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Delayed Reinforcement Learning for Adaptive

. . Confidence Level for Matching
Image Segmentation and Feature Extraction

Jing Peng and Bir Bhanu

Abstract—Object recognition is a multilevel process requiring a se-
quence of algorithms at low, intermediate, and high levels. Generally,
such systems are open loop with no feedback between levels and assuring
their robustness is a key challenge in computer vision and pattern
recognition research. A robust closed-loop system based on “delayed”
reinforcement learning is introduced in this paper. The parameters of
a multilevel system employed for model-based object recognition are
learned. The method improves recognition results over time by using
the output at the highest level as feedback for the learning system. It
has been experimentally validated by learning the parameters of image
segmentation and feature extraction and thereby recognizing 2-D objects. Model Tnput 1
The approach systematically controls feedback in a multilevel vision ode nput Image
system and shows promise in approaching a long-standing problem in
the field of computer vision and pattern recognition. Fig. 1. Conventional system for object recognition.

Index Terms—Adaptive feature extraction, adaptive image segmenta-

tion, learning for multilevel vision, learning in computer vision, model-
based recognition, multiscenario object recognition, recognition feedback.
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detected objects so that it is optimal and meets task- or object-specific
requirements.

. INTRODUCTION Il. OUR APPROACH

Most vision systems use a sequence of algorithms that operate &t it is assumed that the model matching produces a confidence
various stages of abstraction to perform a given task, such as objeetasure indicating the closeness of the selected features to the model,
recognition. In earlier work that combines learning and vision [1], thie is natural to use this confidence as feedback to influence the
inherent multistage nature of vision systems has not been addressatem’s performance for segmentation and feature extraction. The
adequately. In this paper, an approach that takes the output of the fifx@ad goal of such a scheme is to try to find, for any given image, a set
stage and uses it as a feedback in a reinforcement learning framewsirkarameters for image segmentation and feature extraction in ways
to influence the performance of the lower stages of vision algorithriisat minimize recognition errors. Applying a reinforcement learning
is presented. The overall system performance is improved over tigigorithm to learn parameters can be viewed as a means of doing
with this method. just this when the matching confidence is used as a reinforcement.

Fig. 1 illustrates the typical approach for model-based objeFig. 2 shows a closed-loop reinforcement learning-based system to
recognition, which is often unidirectional and without feedbackachieve this goal.

While different stages keep getting better algorithms, there has beem contrast, it would be difficult, if not impossible, for a con-
little improvement in object recognition as a whole. This is due to thgentional search method to accomplish the same task. Simply, there
lack of a feedback theory of multistage object recognition. For thoage no well-defined evaluation functions at each of the stages for a
systems that do use feedback [2], [3], there is generally no learnifgthod to search for. Furthermore, if a method uses the confidence
from experience to improve future recognition performance, which i§ model matching for evaluation, it is not clear how the process
the subject of this correspondence. should proceed in a systematic way. Finally, at each stage, any such

The segmentation and feature extraction modules shown in Figmkthod will have to delay its decision as to where to search next
use default parameters that are usually obtained by the system @il the confidence of model matching becomes available. However,
signer by following a trial-and-error approach. However, the designgiis need not be the case for the approach presented in this paper.
cannot anticipate all possible inputs to the algorithms; the contentiom a computational standpoint, therefore, our approach is more
the three-dimensional (3-D) scene and the environmental conditiciigactive since the computation can be distributed over time more
are not knowne priori. The simultaneous adjustment of even a fewsvenly, which will reduce overall demands on the memory and speed.
system parameters is time consuming and difficult and has yet to berhe original contribution of this research paper is to provide an
solved satisfactorily for multistage systems. As a result, the approaabremental method based on “delayed” reinforcement learning for
shown in Fig. 1 is inadequate for real-world applications. The kepducing a general mapping from images to parameter settings in
to the performance improvement of a multistage object recognitienmultistage, model-based, object recognition system. A theoretical
system over time is the automatic adjustment of parameters rabdel is provided and its efficacy is validated using real-world data.
various algorithms to optimize various image processing functions for
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where « is the learning rate. Thus, it can be seen from the above
equation that\ controls the proportion in which future estimates are
combined into overall targets. By shifting the estimate @, a)
toward a weighted mixture of downstream targefs,\) learning

not only achieves better computational efficiency, but it also enables,
under appropriate conditions, the elimination of the effect of initial
bias. Whem\ = 0, Q()\) learning reduces to simpl@ learning. The
typical choice for the\ value is somewhere between zero and one, but
close to zero. More details about &)\ ) algorithm are given in [9].

