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Delayed Path Coupling and Generating Random Permutations via Distributed 

Stochastic Processes * 

Artur Czumaj+ Przemka Kanareks 

Abstract 
We analyze various stochastic processes for generating per- 
mutations almost uniformlv at random in distributed and 
parallel systems. All our protocols are simple, elegant and 
&e based on performing disjoint transpositions executed in 
narallel. The challentine: problem of our concern is to Drove 
that the output confi&%ions in our processes reach Amost 
uniform probability distribution very rapidly, i.e. in a (low) 
polylogarithmic time. 

For the analysis of the aforementioned protocols we 
develop a novel technique, called delayed path coupling, for 
proving rapid mixing of Markov chains. Our approach is an 
extension of the path coupling method of Bubley and Dyer. 

We apply delayed path coupling to three stochastic 
processes for generating random permutations. For one 
process, we apply standard (though non-trivial) coupling 
arguments, for the second one we construct a non-Markovian 
co;pling, and for the third one we prove the existence of 
a non-Markovian coupling. To the best of our knowledge, 
these are the first non-trivial applications of non-Markovian 
coupling for proving rapid m&g of Markov chains. 

We annlv our analvsis in diverse areas. We develon 
a simple permutation network of a polylogarithmic depth 
generating permutations with almost uniform distribution. 
A simple EREW PRAM algorithm generating random per- 
mutations in time O(log log n) with O(nlog’(r) n) proces- 
sors follows. We improve technique of cryptographic defense 
against traffic analysis by showing that the underlying sto- 
chastic urocess converees in time Oflonnl finstead of ~olv- 

logarith-mic time) and <hereby dram&i&lly reduce the she bf 
a security parameter. Other applications include load shar- 
ing in distributed systems, design of fault resistant systems, 
and parallel algorithms generating random permutations for 
models with restricted concurrent writes/reads. 

1 Introduction. 

Mixing a collection of items is a very frequently used 
generic process in various applications. This may be, 
for example, relocation of tasks in a distributed system, 
or a redistribution of the input to avoid malicious con- 
figurations. Mixing has also applications in computer 
security, when we aim to hide the original structure of 
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the input or the flow of information transmitted. The 
most fundamental problem related to mixing is that of 
random permuting: there are n items located in n posi- 
tions; we have to relocate them at random so that each 
position is given exactly one item and the resulting al- 
location has (almost) uniform probability distribution 
over S,, the set of permutations of n items. 

Many algorithms for generating random permuta- 
tions in parallel environment/systems have been pro- 
posed. However, they typically require complicated and 

powerful tools, like, for example, strong resolution rules 
for a concurrent access to the shared memory [19,23] or 
powerful random number generators 191. Really practi- 
cal solutions have been missing. 

One @p&al and intensively studied sequential 
method of permuting at random is to repeat indepen- 
dent steps, during which we pick one item and move it 
to some other (e.g. random) position. Such processes 
correspond to Markov chains. Crucial for their perfor- 

mance is the question how many steps are necessary 
until probability distribution for configuration of items 

becomes close to the stationary distribution of the chain, 
which is uniform. This research, located on a fron- 
tier between computer science and theory of stochas- 
tic processes, resulted in many deep results (see, e.g., 

11, 2, 101). 
In order to design fast and practical algorithms for 

random permuting in distributed and parallel environ- 

ment/systems, we may follow a similar strategy and re- 
locate many items in parallel. However, we admit only 
operations which are easy to implement in such systems. 
Therefore, we use only disjoint transpositions. In the 
paper, we present three algorithms (and analyze three 
different stochastic processes) that follow this approach. 
The first one, called matching achange, is a generaliza- 
tion of the sequential process described. The second one 
is designed on a fixed switching network. The last one 
yields good results for almost all switching networks of 
a logarithmic depth. 

Although the algorithms presented in this paper 
are quite intuitive and easy to formulate, it is chal- 
lenging to show quality of their output. We describe 
these processes as Markov chains and concentrate on 
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proving rapid mixing property of the corresponding 
stochastic processes. There are quite a few methods 
to analyze convergence rates of Markov chains: cou- 
pling, stopping time, finite Fourier method, the canon- 
ical path approach, and the conductance argument (cf. 
[l, 2, 10, 20, 21, 271 for survey expositions). Even if the 
canonical path approach and the conductance technique 
were used very successfully to provide polynomial-time 
bounds for the mixing times of various, often very com- 
plicated Markov chains [ll, 20, 21, 271, the obtained 
bounds seem usually to be far from optimal. Moreover, 
this research has dealt almost exclusively with “sequen- 
tial” processes and mixing times polynomial in n. We 
are aware of very few results on “parallel” processes 
with polylogarithmic mixing times (see [lo, 24, 281). 
Our main technical contribution is development of a so 
called delayed path coupling technique for proving (very) 
rapid mixing of Markov chains, which we use to analyze 
accurately our algorithms. Delayed path coupling is a 
refinement of the classical coupling arguments (see, e.g., 
[l]) and the path coupling technique [5]. The main idea 
is to use non-Markovian coupling and delay the deci- 
sions about current coupling waiting for some future 
events. This provides much more decision freedom than 
in the classical case. 

Even if it was known that coupling (and path cou- 
pling, too) can be used successfully to analyze highly 
symmetric Markov chains, the processes that we study 
in the paper did not seem to posses efficient coupling 
proofs. For example, matching exchange is a “paral- 
lel” version of the classical “sequential” Markov chain 
generating random permutations via random transpo- 
sitions (cf. [l, 2, lo]). Although the last process is 
known to converge after ($ + o( 1))n ln n steps [lo], the 
best known convergence rate obtained by coupling ar- 
guments is C3(n2) [l]. While this suggests not to use 
coupling for our purposes, we show that delayed path 
coupling provides an accurate analysis of matching ex- 
change process. (We remark that our arguments deliver 
the first coupling-based proof of the convergence rate 
of O(n Inn) for the classical “sequential” Markov chain 
mentioned.) 
Organization of the paper. In Section 2, we present 
the main technical results concerning mixing time of 
stochastic processes that we use. In Section 3, we 
apply these results in diverse areas. Section 4 provides 
technical tools used in our analysis and describes the 
delayed path coupling method. In Section 5, we sketch 
the proof of Theorem 2.1. Full technical details of this 
proof are included in Section 6. Proofs of the other 
main results, Theorems 2.2 and 2.3 are deferred to the 
f’ull version of the paper. 

