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Summary. A model for a 1–dimensional delayed random walk is developed by gen-
eralizing the Ehrenfest model of a discrete random walk evolving on a quadratic,
or harmonic, potential to the case of non–zero delay. The Fokker–Planck equation
derived from this delayed random walk (DRW) is identical to that obtained starting
from the delayed Langevin equation, i.e. a first–order stochastic delay differential
equation (SDDE). Thus this DRW and SDDE provide alternate, but complimen-
tary ways for describing the interplay between noise and delay in the vicinity of
a fixed point. The DRW representation lends itself to determinations of the joint
probability function and, in particular, to the auto–correlation function for both the
stationary and transient states. Thus the effects of delay are manisfested through
experimentally measurable quantities such as the variance, correlation time, and the
power spectrum. Our findings are illustrated through applications to the analysis of
the fluctuations in the center of pressure that occur during quiet standing.
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Feedback control mechanisms are ubiquitous in physiology [2, 8, 17, 22,
34, 41, 47, 48, 60, 63, 65, 66, 67]. There are two important intrinsic fea-
tures of these control mechanisms: 1) all of them contain time delays; and 2)
all of them are continually subjected to the effects of random, uncontrolled
fluctuations (herein referred to as “noise”). The presence of time delays is a
consequence of the simple fact that the different sensors that detect changes
in the controlled variable and the effectors that act on this variable are spa-
tially distributed. Since transmission and conduction times are finite, time
delays are unavoidable. As a consequence, mathematical models for feedback
control take the form of stochastic delay differential equations (SDDE); an
example is the delayed Langevin equation or first–order SDDE with additive
noise [20, 25, 33, 36, 37, 42, 43, 53, 59]

dx(t) = −kx(t− τ)dt + dW (1)
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where x(t), x(t− τ) are, respectively, the values of the state variable at times
t, and t− τ , τ is the time delay, k is a constant, and W describes the Wiener
process. In order to obtain a solution of (1) it is necessary to define an initial
function, x(t) = Φ(t), t ∈ [−τ, 0], denoted herein as Φ0(t).

Understanding the properties of SDDEs is an important first step for in-
terpreting the nature of the fluctuations in physiological variables measured
experimentally [11, 37, 53]. However, an increasingly popular way to analyze
these fluctuations has been to replace the SDDE by a delayed random walk,
i.e. a discrete random walk for which the transition probabilities at the n–th
step depend on the position of the walker τ steps before [55, 56, 57, 58, 59].
Examples include human postural sway [49, 56], eye movements [46], neolithic
transitions [18], econophysics [23, 58], and stochastic resonance–like phenom-
ena [57]. What is the proper way to formulate the delayed random walk so
that its properties are equivalent to those predicted by (1)?

An extensive mathematical literature has been devoted to addressing issues
related to the existence and uniqueness of solutions of (1) and their stability
[51, 52]. These fundamental mathematical studies have formed the basis for en-
gineering control theoretic studies of the effects of the interplay between noise
and delay on the stability of man–made feedback control mechanisms [6, 54].
Lost in these mathematical discussions of SDDEs is the nearly 100 years of
careful experimental observation and physical insight that established the cor-
respondence between (1) and an appropriately formulated random walk when
τ = 0 [15, 16, 21, 31, 40, 45, 61] that does not have its counterpart for the case
when τ 6= 0. Briefly the current state of affairs is as follows. The continuous
time model described by (1), referred to as the delayed Langevin equation,
and the delayed random walk must be linked by a Fokker–Planck equation,
i.e. a partial differential equation which describes the time evolution of the
probability density function. This is because all of these models describe the
same phenomenon and hence they must be equivalent in some sense. When
τ = 0 it has been well demonstrated that the Langevin equation and the ran-
dom walk leds to the same Fokker–Planck equation provided that the random
walk occurs in a harmonic, or quadratic, potential (the Ehrenfest model) [31].
Although it has been possible to derive the Fokker–Planck equation from (1)
when τ 6= 0 [19, 59], the form of the Fokker–Planck equation obtained from
the delayed random walk has not yet been obtained. One of the objectives of
this chapter is to show that the Fokker–Planck equation for the random walk
can be readily obtained by generalizing the Ehrenfest model on a quadratic
potential to non–zero delay. The importance of this demonstration is that
it establishes that (1) and this delayed random walk give two different, but
complimentary views of the same process.

Since (1) indicates that the dynamics observed at time t depend on what
happened at time t− τ , it is obvious that the joint probability function must
play a fundamental role in understanding the interplay between noise and de-
lay. Moreover, the auto–correlation function, c(∆) ≡ 〈x(t)x(t+∆)〉, is essential
for the experimental descriptions of real dynamical systems [4, 14, 30]. This
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follows from the fact that three measurements are required to fully describe a
noisy signal: 1) its probability density function (e.g. uniform, Gaussian); 2) its
intensity; and 3) its correlation time (e.g. white, colored). From a knowledge of
c(∆) we can obtain an estimate of the variance (∆ = 0) which provides a mea-
sure of signal intensity, the correlation time, and the power spectrum. Armed
with these quantities the experimentalist can directly compare experimental
observation with prediction. Surprinsingly little attention has been devoted
to the subject of the joint probability functions in the SDDE literature.

The organization of this chapter is as follows. First, we review the simple
random walk that appears in standard introductory textbooks [1, 5, 40, 45, 62].
We use this simple random walk to introduce a variety of techniques that are
used in the subsequent discussion including the concepts of the generating
and characteristic functions, joint probability and the inter–relationship be-
tween the auto–correlation function and the power spectral density (Wiener–
Khintchine theorem). The Fokker–Planck equation for the simple random walk
is the familiar diffusion equation [45]. Second, we discuss the Ehrenfest model
for a discrete random walk in a quadratic, or harmonic, potential in order to
introduce the concept of stability into a random walk. Third, we introduce a
discrete delay into the Ehrenfest model. The Fokker–Planck equation is ob-
tained and is shown to be identical to that obtained starting from (1). In all
cases particular attention is given to obtaining an estimate of c(∆) and to
demonstrating how the presence of τ influence the correlation time and the
power spectrum. In the final section we review the application of delayed ran-
dom walk models to the analysis of the fluctuations recorded during human
postural sway.

