
Delegable Provable Data Possession

for Remote Data in the Clouds

Shiuan-Tzuo Shen and Wen-Guey Tzeng�

Department of Computer Science,
National Chiao Tung University,

Hsinchu, Taiwan 30010
{vink,wgtzeng}@cs.nctu.edu.tw

Abstract. Many storage systems need to do authorized verification for
data integrity. For example, a user stores his data into cloud storage
servers and shares his data with his friends. They check data integrity
periodically to ensure data intact. However, they don’t want a stranger
to check data integrity on their data. Therefore, public verification is un-
desired in this situation. The user can share his private key to his friends
for private verification. However, his friends may reveal his private key to
others. In this paper, we proposed the delegable provable data possession
(delegable PDP) model to solve this problem. Delegable PDP allows a
user to control who can check data integrity of his data, and guarantee
that delegated verifiers cannot re-delegate this verification capability to
others. Delegable PDP enjoys advantage of authorized verification and
convenience of public verification.

We define a delegable PDP model and provide a construction for
it. User U generates verifiable tags of his data and the delegation key
dkU→V for delegated verifier V. U uploads his data, tags, and dkU→V to
storage servers. When integrity check, storage servers can use dkU→V to
transform U ’s tags into the form that V can verify with his private key
skV . Our model allows U to revoke V’s verification capability by removing
dkU→V from storage servers directly. We prove our protocol secure in the
random oracle model. Our protocol achieves proof unforgeability, proof
indistinguishability, and delegation key unforgeability.

1 Introduction

Cloud computing provides computing services via networks such that a user
can access these services anywhere at any time. For example, Amazon Elastic
Compute Cloud (Amazon EC2) provides cloud computation and Amazon Sim-
ple Storage Service (Amazon S3) provides cloud storage. Storing data in a cloud
storage system is quite convenient. One can share data to other users or syn-
chronize copies in local devices. However, it brings security issues, privacy and
integrity, on stored data. Users don’t want their data leaked or modified without
� This research is supported by parts of NSC projects NSC100-2218-E-009-003-,

NSC100-2218-E-009-006-, and NSC100-2219-E-009-005-, Taiwan.

S. Qing et al. (Eds.): ICICS 2011, LNCS 7043, pp. 93–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 S.-T. Shen and W.-G. Tzeng

their permission. In general, encryption can provide data privacy and signature
can provide data integrity. Users can encrypt their data and sign ciphertexts
before uploading them to cloud storage servers. One way to make sure that a
ciphertext is stored intactly is to retrieve the ciphertext together with its signa-
ture and verify it. This approach needs large bandwidth since data are retrieved
back through networks. Thus, many researchers proposed methods to reduce the
bandwidth need.

Ateniese et al. proposed a provable data possession (PDP) model [1]. Their
PDP model allows a storage server to generate a probabilistic proof of size O(1)
for data integrity check so that a verifier can validate the proof efficiently. Their
PDP protocol is asymmetric-key based such that public verification is done by
everyone using the public key of the owner. However, public verification is unde-
sirable in many circumstances. In contrast, private verification allows only the
owner who possesses the secret key to verify data integrity. The owner can share
this secret key to another user for data integrity check. However, the other one
may leak this secret key.

In this paper, we define a model for delegable provable data possession (del-
egable PDP) that allows delegable (authorized) verification. In delegable PDP,
a user who owns data can authorize another user to verify data integrity of his
data. The authorized user cannot re-delegate this verification capability to oth-
ers unless the authorized user reveals his private key. The delegable PDP model
provides a balance between totally public and totally private integrity checking.
Delegable PDP has two goals:

– Proof of data possession. A storage server can generate a valid proof if and
only if it really stores the data. This proof can be verified without retrieving
back the data from the storage server.

– Delegation of verification capability. A user can delegate his verification ca-
pability on his data to another user. The delegated user cannot re-delegate
this verification capability to others. The delegated user can verify data in-
tegrity with storage servers on behalf of the user. The user can revoke the
right of integrity checking from the delegated user directly.