2 Stochastic processes. 

2.1 Non-oblivious exchanges. The first stochastic 
protocol, called distributed mixing, consists of sev- 
eral identical steps performed repeatedly. A step con- 
sists of four substeps executed independently by n per- 
sons, each holding a single item: 

1. 

2. 

3. 

4. 

Each person tosses a coin and accordingly decides 
to be either active or passive during this step. 
Each active person chooses i.u.r. (independently 
and uniformly at random) a partner. 
If A has chosen P, then P and A accepts themselves 
if and only if P is passive and A is the only person 
who has chosen P. 
Each pair of partners that accepted themselves 
tosses independently a coin and accordingly either 
ezchange the items or keep them. 

Distributed mixing has many features important for 
practical applications: the protocol is extremely simple; 
no kind of global control is used; it is symmetric: 
each person behaves in the same way; it is time- 
homogeneous: each step is executed in the same way 
and independently of the history of the protocol. 

Distributed mixing is a special case of a more 
general Markov chain. Namely, let G be a complete 
undirected graph with n vertices numbered (1,. . . , n} 
each storing a single item. We consider a Markov chain 
im = (I&=N, called matching exchange, on the set 
8, of all permutations of (1,. . . , n} defined by the 
following transition rule IIt I+ I&+1: First we choose 
kt+l 5 $ according to some probability distribution K 
on (0,. . . ,?j} with E[n] = O(n). Then we pick i.u.r. 
a matching Mt+l in G of size kt+l, and independently 
for each edge of Mt+l, toss a coin. The edges, where 
Fe get tails are called active edges and form a matching 
Mt+l C_ M~+I. Then we exchan-ge the items lying on 
t_he endpoints of every edge of Mt+l, (i.e., if (i,j) E 
M t+l, then II,+, (II,‘(i)) = j and IIt+1 (III,‘(j)) = i). 

One can easily verify that 9JI is ergodic and sym- 
metric, and therefore that it has the unique stationary 
distribution which is uniform over S,, (cf. [20, 21, 271). 

To express the rate of convergence of stochastic 
processes, we use a standard measure of discrepancy 
between two probability distributions 6 and v on a space 
0, the variation distance, defined as 

It is easy to see that R(logn) steps of matching 
exchange are required to move all the items from their 
original positions with probability at least 4. We show 
that, actually, O(logn) steps are enough to reach a 
random allocation of all items: 



THEOREM 2.1. There is T = O(log n) such that the 
variation distance between the probability distribution of 
nT and the uniform distribution over S,, is U( $). 

2.2 Oblivious exchanges - switching networks. 
For the matching exchange protocol, one of sources of 
randomness is the choice of the matchings used. Can 
we generate random permutations in the matching- 
exchange protocol, if the sequence of matchings is fixed? 
Note that in this case we are talking about a switching 
network. So far, no explicit construction of such a 
switching network with small depth has been known. 

THEOREM 2.2. One can construct a switching network 
of depth logo(r) n with a simple architecture (a recur- 
sive construction where a basic block is composed from 
pipelined butterflies with some levels deleted) that gen- 
erates permutations of n elements for which the vari- 
ation distance between the probability distn.bution ob- 
tained from the uniform distribution on 8, is U(i). 

Rackoff and Simon [24] consider the problem of gener- 
ating random permutations for a fixed but random col- 
lection of matchings: Let BlF be the set of all sequences 

(MO,... , Mr-1) such that each Mt is a perfect matching 
of{l,... ,n}.ForagivenM”=(Mc ,..., M,-l)ENlir, 
consider Markov chain (I&)&o on state space of all O-l 
sequences with s zeros and 5 ones with the transition 
rules lFl$ c) &+r that for each matching edge {i, j} E Mt 
exchanges the items in vertices i and j independently 
with probability 4. 

Rackoff and Simon [24, Theorem 3.11 show that 
after a polylogarithmic number of steps of process I5 any 
sequence of OS and 1s will be almost randomly shuffled 
for almost every choice of matchings M. They apply 
this result to show security of a cryptographic protocol 
(see Section 3.3). 

Delayed path coupling provides a simpler proof of 
convergence of process IB. Moreover, we reduce the 
bound on the mixing time from polylogarithmic (with 
a two-digit degree [26]) to O(logn): 

THEOREM 2.3. There is a r = O(logn) such that for 
almost every M’ E lVF (i.e., for all but nmn(l) . Ii%?1 
many elements from NY) and independently of ho, the 
variation distance between the probability distribution of 
r$ and the uniform distribution on all O-l sequences 
with 5 zeros and 4 ones is U(i). 

In particular, Theorem 2.3 implies existence of 
switching networks of depth U(log2 n) that generate 
permutations of n elements so that the variation dis- 
tance between the probability distribution obtained and 
the uniform distribution on 8, is O(i). 
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3 ,Applications. 

3.1 Parallel algorithms generating random per- 
mutations. The stochastic processes considered in this 
paper lead directly to a number of novel algorithms for 
generating random permutations on parallel machines. 
Our first application is the following, rather unexpected 
result. 

THEOREM 3.1. Random permutations of n items can 
be generated in U(loglogn) time on the EREW PRAM 

with n logo(r) (n) p rocessors so that the variation dis- 
tance between the probability distribution of the permu- 
tations generated and the uniform probability distribu- 
tion over S, is U(i). 

