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Abstract 

Register file access time represents one of the critical 
delays of current microprocessors, and it is expected to 
become more critical as future processors increase the 
instruction window size and the issue width. This paper 
present a novel physical register management scheme that 
allows for a late allocation (at the end of execution) of 
registers. We show that it can provide significant savings in 
number of registers and thus, it can significantly shorter the 
registerfile access time. The approach is based on virtual- 
physical registers, which we presented in a previous work, 
extended with a new register allocation policy. This policy 
consists of an on-demand allocation in order to maximize 
the register usage, combined with a stealing mechanism 
that prevents older instruction from being delayed by 
younger ones. This shortens the average number of cycles 
that each physical register is allocated, and allows for an 
early execution of instructions since they can obtain a 
physical register for its destination earlier than with the 
conventional scheme. Early execution is especially 
beneficial for branches and memory operations, since the 
former can be resolved earlier and the latter can prefetch 
their data in advance. 

1. Introduction 

Dynamically-scheduled superscalar processors exploit 
instruction-level parallelism (ILP) by overlapping the 
execution of instructions in an instruction window. In spite 
of being able to execute instructions out-of-order, the 
amount of ILP that current superscalar processors can 
exploit is significantly constrained by data dependences, 
especially for non-numeric codes. The number of 
instructions that can be executed in parallel is highly 
dependent on the instruction window size and thus, wide 
issue processors require a large instruction window [15]. 
However, a large instruction window has some implications 
in other critical parts of the microarchitecture, such as the 

complexity of the issue logic [lo] and the size of the 
physical register file [3]. In this work we are concerned with 
the latter problem. 

The access time of a register file is significantly affected 
by its size, as well as its number of ports [3]. Since the 
current trend of increasing the issue width and the 
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instruction window size has direct consequences on the 
number of ports and registers respectively, it is very likely 
that the register file access time will become one of the 

longest delays of forthcoming microprocessors. In this case, 
it will determine the clock cycle and thus, it will have a 
severe impact on the processor performance, unless it is 
pipelined. 

However, pipelining a register file is not trivial and 
besides, it has significant effects on the processor. In 
particular, a multi-stage register file increases the branch 
misprediction penalty and requires extra levels of bypass 
logic [ 141. Both issues, are critical for the performance of 
superscalar processors. 

On the other hand, current superscalar processors require 
many more registers than those strictly necessary to store 
the values of a program. This is due to the fact that registers 
are allocated too early and released too late. Every 
instruction allocates a physical register for its destination 
operand much before its result is available (at decode), and 
this register is released much after its last consumer 
commits (when the following instruction with the same 
logical destination register commits). In this paper, we 
focus on the waste due to the former factor. Figure 1 shows 
the average number of physical registers used by a 
superscalar processor (written+non-written), and the 
number of registers that are actually wasted because of the 
early allocation (non-written). We assume here a processor 
with 160 physical registers in each file. For other details 
about the evaluation framework refer to Section 4.1. On 
average, the early allocation of registers increases the 
register requirements by 45% for integer and by 40% for 
FP; for some programs such as li it is responsible for an 53% 
average increase and in some particular cycles of the 

execution this figure can be as much as 500%. 
This paper focuses on a novel register management 

scheme that allows the processor to delay the allocation of 
physical registers until the values that they store are 
available (at the end of the execution stage). We proposed 
this scheme in previous work [4] [5] and referred to it as 
virtual-physical registers. We observed on that work that 
the approach to allocating physical registers was critical to 
performance. In this paper, we present a novel register 
allocation approach that outperforms the former scheme. 
We show that virtual-physical registers with this allocation 
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Figure 1. Register usage (written + non-written) and register 
waste (non-written) due to early allocation. 

scheme provide a significant saving in physical registers. 
For instance, we show that for 5 SpecFP95 benchmarks, a 
virtual-physical register organization with 77 FP registers 
achieves about the same performance as a conventional 
register organization with 101 registers, in terms of 
instructions committed per cycle (IPC). Note that if the 
processor cycle is determined by the register file access 
time, the reduction in number of registers will imply an 
increase in instruction throughput. 