Our delegable PDP model is efficient. To delegate, data owner U doesn’t need
to re-tag his data for delegated verifier V . Instead, U generates the delegation
key dkU→V and uploads it to storage servers. Thus, V doesn’t store and doesn’t
know dkU→V . To revoke, U sends the revoking command of deleting dkU→V to
storage servers directly. The cost of delegation is lightweight.

1.1 Delegable Provable Data Possession

There are three roles, user (data owner) U , delegated verifier V , and storage
server S, in the delegable PDP model. The data are stored in S after tagged by
U ’s private key skU . For delegation, U computes the delegation key dkU→V by
using skU and V ’s public key pkV , and sends it to S. S transforms the tags of
the data by using dkU→V such that V can use his private key skV to verify the
data by the transformed tags.

Delegable Provable Data Possession for Remote Data in the Clouds 95

A delegable PDP scheme has three phases: the setup phase, the delegation
phase, and the integrity check phase. The setup phase consists of three algo-
rithms, Setup, KeyGen, and TagGen, as follows:

– Setup(1k) → π. It is a probabilistic polynomial time algorithm run by the
system manager to set up a delegable PDP system. Setup takes as input the
security parameter k and outputs the public parameter π.

– KeyGen(π) → (sk, pk). It is a probabilistic polynomial time algorithm run by
a user to generate his key pair. KeyGen takes as input the public parameter
π and outputs a private-public key pair (sk, pk) for the user.

– TagGen(π, sk, m) → (σ, t). It is a deterministic polynomial time algorithm
run by a user to generate verifiable tags for his data. TagGen takes as input
the public parameter π, the user’s private key sk, and the user’s data m,
and outputs a tag σ for m and an identifier t for σ.

The delegation phase consists of two algorithms, GenDK and VrfyDK, as follows:

– GenDK(π, skU , pkV) → dkU→V . It is a deterministic polynomial time algo-
rithm run by U to generate a delegation key for V . GenDK takes as input
the public parameter π, U ’s private key skU , and V ’s public key pkV , and
outputs the delegation key dkU→V .

– VrfyDK(π, dkU→V , pkU , pkV) → {true, false}. It is a deterministic polyno-
mial time algorithm run by S to verify delegation keys. VrfyDK takes as
input the public parameter π, the delegation key dkU→V , U ’s public key
pkU , and V ’s public key pkV , and outputs the verification result.

The integrity check phase consists of three algorithms, GenChal, GenProof, and
VrfyProof, as follows:

– GenChal(π, t) → chal. It is a probabilistic polynomial time algorithm run by
V to generate a challenge to S for U ’s stored data. GenChal takes as input
the public parameter π and tag identifier t, and outputs the challenge chal.

– GenProof(π, m, σ, dkU→V , chal) → pfchal,V . It is a probabilistic polynomial
time algorithm run by S to generate a proof for integrity of the challenged
data. GenProof takes as input the public parameter π, the stored data m, the
tag σ for m, the delegation key dkU→V , and the challenge chal, and outputs
the proof pfchal,V .

– VrfyProof(π, chal, pfchal,V , t, skV) → {true, false}. It is a deterministic poly-
nomial time algorithm run by V to verify a proof from S. VrfyProof takes
as input the public parameter π, the challenge chal, the proof pfchal,V , the
identifier t, and V ’s private key skV , and outputs the verification result.

1.2 Related Work

Ateniese et al. [1] defined the PDP model. They proposed an asymmetric-key
based PDP construction which uses homomorphic verifiable tags on stored data.
Under the homomorphic property, storage servers can generate proofs for any

96 S.-T. Shen and W.-G. Tzeng

linear combination of the stored data. Later on, Ateniese et al. [2] proposed a
symmetric-key PDP construction which supports dynamic operations on stored
data. Their construction is scalable and efficient. However, the number of data
possession checkings is limited by the number of embedded tokens. Erway et
al. [12] proposed dynamic provable data possession (DPDP) which uses rank-
based skip list to support dynamic data operations. Ateniese et al. [3] proposed
a framework for constructing public-key based PDP protocols. Their framework
builds public-key homomorphic linear authenticators (HLAs) from public-key
identification schemes, which satisfy certain homomorphic properties, and uses
the HLA as a building block to construct PDP protocols.