Theorem 3.1 follows immediately from Theorem 2.2 
(the non-uniform version follows also from Theorem 2.3 
as well as from [24, Theorem 3.11): in one step, EREW 
PRAM generates a random setting of the switches of 
the network given by Theorem 2.2. Then it finds the 

paths leading from the input nodes to the output nodes 
using pointer doubling. 

Since there are extremely few algorithms on the 
EREW PRAM with sublogarithmic runtimes, it is 
quite surprising that double logarithmic time has been 
achieved for such a complicated problem as generating 
random permutations. The previous EREW PRAM 
algorithms for this problem have runtime R(logn) [9, 
191. Our algorithm beats even the best previously 
known CREW PRAM algorithm [9] regarding the total 
work (while preserving the runtime). 

The total work of the EREW PRAM algorithm 
is U(n logo(‘) n). We can reduce it on other parallel 
computation models and by using distributed mixing 
instead of the network from Theorem 2.2. For instance, 
a direct implementation of distributed mixing seems 
to be the method of choice for the OCPC machine 
(Optical Communication ParaZZeZ Computer) (see [4,17] 
for a definition of the OCPC). On the OCPC with 
O(n . $$&) processors random permutations of n 

items can be generated in O(loglogn) time, so that 
the variation distance from the uniform probability 
distribution over S, is U(i). Sm-&rly, one may 
implement distributed mtig on the QRQW PRAM 
(see [15] for a definition). In this case, the runtime 
would be U(m), since choosing the partners for 
exchange requires now considerably more time than 
for the OCPC. The previous best QRQW algorithm 
for generating random permutations (161 runs in time 
O(logn) (but is work optimal, what might be hard to 
obtain for sublogarithmic runtimes). 

3.2 Work fairness. One of large sources of computa- 
tional power is utilization of free processor cycles in sys- 



274 

terns consisting of many workstations. However, imple- 
menting it efficiently without significant degradations 
of main services is a challenging problem (see [25] for a 
general survey). Unpredictability of free resources, com- 
putational requirements of the jobs utilizing free cycles, 
their duration, etc., makes it extremely difficult to de- 
sign efficient and fair protocols for load balancing, load 
sharing, and similar goals. The results obtained are far 
from being complete. 

There is a large class of jobs that can be moved 
within the system without a large overhead. (Examples 
of this kind are brute-force search, simulated annealing, 
genetic algorithms, branch-and-bound, factoring large 
numbers, breaking cryptographic ciphertexts, etc.) A 
simple approach that might be successful in practice for 
such jobs is to exchange them between the workstations 
at random. This provides a certain degree of utilization 
of free processor cycles. Also, this protocol is quite 
immune to such problems as poor service at certain 
locations at certain times. Furthermore, no machine 
is influenced by such a job for a longer time. 

A simple intuitive approach might be to make 
each workstation pass its “movable” job to a randomly 
chosen location from time to time. However, then 

unavoidably some hot spots are generated, where many 
jobs arrive. Permuting jobs between workstations at 
random does not have this unwanted feature, but its 
implementation in a distributed system is non-obvious. 
However, distributed mixing is an efficient solution of 
this problem. Theorem 2.1 guarantees that with high 
probability after a short time the jobs are quite well 
allocated. 

Our approach of using random matchings is related 
to the techniques from [13, 141. However, our analysis 
uses Markov chain approach. Finally, we claim that 
many goals can be achieved by combining approaches 
of [13, 141 with distributed mixing. 

3.3 Cryptographic defense against traffic 
analysis. Protecting messages against an eavesdropper 
has been a subject of intensive research. Tools prevent- 
ing an eavesdropper from understanding or modifying 
a message without being detected have been developed. 
While it is known how to protect the contents of a 
message, it is a challenging problem how to hide that 
a message has been sent from one to another location, 
i.e. how to defend themselves against trafic analysis. 
This is a fundamental problem in many areas, where 
anonymity of communication is necessary. 

Solving this problem is easy, when communication 
pattern is oblivious (like in a token ring). One strategy 
to make communication pattern oblivious is by intro- 
ducing fake messages and randomness (see [18] for a 

software protection scheme of this kind). Another ap- 
proach of hiding communication is to use mixes [8]. A 
mix is a node which obtains two messages encrypted 
with a public key of the mix, decodes them, encodes 
them with other keys and outputs to the next nodes. 
By properties of encryption, the eavesdropper cannot 
say where a given ciphertext has been forwarded after 
recoding inside the mix. The idea is that if we apply 
sufficiently many mixes and sufficiently many messages 
are sent, the eavesdropper has no chance to determine 
the destinations of the messages. 

Rackoff and Simon [24] propose a protocol against 
traffic analysis related to mixes. They consider a 
fully connected network with n nodes where each node 
sends a message. The communication between the 
nodes is visible for the eavesdropper; moreover, the 
eavesdropper is able to conquer any subset of up to m 
nodes, where c < 1 is a constant. In this protocol, 
if node A wants to send a message m to node B, 
then A chooses a random path Ci , . . . , CA leading from 
A to B = CA (X is a security parameter). Then 
m is encoded as Ekl (CZ, Ek2 (C’s, Ekd (. . . Ekx (m) . . . ))) 
and sent to node Ci (ki is the public key of node 
Ci). Then Ci decodes the message with its private 
key, learns Cz and sends the rest of the message, 
i.e. Ekcz (C’s, ,?&(. . . Ek,-., (m) . . .)), to Cz. This is 
continued until the message reaches B. 