To implement the) () learning algorithm, a memory mechanism,
called the eligibility trace [11], is used. Every time a state is
encountered, it starts a trace that marks the state as eligible for
. learning and which reduces gradually over timeTH(z, ) denotes
@ the eligibility trace of state-action paifz,a), the Q(\) learning

algorithm can be described in Fig. 3. The eligibility trace assigns

Fig. 2. Reinforcement learning-based multistage system for object recogivalue to each experienced state-action pair with more recent ones
tion. having higher values.

Confidence Level for Matching

Parameters

Parameters

Reinforcement becomes available after each action in simple tasks. !V- REINFORCEMENTLEARNING FOR OBJECT RECOGNITION
In most complex tasks, however, reinforcement is often temporallyIn the multistage system for model-based object recognition de-
delayed. For example, in the object recognition system, the goodnesgbed in Fig. 2, there are unknown parameters for both the segmen-
of segmentation and feature extraction may not be reliably knowation and feature extraction modules. The segmentation module is
until model matching has been performed. based on th€hoenixalgorithm [5], [6]. Phoenixwas chosen because
One set of effective methods for delayed reinforcement learningiiss a well-known method for the segmentation of color images with a
given by the theory of dynamic programming. Given a Markov derumber of adjustable parametePhoenixuses region splitting based
cision problem, these methods involve first determining the “optimah histograms of color features and is critically dependent on system
action-value function,” th€) function [10], that assigns to each stateparameterdHsmoothand Maxmin
action pair a value measuring the average total (discounted) rewardHsmoothis the width of the histogram smoothing window, where
obtained when a particular action is taken in the given state and gmoothing is performed with a uniformly weighted moving average.
optimal policy is followed thereafter. That is, using the notation that Maxmindefines the peak-to-valley height ratio threshold. Any interval
denotes the current staie,denotes the current action,denotes the whose peak height to higher shoulder ratio is less than this threshold
resulting immediate reward, ang denotes the resulting next stateis merged with the neighbor on the side of the higher shoulder.
from taking a in z, then The algorithm searches for a combination of these parameters that
e will give rise to a segmentation from which the best recognition
Q(z.a) = R(x,a) + 72131‘9(“)"’ () () can be achieved. The ranges for each of the two parameters are
v hsmooth = 14 2 x hsindexr and maxmin = exp{In(100) +
where R(x,a) = E{r|x,a} with E denoting the expectation oper-0.05 + mmindex} + 0.5, wherehsindex, mmindex € [0:31]. The
ator, V(z) = max, Q(x,a),P.,(a) is the probability of making resulting search space is 1024 sample points.
a state transition from: to y as a result of applying actiom, and The feature extraction module [7] finds polygon approximation for
v € [0,1) is a discount factor. Once thg function is known, it is borders of each of the regions obtained after image segmentation.
straightforward to determine the optimal policy. For any statéhe It is based on a split-and-merge technique that first computes the
optimal action is simplyarg max, ((z,a). Note that bothz and locations of curvature maxima. The estimates of maximum curvature
a can be vectors. depend critically on neighborhood bound parameters, callddand
The particular method employed in this work for learning the72 [12]. M1 and M2 are the nearest and farthest border pixels,
@ function is the Q(\) algorithm [9], whereX € [0,1]. This respectively, from the pixel at which the curvature is estimated. For
algorithm is an example of the “temporal difference” (TD) method ahe purpose of this correspondence odly? is subject to adaptation.
Sutton [8]. LikeQ learning [10],Q()) learning works by maintaining It takes values between six and 26 in the experiments reported here.
an estimate&) of the () function and updating it so that (1) comes to Our object recognition process employs a cluster-structure match-
be more nearly satisfied for each state-action pair encountered. Miorg algorithm [7] that is based on the clustering of translational
specifically, in@ learning, the action value estimafg for state- and rotational transformations between the object and the model for
action pair (x, a,) is regressed toward the estimate for 11, recognizing two-dimensional (2-D) and 3-D objects. The algorithm
whereV(x) = max, ((z,a) is used as the target for adjustingtakes as input two sets of tokens (polygonal approximation of
Q at (x:,a:). In Q(N) learning, on the other hand, the estimat¢he boundary), one of which represents the stored model and the
Q(x,a,) is regressed not just toward the estimbiter,+1), butto a  other represents the input region to be recognized. It then performs
weighted mixture of the estimat@s(x,41), V(z.+2), -+, V(zw+4), topological matching between the two token sets. It computes, based
etc., up to and including the final outcome, where the weightings; the number of model segments that match the segments in the
are proportional to\*~'. Lete; = r, + w’f’(mm ) — Q(x+,a¢) and  data, a real number that indicates the confidence level of the matching
et = ri++V (xer1) =V (2+). Then the update rule f@p()) learning process. This confidence level is then used as a reinforcement signal