The rest of this paper is organized as follows. Section 2 
reviews the virtual-physical register renaming scheme. The 
new allocation policy for this scheme is presented in 
Section 3. Section 4 discusses the performance of the 
proposed approach. Finally, Section 5 outlines some related 
work and Section 6 summarizes the main conclusions of 
this work. 

2. Virtual-Physical Registers 

The virtual-physical register architecture is motivated by 
the fact that instructions do not require a storage location for 
their results until they are available. However, current 
dynamic register renaming schemes allocate such a storage 
in the decode stage, much earlier than the result is available. 
The reason is that a physical register is used for two 
different purposes: to store a value and as an identifier of the 
result, in order to keep track of dependences. Only the latter 
objective requires the register to be allocated at decode. 
Thus, the allocation of a storage location can be delayed if 
the processor uses another artifact to keep track of 
dependences. Such an artifact is what we call virtual- 

physicaf registers (VP registers for short). 
VP registers are merely tags and do not require any 

physical storage. When an instruction is decoded, its 
destination logical register is mapped to a VP register 
obtained from a pool of free VP registers. Later on, when 
the instruction is in the last cycle of the execution stage, the 

VP register is mapped to a physical register taken from the 
pool of free physical registers. When an instruction 
commits, the VP and physical registers allocated by the 
previous instruction with the same logical destination 
register are released to their respective free pools. 

This register management scheme requires two map 
tables: the general map table (GMT), which indicates for 
each logical register its latest VP association and the latest 
physical mapping of this VP register, if any, and the 
physical map table (PMT), which denotes for each VP 
register its latest physical mapping, if any. More details 
about the operation of this approach can be found in [4] [5]. 

Since VP registers are just tags, a processor should 
typically be provided with the maximum required amount, 
namely the number of logical registers plus the maximum 
number of instructions in-flight. However, the physical 
register file should be dimensioned to the smallest size that 
provides a performance not much lower than an infinite 
number of registers in order to keep its access time low. It 
is thus not guaranteed that every instruction in-flight finds a 
free physical register when it finishes the execution stage. 
Therefore, the policy used to allocate physical registers to 
instructions is critical to performance. 

In fact, a conventional renaming scheme could be 
defined as a scheme that allocates the available physical 
registers in program order and forces the processor to stall 
the decoding of instructions when it runs out of physical 
registers. The virtual-physical register scheme could 
achieve the same behavior with an adequate policy for 
register allocation, i.e., by allocating physical registers to 
the oldest instructions in the window, with the additional 
advantage that it does not require the decode of instruction 
to be stalled when physical registers have been used up. 
However, other allocation policies are possible, and may be 
more effective. 

When an instruction finishes its execution and there is 
not any free physical register, the instruction is kept in the 
instruction queue and executed later on, with the 
expectation that some physical registers will have been 
freed in the meantime. However, if this instruction was the 
oldest instruction in the window, no instruction would 
commit and thus, no physical register would be freed. To 
avoid this deadlock situation the allocation policy proposed 
in [4] guarantees that a given number of oldest instructions 
in the window (NRR) will obtain a register when they reach 
the write-back stage, where NRR is an implementation 
parameter. In other words, that allocation scheme assigns 
NRR registers to the oldest instructions in the window that 
have a destination operand, whereas the rest of physical 
registers are allocated on-demand, that is, they are assigned 
to the instructions that first reach the write-back stage. 

187 



2,9- II 
I 4 8 16 14 31 I 4 8 16 24 12 

NRR NRR 

Figure 2. Effect of varying NRR for two particular programs. 