1 Simple random walk

Analyses of random walks in its various forms lie at the core of statistical
physics [16, 40, 45, 61, 64] and its applications ranging from biology [5] to
economics [44]. The simplest case describes a walker which is confined to
move along a line by taking identical discrete steps at identical discrete time
intervals (Figure 1). Let X(n) be the position of the walker after the n–th
step. Assume that at zero time all walkers start at the origin, i.e. the initial
condition is X(0) = 0, and that the probability, p, that the walker takes
a step of unit length, `, to the right (i.e. X(n + 1) − X(n) = +`) is the
same as the probability, q, that it takes a step of unit length to the left (i.e.
X(n + 1)−X(n) = −`), i.e. p = q = 0.5.

The total displacement, X, after n steps is

X =
n∑

i=1

`i (2)

where ` = ±1. Since steps to the right and to the left are equally probable,
then after a large number of steps, we have
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〈X〉 =
n∑

i=1

〈`i〉 = 0 (3)

where the notation 〈· · ·〉 signifies the “ensemble” average.

Fig. 1. Conceptual view of simple random walks. The probability to take a step to
the right is p; a step to the left is q: (A) p > q; (B)p < q, and (C) p = q = 0.5.

Of course each time we construct, or realize, a particular random walk in
this manner, the relationship given by (3) provides us no information as to
how far a given walker is displaced from the origin after n steps. One way to
consider the displacement of each realization of a random walk is to compute
X2, i.e.

X2 = (`1 + `2 + · · ·+ `n)(`1 + `2 + · · ·+ `n) (4)

=
n∑

i=1

`2i +
n∑

i 6=j

`i`j (5)

If we now average over many realizations of the random walk we obtain
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〈X2〉 =
n∑

i=1

〈`2i 〉+
n∑

i 6=j

〈`i`j〉 (6)

The first term is obviously n`2. The second term vanishes since the direction
of the step that a walker takes at a given instance does not depend on the
direction of previous steps. In other words the direction of steps taken by the
walker are uncorrelated and `i and `j are independent for i 6= j. Hence we
have

〈X2〉 = n`2 (7)

The problem with this method of analysis of the random walk is that it is
not readily transferable to more complex types of random walks. In particular,
in order to use the notion of a random walk to investigate the properties of a
stochastic delay differential equations, such as (1), it is necessary to introduce
more powerful tools such as the characteristic, generating and auto–correlation
functions. Without loss of generality we assume that the walker takes a step
of unit length, i.e. |`| = 1.

1.1 Probability distribution function

The probability that after n steps the walker attains a position r (X(n) = r) is
P (X = r, n) = P (r, n), where P (r, n) is the probability distribution function
and satisfies

∞∑
r=−∞

P (r, n) = 1

By analogy with the use of the characteristic function in continuous dynamical
systems [7, 14], the discrete characteristic function,

R(θ, n) =
+∞∑

r=−∞
P (r, n)ejθr (8)

where θ is the continuous ”frequency” parameter, can be used to calculate
P (r, n). Since R(θ, n) is defined in terms of a Fourier series whose coefficients
are the P (r, n), the probability distribution after n steps can be represented
in integral form as

P (r, n) =
1
2π

∫ π

−π

R(θ, n)e−jθrdθ. (9)

In order to use R(θ, n) to calculate P (r, n) we first write down an equation
that describes the dynamics of the changes in P (r, n) as a function of the
number of steps, i.e.

P (r, 0) = δr,0 (10)
P (r, n) = pP (r − 1, n− 1) + qP (r + 1, n− 1).
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where δr,0 is the Kronecker delta function defined by

δr,0 = 1, (r = 0)
δr,0 = 0, (r 6= 0).

Second, we multiply both sides of (10) by ejθr, and sum over r to obtain

R(θ, 0) = 1
R(θ, n) = (pejθ + qe−jθ)R(θ, n− 1).

The solution of these equations is

R(θ, n) = (pejθ + qe−jθ)n (11)

Taking the inverse Fourier transform of (11) we eventually obtain

P (r, n) =
(

n
r+n

2

)
p

r+n
2 q

n−r
2 , (r + n = 2m) (12)

= 0, (r + n 6= 2m),

where m is a non-negative integer. For the special case that p = q = 0.5 this
expression for P (r, n) simplifies to

P (r, n) =
(

n
r+n

2

) (
1
2

)n

, (r + n = 2m) (13)

= 0, (r + n 6= 2m),

and we obtain

〈X(n)〉 = 0 (14)
σ2(n) = n. (15)

When p > q the walker drifts towards the right (Figure 1a) and when p < q
towards the left (Figure 1b). The evolution of P (r, n) as a function of time
when p = 0.6 is shown in Figure 2 (for the special case of Brownian motion,
i.e. p = q = 0.5, see Figure 3).

1.2 Variance

The importance of P (r, n) is that averaged quantities of interest, or expecta-
tions, such as the mean and variance can be readily determined from it. For a
discrete variable, X, the moments can be determined by using the generating
function, Q(s, n), i.e.

Q(s, n) =
+∞∑

r=−∞
srP (r, n) (16)
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Fig. 2. The probability density function, P (r, n), as a function of time for a simple
random walk that starts at the origin with p = 0.6:(•) n = 10, (◦) n = 30, (2)
n = 100. We have plotted P (r, n) for even r only: for these values of n, P (r, n) = 0
when r is odd.

Fig. 3. The probability density function, P (r, n), as a function of time for Brownian
motion, i.e. a simple random walk that starts at the origin with p = 0.5: (•) n = 10,
(◦) n = 30, (2) n = 100. We have plotted P (r, n) for even n only: for these values
of n, P (r, n) = 0 when n is odd.

The averaged quantities of interest are calculated by differentiating Q(s, n)
with respect to s.