can be written as to drive the algorithm.
A A Note that, in general, there may be no model object or there can
Q(wt;dt) — Q(wt;at) b . . . .
, ’ - s 3 e multiple instances of one model object or several different model
+afer + et + A e + A e + 0} objects in the image. If the goal is to recognize multiple objects,

(2) it might be preferable to use an average of the confidence levels
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1. Q(z,a) =0 and Tr(z,a) =0 for all z and @, and ¢ = 0
2. Do Forever:

(a) z; « the current state
(b) Choose an action a, that maximizes Q(zy,a;) over all a;

(c) Carry out action a; in the world. Let the short term reward be 7, and the
new state be 441

(d) € =re+ V(1) — Qae, @) , e = e + 4V (m41) — V(e
(e) For each state-action pair (z,a) do
o Tr(z,a) =v\Tr(z,a)
. Q(x,a) = Q(:c,a) + oTr(z,a)e;
(£) Qzs,as) = Q(zy, a) + ael
(&) Tr(zt,at) = Tr(ze,ae) +1
(h) t=t+1

Fig. 3. Q()\)-learning algorithm.

1. Initialization: Q(z,p) < 0 for all «, 5, where z is either an image or a segmented
image and p is either an instance of segmentation parameters & or feature extrac-
tion parameters b.

2. LOOP:

e For each image ¢ in the training set do

(a) Segment image ¢ with segmentation parameters a = (a1, az,- - ,a,) rec-
ommended by e-greedy policy; 75 is the resulting segmented image.

(b) Update: Q(i,a) « Q(i,a) + a{yV(i; — Q(5,a)} where V(i) =
maxg Q(is,b).

(¢) Perform feature extraction with feature extraction parameters b =
(b1,b2,- -, by,) recommended by e-greedy policy from the segmented im-
age 1s.

(d) Compute the matching of each connected component (which is close to
the size of the current model) against stored model and return the highest
confidence level r

(e) Update: Q(Ais,lv)) — Q(is,b) + ofr — Q(é,,b)} and Q(i,a) « Q(i,a) +
a(M){r —V(i,)}

3. UNTIL terminating condition

Fig. 4. Main steps of the delayed reinforcement learning algorithm for parameter adjustment for segmentation and feature extraction.

