
Delaying Variable Binding Commitments in Planning

Qiang Yang and Alex Y.M. Chan
Department of Computer Science

Univexsity of Waterloo
Waterloo, Ontario, Canada N2L3G1
(qyang, ymchan)~logos.uwaterloo.ca

Abstract

One of the problems with many partial-order plan-
ners is their eager commitment to variable bindings.
This is contrary to their control decision in delayed-
commitment of operator orderings. In this paper we
present an extension to the classical partial-order plan-
ners by associating every variable with a finite domain
of values. The extended planner applies constraint
satisfaction routines to check for the consistency of
variable bindings. With the extended planner, we per-
form a set of experiments to show that it is able to
reduce the amount of backtracking in domains where
few variable instantiations can lead to final solutions.
We also investigate the frequency of CSP application
to determine how often should constraint checking be
performed in order to yield the best performance.

Introduction

Recently, much research effort has been devoted to
the study of paxtial-order planning systems(Baxrett
Weld 1992; Chapman 1987). Researchers have studied
different methods of imposing ordering constraints on
the operators in a plan. It has been shown that when
appropriately used, this least-commitment strategy can
effectively reduce a planner’s seaxch space.

Despite the theoretical advances in the handling of
operator ordering constraints in a plan, relatively lit-
tle has been known on how best to handle variable
bindings in planning. Most of the existing techniques
adopt an ad-hoc method of eagez commitment. Thus,
if a new operator instance a is introduced in a plan,
and if a has a precondition P(?z), the premise is that
the variable ?z will be eventually bound to one of the
constant objects in the domain description. If there
axe several objects that satisfy the predicate P ini-
tinily, then when P(?z) is being achieved, the variable
?z will be bound to a constant object in each separate
branch of the search tree.

This naive approach to dealing with variable bind-
ings has a number of drawbacks. First of all, because
of the eager commitment in variable binding, if there
axe 100 constants that can be bound to a vaxiable ?z,
then 100 branches of the search tree will be generated

when ?z is instantiated. Without an intelligent fa-
cility to represent bounded domains for variables, the
branching factor of the search tree must be enlarged.

In addition to the branching-factor problem, another
problem known as ~hrashing in heuristic search can oc-
cur. This problem happens when the same part of the
search tree fails repeatedly due to the same reason. For
example, let ?z and ?y be two variables in a plan. Sup-
pose that ?z is bound to a constant A first, and that the
constant A is incompatible with another constant B.
If ?y is bound to B later in a planning process, the plan
will fail due to the incompatibility between A and B.
However, the chronological backtracking method used
in most current planning systems will simply backtrack
to a level immediately above the last one. The end re-
sult of this repeated backtracking is that the part of
the seaxch tree between the binding of?z and ?y will be
found useless, and a significant amount of computation
would be wasted.

A solution to the above problem would be to rep-
resent the objects which each variable can be bound
to collectively. A method known as Arc-Consistency
in Constraint Satisfaction could then be applied to
find out the incompatibility between the two con-
stants A and B much eaxlier than with the naive
method, avoiding the computational problems men-
tioned above. These extensions, including the aug-
mented plan language as we]] as the associated rea-
soning techniques based on constraint satisfaction, are
the main contributions of this paper.

To be sure, mi~ng planning with reasoning about
variable bindings has been successfully attempted by
a number of practical planning systems, including
MOLGEN(Stefik 1981), SIPE(Wilkins 1988),
PLAN(Lansky 1988) and ISIS(Fox 1987). What
not been clear from the application of these systems is
one of a control issue: How much constraint reasoning
should be applied to each plan? How does the prob-
lem domain features such as solution density affect the
efficiency of the constraint-based methods? And how
often should constraints between variables be consid-
ered during a planning process?

In this paper we present an extended plan language

182 P~EVIEW ED PAPERS

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

where each variable is associated with a finite set of do-
main values. We also discuss our planning algorithm
which reasons about these finite variable domains in
each plan and guarantees the soundness and complete-
ness properties. In addition, we present a set of em-
pirical results to demonstrate the efficiency gain of the
extended planner and to answer the above utility ques-
tion regarding constraint satisfaction.