By repeating arguments analogous to those we used to obtain P (r, n) from
the characteristic function, we obtain

Q(s, n) =
[
ps +

q

s

]n

(17)

The mean is obtained by differentiating Q(s, n) with respect to s



8 Toru Ohira and John Milton

∂

∂s
Q(s, n) |s=1≡ 〈X(n)〉 = n(p− q) (18)

The second differentiation leads to

∂2

∂s2
Q(s, n) |s=1= 〈X(n)2〉 − 〈X(n)〉 (19)

The variance can be calculated from these two equations as σ2(n) = 4npq.
The variance gives the intensity of the varying component of the random
process, i.e. the AC component or the variance. The positive square root of
the variance is the standard deviation which is typically referred to as the
root-mean-square (rms) value of the AC component of the random process.
When 〈X(n)〉 = 0, the variance equals the mean square displacement.

1.3 Fokker-Planck equation

We note here briefly that the random walks presented here has a correspon-
dence with the continuous time stochastic partial differential equation

dx

dt
= µ + ξ(t) (20)

where ξ(t) is a gaussian white noise, and µ is a ‘drift constant’. Both from
the random walk presented above and from this differential equation, we can
obtain the Fokker-Planck equation [21, 45]

∂

∂t
P (x, t) = −v

∂

∂x
P (x, t) + D

∂2

∂x2
P (x, t). (21)

where v and D are constants. When there is no bias, µ = 0, p = q = 1
2 and we

have v = 0, leading to the diffusion equation. This establishes a link between
the Wiener process and simple symmetric random walk.

1.4 Auto–correlation function: Special case

The stationary discrete auto-correlation function, C(∆), provides a measure of
how much average influence random variables separated ∆ steps apart have
on each other. Typically little attention is given to determining the auto–
correlation function for a simple random walk. However, it is useful to have a
baseline knowledge of what the auto–correlation looks like for a simple random
process.

Suppose we measure the direction that the simple random walker moves
each step. Designate a step to the right as R, a step to the left as L, and a
‘flip’ as an abrupt change in the direction that the walker moves. Then the
time series for a simple random walker takes the form
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R · · ·
flip︷︸︸︷
RL · · · LR︸︷︷︸

flip

· · ·
flip︷︸︸︷
RL · · · (22)

Assume that the step interval, δn, is so small that the probability that two
flips occur within the same step is approximately zero. The auto-correlation
function, C(∆), where |∆| ≥ |δn|, for this process will be

C(∆) ≡ 〈X(n)X(n + |∆|)〉 = A2(p0(∆)− p1(∆) + p2(∆)− p3(∆) + · · ·) (23)

where pκ(∆) is the probability that in a time interval ∆ that exactly κ flips
occur and A is the length of each step.

In order to calculate the pκ we proceed as follows. The probability that a
flip occurs in δn is λδn, where λ is some suitably defined parameter. Hence
the probability that no flip occurs is 1−λδn. If n > 0 then the state involving
precisely κ flips in the interval (n, n + δn) arises from either κ − 1 events in
the interval (0, n) with one flip in time δn, or from κ events in the interval
(0, n) and no new flips in δn. Thus

pκ(n + δn) = pκ−1(n)λδn + pκ(n)(1− λδn) (24)

and hence we have

lim
δn→0

pκ(n + δn)− pκ(n)
δn

≡ dpκ(n)
dn

= λ [pκ−1(n)− pκ(n)] (25)

for κ > 0. When κ = 0 we have

dp0(n)
dn

= −λp0(n) (26)

and at n = 0
p0(0) = 1. (27)

Equations (25)-(27) describe an iterative procedure to determine pκ. In par-
ticular we have

pκ(∆) =
(λ|∆|)κe−λ|∆|

κ!
(28)

The required auto-correlation function C(∆) is obtained by combining (23)
and (28) as

C(∆) = A2e−2λ|∆| (29)

The auto-correlation function, C(∆), and the power spectrum, W (f), are
intimately connected. In particular, they form a Fourier transform pair

W (f) = ∆
n−1∑

m=−(n−1)

C(∆)e−j2πfm∆, − 1
2∆

≤ f <
1

2∆
(30)

and
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C(∆) =
∫ 1/2∆

−1/2∆

W (f)ej2πf∆df, −n∆ ≤ ∆ ≤ n∆ (31)

Our interest is to compare C(∆) and W (f) calculated for a discrete random
walk to those that would be observed for a continuous random walk, respec-
tively, c(∆) and w(f). Thus we assume in the discussion that follows that the
length of the step taken by the random walker can be small enough so that
we can replace (30) and (31) by, respectively,

w(f) =
∫ ∞

−∞
c(∆)e−j2πf∆d∆ (32)

and
c(∆) =

∫ ∞

−∞
w(f)ej2πf∆df (33)

Together (32) and (33) (or (30) and (31) are referred to as the Wiener–
Khintchine theorem.

The power spectrum, w(f), describes how the energy (or variance) of signal
is distributed with respect to frequency. Since the energy must be the same
whether we are in the time or frequency domian, it must necessarily be true
that ∫ ∞

−∞
|X(t)|2dt =

∫ ∞

−∞
|w(f)|2df (34)

This result is sometimes referred to as Parseval’s formula. If g(t) is a continu-
ous signal, w(f) of the signal is the square of the magnitude of the continuous
Fourier transform of the signal, i.e.

w(f) =
∣∣∣∣∫ ∞

−∞
g(t)e−j2πftdt

∣∣∣∣2 = |G(f)|2 = G(f)G∗(f) (35)

where G(f) is the continuous Fourier transform of g(t) and G∗(f) is its com-
plex conjugate.

Thus we can determine w(f) for this random process as

w(f) =
2A2

λ

[
1

1 + (πf/λ)2

]
(36)

Figure 4 shows c(∆) and w(f) for this random process, where f is ∆−1. We
can see that the noise spectrum for this random process is essentially “flat”
for f � λ and thereafter decays rapidly to zero with a power law 1/f2.

