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Delayed Reinforcement Learning for Adaptive
Image Segmentation and Feature Extraction

Jing Peng and Bir Bhanu

Abstract—Object recognition is a multilevel process requiring a se-
quence of algorithms at low, intermediate, and high levels. Generally,
such systems are open loop with no feedback between levels and assuring
their robustness is a key challenge in computer vision and pattern
recognition research. A robust closed-loop system based on “delayed”
reinforcement learning is introduced in this paper. The parameters of
a multilevel system employed for model-based object recognition are
learned. The method improves recognition results over time by using
the output at the highest level as feedback for the learning system. It
has been experimentally validated by learning the parameters of image
segmentation and feature extraction and thereby recognizing 2-D objects.
The approach systematically controls feedback in a multilevel vision
system and shows promise in approaching a long-standing problem in
the field of computer vision and pattern recognition.

Index Terms—Adaptive feature extraction, adaptive image segmenta-
tion, learning for multilevel vision, learning in computer vision, model-
based recognition, multiscenario object recognition, recognition feedback.

I. INTRODUCTION

Most vision systems use a sequence of algorithms that operate at
various stages of abstraction to perform a given task, such as object
recognition. In earlier work that combines learning and vision [1], the
inherent multistage nature of vision systems has not been addressed
adequately. In this paper, an approach that takes the output of the final
stage and uses it as a feedback in a reinforcement learning framework
to influence the performance of the lower stages of vision algorithms
is presented. The overall system performance is improved over time
with this method.

Fig. 1 illustrates the typical approach for model-based object
recognition, which is often unidirectional and without feedback.
While different stages keep getting better algorithms, there has been
little improvement in object recognition as a whole. This is due to the
lack of a feedback theory of multistage object recognition. For those
systems that do use feedback [2], [3], there is generally no learning
from experience to improve future recognition performance, which is
the subject of this correspondence.

The segmentation and feature extraction modules shown in Fig. 1
use default parameters that are usually obtained by the system de-
signer by following a trial-and-error approach. However, the designer
cannot anticipate all possible inputs to the algorithms; the content of
the three-dimensional (3-D) scene and the environmental conditions
are not knowna priori. The simultaneous adjustment of even a few
system parameters is time consuming and difficult and has yet to be
solved satisfactorily for multistage systems. As a result, the approach
shown in Fig. 1 is inadequate for real-world applications. The key
to the performance improvement of a multistage object recognition
system over time is the automatic adjustment of parameters of
various algorithms to optimize various image processing functions for
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Fig. 1. Conventional system for object recognition.

detected objects so that it is optimal and meets task- or object-specific
requirements.

II. OUR APPROACH

If it is assumed that the model matching produces a confidence
measure indicating the closeness of the selected features to the model,
it is natural to use this confidence as feedback to influence the
system’s performance for segmentation and feature extraction. The
broad goal of such a scheme is to try to find, for any given image, a set
of parameters for image segmentation and feature extraction in ways
that minimize recognition errors. Applying a reinforcement learning
algorithm to learn parameters can be viewed as a means of doing
just this when the matching confidence is used as a reinforcement.
Fig. 2 shows a closed-loop reinforcement learning-based system to
achieve this goal.

In contrast, it would be difficult, if not impossible, for a con-
ventional search method to accomplish the same task. Simply, there
are no well-defined evaluation functions at each of the stages for a
method to search for. Furthermore, if a method uses the confidence
of model matching for evaluation, it is not clear how the process
should proceed in a systematic way. Finally, at each stage, any such
method will have to delay its decision as to where to search next
until the confidence of model matching becomes available. However,
this need not be the case for the approach presented in this paper.
From a computational standpoint, therefore, our approach is more
attractive since the computation can be distributed over time more
evenly, which will reduce overall demands on the memory and speed.

The original contribution of this research paper is to provide an
incremental method based on “delayed” reinforcement learning for
inducing a general mapping from images to parameter settings in
a multistage, model-based, object recognition system. A theoretical
model is provided and its efficacy is validated using real-world data.