3. A New Register Allocation Approach for 
Virtual-Physical Registers 

We realized in our previous work that the performance of 
the processor was very sensitive to the value of NRR. The 
optimal value of NRR for different programs is quite 
distinct, and even for a single program, varying the value of 
NRR across different sections of the execution may provide 
significant benefits. Such a scheme for a dynamic tuning of 
the NRR parameter was concluded to be critical and this is 
what has motivated this work. For instance, Figure 2 shows 
the IPC for li and upplu when NRR is varied from 1 to 32, 
assuming 64 physical registers in each file. Other details 
about the evaluation framework can be found in section 4.1. 
Note that the optimal value for NRR for li is 16 whereas for 
upplu it is 32. 

For the whole benchmark suite, the value of NRR that 
has the best average performance is 32, which is its 
maximum value for 64 physical registers. A virtual- 
physical scheme with maximum NRR is conceptually 
similar to the renaming scheme of the Power3, as discussed 
in Section 5, and it is one of the schemes that we use for 
comparison in this work. 

Note that in fact this previous register allocation scheme 
is not the only approach that may guarantee a deadlock 
avoidance. On the other hand, finding the optimal register 
allocation policy seems to be an unsolvable problem even 
with a perfect knowledge of future register references. We 
have then to rely on some heuristics that try to approximate 
such an optimal scheme. The approximation we propose is 
based on the following two rules: 

l Registers should be allocated to the instructions that can 
use them earlier. In this way, the average number of 
unused registers is minimized. 

l Given any two instructions, if the execution of one of 
them should be delayed by the lack of registers, the most 
appropriate candidate is the youngest instruction, since 
delaying the execution of the oldest would delay its 
commit, which in turn would also delay the commit of 
the youngest one. 
These two criteria can be met by the following scheme. 

Every instruction allocates a physical register in the last 
cycle of the execution stage (just before write-back) if there 
are free registers. This meets the first criterion since 

Figure 3. Example of vbtual-physical renaming with DSY 
allocation. 

registers will be allocated by the instructions that first finish 
execution. If an instruction reaches the last cycle of the 
execution stage and there is not any free physical register, it 
is checked whether there is any younger instruction that has 
already allocated a register. If this is the case, it is better to 
stall the younger instruction rather than the older one, based 
on the second criterion. As suggested in [7], this can be 
achieved by stealing the register allocated by the younger 
instruction and assigning it to the older one. If there are 
more than one younger instruction with a register already 
allocated, the youngest one will be chosen. We refer to this 
register allocation scheme as on-Demand with Stealing 
from Younger (DSY). 

3.1. Implementing the DSY Register Allocation 
Scheme 

Identifying whether there is a younger instruction with an 
allocated register is done by inspecting the reorder buffer, 
searching for any younger entry with the execution- 
complete bit set. If several are found, the youngest one is 
chosen. Let us refer to the instruction that demands a 
register as i,, and to the instruction from which the register 
is stolen as iz. The VP register identifier alIocated by iz is 
obtained from the reorder buffer (this additional field in the 
reorder buffer is an overhead of the virtual-physical policy) 
and the physical register identifier is obtained from the 
PMT table. Let us refer to the VP destination register of i,, 
the VP destination register of i, and the physical destination 
register of iz as VP,, VP, and P, respectively (see Figure 
3.a). When i, steals the physical register of i,, the PMT table 
is updated to reflect that now VP1 is mapped to P2 and VP, 
is not longer associated to P2 (see Figure 3.b). 

The instruction i, must be re-executed in the future. A 
simple approach to achieving this is to keep instructions in 
the instruction queue until they retire, with a flag that 
indicates whether they have been issued. By marking i, as 
not issued, the issue logic will choose it again for issue in 
the future (Figure 3.~). 
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Since i2 has been executed in the past, the consumers of 
VP2 (i.e. instructions with a source operand renamed to 
VP,) have marked this operand as ready. However, it is not 
ready anymore since its associated physical register has 
been stolen. Turning this operand into not ready can be done 
by using the buses that are used to awake instructions, as 
described below. 