1.5 Auto-correlation function: General case

The important point is that the Fourier transform pairs given by (32)–(33)
are valid whether X(t) represents a deterministic time series or a realiza-
tion of a stochastic process [30]. Unfortunately, it is not possible to reliably
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Fig. 4. (a) Auto–correlation function, c(∆) and (b) power spectrum, w(f), for the
random process described by (22). Parameters: A = 1, λ = 0.5.

estimate w(f) from a finitely long time series (see pp. 211-213 in [30]). The
problem is that w(f) measured for a finite length stochastic processes does not
converge in any statistical sense to a limiting value as the sample length be-
comes infinitely long. This observation should not be particularly surprising.
Fourier analysis is based on the assumption of fixed amplitudes, frequencies,
and phases, but time series of stochastic processes are characterized by ran-
dom changes of amplitudes, frequencies, and phases. Unlike w(f) a reliable
estimate of c(∆) can be obtained from a long time series. These observations
emphasize the critical importance of the Wiener–Khintchine theorem for de-
scribing the properties of a stochastic dynamical system in the frequency
domain.

In order to define C(∆) for a random walk it is necessary to introduce
the concept of a joint probability, P (r, n1;m,n2). The joint probability is
a probability density function that describes the occurence X(n1) = r and
X(n2) = m, i.e. the probability that X(n1) is at r at n1 when X(n2) is at site
m at n2. The importance of P (r, n1;m,n2) is that we can use it to determine
the probability that each of these events occurs separately. In particular, the
probability, P (r, n1), that X(n1) is at site r irrespective of the location of
X(n2) is

P (r, n1) =
+∞∑

m=−∞
P (r, n1;m,n2)

Similarly, the probability, P (m,n2), that X(n2) is at site m irrespective of
the location of X(n1) is
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P (m,n2) =
+∞∑

r=−∞
P (r, n1;m,n2)

Using these definitions and the fact that P (r, n1;m,n2) is a joint probability
distribution function, we can determine C(∆, n) to be

C(∆, n) ≡ 〈X(n)X(n−∆)〉 (37)

=
+∞∑

r=−∞

+∞∑
m=−∞

rmP (r, n;m,n−∆)

The stationary auto-correlation function can be defined by taking the long
time limit as follows

C(∆) ≡ 〈X(n)X(n−∆)〉s ≡ lim
n→∞

C(∆, n) (38)

= lim
n→∞

+∞∑
r=−∞

+∞∑
m=−∞

rmP (r, n;m,n−∆))

2 Random walks on a quadratic potential

The major limitation for applying simple random walk models to questions
related to feedback is that they lack the notion of stability, i.e. the resistance
of dynamical systems to the effects of perturbations. In order to understand
how stability can be incorporated into a random walk it is useful to review the
concept of a potential function, φ(x), in continuous time dynamical systems.
For τ = 0 the deterministic version of (1) can be written as [26]

ẋ(t) = −kx(t) = −dφ

dx
(39)

and hence

φ(x) =
∫ x

0

g(s)ds =
kx2

2

describes a quadratic, or harmonic, function. The bottom of this well corre-
sponds to the fixed–point attractor x = 0; the well to its basin of attraction.
If x(t) is a solution of (39) then

d

dt
φ(x(t)) =

d

dx
φ(x(t)) · d

dt
x(t)

= −[g(x(t))]2 ≤ 0

In other words φ is always decreasing along the solution curves and in this
sense is analogous to the “potential functions” in physical systems.

The urn model developed by Paul and Tatyana Ehrenfest showed how a
quadratic potential could be incorporated into a discrete random walk [15,
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31, 32]. The demonstration that the Fokker–Planck equation obtained for the
Ehrenfest random walk is the same as that for Langevin’s equation, i.e. (1), is
due to M. Kac [31]. Here we derive the auto–correlation function, C(∆), for
the Ehrenfest random walk and the Langevin equation. The derivation of the
Fokker-Planck equation for τ = 0 and τ 6= 0 is identical. Therefore we present
the Fokker–Planck equation for the Ehrenfest random walk as a special case
of that for a delayed random walk in section 3.1.

By analogy with the above observations, we can incorporate the influence
of a quadratic–shaped potential on a random walker by assuming that the
transition probability towards the origin increases linearly with distance from
the origin (of course up to a point). In particular the transition probability
for the walker to move toward the origin increases linearly at a rate of β as
the distance increases from the origin up to the position ±a beyond which
it is constant (since the transition probability is between 0 and 1). Equation
(10) becomes

P (r, 0) = δr,0 (40)
P (r, n) = g(r − 1)P (r − 1, n− 1)

+ f(r + 1)P (r + 1, n− 1)

where a and d are positive parameters, β = 2d/a, and

f(x) =


1+2d

2 x > a
1+βn

2 −a ≤ x ≤ a
1−2d

2 x < −a

g(x) =


1−2d

2 x > a
1−βn

2 −a ≤ x ≤ a
1+2d

2 x < −a

where f(x), g(x) are, respectively, the transition probabilities to take a step
in the negative and positive directions at position x such that

f(x) + g(x) = 1 (41)

The random walk is symmetric with respect to the origin provided that

f(−x) = g(x) (∀x). (42)

We classify random walks by their tendency toward move towards the origin.
The random walk is said to be attractive when

f(x) > g(x) (x > 0). (43)

and repulsive when
f(x) < g(x) (x > 0). (44)

We note that when
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f(x) = g(x) =
1
2

(∀x), (45)

the general random walk given by (41) reduces to the simple random walk
discussed Section 2. In this section we consider only the attractive case.

2.1 Auto–Correlation function: Ehrenfest random walk

Assume that with sufficiently large a, we can ignore the probability that the
walker is outside of the range (-a, a). In this case, the probability distribution
function P (r, n) approximately satisfies the equation

P (r, n) =
1
2
(1− β(r − 1))P (r − 1, n− 1) (46)

+
1
2
(1 + β(r + 1))P (r + 1, n− 1).

