministic values
 - implement compiler generator for state-space evaluators

Observation: over-approximation due to copying of nondeterminism

Example

$$q_1$$
: $a[0] := * : q_2$
 q_2 : $a[1] := a[0]: q_3$
 q_3 : $a[0] \land \neg a[1] \rightarrow : q_4$

Immediate

$$q_2 \qquad a[0] = 0 \qquad a[0] = 1$$

$$a[0] = a[1] = *$$

$$a[0] = 1, a[1] = 0$$

Observation: over-approximation due to copying of nondeterminism

Example

$$q_1$$
: $a[0] := * : q_2$
 q_2 : $a[1] := a[0]: q_3$
 q_3 : $a[0] \land \neg a[1] \rightarrow : q_4$

Immediate

Delayed

 q_1

$$a_3 \quad a[0] = a[1] = 0 \quad a[0] = a[1] = 1$$

$$a[0] = 1, a[1] = 0$$

$$a[0] = 1, a[1] = 0$$

Observation: over-approximation due to copying of nondeterminism

Example

$$q_1$$
: $a[0] := * : q_2$
 q_2 : $a[1] := a[0]: q_3$
 q_3 : $a[0] \land \neg a[1] \rightarrow : q_4$

$$q_3$$
 $a[0] = a[1] = 0$ $a[0] = a[1] = 1$ $a[0] = a[1] = *$

Observation: over-approximation due to copying of nondeterminism

Example

$$q_1$$
: $a[0] := * : q_2$
 q_2 : $a[1] := a[0]: q_3$
 q_3 : $a[0] \land \neg a[1] \rightarrow : q_4$

Observation: over-approximation due to copying of nondeterminism

Example

$$q_1$$
: $a[0] := * : q_2$
 q_2 : $a[1] := a[0]: q_3$
 q_3 : $a[0] \land \neg a[1] \rightarrow : q_4$

 Immediate
 Delayed

 q_1 •

 q_2 a[0] = 0 a[0] = 1 a[0] = *

 q_3 a[0] = a[1] = 0 a[0] = a[1] = 1 a[0] = a[1] = *

 q_4 a[0] = 1, a[1] = 0 a[0] = 1, a[1] = 0

Observation: over-approximation due to copying of nondeterminism

Example

$$\begin{array}{ll} q_1: & a[0] := * & : q_2 \\ q_2: & a[1] := a[0] : q_3 \\ q_3: a[0] \land \neg a[1] \rightarrow & : q_4 \end{array}$$

Immediate Delayed q_1 q_2 a[0] = 0 a[0] = 1 a[0] = * q_3 a[0] = a[1] = 0 a[0] = a[1] = 1 a[0] = a[1] = * a[0] = 1, a[1] = 0

Delayed Nondeterminism