Rackoff and Simon claim that for X, which is 
polylogarithmic in n, the adversary cannot analyze the 
traflic. The conjecture is supported by a proof for 
a slightly different process, in which messages must 
remain inside certain (random) groups at certain phases 
of the protocol (for details see (24, Section 3.21). The 
proof is based on convergence of the stochastic process 
defined in Theorem 2.3. We reduce the upper bound 
on the mixing time of this process from a polynomial 
in logn to O(logn). Due to a high degree (two-digit 
[26]) of the mentioned polynomial, the size of security 
parameter X was previously too large and prevented 
practical applications [26]. Now we know that already 
X = O(log2 n) provides good security. 

3.4 Communication services. Generating random 
permutations in hardware is an important problem due 
to its practical applications. For instance, such a hard- 
ware enclosed in a tamper-proof box would be a reliable 
source of randomness for many cryptographic proto- 
cols. Random and dynamic allocation of resources (such 
as communication channels) seems to be a very useful 
technique in telecommunication technology. (For exam- 
ple, frequent changing frequencies in GSM networks is 
used to achieve more reliable transmission and protec- 
tion against eavesdropping.) 
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Permutation networks can be used to generate 
permutations at random by setting the switches at 
random and sending the packets through these switches. 
Though each permutation may be generated in this way, 
the classical permutation networks, like BeneS network, 
have some undesirable properties. Namely, there are 
permutations that correspond to very few settings of 
switches, and there are privileged ones that may be 
obtained in relatively many ways. It was already known 
that butterflies have some good “mixing” properties 
[22], but these properties are different from these we 
discuss here. 

An elegant and simple idea to cope with the prob- 
lem would be to pipeline several permutation networks. 
This corresponds to taking product of permutations 
generated by single networks, and the idea is that each 
permutation may be generated by composing “rare” and 
“frequent” permutations so eventually the differences 
between frequencies are significantly reduced. Experi- 
ments look good, but they do provide no reliable infor- 
mation due to the size of the set of all permutations. 

Theorem 2.2 provides a simple switching network 
that provably generates permutations almost uniformly 
at random. We feel that some elements of the current 
construction as well as the upper bound on the mixing 
time, are due to present proof techniques and may be 
considerably improved in the future. 

3.5 Fault resistant systems. Highly reliable sys- 
tems are usually composed from independent compo- 
nents performing the same tasks. If one of the com- 
ponents fails, then the other components take over and 
provide regular service. This works as long as. the faults 
are random and independent. However, an adversary 
may easily make the system brake down by damaging 
the components performing a single chosen task in the 

system. 

i.e., for E = l/poly(n) the mixing time is upper bounded 
by a (low degree) polynomial in logn. 
Coupling. A coupling [l, lo] for a Markov chain m = 
(Yt)te~ is a stochastic process (Y,,Y,*),e, on 9 x !2J 
such that each of (Y) t tee, (Yt*)te~, considered inde- 

pendently, is a faithful copy of (Yt& (i.e., ,Cy(Yt) = 
Icy(K) = ,Cy(yt*) for each Y E !Zj). The key result on 
coupling, the so-called coupling inequality (see, e.g., [l, 
Lemma 3.6]), states that the variation distance between 
L(Yt) and /I is bounded above by the probability that 
Yt # Y: for the worst choice of initial states Yo and Yd;. 

A simple defense against faults caused by an ad- 
versary is to provide dynamic and random allocation of 
components to independent processors. If an adversary 
has no knowledge about allocation of tasks of the sys- 
tem, all he can do is to damage arbitrary processors. For 
example, assume that k different tasks are implemented 
on k2 processors, each task by k processors. If an adver- 
sary knows the allocation, then he may damage exactly 
those k processors that perform a single function. How- 
ever, if allocation of processors to tasks is random, the 
adversary has to damage much more processors. For ex- 
ample, damaging k2/2 processors gives the probability 
less than k/2k that at least one task is not serviced. 

One difficulty in applying coupling lies in analyzing 
process (Yt, Y:& on the whole space ?) x ?2J. The 
path coupling method of Bubley and Dyer [5] (see also 
[6, 7, 121) allows to consider a coupling only for a subset 
of?zJ x!2J. 
Path Coupling. Let A be a metric defined on ?ZJ x ZJ 
which takes values in (0,. . . , D}. Let I? = {(Y, Y’) E 
9 x C?J : A(Y,Y*) = 1). jFrom now on we assume 

that for all (Y,Y*) E !2J x !2J, if A(Y,Y*) = r, then 
there exists a sequence Y = As, Al,. . . , Ar = Y”, with 
(Ai, &+I) E l? for 0 5 i < r. 

Bubley and Dyer [5] showed that it is enough to 
consider a coupling only for (Y, Y*) E l?. 

LEMMA 4.1. (PATH COUPLING LEMMA [5], a sim- 
plified version) Assume that there exists a coupling 
(Yt,Yt*)tE~ for !?JI such that for some ,0 < 1 we have 

E[A(Yt+r , Y,T+,)] 5 D for all (Y,, Y;) E I’ and t E W. 

Providing random and dynamic allocation of tasks 
to processors can be easily achieved by distributed 
mixing. Moreover, it is easy to execute the protocol on 

Delayed Path Coupling. In our analysis, we use 
a simple but powerful extension of the path coupling 

- 
the system with damaged processors. Even if a constant 
fraction of n processors is damaged, then the bound 
from Theorem 2.1 still holds, i.e. after Q(logn) steps 
the allocation of tasks, which survived damaging the 
processors, is random. 

4 Technical contribution. 

Let m = (Yt),e~ be a discrete-time (possibly time- 
dependent) Markov chain with a finite state space 9 
and the unique stationary distribution ,z. Let ,!Z~y(yt) 
denote the probability distribution of Y, given that 
Yo = Y. We are interested in studying Markov chains 
for which the variation distance between Ly(&) and ~1 
tends quickly to zero, independently of Y. The standard 
measure of the convergence is the mixing time, denoted 
by rn(~), which is defined as 

mJl (El = min{T E N : IlLy(Yt) - j.4 L E 

foreachYEZJandeacht~2’). 