A Constraint-Based Planner
In this section, we review the traditional partied or-
der planners and then present our extension using
constraint-based techniques.

Traditional Partial-order Planners
A traditional partial order planner represents an oper-
ator using a three tuple, a precondition list, an add list,
and a delete list. Each list represents a set of literals.
In an operator description, we follow the SNLP(Bar-
rett & Weld 1992) convention to use ?z to denote
variable parameter ?z. In addition to the operators,
a domain is specified using two state descriptions, the
initial state and the goal state. Both states are repre-
sented using sets of literals.

shape (? x
Preconds: 0bj ect (?x)
Adds: Shaped(?x)
Deletes: D~illed(?x), Painted(?x)

dxill(?x)
Preconds: 0bj ect (?x)
Adds: Drilled(?x)
Deletes: Painted(?x)

paint (?x)
Preconds: Object (?x)
Adds: Stee~(?x)
Deletes: Painted(?x)

As an example, consider a machining domain de-
scribed by Smith and Peot (Smith & Peot 1992).
The task is to transform a piece of stock into a de-
sired form, by drill;,g, shaping and painting. The
operators of the domain are listed above. The ini-
tial state £" describes a domain where there are 100
pieces of stocks, all of which are objects. In ad-
dition, one of the stock is made of steel: 2: :
{Object(Sx),...Object($t00),Steel(Sso)}. Thus, the
initial state consists of 101 literals.

The goal of the domain is to find an object ?y
and perform operations to make it shaped, drilled and
painted: ~ : Shaped(?y), DriIled(?y), Painted(?~).

For a given domain description, a traditional partial-
order planner invokes a search algorithm to find a plan
from the goal state backwards. A top-level description
of these algorithms is shown below.

1 open-list :--- ~ initi~-plan }.
2 repeat

3 plan := lowest cost node in open-list;
4 remove plan from open-list;
5 if Correct(plan)=True then return plan ;

else
7 If threats exist
8 l~esolve-Threats;
9 else
10 Establish-Precondition(plan);
11 endlf
12 Add successor plans to open-list;
13 endif
14 until open-list is empty;

In this algorithm, the procedure Correct(plan) is
boolean function. For a sound planner, if it returns
True, then the plan must be correct. For the SNLP al-
gorithm, it is a termination routine that checks to see if
every precondition of every operator has an associated
causal link, and if every causal link is safe(Barrett
Weld 1992).

If plan is not yet correct, then a successor gener-
ation process is initiated. The procedure Establish-
Precondition(plan) inserts operators and constraints to
achieve a precondition that has not been satisfied. Let
p(?z) be a precondition of an operator ~ in a plan.
If p(?z) has not yet been satisfied, then a search will
be made to find all existing or new operators a that
have an add-list literal p(?y) such that p(?y) is unifi-
able with p(?z). For each such operator instance, the
following constraints are imposed on a successor plan:

1. ,~ -~ fl, where -~ represents the precedence re-
lation in the plan.

2. ?z =?y, where = is a binding constraint. ?z =
?y states that ?z and ?y must be bound to exactly
the same constant in all instances of the plan.

The above procedure could be extended to literals with
more than one parameter and literais with constant
parameter.

Extending the Domain Language

In the previous machine shop example, when achiev-
ing Object(?z) we would like to avoid the premature
commitment of ?z to any particular stock. That is, we
could associate with ?z a domain of values, each value
being a stock stated in the initial state: Domain(?z)
{$1, $2 , Sxoo}. To support this consideration, in ev-
ery plem and every operator we associate each variable
with a domain. A dome~u for ?z can be a set of objects.
The denotation of Domain(?z) = {Ox, O2,..., On}
that ?z can be bound to any one of O1 through On.
Thus, the concept of a variable domain has a disjunc-
tive or existential meaning to it.

Extending the Planning Algorithm
With the extension of the planning domain language,
the planning algorithm can be extended at two points.

The first extension is in the termination step, Step 5
of the above partial-order planning algorithm. In addi-

YANO 183

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

tion to the traditional way of checking the correctness
of a plan, we must now make sure that for the set of
variables in the plan, each variable can be assigned a
value from its domain, such that all variable binding
constraints are satisfied.