resulting from each model matching. The desired result is thaligorithm with the confidence of model matching as reinforcement is
parameters are chosen more judiciously so as to optimize the averaged to adjust the parameters at both the first and second stage.
confidence measure that rewards parameters accommodating diffet-et ; be an input image to the segmentation modalebe an
ences in characteristics between regions in the image. There are othstance of segmentation parameters, & an instance of feature
possibilities as well. For example, we might design a method whosgtraction parameters. (Note that in this papeis simply a scaler.)
operating conditions are amended to these differences to achiélso, leti, be the segmented image resulting from applyitgpenix
optimal performance for segmentation, feature extraction, and modeéth @ as its parameter values to imageThen, according to the
matching. Such a scheme would localize its computation by wagX ))-learning algorithmQ (i, @) measures how good the instarice
of local segmentation to meet each individual requirement. We asewhenPhoenixapplied to imagé. Likewise,Q(is,b) measures the
currently pursuing these ideas [13]. In this paper, however, we ageality of extracted features when the feature extraction algorithm
concerned with simple situations, in which only one model object igith b as its parameter values is applied to the segmented image
present in the image. Thus, the maximum confidence level sufficéd/hen theQ(\) learning algorithm is applied to the parameters the
The objective of the system is to autonomously find a set ehlue of Q(i,@) will be corrected to look more like the value of
segmentation and feature extraction parameters that achieves tiieesegmented imayidi,) = maXEQ(iS,E), which will in turn be
maximum matching confidence for a given input image. Our modedstimated according to the matching confidence.
based recognition system is a multistage decision process in which th&ig. 4 shows the main steps of the algorithm described, where
parameterdismoothand Maxminare at the first stage of the process-greedy policy is a policy that selects random actionseffnaction
and the parametel/2 is at the second stage. The goodness of @ time. Although there is no strong theoretical foundation, this explo-
particular decision, such as selecting a combination of the segmeaiion strategy works well in practice [9]. The algorithm terminates
tation parameters, is not known until the model matching has beehen either the number of iterations has exceeded a prespecified value
performed. To achieve the objective, therefore, @€\) learning or the recognition confidence level has reached a given threshold.
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(@) (b)

Fig. 5. (a) Sample outdoor color image (Frame 1 of a 20 frame sequence) and (b) polygonal model of the car.
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Fig. 6. Experimental results (training) for the image in Fig. 5. (a) Matching confidence level, (b) paraiietefc) parameterHsmooth and (d)
parameterMaxmin

V. EXPERIMENTAL VALIDATION multistage recognition. Alsoy = 0.95, A = 0.3, ande = 0.1 for all
experiments reported here.

There are several representation schemes forCthinction in ) )
the reinforcement learning paradigm. Since the goal here is toF'g' 5@ ShOW_S a sample of a sequence of outdoor_golor 'mages
. . - 120 x 120) obtained under varying environmental conditions. These
demonstrate the effect of learning for multistage recognition, we hayée ; .
: ) images were collected approximately every 15 min overZand
used a simple lookup-table-based representation. . . o . .
h di . f the look bl he following: 1) i 1/2-h period [4]. The images exhibit varying shadow and reflection
e two dimensions of the loo ‘%pta e are the 9 owing: )|angn the car as the position of the sun changed and clouds came in
or segmented (feature-extracted) image and 2) action reprt_as?nte%rl?é{ out the field-of-view of the camera that had auto iris adjustment
a particular combination of system parameters. The “activity” traGgyned on. The overall goal is to recognize the car in the image. It
T'r is similarly indexed. All table entries are initialized to zero, whictshould be noted that, although the image is in color, for publication
means that each combination of the parameter values can be selegtggloses, it is being shown in grayscale.
for evaluation with equal probability in the beginning. The focus of Fig. 5(b) shows the 2-D model of the car located in Fig. 5(a). The
the experiments is to demonstrate the feasibility of using learning fdark squares in Fig. 5(b) correspond to labels of the vertices in the
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(@) (b)

(© (d)

Fig. 7. Improvement of the segmentation over time. (a) Initial segmentation, (b) segmentation at time step 200, (c) segmentation at time step 400, and
(d) segmentation at time step 600.

i Ew oaw

@ (b)
Fig. 8. Polygonal approximation of the car. (a) Default parameter valdé = 6) and (b) learned parameter valga/2 = 8§).