In this paper, we are interested in very rapid mixing, 
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method. In path coupling, the key step is to design 5 Analysis of the matching exchange process - 

a coupling (Yt,Y,*) I+ (Yt+l, Yc+l) defined only on an outline. 

pairs (Y,, y,*) E I? such that E[A(Yt+l, y,*,,)] < 1 (or 

E[A(Yt+l, Y&,)1 = 1 and Pr[A(K+l,Y~+l> # 11 < 1, 
Let 9X = (IIt)tE~ be a Markov chain with the state space 

see [5]). However, we may have P~[A(Y,+I,Y,;~) 2 
8, and transitions made according to the transition 

l] = 1 for certain (Yt,Y,‘) E l?. In this case, path 
rules of the matching exchange protocol. We define 

coupling cannot be used directly. We may elude this 
the distance metric between 7r,7r’ E S,, denoted by 

problem by delaying the decision about coupling of the 
A( X, r*), as the minimu:m number of transpositions 

two processes until enough many steps are made. 
required to transform a in.to n*. We apply the delayed 

Let !7Jl = (&),,N be a Markov chain on ZJ. Let 
path coupling method. We pick sufficiently large r = 

6 be a positive integer and let us consider the Markov 
o(l og n) and define a coupling (rt, nt)t’,o for 9X with 

chain ~J&s = (y,b)t,N on ?ZJ such that Ly(Yf) = Ly(Y6.t) 

A( XC,,~~G) = 1. Our aim is to show that E[A(rT,n;)] 5 
1. 

for every Y E !ZJ. Obviously, if 9X is ergodic, then so 
n, which implies Theorem 2.1 by inequality (4.2). 

In order to define the coupling, we first pick T 
is ma. Further, the stationary distributions of M and matchings ~~ 

m6 are’ the Same and 7-m(E) 5 b * 7% (E) for every E- 
, M, in G and active matchings 

Therefore Path Coupling Lemma applied to 9% yields 
al,. . . , $I, g&&ted by Ml, . . . , M, according to 

the following lemma: 
the matching exchange protocol. They are the match- 

ings used by the first process to define ~1,. . . , r,. 
Then, for (nf&, we define_ matchings MT,. . . , M: 

LEMMA 4.2. (DELAYED PATH COUPLING LEMMA) b*G and a:tiVe matchings MT,. . . 7 G: generated by 

Let 6 be a positive integer. Let (Yt , Yt*)tE~ be a cow 17 . . . 1 Mu, as discussed be1ow. 
pling for !M such that for eveq r E N and every If edges {i, Ic} and {j, 1) are in a matching M, then 

(Yr6, Y:,) E r we get EIA(Y(,+~)~,Y~~+l~6)1 I P for 
let M[i X+ j] denote the matching (M - {{i, Ic}, {j, 1))) u 

some real /3 < 1. Then {{i,~l,{ik~~. L t e us fix ~0 and $ that differ only on 
positions io and jo, i.e., n:(s) = TO(S) if and only if 

(4.1) m(e) 5 6 * [+$$$q . s # (joy, (~orl(jo). 
Notice first that if {io, jo} E MI, then we may 

ha particular, if E[A(q,+l) 6, Y(r+,) a)] I i for some 

6 = 0(logn) and D = U(n), then 

mu 2 Wogn) . 

Let us remark that if Markov chain 9X is time- 
independent, then in order to use Delayed Path Cou- 
pling Lemma it is enough to provide a bound for 

E[Ah(Y(7+1) 6, Y;+l)6>l only for 7 = 0. 

Although delayed path coupling is a simple refine- 
ment of the path coupling technique, it yields a very 
different approach to estimate the mixing times. It is 
worth to emphasize that delayed path coupling may lead 
to non-Markovian couplings (since a Markovian cou- 
pling for 9& does not have to be Markovian for !7X). 

Delayed path coupling can be used in a relatively 
simple way to prove Theorem 2.2 (to appear in the full 
version of the paper). More complicated delayed path 
coupling arguments are used in the proof of Theorem 2.1 
(see Section 5)) where a non-Markovian coupling is con- 
structed to bound the mixing time of the matching ex- 
change protocol. Finally, more sophisticated arguments 
are incorporated in our proof of Theorem 2.3 (to ap- 
pear in the full version of the paper), where we show 
the existence of a non-Markovian coupling. 

obtain 7~ = XT. Indeed, we set M-T = Ml and 

I$ = 6X1 U {{io,jo}} if {io,jo} $Z MI and fir; = 
Ml - {{io, jo}} otherwise. Then obviously 7~ = 71;. 
However, the probability that {io,jo} E Ml is O(i) 
only!’ Our main observation is that we can proceed 
further on with the next matchings to improve the 
success probability. Suppose that (40, Ic}, {jo, I} E 611 
for some Ic,Z. Now there are two possible couplings 
for MT between which we may choose. If we see, 
for example, that {io,jo} E Mz, then we set 6l; = 
Ml[io f) jo] (see Fig. 1). Then ~1 and n; differ only 
at positions io and jo, and the arguments given above 
can be used to define I@ such that 7r2 = ?rr. On the 
other hand, if {k, I} E M2, then we set M; = $I,. 

Then ~1 Fd $ differ only at positions k and 1 and we 
may set Mz such that 7r2 = rz. Thus, informally, we 
can set XT and ns such that the probability of getting 
~2 = $ is roughly twice as big as the probability that 
7rl = n;. We can continue these arguments further, 
and show that for some T = O(logn) and for almost 
every MI,. . . ,MT and I6ll,. . . ,ti~ with Mt 2 Mt, 
we can use the method described above to construct 
“good” sequences MT,. . . , M$ and l%;, . . . ,6I> with 

6lt s M,*, such that no = $.. 