In a conventional processor, when an instruction 
completes execution t, it broadcasts the identifier of its 
physical destination register to all the entries in the 
instruction queue. Every entry checks if any of its source 
operand identifiers correspond to the broadcast one, and 
those that match are marked as ready. For virtual-physical 
registers, each entry in the instruction queue identifies each 
source operand by means of both a VP register and a 
physical register identifiers. When an instruction 
completes, both the VP and physical identifiers of the 
destination register are broadcast to the instruction queue. 
Each entry compares the VP identifiers of its source 
operands against the broadcast one, and in case of a match, 
the broadcast physical identifier is copied in the 
corresponding field of the matching operand, and this 
operand is marked as ready. On the other hand, when the 
physical destination register of an instruction is stolen, its 
corresponding VP tag (VP, in the example) is broadcast to 
the instruction queue in order to mark as NOT ready any 
matching source operand (Figure 3.~). 

Note that some of the instructions that have VP2 as a 
source operand may have been issued at the time when this 
operand becomes not ready. These instructions have read a 
correct source operand and thus, the result that they will 
produce will be correct. At the time they finish, if there are 
free physical registers they will be able to store their result 
and dependent instructions will be allowed to be issued. 
However, instruction i, will eventually be executed again 
and will allocate a new physical register (let us denote it by 
P3) for its destination. At that moment, the VP2 and P3 
identifiers will be broadcast to the instruction queue, and 
those instructions that consume VP2 will copy the new 
physical mapping and will be re-issued if not yet completed 
(i.e. it has been executed and allocated a physical register 
for its destination). The same happens to consumers of these 
re-issued instructions: they will be’issued no matter if they 
have already been issued in the past. 

3.2. Implicit Benefits of the DSY scheme 

As described above, the DSY scheme may cause multiple 
executions of some instructions and all the re-executions of 
the same instruction will produce the same result. In this 
section, we point out that these multiple executions 

1. In fact, it is done some cycles before in order to overlap the latency of 
the issue and read logic with the last cycles of the execution. 

implicitly have a very positive effect on the control 
speculation mechanism as well as the data cache memory. 

Among the multiple times that an instruction is executed, 
all of them except the last one could be regarded as 
premature executions, that would not occur at that time if 
the processor allocated physical registers from oldest to 
youngest instructions. Indeed, the physical register of an 
instruction i is stolen only when in the instruction window 
there are more instructions older than it that require a 
physical register. A conventional renaming mechanism 
would assign all physical registers to the older instructions 
and instruction i would have not even been fetched. On the 
other hand, with virtual-physical registers, this instruction 
gets a physical register because it finishes execution earlier 
than some older instructions. However, when an older 
instruction completes its execution and finds no free 
physical registers, it steals the register from i, which forces 
its later re-execution. 

The preliminary execution of some instructions have two 
important benefits: 

l A preliminary execution of a branch instruction will 
validate its prediction and in case of misprediction, the 
instructions of the wrong path will be squashed and the 
fetching from the correct path will be started 
immediately. In the conventional renaming scheme, 
such validation would occur much later, since the 
instruction would be delayed by the lack of registers. 

l A preliminary execution of a load instruction that misses 
in cache would fire the fetching of the data. When the 
instruction is definitely re-executed this data element 
may be already in cache and result in a cache hit. In other 
words, the early (preliminary) execution of memory 
instructions acts as a small-distance data prefetching 
scheme, hiding the memory latency of some cache 
misses. 
Finally, note that the latency as well as resource 

consumption of re-executed instructions can be 
significantly reduced by means of a reuse mechanism [ 1 I]. 
Instructions that are to be re-executed could keep their 
results in a reuse buffer and later on, when physical registers 
are available, these results could be directly copied into the 
new physical registers. In this way, re-executed instructions 
would not increase the contention in the functional units. In 
the analysis presented in this paper, such an instruction 
reuse mechanism is not considered. 

