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We consider networks of coupled maps where the connections between units involve time delays.
We show that, similar to the undelayed case, the synchronization of the network depends on the
connection topology, characterized by the spectrum of the graph Laplacian. Consequently, scale-
free and random networks are capable of synchronizing despite the delayed flow of information,
whereas regular networks with nearest-neighbor connections and their small-world variants exhibit
poor synchronization. On the other hand, the connection delays can actually be conducive to
synchronization, so that it is possible for the delayed system to synchronize where the undelayed
system does not. Furthermore, the delays determine the synchronized dynamics, leading to the
emergence of a wide range of new collective behavior which the individual units are incapable of
producing in isolation. In this way, connection delays enable the overall system to develop and
sustain new dynamics through the coordination of its constituent units.

PACS numbers: 05.45.Ra, 05.45.Xt, 89.75.-k

Recent years have witnessed a growing interest in the
dynamics of interacting units. Particularly, a large num-
ber of studies have been devoted to synchronization in
a variety of systems (see [1] and the references therein),
including the coupled map lattices introduced by Kaneko
[2]. Usually, such systems have been investigated under
the assumption of a certain regularity in the connection
topology, where units are coupled to their nearest neigh-
bors or to all other units. Lately, more general networks
with random, small-world, scale-free, and hierarchical ar-
chitectures have been emphasized as appropriate models
of interaction [3–7]. On the other hand, realistic mod-
eling of many large networks with non-local interaction
inevitably requires connection delays to be taken into ac-
count, since they naturally arise as a consequence of finite
information transmission and processing speeds among
the units. Some numerical studies have regarded syn-
chronization under delays for special cases such as glob-
ally coupled logistic maps [8] or carefully chosen delays
[9]. In this Letter we consider synchronization of cou-
pled chaotic maps for general network architectures and
connection delays. Because of the presence of the delays,
the constituent units are unaware of the present state of
the others; so it is not evident a priori that such a col-
lection of chaotic units can operate in unison, i. e. syn-
chronize. Based on analytical calculations, we show that
this is indeed possible, and in fact may be facilitated
by the presence of delays. Moreover, while the connec-
tion topology is important for synchronization, the delays
have a crucial role in determining the resulting collective
dynamics. As a result, the synchronized system can ex-
hibit a plethora of new behavior in the presence of delays.
We illustrate the results by numerical simulation of large
networks of logistic maps.

We consider a finite connected graph Γ with nodes

(vertices) i, writing i ∼ j when i and j are neighbors,
that is, connected by an edge, and with the number of
neighbors of i denoted by ni. On Γ, we have a dynamical
system with discrete time t ∈ Z, with the state xi of i
evolving according to

xi(t + 1) = f(xi(t)) + ε
1
ni

∑

j
j∼i

(f(xj(t− τ)− f(xi(t)) .

(1)
Here f is a differentiable function mapping some finite
interval, say [0, 1], to itself, ε ∈ [0, 1] is the coupling
strength, and τ ∈ Z+ is the transmission delay between
vertices. A synchronized solution is one where the states
of all vertices are identical,

xi(t) = x(t) for all i. (2)

Thus x(t) satisfies

x(t + 1) = (1− ε)f(x(t)) + εf(x(t− τ)). (3)

In order to investigate the stability of the synchro-
nized solution (see [1] for a description of the stabil-
ity concept employed here), we consider orthonormal
eigenmodes uk of the graph Laplacian ∆Γ, defined by
(∆Γv)i := (1/ni)

∑
j∼i(vj − vi), with corresponding

eigenvalues −λk. The spectrum of ∆Γ reflects the un-
derlying connection topology, with the zero eigenvalue λ0

corresponding to the constant eigenfunction [13]. Since
the eigenfunctions yield an L2-basis for functions on Γ,
it suffices to consider perturbations of x of the form

xi(t) = x(t) + δαk(t)uk
i (t) (4)

for some small δ, and for k > 0, that is non-constant ones.
The solution x is stable against such a perturbation when
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αk(t) → 0 for t →∞. Expanding about δ = 0 yields

αk(t + 1) = (1− ε)f ′(x(t))αk(t)
+ ε(1− λk)f ′(x(t− τ))αk(t− τ). (5)

The sufficient local stability condition is

lim
T→∞

1
T

log
|αk(T )|
|αk(0)| < 0. (6)