polygonal approximation of the car. The car is extracted manuakggmentation from initial random parameter settings. Fig. 7(b) and (c)
in an interactive session from the first frame in the sequence, ahepict the segmentation after 1/3 and 2/3 of total time (600 iterations)
its polygonal approximation [Fig. 5(b)] is used as the model in ther training has elapsed, respectively. Fig. 7(d) depicts the segmen-
cluster-structure matching algorithm. tation at the end of the training phase. It can be seen that the results

Fig. 6(a) shows how the confidence, averaged over five rurisiprove considerably. While Fig. 8(a) shows the extracted features
changes over time for the image shown in Fig. 5(a). It should ifpolygonal approximation of the car) using the defaul® parameter
noted that over time the confidence shown in Fig. 6(a) increasealue, which is six in the experiment, Fig. 8(b) shows the same
At the end of the training phase, the confidence of the match feature using the learned parameter value, which is eight, that results
over 0.9 on a scale that varies between zero and one. For acceptableigh matching confidence.
recognition, the confidence of matching has to be greater than 0.7%-ig. 9(a) shows another sample frame in the image sequence
in the experiments reported here. in which the car of Fig. 5(b) must be identified. It can be seen

Fig. 6(b)—(d) show how thé{2, Hsmooth and Maxmin change that the lighting conditions in this outdoor image is significantly
over time for a particular run, respectively. It can be seen clearly thgifferent from the one shown in Fig. 5(a). The image is taken at a
the learned values o¥/2, Hsmooth and Maxmin are considerably different time from Fig. 5(a). Fig. 9(b) shows the segmentation using
different from their starting random values. default Phoenix parameter values [5], wher# smooth = 9 and

To illustrate the results further, Fig. 7 shows how the segmentatidhaxzmin = 160. It should be noted that, when default parameters
of the image improves over time during training. Fig. 7(a) depicts tr@e used, the car is broken into many small blobs from which
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@ (b)

© (d)

Fig. 9. Experimental results. (a) Third frame of the image sequence, (b) segmentation with default parameters, (c) segmentation with leataesj parame
and (d) final polygonal approximation for the car.

@ (b)

|
(© C)

Fig. 10. Experimental results on an indoor image. (a) The color image, (b) segmentation with default parameters, (c) segmentation with leatees, param
and (d) final polygonal approximation for the wedge.
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polygonal approximation of the car cannot be accurately obtained3] S. Das, B. Bhanu, and C. C. Ho, “Generic object recognition using
Fig. 9(c) and (d) show the segmentation obtained by using the mMultiple representationsjmage Vision Computvol. 14, pp. 323-338,
parameters obtained from learning and the polygonal approximatio 1996.

. . . B. Bhanu and S. LeeGenetic Learning for Adaptive Image Segmenta-
of the car obtained from the segmented image, respectively. T e] tion. Boston. MA: ﬁjwer 1994, g P g g

confidence of model matching is 0.88. [5] K. Laws, The PHOENIX Image Segmentation System: Description and
Fig. 10(a) shows an indoor color image. The large triangular ~ Evaluation SRI Int., Tech. Rep. 289, Dec. 1982. ' _
shaped object (wedge) is the object of interest for recognition[.e] R. Ohlander, K. Price, and D. R. Reddy, “Picture segmentation using a

. . . recursive region splitting methodComput. Graph. Image Processing
Fig. 10(b) shows the segmentation result using default parameters | 8, pp. 313-333, 1978.

from which the appropriate polygonal approximation of the triangulaf7] B. Bhanu and J. Ming, “Recognition of occluded objects: A cluster-
object cannot be obtained. Fig. 10(c) and (d) show the segmentation structure algorithm,”Pattern Recognit.vol. 20, no. 2, pp. 199-211,
and the polygonal approximation of the triangular object with learned ~ 1987. _ _ _
parameters, respectively. In this case, the confidence of model matdfl R- S- Sutton, “Learning to predict by the methods of temporal differ-

S . . . ences,”Mach. Learn, vol. 3, pp. 9-44, 1988.
ing is 0.90. It took about a few hundred iterations to obtain the resul@] J. Peng and R. J. Wi”iamspelncrememm multi-st&plearning,” in

shown in Fig. 10(c) and (d). Proc. 11th Int. Conf. Machine Learnindlew Brunswick, NJ, 1994, pp.
226-232.