III. REINFORCEMENT LEARNING

Reinforcement learning studies computational approaches to learn-
ing from rewards and punishments (called reinforcements). It is about
learning optimal control in Markov decision problems. In this paper,
reinforcement corresponds to the confidence measure generated by
the model matching (see Fig. 2). Several factors affect reinforcement
learning, the most important of which is the timing of reinforcement.
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Fig. 2. Reinforcement learning-based multistage system for object recogni-
tion.

Reinforcement becomes available after each action in simple tasks.
In most complex tasks, however, reinforcement is often temporally
delayed. For example, in the object recognition system, the goodness
of segmentation and feature extraction may not be reliably known
until model matching has been performed.

One set of effective methods for delayed reinforcement learning is
given by the theory of dynamic programming. Given a Markov de-
cision problem, these methods involve first determining the “optimal
action-value function,” theQ function [10], that assigns to each state-
action pair a value measuring the average total (discounted) reward
obtained when a particular action is taken in the given state and the
optimal policy is followed thereafter. That is, using the notation thatx

denotes the current state,a denotes the current action,r denotes the
resulting immediate reward, andy denotes the resulting next state
from taking a in x; then

Q(x; a) = R(x; a) + 


y

Pxy(a)V (y) (1)

whereR(x; a) = Efrjx; ag with E denoting the expectation oper-
ator, V (x) = maxa Q(x; a); Pxy(a) is the probability of making
a state transition fromx to y as a result of applying actiona, and

 2 [0; 1) is a discount factor. Once theQ function is known, it is
straightforward to determine the optimal policy. For any statex, the
optimal action is simplyarg maxa Q(x; a). Note that bothx and
a can be vectors.

The particular method employed in this work for learning the
Q function is theQ(�) algorithm [9], where� 2 [0; 1]. This
algorithm is an example of the “temporal difference” (TD) method of
Sutton [8]. LikeQ learning [10],Q(�) learning works by maintaining
an estimateQ̂ of theQ function and updating it so that (1) comes to
be more nearly satisfied for each state-action pair encountered. More
specifically, inQ learning, the action value estimatêQ for state-
action pair (xt; at) is regressed toward the estimatêV for xt+1,
where V̂ (x) = maxa Q̂(x; a) is used as the target for adjusting
Q̂ at (xt; at). In Q(�) learning, on the other hand, the estimate
Q̂(xt; at) is regressed not just toward the estimateV̂ (xt+1), but to a
weighted mixture of the estimateŝV (xt+1); V̂ (xt+2); � � � ; V̂ (xt+k),
etc., up to and including the final outcome, where the weightings
are proportional to�k�1. Let e0t = rt + 
V̂ (xt+1) � Q̂(xt; at) and
et = rt+
V̂ (xt+1)�V̂ (xt). Then the update rule forQ(�) learning
can be written as

Q̂(xt; at) Q̂(xt; at)

+ �fe0t + �
et+1 + �
2


2
et+2 + �

3


3
et+3 + � � �g

(2)

where� is the learning rate. Thus, it can be seen from the above
equation that� controls the proportion in which future estimates are
combined into overall targets. By shifting the estimate forQ(x; a)
toward a weighted mixture of downstream targets,Q(�) learning
not only achieves better computational efficiency, but it also enables,
under appropriate conditions, the elimination of the effect of initial
bias. When� = 0; Q(�) learning reduces to simpleQ learning. The
typical choice for the� value is somewhere between zero and one, but
close to zero. More details about theQ(�) algorithm are given in [9].

To implement theQ(�) learning algorithm, a memory mechanism,
called the eligibility trace [11], is used. Every time a state is
encountered, it starts a trace that marks the state as eligible for
learning and which reduces gradually over time. IfTr(x; a) denotes
the eligibility trace of state-action pair(x; a), the Q(�) learning
algorithm can be described in Fig. 3. The eligibility trace assigns
a value to each experienced state-action pair with more recent ones
having higher values.

IV. REINFORCEMENT LEARNING FOR OBJECT RECOGNITION

In the multistage system for model-based object recognition de-
scribed in Fig. 2, there are unknown parameters for both the segmen-
tation and feature extraction modules. The segmentation module is
based on thePhoenixalgorithm [5], [6].Phoenixwas chosen because
it is a well-known method for the segmentation of color images with a
number of adjustable parameters.Phoenixuses region splitting based
on histograms of color features and is critically dependent on system
parametersHsmoothand Maxmin.