Juels and Kaliski [14] proposed the proofs of retrievability (POR) model.
POR ensures that stored data can be retrieved by users, while PDP ensures
that data are stored in storage servers. Juels and Kaliski’s construction embeds
sentinels (verifying information of precomputed challenge-response pairs) into
stored data, and the number of checkings is limited by the number of embedded
sentinels. Later on, Shacham and Waters [15] proposed a compact POR which
achieves an unlimited number of checkings. Bowers et al. [7] proposed a theoret-
ical framework of designing POR protocols. This framework employs two layers
of error correcting codes which recover user data from a series of responses.
Their framework improves previous results of POR and has security proved in
the fully Byzantine adversarial model. Wang et al. [17] proposed a POR scheme
which supports dynamic operations and public verification on stored data. Their
construction uses Merkle hash tree to support data dynamics.

To simultaneously achieve high availability and integrity checking for stored
data, multiple replicas or the coding theory can be employed. Curtmola et al. [10]
proposed MR-PDP that makes sure each unique replica exists in storage servers.
Curtmola et al. [9] proposed a robust remote data integrity checking method that
uses forward error correction codes. Later on, Bowers et al. [6] proposed HAIL
which provides a high-availability and integrity layer for cloud storage. HAIL uses
erasure codes on the single server layer and multiple sever layer respectively. It
ensures data retrievability among distributed storage servers.

A cloud storage system may be viewed as a set of distributed storage servers.
One can use the network coding technique to dispatch data to storage servers.
For this model, Chen et al. [8] proposed a remote data integrity checking method
for network coding-based distributed storage systems.

Wang et al. [16] proposed privacy-preserving public auditing for data storage
security in cloud computing. Public data integrity checking may leak information
about stored data by proofs to verifiers. Wang et al. use a blinding technique to
hide information about stored data in proofs.

2 Preliminary

Our delegable PDP protocol uses the bilinear map. The security of our protocol
is based on the truncated (decision) bilinear Diffie-Hellman exponent assump-
tion, the inverse computation Diffie-Hellman assumption, and the knowledge of
exponent assumption in the random oracle model.

Delegable Provable Data Possession for Remote Data in the Clouds 97

Bilinear Map. Let q be a large prime, G = 〈g〉 and GT = 〈gT 〉 be two
multiplicative groups of prime order q. A bilinear map ê : G × G → GT should
satisfy the following properties:

– Bilinearity. ∀x, y ∈ Zq, ê(gx, gy) = ê(g, g)xy.
– Non-Degeneration. ê(g, g) = gT .
– Computability. ∀x, y ∈ Zq, ê(gx, gy) can be computed in polynomial time.

Truncated Bilinear Diffie-Hellman Exponent Assumption. Boneh et al. intro-
duced the bilinear Diffie-Hellman exponent (BDHE) problem [4,5]. Later on,
Gentry introduced two variants: the augmented bilinear Diffie-Hellman exponent
(ABDHE) problem and the truncated version of the ABDHE problem [13].

The �-BDHE problem is that: given a vector
(
g′, g, gα, gα2

, . . . , gα�

, gα�+2
, gα�+3

, . . . , gα2�
)
∈ G2�+1 ,

output ê(g, g′)α�+1 ∈ GT . The truncated version of the �-BDHE problem, omit-
ting (gα�+2

, gα�+3
, . . ., gα2�

) from the input vector, is defined as that: given a
vector (

g′, g, gα, gα2
, . . . , gα�

)
∈ G�+2 ,

output ê(g, g′)α�+1 ∈ GT . The advantage for an algorithm A that solves the
truncated �-BDHE problem is defined as:

Pr
[
A(g′, g, gα, gα2

, . . . , gα�

) = ê(g, g′)α�+1
: g, g′ ∈R G, α ∈R Zq

]
.

The advantage for an algorithm A that solves the truncated decisional �-BDHE
problem is defined as:

∣∣∣Pr[A(g′, g, gα, gα2
, . . . , gα�

, ê(g, g′)α�+1
) = 0 : g, g′ ∈R G, α ∈R Zq] −

Pr[A(g′, g, gα, gα2
, . . . , gα�

, Z) = 0 : g, g′ ∈R G, α ∈R Zq, Z ∈R GT]
∣∣∣ .