‘This is the main reason why there was no O(n log n) coupling- 
based proof for the random transpositions process [l, lo]. 
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Figure 1: Preserving the place of difference between two 
processes of coupling at step 1 

One non-obvious issue has not been considered yet: 
we must construct $ that is a faithful copy of ?BZ. For 
this purpose we refine the construction of matchings 
MT,... , M; and MT,.. . , MT. Our main argument 
is roughly as follows. Observe that given ki, . . . , k,, 
the probability that the matching exchange protocol 
picks matchings MI, . ,. ,M, i” G with-]Mi] = ki, 
and active matchings Ml,. . . , M, with Mt C Mt, is 
the same for every pair of sequences MI,. . . , M, and 
Ml,... , M,. Therefore our aim is to define a permuta- 
tion 6 such that if (7rt)&, is defined by active match- 
ings&%1,... , M, generated by matchings MI, . . . , M, 
in G and (nf)& is defined by matchings given by 

e(Ml,. , . , M,; Ml,. . . , M,), then E[A(xT,@)] 5 k. 
Since 6 is a permutation, the marginal distribution of 
matchings chosen for the second process is the same as 
for the first process. Hence such (nITt, 7rt)&e would be 
a proper coupling and Delayed Path Coupling Lemma 
(inequality (4.2)) would imply Theorem 2.1. 

Let us finally notice that since 9 is defi”ed for 
the whole sequences MI,. . . , M, and MI,. . . , M,, our 
coupling is non-Markovian. 

6 Details of the proof of Theorem 2.1. 

6.1 Good pairs. For active matchings Ml,. . . , I%,, 
,we define good pairs at a given step and traces corre- 
sponding to the good pairs. Each good pair is a pair of 
integers {i, j} for i, j E { 1,. . . , n}. Each trace is a set 
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of elements of the form (t; k +) 1), where t is an inte- 
ger, 0 < t < r, and k, 1 E { 1,. . . , n}. A trace provides 
information necessary to define rr; so that a difference 
between $ and 7rt occurs at the positions given by the 
good pair. We define the good pairs and their traces by 
induction on t. The only good pair at step 0 is {ie, je} 
(we remind that 7~ and TC; differ on positions ie and je) 
and its trace is empty. Now let GPt-1 be the set of good 
pairs at step t - 1 and It-i = (k : 31 (k,Z} E GP+l}. 
We define GP, by considering each pair in GPt-1 one 
by one. Let {i,j} E GPt-1 and let P be the trace for 
{i, j) at step t - 1: 

if neither of i and j is incident to any edge in I&, 
then {i, j} E GPt and P is the trace for {i, j} at 

step t. 
if {i, k} E Mt and j is not incident to any edge in 
I&, then (k, j} E GPt and P is the trace for (k, j} 

at step t. 
if {i, k}, {j, I} E I$, then 

o if k, 1 $ It-i, then 

D {k,Z} E GPt and P is the trace for {k,l} 
at step t, and 

D {i, j} E GPt and P U {(t; i H j)} is the 
trace for {i, j} at step t. 

o otherwise {k, 1) E GPt and P is the trace for 
{k,Z} at step t. 

It is easy to see that our construction ensures that 
each i E (1,. . . , n} may be an element of at most one 
good pair at step t, and therefore IGPtl 5 n/2 for every 
1 5 t 2 r. We show now that the number of good pairs 
will be almost surely O(n) after G(logn) steps. 

CLAIM 6.1. There is a T = O(logn) such that the 
probability (over the choices of ICI, . . . , k,, of match- 
ings Ml,... , MT in G, and of active matchings 

MI,. . . ,6l~) that [GPTI = o(n) is at most $. 

Proof. Let a positive constant cl fulfill E[kt] 2 tin. 
Then E[]I&]] 2 tin/2 for every t E-N. Therefore, 
Markov’s inequality implies that Pr[lMt I 5 cln/4] _< 
1 - cs for cs = ci /(2 - cl). Let_ Xt be the indicator 
random variable for the event ]Mt] > tin/4. Hence 
Pr[Xt = l] 1 cg and Chernoff bound yields 

(6.3) Pr[CTcl Xt 5 &T] 5 $zw2 

for T 2 24 lnnlcs. Now we shall condition on the 

event CT=, Xt > $czT. Let !J3 be a matching exchange 
process that picks $c2T active matchings, each of size 

at least tin/4. Conditioned on the event C,‘=, X, > 
$c2T, the number of good pairs in GPT stochastically 
dominates the number of good pairs in !JJ. Let Yt 
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be the number of good pairs at step t in process Q, 
0 5 t 5 &T. Clearly Ys = 1. Now, let {i,j} be a good 
pair at step t - 1 in Q. This pair increases the number 
of good pairs at step t only if {i, k}, {j, I} are the edges 
of the t-th active matching in 9 for k, 1 $Z It-r. The 
probability of this event is lower bounded by a positive 
constant cs, provided that Yt-i 5 n/4. Therefore, if 
Yt-r 5 n/4, then EIYtIYt-l] 2 Yt-i(1 + cs). This 
clearly yields that there is a T = O(logn) such that 
Pr[Y* 5 n/4] 5 +-L-2. We combine this inequality 
with (6.3) to complete the proof of Claim 6.1. 

LEMMA 6.1. There is a TO = O(logn) such that the 
probability (over the choices of ICI,. . . , k7, of match- 
ings MI,... ,MT, in G, and of active matchings 
Ml,... ,GT,) that GPt-1 nM, = 0 for all t 5 TO is at 

most $. 

Proof. We shall condition on the event that 
JGF’~T~,~J] 2 qn for some constant c4 > 0. Fur- 
ther, similarly as in the proof of Claim 6.1, we shall 
condition on the event that at least cgTo matchings 

among MI+.LT~/~J,. . . , MT~ are of size csn, for some 
positive constants cs and ce. By the arguments used 
in the proof of Claim 6.1, we know that any of these 
events does not hold with probability at most ins2 for 
an appropriate choice of c5 and cs. 