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King's College, U.K., 1989.

[11] A. H. Klopf, The Hedonistic Neuron: A Theory of Memory, Learning,

The learning-based object recognition system presented in this and Intelligence Washington, DC: Hemisphere/Harper & Row, 1982.
paper uses the recognition component as part of the evaluatiddl T. Pavlidis, Structural Pattern Recognition Berlin, Germany:
functions fgr controlling feedback a.nd I?aming param?ters for ima ] gPrlg]r?aer:;JYeQ.agéat?7aYﬁd J. Peng, “Reinforcement learning integrated
segmentation and feature extraction in a systematic way. In the” jmage segmentation and object recognition,”Rroc. DARPA Image
experiments, we have used a lookup table to represen} foaction. Understanding WorkshopNew Orleans, LA, 1997, pp. 1145-1154.
However, lookup table representation may not be adequate in large
problems since the search space is often too large to allocate entire
memory. A possible solution to this problem is to first classify input
images into representative clusters [4], for example, using algorithms,
such as the K-Means algorithm, and then allocate memory only to
the centers of these clusters. For a given image, generalization can be
made by searching for the nearest cluster center. In general, however,
compact function representation schemes that can generalize across
states must be sought.

Oqe additional bene_flt of_the approach, due_to the stochastic na_turgbstrmt_A previous work of Kapur et al. 5] introduced the MinMax
of reinforcement learning, is that the system is capable of explorifigormation measure, which is based on both maximum and minimum
a significant portion of the search space, resulting in the discovasiytropy. The major obstacle for using this measure, in practice, is the
of good solutions, which, in general, cannot be achieved by adifficulty in finding the minimum entropy. An analytical expression
deterministic or simple supervised learning methods. Such an abi{gS already been developed for calculating the minimum entropy when
. .. . . . only variance is specified. Here, an analytical formula is obtained for
1S prereqwsﬁe for any SyStem to achieve hlgh performance nre WCuIating the minimum entropy when onIy mean is Specified, and
world conditions. Although we have used a three-stage systempigmerical examples are given for illustration.
demonstrate a general approach to multistage, model-based, object
recognition in a reinforcement learning paradigm, it can certainly be
extended to systems having any number of stages. There is no dolfi§ex Terms— MinMax measure, minimum entropy, moment con-
however, that computational complexity will increase as the numbgfaints, probabilistic system.
of stages increases.

Finally, if vision systems could be designed in one stage as a single I.
black box, the “simple” reinforcement learning paradigm would have . . . .
sufficed. Earlier work on one-stage systems used a team of stochaiti\é/e briefly review the MinMax measure proposed in [5] and

semilinear units for learning image segmentation parameters [1]. ﬁyelop an ana_lytlcal formulall)_for itwhen crtnlyhthetrrresn IS IS%GC'f'ebd' "
reality, however, vision systems have multiple stages for real-wor IS nt:etzﬁu;_e glvets an _””.a”t"h Ig}yous r(fesu W etn c thV\/te ge abou
tasks with parameters that need to be adjusted at each stage. &pEoDabllistic system 1s in the form of moment constraints.

delayed reinforcement-learning-based approach presented here sh A :Jortc_e we prﬁ_sent thteh rn_ethodt of flnc:wtlg_ ad_mtlr_\ll)th_Jm ent(;otpr)]y
promise in providing a potential solution to the problem of objec 1S r!f_u lon, erthlscusls ef;hmpor_a_nce ° tls 'an u_|?n ant' €
recognition in multistage systems. significance of the value of the minimum entropy for information-

theoretic systems.

VI. CONCLUSIONS

Minimum Entropy and Information Measure

Lin Yuan and H. K. Kesavan

INTRODUCTION
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