Definition 1. We say that the truncated (decisional) BDHE assumption is
(t, ε, �)-secure if no t-time algorithms have advantage over ε in solving the trun-
cated (decisional) �-BDHE problem.

Inverse Computational Diffie-Hellman Assumption. The InvCDH problem is de-
fined as that: given (g, gα) ∈ G2 as input, output g

1
α ∈ G. The advantage for a

probabilistic algorithm A to solve the InvCDH problem is:

Pr
[
A(g, gα) = g

1
α : α ∈R Zq

]
.

Definition 2. We say that the InvCDH assumption is (t, ε)-secure if no t-time
algorithms have advantage over ε in solving the InvCDH problem

98 S.-T. Shen and W.-G. Tzeng

Knowledge of Exponent Assumption. Damgard introduced the knowledge of ex-
ponent assumption (KEA1) [11]. Consider the problem: given (g, gα) ∈ G2, out-
put (C, Y) ∈ G2 such that Cα = Y . One way to output the pair is to choose
c ∈R Zq and let (C, Y) = (gc, gαc). The KEA1 says that this is the only way to
output such a pair in polynomial time. That is, if an adversary A takes (g, gα)
as input and outputs (C, Y) such that Cα = Y , he must know the exponent c
of gc = C. There exists an extractor A who extracts the exponent c such that
gc = C when he is given the same inputs as A’s.

3 Construction

In this section, we provide a delegable PDP scheme. Let k be the security param-
eter, q be a large prime with |q| = k, and G = 〈g〉 and GT = 〈gT 〉 be two order-q
multiplicative groups with a bilinear map ê : G×G → GT . The system manager
chooses three cryptographic hash functions H1 : {0, 1}∗ → G, H2 : G → G, and
H3 : (Zq)∗ → G. The public parameter is π = (q, G, g, GT , gT , ê, H1, H2, H3).

Key Generation. U chooses x ∈R Zq as his private key skU and computes
gx as his public key pkU and H2(gx)x as his key token ktU . U ’s key tuple is
(skU , pkU , ktU) = (x, gx, H2(gx)x). U registers pkU to the system manager.

Tag Computation. U has data M = (m1, m2, . . . , mn), each block k-bit long,
and would like to store them in S. U chooses data identifier hM ∈R G and
tag identifier seed TM ∈R {0, 1}∗ for M. U may have many different data.
Thus, he needs to choose a unique data identifier for each of his data. Each
block mi is tagged to a homomorphic verifiable tag σi which is identified by
hM and tag identifier TM||i. U computes these homomorphic verifiable tags
Σ = (σ1, σ2, . . . , σn) for M as follows:

σi = [H1(TM||i)h mi

M]skU , for 1 ≤ i ≤ n .

U uploads (M, hM, Σ) to S, and holds (hM, TM) for identifying and verifying Σ.

Delegation. V gives his key token ktV to U over a secure channel, and obtains hM
and TM from U . U uses V ’s public key pkV to verify validity of ktV by checking
whether ê(g, ktV) = ê(pkV , H2(pkV)). Then, U computes the delegation key

dkU→V = kt
1/skU
V

and gives it to S. S uses pkU and pkV to verify validity of dkU→V by checking
whether ê(pkU , dkU→V) = ê(pkV , H2(pkV)). To revoke V , U commands S to
remove dkU→V from its storage directly.

Delegable Provable Data Possession for Remote Data in the Clouds 99

Integrity Check. To check integrity of M, V chooses coefficients C = (c1,
c2, . . . , cn) ∈R Z

n
q and gives S the challenge

chal = (C, C′, C′′) = (C, h s
M, H3(C)s) , where s ∈R Zq .