By symmetry, we have

P (r, n) = P (−r, n)
〈X(t)〉 = 0

The variance, obtained by multiplying (46) by r2 and summing over all r, is

σ2(n) = 〈X2(n)〉 =
1
2β

(1− (1− 2β)n) (47)

Thus the variance in the stationary state is

σ2
s = 〈X2〉s =

1
2β

. (48)

The auto-correlation function for this random walk can be obtained by
rewriting (46) in terms of joint probabilities to obtain

P (r, n;m,n−∆) =
1
2
(1− β(r − 1))P (r − 1, n− 1;m,n−∆) (49)

+
1
2
(1 + β(r + 1))P (r + 1, n− 1;m,n−∆).

By defining
Ps(r;m,∆) ≡ lim

n→∞
P (r, n;m,n−∆)

the joint probability obtained in the stationary state, i.e. the long time limit,
becomes

Ps(r;m,∆) =
1
2
(1− β(r − 1))Ps(r − 1;m,∆− 1) (50)

+
1
2
(1 + β(r + 1))Ps(r + 1;m,∆− 1).
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Multiplying by rm and summing over all r and m yields

C(∆) = (1− β)C(∆− 1) (51)

which we can rewrite as

C(∆) = (1− β)∆C(0) =
1
2β

(1− β)∆ (52)

where C(0) is equal to the mean-square displacement, 〈X2〉s. When β << 1,
we can approximate,

C(∆) ≈ 1
2β

e−β|∆|. (53)

Then, from the Wiener–Khintchine theorem we have

w(f) ≈ 2
β2

[
1

1 + (2πf/β)2

]
(54)

These expressions for C(∆) and w(f) are in the same form as those ob-
tained for a random process, i.e. (28) and (36). Hence C(∆) and w(f) are
qualitatively the same as those shown in Figure 4.

2.2 Auto–correlation function: Langevin equation

When τ = 0, (1) describes the effects of random perturbations on a dynamical
system confined to move within a quadratic potential. It is well known that
the variance, c(0), is

c(0) =
1
2k

(55)

which is identical to (53) if we identify k with β and take ∆ = 0 [21, 35].
In order to determine c(∆) and w(f) we note that when τ = 0, (1) describes

the effects of a low–pass filter on δ–correlated (white) noise. Thus we can write
the Fourier transform of (1) when τ = 0 as

X(f) = H(f)I(f) (56)

where the frequency response, H(f), is given by

H(f) =
1

j2πf + k
(57)

and
I(f) = σ2 (58)

where σ is a constant. Hence we obtain

w(f) =
σ2

(2πf)2 + k2
(59)

and, applying the Weiner-Khintchine theorem,

c(∆) =
σ2

2k
e−k∆ (60)

Equation (54) is the same as (59) and (53) is the same as (60).
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3 Delayed random walks

For a delayed random walk, the transition probability depends on its past
state. If we generalize the random walk in a quadratic potential developed in
Section 2 to non–zero delay we obtain the following definition for the transition
probability

P (r, n + 1) =
∑
m

g(m)P (r − 1, n;m,n− τ)

+
∑
m

f(m)P (r + 1, n;m,n− τ), (61)

where the position of the walker at time n is X(n), P (r, n) is the joint prob-
ability for the walker to be at X(n) = r and P (r, n;m,n − τ) is the joint
probability such that X(n) = r and X(n− τ) = m takes place. f(x) and g(x)
are transition probabilities for the walker to take the step to the negative (−1)
and positive (+1) directions respectively, and are the same as those used for
the random walk in a quadratic potential described in the previous section.

3.1 Delayed Fokker–Planck equation

Here we derive the Fokker–Planck equation for the delayed random walk in a
quadratic potential. This method is a direct use of the procedure used by M.
Kac to obtain the Fokker–Planck equation for the case that τ = 0. For f and
g as defined in the previous section, (61) becomes

P (r, n + 1) =
∑
m

1
2
(1− βm)P (r − 1, n;m,n− τd)

+
∑
m

1
2
(1 + βm)P (r + 1, n;m,n− τd), (62)

To make a connection, we assume that the random walk takes a step with
a size of ∆x at a time interval of ∆t, both of which are very small compared
to the scale of space and time we are interested in. We take x = r∆x and
y = m∆x, t = n∆t and τ = τd∆t. With this stipulation, we can re-write (62)
as follows

P (x, t + ∆t)− P (x, t)
∆t

=

1
2

(
P (x−∆x, t) + P (x + ∆x, t)− 2P (x, t)

(∆x)2

) (
(∆x)2

∆t

)
+

1
2

∑
y

∆x

y

∆x
(P (x, t; y, t− τ)− P (x−∆x, t; y, t− τ))

β

∆t

+
1
2

∑
y

∆x

y

∆x
(P (x + ∆x, t; y, t− τ)− P (x, t; y, t− τ))

β

∆t
(63)
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In the limits

∆x → 0, ∆t → 0, β → 0
(∆x)2

2∆t
→ D,

β

∆t
→ γ, n∆t → t, τd∆t → τ

n∆x → x, m∆x → y, (64)

the difference equation (63) goes over to the following integro–partial differ-
ential equation

∂

∂t

∫ ∞

−∞
P (x, t; y, t− τ)dy =∫ ∞

−∞
γ

∂

∂x
(yP (x, t; y, t− τ))dy + D

∫ ∞

−∞

∂2

∂x2
P (x, t; y, t− τ)dy. (65)

This is the same Fokker-Planck equation that is obtained from the delayed
Langevin equation, (1) [19]. When τ = 0 we have

P (x, t; y, t− τ) → P (x, t)δ(x− y), (66)

and the above Fokker-Planck equation reduces to the following familiar form.

∂

∂t
P (x, t) = γ

∂

∂x
(xP (x, t)) + D

∂2

∂x2
P (x, t). (67)

Thus, the correspondence between Ehrenfest’s model and Langevin equation
carries over to that between the delayed random walk model and the delayed
Langevin equation.