Observe that for each step t all good pairs are 
disjoint. Notice also that the matchings generated by 
!.?Jl! are independent of the positions of the good pairs. 
Therefore we can model our problem as follows: 
Let H be a complete graph with n vertices and let 
AM be an arbitrary matching in H of size at least 
qn (i.e., each matching edge corresponds to a good 
pair). Pick c5T random matchings RMr,. . . ,RMcs~ 
in H, each of size at least qn. Now, the probability 
that none of the matchings RMl, . . . , RM,,T, hits an 
edge from AM is an upper bound for the probability 
that U&(GPt-1 II Mt) = 0. 

Since it is easy to see that Pr[AM n RMt = 01 _< c7 
for some constant c7 < 1, we obtain 

Pr[AM n (RMl u -. . u RM,,=,) = 01 5 (c,)~~~ . 

Therefore we can complete the proof of Lemma 6.1 by 
setting TO 2 *. 

6.2 Critical active matchings. For a given good 
p-$r and its trace P at step T for active matchings 

$,-.-.- 
, MT, we define the cn’tical active matchings 

. ,tigsuchthatforeacht, l<t<_T: 

l if (t; k ++ I) E P, t_hen l@ = I&[k f) 11; 
l otherwise w = Mt. 

The following ciaim states the key plupe~ by VI ~,VUU 
pairs, their traces, and critical active matchings. 

CLAIM 6.2. Let {p,q} be a good pair with- the trace 
P at step t for active matchings Ml,. . . , Mt and let 
Gr: . . . : I@ be the corresponding critical active match- 
ings. Let (nt)& and (nt)Zzo be the permutations de- 

fined byMi,.. . , I& and by a?, . . . , I@, respectively. 

Then nt and ;rZ differ only on positions p and q (i.e., 

n(s) = n;(s) for all s # (m)-‘(p), (nY(q>). 

Proof. The proof is by induction on t. The claim clearly 
holds for t = 0. Now we assume that it is true for t - 1 
and we show that it is valid for t. 

If {p,q} is a good pair at step t, then it has been 
created by a good pair. {i, j} with a trace P’ at step 
t - 1. Notice that in that case 7rITt-i(s) = r;-r(s) 

for all s # (nt-l)-‘(i),(nt-l)-‘(j), by the inductive 
hypothesis. We consider the following cases: 

b 

l 

. 

. 

6.3 

If i = p, j = q, and-neither of i and j is 
incident to any edge in Mt, then P = P’, .and 
hence l@ = fit. This yields rt (s) = nt (s) for 
all s # (rtt--l)-l(i),(rt-l)-l(j), and the claim 
follows by the fact that (7rt)-‘(P) = (~~-r)-‘(i) 

ad (d-‘(q) = (w-t-l)-lii). 
If j = q, {i,p} E -Mt, and j is not inci- 
dent to any edge in Mt, then P = P*, and 
hence l@ = Mt. Therefore x~(s) = R;(S) for 

all s # (m-1)-%>, (m-1>-‘(4). Now observe 
that (~~)-l(p) = (7r+r)-r(i) and (nt)-l(q) = 
(nt-l)-‘(q), and hence the claim holds for t. 

If {Cd n -b,q} = 0 -and I&p), {Aa) E fit, 
then P = P’ and Mr = Mt. Therefore, 
similarly as above, am = r;(s) for all s # 
(nt-l)-’ (i), (n+r)-l (j). Now the claim follows 
from ‘the fact that (~~)‘r(p) = (nt-r)-l(i) and 

(9)-‘(q) = (kl)-l(j). 
Ifi=p,j= q, and {i, k}, {j,Z] E I&, then 

lc, 1 # b-1 and P = P’ U ((t;i ti j)}. Since 
Mr = Mt[i C) j], we have xt(s) = r;(s) for s # 

(n-d-l(i), (n-l>-‘(j), (~t-l)-l(k),(~t-l~-l(Z)- 
On the other hand, since {i, k), {j, 1) E Mt and 

{i,l),{j,kl E a;, we have T*((Q-1)-r(i)) = 
k = n~((7rT-l)-1(j)) = 7rz ((7r+i)-l (i)). Simi- 
larly, 7rt((7r+-l)-l(j)) = I = r,*((irITtl_i)-l(i)) = 

~~((m-d-‘(i)>. Therefore Am = n;(s) for 

=W1(k) ami s = (Q)-~(Z), which yields the 

Sibling matchings. III this subsection we define 
permutation 6. Now let TO be as in Lemma 6.1; we 
require that r is set so that r 2 To. First, we proceed 
conditioned on the event that UT&(GP,-1 n Mt) # 0. 
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Let 1 < To be the smallest t such that there is a good 
pair at step t - 1 that is in Mt Q.e., GPt,l n Mt # 0); 
we call Z the meeting time for Ml,. . . , MT. Let {i: j} 
be the lexicographically first good pair at step Z - 1 that 
is in MI and let P be its tr_ace. We call pair {i,j} the 
terminal pair for Mr , . . . , M,. 

We define now sibling matchings_ MT, . . . , MT and 
sibling active mat_chings MT,. . . , MT for matchings 

Ml,.. .,M,andMr ,..., M,. Foreveryt,l<t<‘X, 
we set M; as follows: 

l if (t;k f) I) E P, then M; = Mt(k +) 11 and 
lib; = tit[k H 11; 

l otherwise Mf = Mt and I@ = M,. 

We also define M; = MI and 

a:, = @2 - {{i,j)) if {i,j} E @Z 
L 

{ MT U {{Cjl) if (i,j) &f MI , 

as well as Mf = Mt and ME = Mt for all 
1 < t < r. The sequence of sibling matchicgs 
Mi,... , M; and sibling ac_tive mat_chings fi;, . . . , M: 
defined for Ml,. . . , M,, Ml,. . . , M, will be denoted 
by G(Mr ,... ,M,,Mr ,... $I,). 