After receiving chal, S verifies it by checking whether ê(C′, H3(C)) =
ê(hM, C′′). If so, S uses (M, Σ, dkU→V , chal) to generate a proof pfchal,V =
(ρ, V, V ′, V ′′, V ′′′) and gives it to V as a response. pfchal,V is computed as
follows:

pfchal,V =

(
ê(

n∏
i=1

σ
ci
i , dkU→V)

t
, C

′ ∑n
i=1 cimi , C

′′ ∑n
i=1 cimi , H2(pkV)

t
, g

t

)
, where t ∈R Zq.

After receiving pfchal,V , V uses (skV , hM, TM, C, s) to verify pfchal,V by checking
whether

– ρs = ê (
∏n

i=1 H1(TM||i)sciV, V ′′)skV

– ê (V, H3(C)) = ê (hM, V ′)
– ê (V ′′, g) = ê (H2(pkV), V ′′′)

V can verify data integrity of M multiple times to achieve a desire security level.

Correctness. Although tag σ = [H1(TM)h m
M]skU is called homomorphic verifi-

able in the literature, it is really not homomorphic. Instead, σ is combinably
verifiable since we can combine multiple tags together and verify them at the
same time. Nevertheless, we cannot obtain a tag for the combined data. For
example, combing σi = [H1(TM||i)h mi

M]skU and σj =
[
H1(TM||j)h mj

M
]skU to-

gether results in σ′ =
[
H1(TM||i)H1(TM||j)h mi+mj

M
]skU

. Although we have
mi + mj in the exponent of hM, we don’t have H1(TM||k) in the combined
tag σ′ for some k (treat mi + mj = mk). The tag is unforgeable, proved in
Sect. 4.1 (proof unforgeability implies tag unforgeability). It is hard to obtain

σ′ =
[
H1(TM||k)h mi+mj

M
]skU

without the knowledge of private key skU .
In integrity check, V chooses coefficients C = (c1, c2, . . . , cn) and

then S combines stored tags Σ = (σ1, σ2, . . . , σn) as
∏n

i=1 σci

i =[∏n
i=1 H1(TM||i)ci × h

∑ n
i=1 cimi

M
]skU

by C. If S deviates, the combination

will not be identical to
∏n

i=1 H1(TM||i)ci . Once S combines these tags correctly,
we have

∑n
i=1 cimi in the exponent of hM. On the other hand, S has to

use stored data M = (m1, m2, . . . , mn) to compute V = C′∑ n
i=1 cimi =

(h s
M)

∑ n
i=1 cimi and V ′ = C′′∑ n

i=1 cimi = [H3(C)s]
∑ n

i=1 cimi . Our verification,
ρs = ê (

∏n
i=1 H1(TM||i)sciV, V ′′)skV , checks whether ρ contains the correct

combination
∏n

i=1 H1(TM||i)ci and whether V contains the same exponent

100 S.-T. Shen and W.-G. Tzeng

∑n
i=1 cimi, with respect to h s

M, as that in ρ, with respect to hM. If S passes
this verification, he possesses M.

Let’s examine the verification equations. Assume that pfchal,V is well-formed
and chal = (C, C′, C′′) = (C, h s

M, H3(C)s), that is,

ρ = ê(
n∏

i=1

σci

i , dkU→V)t (1)

V = C′∑ n
i=1 cimi = h

s
∑n

i=1 cimi

M (2)

V ′ = C′′∑ n
i=1 cimi = H3(C)s

∑ n
i=1 cimi (3)

V ′′ = H2(pkV)t (4)
V ′′′ = gt (5)

We have:

– ρs = ê(
∏n

i=1 H1(TM||i)sciV, V ′′)skV by (1), (2), and (4)

ρs = ê(
n∏

i=1

σci

i , dkU→V)ts

= ê(
n∏

i=1

(H1(TM||i)h mi

M)skU ci , H2(pkV)skV/skU)ts

= ê(
n∏

i=1

(H1(TM||i)h mi

M)sci , H2(pkV)skV)t

= ê(
n∏

i=1

H1(TM||i)scih
s

∑ n
i=1 cimi

M , H2(pkV)t)skV

= ê(
n∏

i=1

H1(TM||i)sciV, V ′′)skV

– ê(V, H3(C)) = ê(hM, V ′) by (2) and (3)