We can re-write (65) by making the definition

Pτ (x, t) ≡
∫ ∞

−∞
P (x, t; y, t− τ)dy

to obatin

∂

∂t
Pτ (x, t) =

∫ ∞

−∞
γ

∂

∂x
[yP (x, t; y, t− τ)] dy + D

∂2

∂x2
Pτ (x, t) (68)

In this form we can more clearly see the effect of the delay on the drift of the
random walker.

3.2 Auto–correlation function: delayed random walk

Three properties delayed random walks are particularly important for the
discussion that follows. First, by the symmetry with respect to the origin,
we have that the average position of the walker is 0. In particular, for an
attractive delayed random walk, the stationary state (i.e. when n →∞)
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P (r, n + 1; r + 1, n) = P (r + 1, n + 1; r, n). (69)

We can show the above as follows. By the definition of the stationarity, we
have

P (r, n + 1; r + 1, n) + P (r, n + 1; r − 1, n) = (70)
P (r + 1, n + 1; r, n) + P (r − 1, n + 1; r, n). (71)

For r = 0, we note that due to the symmetry, we have

P (0, n + 1; 1, n) = P (1, n + 1; 0, n). (72)

Using these two equations inductively leads us to the desired relation (69).
Second, the generating function

〈cos(αX(n))〉 = (73)
cos(α)〈cos(αX(n))〉+ sin(α)〈sin(αX(n)){f(X(n− τ))− g(X(n− τ))}〉

can be obtained by multiplying Eq. (61) for the stationary state by cos(αr)
and then summing over r and m.

Finally we have the following invariant relationship with respect to the
delay

1
2

= 〈X(n){f(X(n− τ))− g(X(n− τ))}〉 (74)

When we choose f, g as before, this invariant relation in Eq. (74) becomes
the following with this model:

〈X(n + τ)X(n)〉 = C(τ) =
1
2β

. (75)

This invariance with respect to τ of the correlation function with τ steps
apart is a simple characteristic of this quadratic potential delayed random
walk model. This property is a key to obtaining the analytical expression
for the correlation function. Below we discuss C(∆) for the stationary state.
Observations pertaining to C(∆) in the transient state are presented in Sec-
tion 4.1.

For the stationary state and 0 ≤ ∆ ≤ τ , the following is obtained from
the definition (61):

Ps(r, n + ∆;m,n) =
∑

`

g(`)Ps(r − 1, n + ∆;m,n + 1; `, n + ∆− τ)

+
∑

`

f(`)Ps(r + 1, n + ∆;m,n + 1; `, n + ∆− τ)

(76)

We can derive the following equation for the correlation function by mul-
tiplication of this equation by rm and summing over.



Delayed random walks 19

C(∆) = C(∆− 1)− βC(τ + 1−∆), (0 ≤ ∆ ≤ τ). (77)

A similar argument can be given for τ < ∆,

C(∆) = C(∆− 1)− βC(∆− 1− τ), (τ < ∆). (78)

Equations (77) and (78) can be solved explicitly using (75). In particular, for
0 ≤ ∆ ≤ τ we obtain

C(∆) = C(0)
(z∆

+ − z∆−1
+ )− (z∆

− − z∆−1
− )

z+ − z−
− 1

2
(z∆

+ − z∆
− )

z+ − z−

C(0) =
1
2β

(z+ − z−) + β(zτ
+ − zτ

−)
(zτ

+ − zτ−1
+ )− (zτ

− − zτ−1
− )

(79)

where

z± = (1− β2

2
)± β

2

√
β2 − 4

For τ < ∆, it is possible to write C(∆) in a multiple summation form,
though the expression becomes rather complex. For example, with τ < ∆ ≤
2τ ,

C(∆) =
1
2β

− β
∆−τ∑
i=1

C(i) (80)

where the C(i) are given by (79).

Fig. 5. Stationary auto–correlation function, C(∆) (left–hand column) and power
spectra, W (f) (right–hand column) for an attractive delayed random walk on a
quadratic potential for different time delays, τ . Stationary correlation function C(u)
calculated using (80) and W (f) calculated from this using the Weiner–Klintchine
theorem. The parameters were a = 50, d = 0.4 and τ was 0 for (a) and (b), 40 for
(c) and (d) and 80 for (e) and (f).
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Figure 5 compares C(∆) and W (f) for different values of the delay. As we
increase τ , oscillatory behavior of the correlation function appears. The decay
of the peak envelope is found numerically to be exponential. The decay rate
of the envelope for the small u is approximately 1/(2C(0)).

3.3 Auto–correlation function: delayed Langevin equation

The statistical properties of (1) have been extensively studied previously [20,
25, 33, 42, 43] Two approaches can be used to calculate c(∆).

First, we can take the Fourier transform of (1) to determine w(f) and then
use the Wiener-Khintchine theorem to obtain c(∆). From (56) we obtain the
frequency response, H(f),

H(f) =
1

j2πf + µe−j2πfτ

As before we assume a “white noise” input and hence the power spectrum,
w(f), is

w(f) = |H(f)σ|2

=
σ2

(2πf)2 − 4πfµ sin 2πfτ + µ2

Using the Wiener–Khintchine theorem we obtain

c(∆) =
σ2

2π

∫ ∞

0

cos ω∆

ω2 − 2ωµ sin(ωτ) + µ2
dω (81)

where we have defined ω = 2πf to simplify the notation. The variance, σ2
x is

equal to the value of c(∆) when ∆ = 0, i.e.

σ2
x =

σ2

2π

∫ ∞

0

dω

µ2 + ω2 − 2µω sin(ωτ)
(82)

When (82) is integrated numerically the result obtained agrees with the results
obtained by Küchler and Mensch (discussed below) for 0 ≤ ∆ ≤ τ [25].