To look at this problem in more detail, consider a
plan with the following set of variables and domains.
The variables are ?zl, ?z2, and?zs, all with a domain
{a, 5}. The constraints require that no two variables
take the same value.

For this problem, there does not exist a consistent
assignment of the three variables such that all three
constraints are satisfied. What we would like to add
in Step 5 is a routine that can tell us whether or not a
consistent assignments exist for al] variables. If not, as
in the case above, then the plan should be discarded.

The algorithms that perform this task are known
as Constraint Satisfaction Algorithms. Given a set of
variables, domain values for the variables and con-
straints among them, a constraint satisfaction aigo-
rithm determines whether or not a consistent assign-
ment of values to the variables can be obtained. A
large number of such algorithms have been found(Ku-
mar 1992). For simplicity, we refer to any such al-
gorithm as CSP(p|an). In addition, we refer to the
instance of the plan in which all variables are consis-
tently assigned a value Instance(plan).

An extension of Step 5 is as follows:
5. if Correct(plan)=True, then if CSP(p/an)= True
then return(plan Instance(plan));

The second extension to the planning algorithm is
in the Establish-Precondition part (Step 10). First,
add the CSP checking routine to this part so that nodes
with inconsistent variable bindings can be pruned. For
efficiency purposes, the frequency of CSP routine ap-
plication here can be specified by the user. Further-
more, whenever a precondition p(?z) is achieved by
operator ~, where ~ adds a literal p(?y), we would like
to make sure that ?z and ?y have an nonempty do-
main intersection. Then, we would like the domain of
?z and ?y to be set to that intersection. If, however,
we are using the initial state literais to achieve p(?z),
then we would like to set the domain of ?z to the in-
tersection of objects which satisfy predicate p and the
original domain of ?z. Therefore, all possible constant
bindings for ?z are obtained without committing to a
particular one. More precisely, let/8 be an operator
with precondition p(?z), Establish-Precondition could
be implemented as follows.

El lfCSP(p|an)= False then return O; Comment to El:
the user specifies hoto often the CSP routine is applied.

E2. for all operators ai which added literal p(?~);
E3. ifI)omain(?z) N Domain(?1/) # ~
E4. generate a successor P~ with a constraint ?z =?It,

where Domain(?z) = Domain(?~) are set
Dora(:-) n Domm(?~).

ES. if the initial state contains literals p(Oj),j = I k,
E6. then generate a successor plan Q

with Domain(?z) := Domeht(?z)n
{oj,j = ~ k}.

ET. return {Q, Pi, i --- 1, 2,...).

Efficiency Gain with the Extended
Planner

We now discuss some of the efficiency gains from the
extended planner. Suppose that at a certedm planning
step, we introduce an operator with a parameter ?z to
the plan, where ?z can be bound to , different con-
stants, al, a2,..., an. If we next insert another opera-
tor with a parameter ?y that can be instantiated to any
of m constants bl, b2,...bin, then the state space of a
traditional partial-order planner might look like Fig-
ure 1 (A). In this search tree, the partial-order planner
commits to one of al through an at one level, and then
commits to one of bl through bm at another level. In
the worst case, there are tight constraints on their val-
ues which can only be satisfied by constants an and bm
, and the entire search tree with a size of m * n must
be scanned.

) domO~t)= at, ...an

"~"-" bl ... bm bl ... bm bl ... bm

0 d~?y)=bl,...M

(A) (B)

Figure I: State spaces of the planners before and after
the extension.

In contrast to the traditional approach, our extended
constraint-based planner does not commit to any pax-
titular constant during planning. The domain values
for both ?z and ?lt are simply recorded and reasoned
about at a later time. Therefore the search tree looks
like the one shown in Figure 1 (B).

In order to conclude that the extended planner
performs better, we must also take into account the
amount of CSP processing done for each node in the
search tree. In our extended algorithm, both steps
5 and E1 requited CSP processing. We admit that
in the worst case, this would mean that the amount
of processing per node is exponential. This was the
reason why Chapman(Chapman 1987) specifically re-
qnired that variables in TWEAK must not have finite
domains of values. However, by avoiding having finite
variable domains, TWEAK (and SNLP) resorted to try
out many more possible variable bindings to find one
that is consistent, leading to the generation of more

184 REVIEWPD PAPERS

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

nodes in the seaxch tree.
To guara~ttee the soundness of the planner, full CSP

reasoning must be applied at step 5. However, if we
want to increase the efficiency of planning, we must
determine, with respect to step El, (1) how m~ch con-
straint processing should be applied, and (2) how often
should the CSP algorithms be applied.