In the case without delay, that is, τ = 0, this is rewritten
as

lim
T→∞

1
T

log
T−1∏
t=0

|αk(t + 1)|
|αk(t)| < 0 (7)

and, by (5), becomes

log |1− ελk|+ lim
T→∞

1
T

T−1∑
t=0

log |f ′(x(t))| < 0, (8)

that is

|eµ(1− ελk)| < 1 (9)

where µ = limT→∞ 1
T

∑T−1
t=0 log |f ′(x(t))| is the Lya-

punov exponent of f .
Essentially the same reasoning works for the case of

non-zero delay τ . Depending on whether |αk(t)| is larger
than |αk(t−τ)| or not, in (7), we either keep the quotient
|αk(t + 1)/αk(t)| or replace it by |αk(t + 1)/αk(t− τ)|.
This reduces the number of factors in (7) by τ , but since
we also get correspondingly fewer factors in the term
leading to the first term in (8), the left hand side of (8)
is changed by a positive multiplicative factor which does
not affect the inequality. The terms get slightly more
complicated, as instead of

(1− ελk)f ′(x(t))αk(t) (10)

yielding the two terms in (8), we now have

(1−ε)f ′(x(t))αk(t)+ε(1−λk)f ′(x(t−τ))αk(t−τ) (11)

from (5). When comparing (10) and (11), we see that in
(11), we may get additional partial cancellations due to
different signs of f ′(x(t)) and f ′(x(t − τ)) or αk(t) and
αk(t− τ), so that the absolute value can be significantly
smaller, thereby making the synchronization condition
easier to achieve. On the other hand, in a chaotic regime
the values of f ′(x(t)) and f ′(x(t − τ)) should be essen-
tially uncorrelated so that we still obtain the Lyapunov
exponent µ as the relevant parameter coming from f . A
detailed analysis will appear elsewhere, but the foregoing
ideas suggest that synchronization in the delayed case is
at least not more difficult, but potentially easier (due to
cancellations in (11)) to achieve than in the non-delayed
one. Moreover, the connection topology, as reflected by

FIG. 1: Synchronization of coupled logistic maps for differ-
ent values of coupling strength ε and connection delays τ , for
the cases of (a) scale-free, (b) random, (c) small-world, and
(d) nearest-neighbor coupling. The grayscale encodes the de-
gree of synchronization, with black regions corresponding to
complete synchronization.
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the eigenvalues λk, still plays an important role in syn-
chronization.

As an application, we take f to be the logistic map

f(x) = ρx(1− x) (12)

which possesses a rich dynamical structure depending on
the value of the parameter ρ [10]. Figure 1 shows the
synchronization regions in the parameter space for sev-
eral common network architectures at the value ρ = 4 for
which f is fully chaotic. The gray-scale encoding repre-
sents the degree of synchronization of the network after
an initial transient of 10,000 time steps, as measured by
the fluctuations σ2(t) =

∑N
i=1(xi(t) − x̄(t))2, where N

is the size of the network and x̄(t) = (1/N)
∑N

i=1 xi(t).
Thus, σ2(t) → 0 as t → ∞ if the system synchronizes.
Darker colors in the figure correspond to smaller values
of σ2, with black indicating that σ2(t) < 10−25 after the
transients. The networks used in the simulations have
the same size, N = 10, 000, and the same number of av-
erage connections, even though the architectures may be
different [14]. The effects of the network topology are
clearly seen in Figure 1: Scale-free and random networks
can synchronize for a large range of parameters whereas
more regular networks with nearest-neighbor and small-
world type coupling do not. In this respect, the simi-
larities between scale-free and random networks (Figure
1a-b) are noteworthy. A closer inspection reveals some
common features for synchronizing networks. For strong
coupling (roughly for ε > 0.6) synchronization is achieved
regardless of the actual value of the delay, as long as
it is positive. For intermediate coupling in the range
0.4 < ε < 0.6, the value of the delay becomes decisive for
synchronization. In this range one may also observe long
transients, clustering, and on-off intermittency [1], in the
gray regions where ε is slightly below the synchronization
value. There are also smaller regions of synchronization
that exist for weaker coupling (0.15 < ε < 0.20) and only
for odd delays. Note that for zero delay synchronization
can occur only for a rather limited range (ε > 0.85). Also,
the small region of synchronization in Figure 1c-d occurs
for nonzero delay. Therefore, the presence of delays can
indeed facilitate synchronization.