Second, Küchler and Mensch showed that the stationary correlation func-
tion for ∆ < τ could be obtained directly from (1) and was equal to

c(∆) = c(0) cos(µ∆)− 1
2∆

sin(µ∆) (83)

where

c(0) =
1 + sin(µτ)
2µ cos(µτ)

(84)

It should be noted that for small delay the variance increases linearly. This
observation can be confirmed [25].
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We now show that the expressions for C(∆) obtained from the delayed
random walk (80) is equivalent to those given by (83) for 0 ≤ ∆ ≤ τ . In
particular, for small β, we have

(z∆
+ − z∆−1

+ )− (z∆
− − z∆−1

− )
z+ − z−

∼ cos(β∆)

β(z∆
+ − z∆

− )
z+ − z−

∼ sin(β∆)

Thus
C(∆) ∼ C(0) cos(β∆)− 1

2∆
sin(β∆) (85)

with

C(0) ∼ 1 + sin(βτ)
2β cos(βτ)

(86)

4 Postural sway

Postural sway refers to the fluctuations in the center of pressure (COP) that
occur as a subject stands quietly with eyes closed on a force platform [13, 53].
Mathematical models for balance control identify three essential components
[17, 49, 50, 56]: 1) feedback, 2) time delays, and 3) the effects of random,
uncontrolled perturbations (“noise”). Thus it is not surprising that the first
application of a delayed random walk was to investigate the fluctuations in
COP [56]. In this study it was assumed that the probability p+(n) for the
walker to take a step at time n to the right (positive direction) was given by

p+(n) =

p X(n− τ) > 0
0.5 X(n− τ) = 0
1− p X(n− τ) < 0

(87)

where 0 < p < 1. The origin is attractive when p < 0.5. By symmetry with
respect to the origin we have 〈X(n)〉 = 0. As shown in Figure 6 this simple
model was remarkably capable of reproducing some of the features observed
for the fluctuations in the center–of–pressure observed for certain human sub-
jects.

There are a number of interesting properties of this random walk (Fig-
ure 7). First, for all choices of τ ≥ 0,

√
〈X2(n)〉 approaches a limiting value,

Ψ . Second, the qualitative nature of the approach of
√
〈X2(n)〉 to Ψ depends

on the value of τ . In particular, for short τ there is a non–oscillatory approach
to Ψ , whereas for longer τ damped oscillations occur (Figure 7) whose period
is approximately twice the delay. Numerical simulations of this random walk
led to the approximation

Ψ(τ) ∼ (0.59− 1.18p)τ +
1√

2(1− 2p)
(88)
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Fig. 6. Comparison of the two–point correlation function, K(s) = 〈(X(n)−X(n−
s))2〉, for the fluctuations in the center–of–pressure observed for two healthy subjects
(solid line) with that predicted using a delayed random walk model (◦). In a) the
parameters for the delayed random walk were p = 0.35 and τ = 1 with an estimated
unit step length of 1.2 mm and a unit time of 320 ms. In b) the parameters were
p = 0.40 and τ = 10 with an estimated step length and unit time step of, respectively,
1.4 mm and 40 ms. For more details see [56].

This approximation was used to fit the delayed random walk model to the
experimentally measured fluctuations in postural sway shown in Figure 6.

In the context of a generalized delayed random walk (61) introduced in
Section 4, (87) corresponds to choosing f(x) and g(x) to be

f(x) =
1
2
[1 + ηθ(x)] (89)

g(x) =
1
2
[1− ηθ(x)] (90)

where
η = 1− 2p.

and θ is a step-function defined by

θ(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

(91)

In other words the delayed random walk occurs on a V–shaped potential
(which, of course is simply a linear approximation to a quadratic potential).
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Fig. 7. Examples of dynamics of the root mean square position C(0, t)1/2 for various
choices of τ when p = 0.25.

Below we briefly describe the properties of this delayed random walk (for more
details see [59]).

By using symmetry arguments it can be shown that the stationary proba-
bility distributions Ps(X) when τ = 0 can be obtained by solving the system
of equations with the long time limit.

P (0, n + 1) = 2(1− p)P (1, n)

P (1, n + 1) =
1
2
P (0, n) + (1− p)P (2, n) (92)

P (r, n + 1) = pP (r − 1, n) + (1− p)P (r + 1, n) (2 ≤ r)

where P (r, n) is the probability to be at position r at time n, using the trial
function Ps(r) = Zr, where

Ps(r) = lim
n→∞

P (r, n)

In this way we obtain

Ps(0) = 2C0p

Ps(r) = C0

(
p

1− p

)r

(1 ≤ r)

where
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C0 =
(1− 2p)
4p(1− p)

Since we know the p.d.f. we can easily calculate the variance when τ = 0,
σ2(0), as

σ2(0) =
1

2(1− 2p)2
(93)

The stationary probability distributions when τ > 0 can be obtained by
solving the set of equations with the long time limit.

for (0 ≤ r < τ + 2)

P (r, n + 1) = pP (r − 1, n; r > 0, n− τ) +
1
2
P (r − 1, n; r = 0, n− τ)

+ (1− p)P (r − 1, n; r < 0, n− τ) + pP (r + 1, n; r < 0, n− τ)

+
1
2
P (r + 1, n; r = 0, n− τ) + (1− p)P (r + 1, n; r > 0, n− τ)

for (τ + 2 ≤ r)

P (r, n + 1) = pP (r − 1, n) + (1− p)P (r + 1, n)

These equations are very tedious to solve and not very illuminating. Indeed
we have only been able to obtain the following results for τ = 1

〈X2〉 =
1

2(1− 2p)2

(
7− 24p + 32p2 − 16p3

3− 4p

)
and for τ = 2

〈X2〉 =
1

2(1− 2p)2

(
25− 94p + 96p2 + 64p3 − 160p4 + 64p5

5 + 2p− 24p2 + 16p3

)

4.1 Transient auto–correlation function

In Section 4 we assumed that the fluctuations in COP were realizations of
a stationary stochastic dynamical system. However, this assumption is by
no means clear. An advantage of a delayed random walk model is that it is
possible to gain some insight into the nature of the auto–correlation function
for the transient state, Ct(∆). In particular, for the transient state we can
calculate in the similar manner to (77)–(78), the set of coupled dynamical
equations