For the how-m~eh part of the question we have
two choices. One is to use a polynomial-time
CSP algorithm such as Azc-Consistency(Kumar 1992).
Since the axc-consistency algorithms do not enforce
global consistency, ~nother alternative is to use s
backtracking-based CSP algorithm such as Forward-
Checking(Kumax 1992) which has good average-case
performance.

The how-often part of the question is likely depen-
dent on the problem domain features. One domain
feature is where and how often do dead ends caused
by inconsistent variable bindings occur. If the dead
ends occur early in the search tree, it is mote likely
that variables in aa arbitrary instaati,~tion of a paxtial-
order plan cannot be consistently bound to constants.
In this case, applying CSP routines more often could
detect dead ends earlier in search, leading to much ira-
proved efficiency. If the dead ends occur deep down in
the search tree or there are in fact no inconsistencies,
the dead end checking routine at Step El is likely to
waste a lot of time with few nodes pruned.

In the next section, we present a set of experiments
to help answer the how-often question while keeping
the ho~o-m~clL issue fixed with an implementation. In
Section 5 we discuss the implications of the results.

le+06 = , , ,

F~LP ICSPf~equefl~:O)-e---
~S~PlCSPfre~enc¥:]} ~-.

SNLP Igood goal order) -B---
!00000 7 ~LP (poor goal orde~r~.~

- ~
10000

f

1000 ."

100 T B []
IS "

__. __~:.~ : : -~--=--=:::~-----

|0 m m I
100 300 500 700 900

No, of objects

Figure 2: The Domain of Smith and Peot

Empirical Results

To test the effectiveness of our approach, we have
extended the SNLP plamler (MeAliester & Rosen-
blitt 1991) which was implemented by Barrett and

Weld(Barrett & Weld 1992). The new planner, which
we call FSNLP, handles finite variable domains as de-
scribed in Section 2. In this section, we describe
ou: comparison of SNLP and FSNLP over a range of
domains. Both planners axe implemented in Allegro
Common Lisp on a Sun-4 Spare Station.

In all of the following tests, the subgoais are solved
in a LIFO manner. When performing best-first search
with both planners, the heuristic function is the sum
of the number of unsafe causal links, the number of
open conditions to be achieved as well as the number
of steps in a plan. The results of the tests are plotted
on two dimensional graphs, where the y-axis, displayed
in log scale, shows the CPU time required for solving
problems.

o

le+06 . , m
FSNLP ICSP fre~tenc~: OI -e--
FSNLP ICSP frequency: IJ -4---

SNLP -B--.
100000 T "~,.°

oO°°

I0000 ~ //oo.°
o,"

,.o’

1000 ~ ~ -.... .---""
o....--"

100 -a-

10 I I
2 3 4 5

No. of goals

Figure 3: Exponential Domain with high solution den-
sity

The DomA;n of Sm;th and Peot

The first comparison involves the machine shop domain
described in Section 2. The two planners axe compared
by varying the number of stocks in the initial state.
To obtain aa average result, it is assumed that for say
n pieces of stocks sl through s,~ the only steel one
is s,~/2. To answer the how-often question raised in
the last section, we also varied the frequency of CSP
application.

Our test result appeaxs in figure 2. In the figure,
FSNLP with CSP frequencp 0 represents not applying
the CSP routine at Step E1 (first step of Establish-
Precondition) at all. FSNLP ~’i~h CSP frequency 1
represents applying the CSP routine for every node.
SNI, P with poor goal order stands for the SNLP plan-
ner with the goal order given in Section 2, whereas
8NI~P wi~h good goal order represents running the same
SNLP planner with an ordering of the goal suggested
by Smith and Poet, whereby the pla~ner works on the
subgoal Pain¢ed(f.~l) first. In (Smith & Peot 1992),

YANO 185

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Smith and Peot argued that this good goal order might
be the key to overcome a problem with Knoblock’s ab-
straction method.