While the connection topology is important for the
synchronizability of the coupled system, connection de-
lays are significant in determining the resulting synchro-
nized dynamics. In particular, there is an important dif-
ference with the undelayed case, for which (3) reduces
to

x(t + 1) = f(x(t)); (13)

i.e., when the synchronized system can exhibit nothing
different from the exact dynamics of the individual iso-
lated unit. Hence, an important implication of connec-
tion delays is the possibility of the emergence of new col-
lective phenomena. Indeed, the solutions of (3) exhibit a

FIG. 2: The bifurcation diagram of the synchronized solution
of coupled logistic maps for several values of τ . At each value
of ρ, 200 iterates of (3) are plotted after inital transients. The
value of ε is 0.8.

much richer range of dynamics when τ is nonzero. Fig-
ure 2 shows the bifurcation diagram for several values of τ
when f is given by (12). Of course, for τ = 0 the familiar
bifurcation diagram of the logistic map is obtained, dis-
playing the period-doubling route to chaos. By contrast,
when τ > 0 Neimark-Sacker type bifurcations [10] are
prevalent, immediately resulting in high-period solutions
followed by more complex behavior. Other values of odd
and even delays result in pictures similar to the cases
τ = 1 and τ = 2, respectively. Since Neimark-Sacker
bifurcations cannot arise in one-dimensional maps, the
difference with the undelayed case is fundamental. Sim-
ilarly, a consideration of the Lyapunov exponents shows
that the character of the chaotic attractor is also dif-
ferent. For instance, as seen in Figure 3, the synchro-
nized system can have two positive Lyapunov exponents
when connection delays are present, thus exhibiting hy-
perchaos.

Connection delays make the coupling strength ε an im-
portant factor in the dynamics of the synchronized solu-
tions. To demonstrate, we take the logistic map (12)
with ρ = 4, for which it has a chaotic attractor. Thus,
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FIG. 3: The Lyapunov exponents of the synchronized solution
for τ = 1 and ε = 0.8.

FIG. 4: The synchronized solution at different coupling
strengths for τ = 1 and ρ = 4. At each value of ε, 300 it-
erates of (3) are plotted after inital transients.

(3) is chaotic for all ε when τ = 0. By contrast, when
τ = 1 the attracting solutions of (3) display a wider vari-
ety depending on the value of ε, as depicted in Figure 4.
Chaos is interrupted by windows of stable periodic solu-
tions, for instance near ε = 0.68 and ε = 0.71. There is
a large window of period-5 solutions for 0.82 < ε < 0.89,
which also contain other stable solutions of higher peri-
ods for certain ε in this range. A periodic attractor of
period 3 exists near ε = 0.945, which transforms to in-
termittent behavior at ε = 0.95, shown in Figure 5. All
these dynamics are exhibited by the coupled system (1),
since Figure 1 implies that for these parameter values
the system is synchronized (provided it has an appro-
priate connection topology), so the collective behavior is
described by (3). Clearly, delays can make the dynamics
of the synchronized system quite sensitive to the coupling
strength, a feature that is absent in undelayed networks.

Networks with connection delays arise naturally in
many areas of science, including biology, population dy-
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FIG. 5: Intermittent behavior of synchronized logistic maps
for ρ = 4, ε = 0.95 and τ = 1.

namics, neuroscience, economics, and so on. In neural
systems, for instance, delays result from e. g. finite ax-
onal transmission speeds [12]. Such networks lack an
intrinsic notion of simultaneity since the present state of
the system is inaccessible to the constituent units. These
networks are nevertheless capable of operating in syn-
chrony, even when complex units and significantly large
delays are involved, as our findings indicate. In fact, net-
works with delays can actually synchronize more easily.
This synchronizability property is especially relevant for
neural networks, circumventing the difficulties in estab-
lishing a concept of collective or simultaneous informa-
tion processing in the presence of delayed information
transmission [15]. Furthermore, the delays shape the dy-
namics of the synchronized system, leading to the emer-
gence of a variety of new dynamics which the individual
units are not capable of producing [16]. The observation
that a wide range of different behavior can be accessed by
varying the coupling strength has important implications
for neural networks, where synaptic coupling strengths
can change through learning. This interesting connec-
tion provides additional motivation for investigating the
role of delays in complex adaptive systems.
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