4, Performance Evaluation 

4.1. Experimental Framework 

The virtual-physical register renaming approach has been 
evaluated by means of a cycle-based timing simulator of a 
dynamically-scheduled processor derived from the 
SimpleScalar ~3.0 tool set 121. The sim-outorder simulator 
has been modified to include physical register files (integer 
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and FP) where the results of all instructions are stored 
(instead of temporarily storing them in the RUU and 
moving them to the architected register file at commit). This 
is the approach used by some current microprocessors such 
as the MIPS R 10000 and the Alpha 21264. The main 
parameters of the microarchitecture we use in our 
simulations are presented in Table 1. We refer lo such 
microarchitecture as a conventional processor. Then, the 
simulator has been extended to include the proposed virtual- 
physical renaming, leaving the remaining architectural 
parameters unchanged. 

Table 1. Processor microarchitectural parameters 

X ,nstruc,,ons (up to 2 taken branches) 

Funcuonal units 8 Slmnle ml f I ): 4 in1 mull (7): 6 slmnle FP (4): 4 FP muIt 141: . 
(lalency) 4 FP div (16); 4 load/store 

Load/Store queue 64 entries with store-load forwardmp 

Iasue mechanism out-of-order issue. Loads may cxecule when pr~v wxe 
addrcsscs UC known 

PhysxA repslcrs 4X- 160 int /4X-I 60 FP 

LI D-cache 32 KB. 2.way XL-;~ss~xx~~ve, 64 byte Imes. 1 cycle hll ,,me 

L2 unified cache 1 MB. 2.way s~I-~s~~A~vc. 64 hytc lines. I2 cycles hit wne 

Main memory infinite size. 50 cycles wxss time 

Comma wdlh x I”SV”CIIO”S 

We used ten benchmarks from the Spec95 suite: five 
integer programs (compress, gee, go, li and per-l) and five 
FP programs (mgrid, romcatv, a&u, swim and hydro2d). 
All programs were simulated to completion, excepting 
tomcarv, for which the initial part that reads a huge input file 
was skipped. Table 2 lists the inputs and the number of 
executed instructions. The programs were compiled with 
the Compaq/Alpha Fortran and C compilers with the 
maximum optimization level (-05). 

Table 2. Benchmarks 

I Propram I Input I #dyn. inst. (M) 1 

compress 4OOCQ.e 223 I I 170 

gee [ genrec0g.i 145 

eo I YY I 146 c I 
II 1 

nerl I 

7 queens 

scrabhl.in 

I 
243 

I 47 

m&rid test (modifymg the two first lines to 5 and IX) 16’) 

tOmCat” LCSL IYI 

applu tram (modlfymg del.5~.03 and nx=ny=n~l3) 3Y8 

swim uain 431 

hydro2d 1 test (modifying ISlEP=I) 

4.2. Performance Statistics 

472 
1 

Figure 4 shows the average number of instruction 
committed per cycle (IPC) for each benchmark as well as 
the harmonic mean for integer and FP programs, assuming 
64 physical registers in both the integer and FP files. Three 
different register management schemes are compared: the 
conventional one (conv), virtual-physical registers with the 
original register allocation policy (VP-ori), and virtual- 

3.4 

3 

2.6 
v 
k 2.2 

1.8 

1.4 

1 

3.4 - 

3 i 

2.6 4 

B 2.2 4 
1.8 i 

1.4 I 

I- 

merid IOmm apPlU wm hydm2d Hlt%X 

Figure 4. Performance of the virtual-physical renaming 
versus the conv. scheme for a 64 physical registers. Two 
different register allocation policies are shown for virtual- 
physical renaming: the original and the DSY. 

physical registers with the DSY allocation policy presented 
in this paper (vp-dsy). We can observe that the benefits of 
virtual-physical registers for FP codes are much more 
significant than for integer programs. This is an expected 
result since FP programs in general cause a much higher 
register pressure. The virtual-physical organization 
significantly outperforms the conventional organization, 
providing an average speed-up of 5% and 24% for integer 
and FP codes respectively. The difference between the 
original and the DSY allocation policies is noticeable, DSY 
provides an average speedup of 2% and 7% for integer and 
FP codes respectively. 