Our definition of the sibling sequence yields the 
following two key claims. 

CLAIM 6.3. Let Ul=,(GPt-l rl Mt) # 0 and let 

Ia;,... ,fi: be the sibling active matchings for match- 
ings Ml,... ,M, and Ml,.. . ,G,. If (nt)lCo and 
(rf)lzo are defined by $&I,. . . ,l& and I%;, . . . ,G;, 
respectively, then rIT, = n; . 

Proof. Let 1 be the meeting time and {i; j} be the 
terminal pair for Mr , . . . , M,. Then MT,. . . , I$-, , 
are the critical matchings for {i,j} at time Z - 1. 
Therefore Claim 6.2 implies that 7rz-1 and x5-r differ 

only on positions i and j. Now observe that MT and 
I$ differ only on edge {i, j} and that exactly one of 

MZ and M; contains edge {i, j}. Therefore we obtain 
lrl = 7$. Now the claim follows from the fact that 

fit = M; for every Z + 1 5 t < r. 

Claim 6.3 guarantees that the processes under con- 
sideration couple as desired. The next claim guarantees 
correctness of the construction in the sense that 6 is a 
permutation and, as we shall see, the marginal probabil- 
ity distributions of the processes forming the coupling 
are as expected. 

&AIM 6.4. Let M;, . . . , M: and I%;, . . . , M; be the 
sibling matchings and sibli_ng active matchings for 
Ml,... ,M, and Mr ,... ,M,. Then Ml,... ,M, 

and Mi:... , G, are, respectively, the szolzng maccn- 
ings and sibling active matchings for M;, . . . , MT and 
a;,... ,ct;. 

Proof. We prove the claim by showing that the following 
property is satisfied for every {i, j} and 1 5 t 5 r: 
Q, j} is a good pair with a trace P at step t for 
Ml,. . . , M, if and only if {i, jl is a good pair with 
atracePatsteptforMi,...,M:. 

We prove the property above by induction on t. 
Since the claim trivially holds for t = 0, we assume 
that it does hold for t - 1 and will validate it for t. 

By our construction we know that M; equals either 
l% or ML[P tf q]- for some good pair {pLq} at step 
t- 1 for Ml,... , M, with {p, r}, {q, s} E Mt for some 
r, s $Z It-r. Hence by the inductive_ hypothe_is, {p, q} is 
a good pair at step t - 1 also for MT,. . . , M:. Clearly, 
if M; = Mt, then the inductive hypothesis ensures 
that the property holds at step t. Thus let us suppose 
that %I; = M,[p +) q]. Each good pair at step t is 
created by a good pair at step t - I.. Let {k, I} be 
a good pair at step t - 1 (for both Mr, . . . , M, and 
ICI;,.. . ,M:). If {k, 1) # {p,q}, then {Ic,l} will create 
the same good pair_(s) with the same traces at step t for 
Ml,... ) MT and Mi, . . . , &I:, since any edges incident 
to k and I are the same in M, and Mt. Now let 
us consider the case {k, 1) = {p, q} and let P-be the 
tface for {p, q} at step t - 1 (for both MI, . . . , M, and 
Mi,... , M:). Then there are some T, s e It-r such that 

{p, r}, {q, s} E fit and {p, s}, {q, r} E Mt. Therefore 
{p, q} is a good pair with trace P u {(t; p +) q)} at step 
t for both Ml,. . . ,I& and MT,. . . ,I%;. Similarly, 

:;I,$ a .fsooc&p air with trace P for both I$, . . . , M7 
* 

11’” > 7’ 
Once we know that the property holds, we obtain 

that the terminal pairs and their traces are the same for 

MI,... , M, andfore,... , MT. Therefore Claim 6.4 
follows directly by the definitions of the sibling match- 
ings. 

In order to complete the definition of (5 we con- 
sider now the remaining situation when uf&(GPt-l n 

I&) = 0. In that case we define the sibling match- 
ings and the sibling active matchings for Ml,. .:, M, 
and I&, . . . , %!I, as Mr,. . . ,M, and fir,. . . ,M, it- 
self. Obviously in this case A(r,, R:) = 1. 

This leads to the following final lemma. 

LEMMA 6.2. Let ~0 and no* be two permutations that 
difer only in positions io and jo. Let h$, . . . , l$, be 
a sequence of matchings in G and let Ml,. . . , M, be 
any active matchings generated by Mr, . .: , M,. Let 
(nt)zzo be defined by active matchings -Ml,. . . ,-M,. 
If we define (T;)&~ by G(Mr,. . . ,M,,Mr,. . . ,M,), 
then (T*, ~f)&~ is a coupling and E[A(r,, r;)] < i. 
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Proof. Fix kl, . . . , k,. Let us consider the function 
6 that maps matchings of prescribed sizes kl, . . . , k, 

and active matchings into their sibling matchings and 
sibling active matchings. 

L&W-I n Md 
For matchings such that 

= 0 function 6 is identity. Oth- 
erwise, by Claim 6.4, G2 is identity. This implies that 
6 is a symmetric permutation over the set of match- 
ings with prescribed sizes kl, . . . , k, and their active 
matchings. Since, as already seen at the beginning of 
Section 5, each such sequence of matchings has the same 
probability, (nt, $‘)& is a valid coupling. 

It remains to show that E[A(n,,7r;)] 5 i. By 
Claim 6.3 we know _that if there is some t, 1 < t < TO, 

such that GPt-, O Mt is non-empty, then r, = i;;. On 
the other hand, if GPt-l n I$ = 0 for all 1 5 t _< To, 

then A(T,,T;) = 1. By Lemma 6.1, the latter event 
occurs with probability at most i, so E[A(n,? T;)] 5 i, 
as claimed. 

Now we can complete the proof of Theorem 2.1 
by combining Lemma 6.2 with Delayed Path Coupling 
Lemma. 
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