Hsmoothis the width of the histogram smoothing window, where
smoothing is performed with a uniformly weighted moving average.
Maxmindefines the peak-to-valley height ratio threshold. Any interval
whose peak height to higher shoulder ratio is less than this threshold
is merged with the neighbor on the side of the higher shoulder.
The algorithm searches for a combination of these parameters that
will give rise to a segmentation from which the best recognition
can be achieved. The ranges for each of the two parameters are
hsmooth = 1 + 2 � hsindex and maxmin = expfln(100) +
0:05 � mmindexg+0:5, wherehsindex;mmindex 2 [0:31]. The
resulting search space is 1024 sample points.

The feature extraction module [7] finds polygon approximation for
borders of each of the regions obtained after image segmentation.
It is based on a split-and-merge technique that first computes the
locations of curvature maxima. The estimates of maximum curvature
depend critically on neighborhood bound parameters, calledM1 and
M2 [12]. M1 andM2 are the nearest and farthest border pixels,
respectively, from the pixel at which the curvature is estimated. For
the purpose of this correspondence only,M2 is subject to adaptation.
It takes values between six and 26 in the experiments reported here.

Our object recognition process employs a cluster-structure match-
ing algorithm [7] that is based on the clustering of translational
and rotational transformations between the object and the model for
recognizing two-dimensional (2-D) and 3-D objects. The algorithm
takes as input two sets of tokens (polygonal approximation of
the boundary), one of which represents the stored model and the
other represents the input region to be recognized. It then performs
topological matching between the two token sets. It computes, based
on the number of model segments that match the segments in the
data, a real number that indicates the confidence level of the matching
process. This confidence level is then used as a reinforcement signal
to drive the algorithm.

Note that, in general, there may be no model object or there can
be multiple instances of one model object or several different model
objects in the image. If the goal is to recognize multiple objects,
it might be preferable to use an average of the confidence levels



484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 3, AUGUST 1998

Fig. 3. Q(�)-learning algorithm.

Fig. 4. Main steps of the delayed reinforcement learning algorithm for parameter adjustment for segmentation and feature extraction.

resulting from each model matching. The desired result is that
parameters are chosen more judiciously so as to optimize the average
confidence measure that rewards parameters accommodating differ-
ences in characteristics between regions in the image. There are other
possibilities as well. For example, we might design a method whose
operating conditions are amended to these differences to achieve
optimal performance for segmentation, feature extraction, and model
matching. Such a scheme would localize its computation by ways
of local segmentation to meet each individual requirement. We are
currently pursuing these ideas [13]. In this paper, however, we are
concerned with simple situations, in which only one model object is
present in the image. Thus, the maximum confidence level suffices.

The objective of the system is to autonomously find a set of
segmentation and feature extraction parameters that achieves the
maximum matching confidence for a given input image. Our model-
based recognition system is a multistage decision process in which the
parametersHsmoothandMaxminare at the first stage of the process
and the parameterM2 is at the second stage. The goodness of a
particular decision, such as selecting a combination of the segmen-
tation parameters, is not known until the model matching has been
performed. To achieve the objective, therefore, theQ(�) learning

algorithm with the confidence of model matching as reinforcement is
used to adjust the parameters at both the first and second stage.

Let i be an input image to the segmentation module,a be an
instance of segmentation parameters, andb be an instance of feature
extraction parameters. (Note that in this paper,b is simply a scaler.)
Also, let is be the segmented image resulting from applyingPhoenix
with a as its parameter values to imagei. Then, according to the
Q(�)-learning algorithmQ(i; a) measures how good the instancea
is whenPhoenixapplied to imagei. Likewise,Q(is; b) measures the
quality of extracted features when the feature extraction algorithm
with b as its parameter values is applied to the segmented imageis.
When theQ(�) learning algorithm is applied to the parameters the
value of Q(i; a) will be corrected to look more like the value of
the segmented imageV (is) = max

b
Q(is; b), which will in turn be

estimated according to the matching confidence.
Fig. 4 shows the main steps of the algorithm described, where

�-greedy policy is a policy that selects random actions for� fraction
of time. Although there is no strong theoretical foundation, this explo-
ration strategy works well in practice [9]. The algorithm terminates
when either the number of iterations has exceeded a prespecified value
or the recognition confidence level has reached a given threshold.
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(a) (b)

Fig. 5. (a) Sample outdoor color image (Frame 1 of a 20 frame sequence) and (b) polygonal model of the car.