For the DSYconfiguration, the percentage of instructions 
that have their destination physical register stolen is 5.26% 
for integer programs and 11.76% for FP codes, which 
results in a 9.79% and a 57.75% of instructions re-executed 
respectively. This is due to the different behavior of these 
applications. FP programs exhibit more ILP and a low 
branch miss rate, and thus the instruction window is usually 
tilled up. Thus the VP scheme can assign physical registers 
to instructions far away from the oldest instructions in the 
window, increasing the ILP extracted and thus the 
performance, at the expense of a higher number of re- 
executions. On the other hand, integer applications 
experience a much higher branch miss ratio, which implies 
that the instruction window cannot be completely filled up, 
and then, the VP scheme cannot yield so much performance 
benefits by exploiting ILP. 

Figure 5 shows the impact of preliminary executions of 
load instructions. It depicts the percentage of loads that miss 
in cache and among them, the percentage that have been re- 
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Figure 5. Percentage of loads that miss on cache and 
their data is prefetched through re-execution. 

executed. We can observe that FP applications experience a 
reasonable degree of prefetch (28% on average), especially 
the tomcatv, which also obtains the best speedup (it re- 
executes the 35% of loads that miss in cache). 

Analyzing the effect of a varying number of registers on 
the processor performance may be more interesting than 
just looking at a particular register file size. In general a 
processor designer would be interested in finding the best 
trade-off between number of registers and performance. 

Figure 6 illustrates how the processor performance varies 
as a function of the number of physical registers for both the 
conventional and the virtual-physical organization. For the 
latter, the original register allocation policy as well as the 
DSY one are shown. Virtual-physical registers with DSY 
allocation is always better than virtual-physical registers 
with the original allocation policy, which in turn is better 
than the conventional renaming scheme. Note also that the 
difference among the three schemes is more significant for 
PP codes and increases as the number of physical registers 
decreases. We can observe that virtual-physical registers 
can provide significant savings in number of registers. A 
candidate design point for the number of registers to be 
implemented in a processor would be the lowest number of 
registers that provides a performance close to that of an 
infinite size register file (i.e. as many registers as reorder 
buffer entries plus number of logical registers). For 
instance, if we could afford about 10% IPC degradation 
with respect to the maximum IPC, we would choose 61 
integer and 101 FP registers for the conventional scheme, 
whereas for virtual-physical registers 45 and 77 would 
suffice respectively. This implies a saving of 26% and 24% 
respectively, which directly translates in savings in the 
register file access time and area, since both are 
significantly affected by the number of registers [3]. 

5. Related Work 

Register renaming is an old concept that first appeared in 
the FP unit of the IBM 360/91 [13]. Nowadays it is used by 
all dynamically scheduled processors. Different schemes 
basically differ in the organization of the storage location 
for the register values. Some processors keep non- 
committed values in the reorder buffer and copy these 
values to the register file at commit (e.g. Intel P6 [6]); others 
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Figure 6. Performance as a function of number of physical 
registers for the conv. register organization and the virtual- 
physical scheme with the two different allocation policies. 

have a register file for non-committed values and another 
for committed results (e.g. PowerPC 620 [9]); finally, some 
processors have a single register file (one for integer and 
another for FP) that holds both non-committed and 
committed data (e.g. Alpha 2 1264 [8]). The virtual-physical 
organization that we have proposed in this paper can be 
applied to the two last schemes and we have assumed the 
last one for the presented evaluation. 

The virtual-physical register renaming scheme presented 
in this paper builds upon the approach that we presented in 
[4]. The main contribution of this paper is a novel register 
allocation scheme that allocates physical registers at the end 
of the execution stage, using an on-demand policy with 
stealing from younger instructions. 