Ct(0, n + 1) = Ct(0, n) + 1− 2βCt(τ, n− τ) (94)
Ct(∆, n + 1) = Ct(∆− 1, n + 1)− βCt(τ − (∆− 1), n + ∆− τ), (1 ≤ ∆ ≤ τ)
Ct(∆, n + 1) = Ct(∆− 1, n + 1)− βCt((∆− 1)− τ, n + 1), (∆ > τ)
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For the initial condition, we need to specify the correlation function for the
interval of initial τ steps. When the random walker begins at the origin we
have a simple symmetric random walk for n ∈ (1, τ). This translates to the
initial condition for the correlation function as

Ct(0, n) = n (0 ≤ ∆ ≤ τ) Ct(u, 0) = 0 (∀u). (95)

The solution can be iteratively generated using (95) and this initial condi-
tion. We have plotted some examples for the dynamics of the mean square
displacement Ct(0, n) in Figure 8. Again, the oscillatory behavior arises with
increasing τ . Hence, the model discussed here shows the oscillatory behav-
ior with increasing delay which appears in both its stationary and transient
states.

Fig. 8. Examples of dynamics of the transient variance Ct(0, t) for different de-
lays τ . Data averaged from 10,000 simulations(•) is compared to that determined
analytically from (95) (solid line). The parameters were a = 50, d = 0.45.

We also note that from (95), we can infer the corresponding set of equa-
tions for the transient auto–correlation function of (1) with a continuous time,
ct(∆). They are given as follows.

∂

∂t
ct(0, t) = −2kct(τ, t− τ) + 1



26 Toru Ohira and John Milton

∂

∂∆
ct(∆, t) = −kct(τ −∆, t + ∆− τ) (0 < ∆ ≤ τ) (96)

∂

∂∆
ct(∆, t) = −kct(∆− τ, t) (τ < ∆)

Studies on these coupled partial differential equations with delay are yet to
be done.

Fig. 9. The mean first passage time, L̂, for a repulsive delayed random walk as a
function of τ for three different choices of the initial fuction, Φ0(t): 1) a constant
zero function (solid line, •); 2) an initial function constructed from a simple random
walk with τ = 0 (solid line, N); 3) a linear decreasing initial function with end points
x = τ at t = −τ and x = 0 at t = 0 (solid line, �). In all cases Φ0(0) = 0. The
dashed line is equal to L̂τ=0 + τ . For each choice of Φ0(t), 500 realizations were
calculated with X∗ = ±30 with d = 0.4 and a = 30.

4.2 Balance control with positive feedback

Up to this point we have assumed that the feedback for balance control is con-
tinuous and negative. However, careful experimental observations for postural
sway [38, 39] and stick balancing at the fingertip [11, 12, 28] indicate that the
feedback is on average positive and that it is administered in a pulsatile, or
ballistic, manner. Recently the following switch–type discontinuous model for
postural sway that incorporates positive feedback has been introduced in an
attempt to resolve this paradox [49, 50]:
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dx

dt
=

αx(t− τ) + η2ξ(t) + K if x(t− τ) < −Π
αx(t− τ) + η2ξ(t) if −Π ≤ x(t− τ) ≤ Π
αx(t− τ) + η2ξ(t)−K if x(t− τ) > Π

(97)

where α, K, and Π are positive constants. This model is a simple extension
of a model proposed by Eurich and Milton [17] and states that the nervous
system allows the controlled variable to drift under the effects of noise (ξ(t))
and positive feedback (α > 0) with corrective actions (‘negative feedback’)
taken only when x(t − τ) exceeds a certain threshold, Π. It is assumed that
α is small and that τ < 3π/2α. This means that there is one real positive
eigenvalue and an infinite number of complex eigenvalue pairs whose real
part is negative. The magnitude of the real positive eigenvalue decreases as τ
increases for 0 < τ < 3π/2α. “Safety net” type controllers also arise in the
design of strategies to control attractors that have shallow basins of attraction
[24].

The cost to operate this discontinuous balance controller is directly propor-
tional to the number of times it is activated. Thus the mathematical problem
becomes that of determining the first passage times for a repulsive delayed
random walk, i.e. the times it takes a walker starting at the origin to cross the
threshold, ±|Π|. Numerical simulations of a repulsive delayed random walk
indicate that the mean first passage time depends on the choice of Φ0(t) (see
Figure 9).

In principle, the most probable, or mean, first passage time can be calcu-
lated from the backward Kolmogorov equation for (1). We have been unable
to complete this calculation. However, simulations of (97) indicate that this
dicontinuous balance controller takes advantage of two intrinsic properties of
a repulsive delayed random walk: 1) the time delay which slows scape, and
2) the fact that the distribution of first passage times is bomodal. Since the
distribution of first passage times is biomodal it is possible that a reset due
to the activation of the negative feedback controller can lead to a trasient
confinement of the walker near the origin thus further slowing escape.

5 Concluding remarks

In this chapter we have shown that a properly formulated delayed random
walk can provide an alternate and complimentary approach for the analysis
for stochastic delay differential equations such as (1). By placing the study
of a stochastic differential equation into the context of a random walk it is
possible to draw upon the large arsenal of analytical tools previously devel-
oped for the study of random walks and apply them to the study of these
complex dynamical systems. The advantages of this approach to the analysis
of SDDEs include 1) it avoids issues inherent in the Ito versus Stratonovich
stochastic calculus, 2) it provides insight into transient dynamics, and 3) it
is, in principle, applicable to the study of delayed stochastic dynamical sys-
tems in the setting of complex potential surfaces such as those that arise in
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the setting of multistability. In general the use of the delayed random walk
involves solutions in the form of equations which must be solved iteratively.
However, this procedure causes no practical problem given the ready availabil-
ity of symbolic manipulation computer software programs such as Maple c©
and Mathematica c©. The use of these computer programs compliment the
variety of numerical methods [3, 27, 29] that have been developed to investi-
gate SDDEs, such as (1). However, much remains to be done, particularly the
important cases in which the noise enters the dynamics in a multiplicative, or
parametric, fashion [9, 10, 52]. Thus we anticipate that the subject of delayed
random walks will continue to gain in importance.
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