One thing we can observe from the figure is that,
compared to SNLP, FSNLP has a dramatic amount
of improvement in efficiency; in fact its complexity
stays constant as n increases. Another interesting phe-
nomenon is that for this problem, the frequency of CSP
application does not matter. Finally, although a good
goal order can have a dramatic effect on improving
the efficiency of SNLP, goal order alone still cannot
completely close the gap between SNLP and FSNLP.
This further demonstrates the advantage of using the
constraint-based method.

Exponential Domain

One feature of the above machining domain is that
the size of plans do not increase with the number of
objects. In this section, we consider a~othez domain
which allows us to observe the effect of increasing plan
lengths. The initial and goal states of the domain is
given below.

z = {P(od,..., P(o,-k+d,..., P(o.),
C(o.-h+d,..., C(o.),...,

g = {G(?zl), G(?z,), C(?z.)}, where z, # zi for
i ~ j and 1 _< u _< g. In this domain there are m
objects, n of which satisfy predicate P, and m - n -t- k
of which satisfy C. Of the m objects k of them satisfy
both predicates. The goal is to find g different objects
that satisfy G. In addition, one of them must also
satisfy C.

We define type O to include all objects in the do-
main. The operator that allows us to produce Gi from
Pi is as follows 1

achieve-O(?x), Preconditions: P(?x)
Adds: G(?x) Deletes: {}

In the tests, both the initial conditions and goal con-
ditions were randomly permuted. We gathered aver-
age results from 10 random problems for each problem
type, with a specific number of goals in g, g -{- 1, and
with a specific number (denoted by k) of objects which
satisfy both predicates Pi and C.

This domain has a number of interesting features.
First, we can vary the plan lengths by changing the
parameter g, which controls the number of goals. Sec-
ond, we can vary the density of solution by changing
the number of objects that simultaneously satisfy both
P~ and C. This density is represented by the ratio k/n.
When the density of solution is low, few objects can
satisfy the conjunctive goals Gx(?zz)A C(?zl) in
goal conditions. In this case, SNLP is expected to fail
on most of the branches of the search tree. In contrast,

IThis domain is slmil~ to DxSI domain described by
Barrett and Weld (Barrett & Weld 1992). Ouz experiment
is analogous to the comparison between TOCL and POCL
described in their paper.

186 REVIEWED PAPERS

FSNLP can avoid the thrashing problem by delaying
the commitment to a particular object and perform
much better. When the density of solution is high, and
when depth-first search is used, we expect that SNLP
is able to zero in onto a solution fast, whereas FSNLP
would still spend extra time for CSP processing. Thus,
with depth-first search and when the solution density is
high, SNLP would be slightly better. The low-density
results, under best-first search, ere shown in Figure 3
(the solution density is only 2/10). As we can observe
from the figure, SNLP performs exponentially worse
than FSNLP as the number of goals increases. The
results under depth-first search strategy are similar in
shape.

We further varied the density of solutions in order to
test the tradeoffs between commitment and the over-
head of constraint reasoning. In this test the number
of goals was kept constant to 5, and both planners were
asked to perform depth-first search. The solution den-
sity (k/n) is varied from 0/10 to 10/10. The result of
the test is shown in Figure 4. It is interesting to observe
that as the solution density increases, the performance
of SNLP improves. Eventually SNLP even surpassed
FSNLP in efficiency when the density is 1. This has
a simple explanation: when every instantiation leads
to a correct solution, it does not requite any addition
check by CSP routines. Thus, SNLP can avoid this
overhead at the high solution density region. In some
other tests, we observed that both SNLP and FSNLP
performed with the same order of time complexities
even when the number of goals was increasing.