(a) (b)

(c) (d)

Fig. 6. Experimental results (training) for the image in Fig. 5. (a) Matching confidence level, (b) parameterM2, (c) parameterHsmooth, and (d)
parameterMaxmin.

V. EXPERIMENTAL VALIDATION

There are several representation schemes for theQ function in
the reinforcement learning paradigm. Since the goal here is to
demonstrate the effect of learning for multistage recognition, we have
used a simple lookup-table-based representation.

The two dimensions of the lookup table are the following: 1) input
or segmented (feature-extracted) image and 2) action represented by
a particular combination of system parameters. The “activity” trace
Tr is similarly indexed. All table entries are initialized to zero, which
means that each combination of the parameter values can be selected
for evaluation with equal probability in the beginning. The focus of
the experiments is to demonstrate the feasibility of using learning for

multistage recognition. Also,
 = 0:95; � = 0:3, and� = 0:1 for all
experiments reported here.

Fig. 5(a) shows a sample of a sequence of outdoor color images
(120� 120) obtained under varying environmental conditions. These
images were collected approximately every 15 min over a�2 and
1/2-h period [4]. The images exhibit varying shadow and reflection
on the car as the position of the sun changed and clouds came in
and out the field-of-view of the camera that had auto iris adjustment
turned on. The overall goal is to recognize the car in the image. It
should be noted that, although the image is in color, for publication
purposes, it is being shown in grayscale.

Fig. 5(b) shows the 2-D model of the car located in Fig. 5(a). The
dark squares in Fig. 5(b) correspond to labels of the vertices in the
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(a) (b)

(c) (d)

Fig. 7. Improvement of the segmentation over time. (a) Initial segmentation, (b) segmentation at time step 200, (c) segmentation at time step 400, and
(d) segmentation at time step 600.

(a) (b)

Fig. 8. Polygonal approximation of the car. (a) Default parameter value(M2 = 6) and (b) learned parameter value(M2 = 8).

polygonal approximation of the car. The car is extracted manually
in an interactive session from the first frame in the sequence, and
its polygonal approximation [Fig. 5(b)] is used as the model in the
cluster-structure matching algorithm.

Fig. 6(a) shows how the confidence, averaged over five runs,
changes over time for the image shown in Fig. 5(a). It should be
noted that over time the confidence shown in Fig. 6(a) increases.
At the end of the training phase, the confidence of the match is
over 0.9 on a scale that varies between zero and one. For acceptable
recognition, the confidence of matching has to be greater than 0.75
in the experiments reported here.

Fig. 6(b)–(d) show how theM2, Hsmooth, and Maxmin change
over time for a particular run, respectively. It can be seen clearly that
the learned values ofM2, Hsmooth, and Maxmin are considerably
different from their starting random values.

To illustrate the results further, Fig. 7 shows how the segmentation
of the image improves over time during training. Fig. 7(a) depicts the

segmentation from initial random parameter settings. Fig. 7(b) and (c)
depict the segmentation after 1/3 and 2/3 of total time (600 iterations)
for training has elapsed, respectively. Fig. 7(d) depicts the segmen-
tation at the end of the training phase. It can be seen that the results
improve considerably. While Fig. 8(a) shows the extracted features
(polygonal approximation of the car) using the defaultM2 parameter
value, which is six in the experiment, Fig. 8(b) shows the same
feature using the learned parameter value, which is eight, that results
in high matching confidence.