Another approach for delaying the allocation of physical 
registers was proposed by Wallace and Bagherzadeh [ 161. 
Their motivation was to have a multiple-banked 
organization with just one write port per bank. Delaying the 
allocation of physical registers until result write time 
allowed the processor to avoid conflicts in the banks. Their 
scheme had the same type of deadlock hazard as virtual- 
physical registers have. Their solution was based on shifting 
the processor to a special mode when the oldest instruction 
was unable to issue or complete. In this special mode, only 
the oldest instruction was allowed to execute and its result 
was stored in the register that this instruction would release 
at commit. Note that this is very similar to our former 
approach with one reserved register (NRR=I). In fact, this 
scheme does not reserve any register, but uses one that is 
sure to be released right away. 

Finally, the Power3 implements what they call virtual 
renaming [ 1] [ 121. Like the PowerPC 620 [9], this processor 
has two register files: one for committed values, which is 
referred to as architected register file, and another for non- 
committed values that is called rename buffers. In this 
processor, there are 16 rename buffers for integer and 24 for 
FP data. However, an operand is identified by one bit more 
than those required by a rename buffer identifier. This 
additional bit is called the virtual bit. This allows up to two 
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in-flight instructions to use the same rename buffer for its 
result. The older assignment is considered to be the ‘real’ 
one whereas the younger is called the ‘virtual’ one. They are 
distinguished by the value of the virtual bit. Only 
instructions with real operands (source and destinations) are 
allowed to be issued. When an instruction commits, its 
destination rename buffer is switched from real to virtual, 
and that of the younger instruction that uses the same 
physical buffer is switched from virtual to real. The 
processor allows up to 32 instructions in-flight (due to the 
size of the reorder buffer) but, unlike our proposal, only the 
16/24 oldest instructions with an integer/FP destination 
register respectively are allowed to be issued. In fact, these 
scheme is conceptually very similar to our original proposal 
when the number of reserved registers is set to the number 
of rename buffers. 

To summarize, Wallace and Bagherzadeh and the 
Power3 schemes represent two extreme points in the design 
space. The former allocates physical registers almost on 
demand, with the exception of the oldest instruction, 
whereas the latter assigns all physical buffers to the oldest 
instructions that have a destination operand. The former can 
execute instruction far beyond the actual commit point 
much earlier than the latter. However, when the oldest 
instructions run out of registers, the former scheme has very 
low performance since instructions are executed 
sequentially. Our proposal, virtual-physical registers with 
DSY allocation, can be as aggressive as the latter, but when 
it realizes that old instructions are progressing slowly due to 
the lack of registers, it steals some registers from the 
younger instructions and give them to the older ones. 

An orthogonal approach to reducing the register pressure 
was proposed by Jourdan et al. [7]. Their scheme takes 
advantage of instruction repetition. The idea is to identify 
instructions that produce the same result and allocate the 
same physical register for all of them. 

6. Conclusions 

In this paper we have presented a novel register renaming 
scheme that allows for the late allocation of physical 
registers. In particular, physical registers are allocated at the 
end of the execution stage, rather than at decode time as 
conventional processors do. The direct advantage of this 
scheme is a significant reduction in the register pressure. 
For instance, we have evaluated that it can provide a 26% 
and 24% reduction in the number of integer and FF’ 
registers, and achieve the same IPC rate as a conventional 
scheme. This reduction in number of registers translates 
into a shorter access time to the register file, which is likely 
to be a critical issue of forthcoming microprocessors, and 
thus, it may significantly increase performance. 

The proposed scheme has also important indirect 
advantages. In particular, it allows branches to be resolved 

earlier and load/store instructions to prefetch their data. In 
addition, the re-execution of instructions caused by the 
stealing feature can be done very effectively by means of a 
reuse mechanism. 

The novel register allocation policy has been shown to be 
more effective than previous proposals for late register 
allocation. The on-demand allocation with stealing from the 
younger provides maximum look-ahead when ILP is 
limited but this look-ahead never penalizes older 
instructions. 
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