Figure 4: Exponential Domain with varying density

Variable-Sized Blocks Domain

In the above experiments the search performance of
FSNLP is not very sensitive to the frequency of CSP
application at Step El. Our analysis shows that the
frequency will affect FSNLP when dead ends can be

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

discovered at varying levels in the planner’s search tree.
To test this hypothesis, we used a blockswofld domain
where there are a number of blocks BI, B2 B. of
unit size, and where there is a particular block A which
can support more than one block. The task is to move
all the B blocks on top of A, using the following oper-
ator:

PutonA(?z, ?s); Types: ?z : B; ?s: L;
P~con~, : Clear (? z), S~eO,,A (? s
Adds: O,,A(?,); Deletes: S~eO,,A(?,)

In this definition, B is the set of blocks, and L is the
set of locations available on block A, and ?s could be
bound to a location on A. By varying the number of
locations that satisfy the predicate SpaceOnA in the
initial state, we can change where the dead end occurs.
in a search tree. For the test, the number of blocks is
fixed at 5, and the number of locations on top of block
A varies from 2 to 5. The dead end occurs very high
up in the search tree if the number of locations is 2,
and deep in the search tree if the number of locations
is 4. When the number of locations is 5, all 5 blocks
can be put on object A at the same time on different
locations, and no dead end occurs.

100000 , . , ,

F~LP lno. of locations: 2)
F~LP lno. of locations: 3) +--
FS~P {no. of locations: 4) -~--.
F~P |no. of locations: 5) -~--

zoooo ~ [] .~.we----~

100 i i i i
0 0.2 0.4 0.6 0.8 t

Pr~ency of co.fete CSP app]ication

Figure 5: Performance in Variable-Sized Blocks Do-
main

Figure 5 depicts the results, where the frequency of
CSP application refers to the inverse of the number of
nodes along a search path between any two successive
CSP applications at Step El. The frequency is I ifCSP
is applied to every node. If CSP is not applied to any
nodes at all, the frequency is 0. The figure shows that
when the dead end occurs early in the search tree, for
example, when the number of locations is 2 (the solid
~ne in the figure), the CPU time consumed is in inverse
proportion to the frequency of solving the CSP. In the
opposite case, situation is reversed: the CPU time used
is in direct proportion to the frequency of solving the

constraint network, implying that it is better to apply
CSP checking infrequently.

Conclusions
In this paper we presented an extension to classical
partial-order planners by applying CSP algorithms.
The advantage of this approach derives from delayed
commitment for variable bindings which is symmet-
ric to the advantage of partiai-order planners over the
total-order ones. From the experiments we observed a
tremendous improvement of efficiency in general with
our planner FSNLP over SNLP. We also see that the
effectiveness of applying constraint satisfaction algo-
rithms depends on where dead ends occur in the search
tree. We axe currently performing more extensive
experiments(Chan 1994) to further validate this ap-
proach.

Acknowledgement
This work is supported by a grant from Natural Sci-
ences and Engineering Research Council of Canada

References
Barrett, A., and Weld, D. 1992. Partial order plan-
ning: Evaluating possible efficiency gains. Technical
Report 92-05-01, University of Washington, Depart-
ment of Computer Science and Engineering, Seattle,
WA 98105.
Chan, A. Y. 1994. Variable binding commitments
in planning. Master’s thesis, University of Water-
loo, Department of Computer Science, Waterloo, Ont.
Canada.

Chapman, D. 1987. Planning for conjunctive goals.
A~tificial Intelligence 32:333-377.

Fox, M. 1987. Constraint-Directed Search: A Case
Study of Job-Shop Scheduling. Morgan Kaufmann.

Kumar, V. 1992. Algorithms for constraint satis-
faction problems: A survey. AI Magazine Spring~
1992:32--44.
Lansky, A. L. 1988. Localized event-based reasoning
for multiagent domains. Computational Intelligence
4(4).
McAllester, D., and Rosenblitt, D. 1991. Systematic
nonll-eaz planning. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence (AAAI-
91), 634-639. San Mateo, CA: Morgan Kaufmann
Publishers, Inc.

Smith, D. E., and Peot, M. A. 1992. A critical look
at kuoblock’s hierarchy mechanism. In Proceedings
of the First Inler~alional Conference on AI Planning
Systems, 307-308.
Stefik, M. 1981. Planning with constraints. Artificial
Intelligence 16(2):111-140.
Wflkins, D. 1988. Practical Planning: Eztending the
Classical AI Planning Paradigm. San Mateo, CA:
Morgan Kaufmann Publishers, Inc.

YANG 187

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