Fig. 9(a) shows another sample frame in the image sequence
in which the car of Fig. 5(b) must be identified. It can be seen
that the lighting conditions in this outdoor image is significantly
different from the one shown in Fig. 5(a). The image is taken at a
different time from Fig. 5(a). Fig. 9(b) shows the segmentation using
default Phoenix parameter values [5], whereHsmooth = 9 and
Maxmin = 160. It should be noted that, when default parameters
are used, the car is broken into many small blobs from which
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(a) (b)

(c) (d)

Fig. 9. Experimental results. (a) Third frame of the image sequence, (b) segmentation with default parameters, (c) segmentation with learned parameters,
and (d) final polygonal approximation for the car.

(a) (b)

(c) (d)

Fig. 10. Experimental results on an indoor image. (a) The color image, (b) segmentation with default parameters, (c) segmentation with learned parameters,
and (d) final polygonal approximation for the wedge.
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polygonal approximation of the car cannot be accurately obtained.
Fig. 9(c) and (d) show the segmentation obtained by using the
parameters obtained from learning and the polygonal approximation
of the car obtained from the segmented image, respectively. The
confidence of model matching is 0.88.

Fig. 10(a) shows an indoor color image. The large triangular
shaped object (wedge) is the object of interest for recognition.
Fig. 10(b) shows the segmentation result using default parameters
from which the appropriate polygonal approximation of the triangular
object cannot be obtained. Fig. 10(c) and (d) show the segmentation
and the polygonal approximation of the triangular object with learned
parameters, respectively. In this case, the confidence of model match-
ing is 0.90. It took about a few hundred iterations to obtain the result
shown in Fig. 10(c) and (d).

VI. CONCLUSIONS

The learning-based object recognition system presented in this
paper uses the recognition component as part of the evaluation
functions for controlling feedback and learning parameters for image
segmentation and feature extraction in a systematic way. In the
experiments, we have used a lookup table to represent theQ function.
However, lookup table representation may not be adequate in large
problems since the search space is often too large to allocate entire
memory. A possible solution to this problem is to first classify input
images into representative clusters [4], for example, using algorithms,
such as the K-Means algorithm, and then allocate memory only to
the centers of these clusters. For a given image, generalization can be
made by searching for the nearest cluster center. In general, however,
compact function representation schemes that can generalize across
states must be sought.

One additional benefit of the approach, due to the stochastic nature
of reinforcement learning, is that the system is capable of exploring
a significant portion of the search space, resulting in the discovery
of good solutions, which, in general, cannot be achieved by any
deterministic or simple supervised learning methods. Such an ability
is prerequisite for any system to achieve high performance in real-
world conditions. Although we have used a three-stage system to
demonstrate a general approach to multistage, model-based, object
recognition in a reinforcement learning paradigm, it can certainly be
extended to systems having any number of stages. There is no doubt,
however, that computational complexity will increase as the number
of stages increases.

Finally, if vision systems could be designed in one stage as a single
black box, the “simple” reinforcement learning paradigm would have
sufficed. Earlier work on one-stage systems used a team of stochastic
semilinear units for learning image segmentation parameters [1]. In
reality, however, vision systems have multiple stages for real-world
tasks with parameters that need to be adjusted at each stage. The
delayed reinforcement-learning-based approach presented here shows
promise in providing a potential solution to the problem of object
recognition in multistage systems.
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Minimum Entropy and Information Measure

Lin Yuan and H. K. Kesavan

Abstract—A previous work of Kapur et al. [5] introduced the MinMax
information measure, which is based on both maximum and minimum
entropy. The major obstacle for using this measure, in practice, is the
difficulty in finding the minimum entropy. An analytical expression
has already been developed for calculating the minimum entropy when
only variance is specified. Here, an analytical formula is obtained for
calculating the minimum entropy when only mean is specified, and
numerical examples are given for illustration.

Index Terms— MinMax measure, minimum entropy, moment con-
straints, probabilistic system.

I. INTRODUCTION

We briefly review the MinMax measure proposed in [5] and
develop an analytical formula for it when only the mean is specified.
This measure gives an unambiguous result when the knowledge about
a probabilistic system is in the form of moment constraints.

Before we present the method of finding a minimum entropy
distribution, we discuss the importance of this distribution and the
significance of the value of the minimum entropy for information-
theoretic systems.
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