ê(V, H3(C)) = ê(h s
∑ n

i=1 cimi

M , H3(C))

= ê(hM, H3(C)s
∑ n

i=1 cimi)
= ê(hM, V ′)

– ê(V ′′, g) = ê(H2(pkV), V ′′′) by (4) and (5)

ê(V ′′, g) = ê(H2(pkV)t, g)
= ê(H2(pkV), gt)
= ê(H2(pkV), V ′′′)

Delegable Provable Data Possession for Remote Data in the Clouds 101

3.1 Performance

We analyze performance of our construction in three aspects: the computation
cost of each algorithm, the storage cost of each party, and the communication
cost of each phase. Table 1 shows the computation cost of each algorithm.1 We
measure the numbers of additions in Zq, multiplications in G, scalar exponenti-
ations in G, hashes, and pairings.

Table 1. Computation cost of each algorithm

Algorithm Addition Multiplication Scalar Exponentiation Hash Pairing

Setup 0 0 0 0 0

KeyGen 0 0 2 1 0

TagGen 0 n 2n n 0

GenDK 0 0 1 1 2

VrfyDK 0 0 0 1 2

GenChal 0 0 2 1 0

GenProof n − 1 2n − 1 n + 5 2 3

VrfyProof 0 n n + 3 n + 2 5
– n is the number of data blocks.

Table 2 shows the storage cost of each party. User U stores his key tuple
(skU , pkU , ktU), data identifier hM, and tag identifier seed TM. Delegated verifier
V stores his key tuple (skV , pkV , ktV), data identifier hM, and tag identifier seed
TM. Storage server S stores U ’s data M, data identifier hM, tags Σ, and the
delegation keys. Table 3 shows the communication cost of each phase. In setup
phase, U uploads M, Σ, and hM to S. In delegation phase, V gives U his key
token ktV . U gives hM and TM to V , and gives the delegation key dkU→V to S.
In integrity check phase, V gives S the challenge chal,2 and S gives V the proof
pfchal,V .

1 To achieve better performance, one can choose binary coefficient ci ∈ {0, 1}, 1 ≤
i ≤ n, to reduce computation on multiplications and scalar exponentiations. Thus,
in algorithm GenProof , we don’t need to do scalar exponentiations on σi to compute
σci

i , and multiplications on mi to compute cimi. Thus, it reduces the computation
cost from 2n − 1 multiplications in G and n + 5 scalar exponentiations in G to
n − 1 multiplications in G and 5 scalar exponentiations in G for GenProof . And
in algorithm VrfyProof , we don’t really do scalar exponentiations on H1(TM||i) to
compute H1(TM||i)ci , either. Thus, it reduces the computation cost from n+3 scalar
exponentiations in G to 3 scalar exponentiations in G for VrfyProof .

2 To reduce the communication cost on transmitting chal, one can choose a random
seed c of size �′ for computing coefficients ci = H(c, i), 1 ≤ i ≤ n, and send c only.
Thus, it reduces the communication cost from nk + 6p + pT bits to �′ + 6p + pT bits
in integrity check phase.

102 S.-T. Shen and W.-G. Tzeng

Table 2. Storage cost of each party

Party Storage Cost (Bit)
User k + 3p + �

Delegated Verifier k + 3p + �
Storage Server nk + (1 + n + v)p

– k is the security parameter
– p is the size of an element in G
– l is the length of tag identifier seed TM
– n is the number of data blocks
– v is the number of delegated verifiers

Table 3. Communication cost of each phase

Phase Communication Cost (Bit)
Setup U → S : nk + p + np

Delegation V ↔ U : 2p + �
U → S : p

Integrity Check V ↔ S : nk + 6p + pT

– k is the security parameter
– p is the size of an element in G
– pT is the size of an element in GT
– l is the length of tag identifier hM
– n is the number of data blocks

4 Security Analysis

The security requirements of a delegable PDP model consists of proof un-
forgeability, proof indistinguishability, and delegation key unforgeabil-
ity. We introduce the security games in the rest subsections and prove that our
construction satisfies these security requirements in the random oracle model.

4.1 Proof Unforgeability

This game models the notion that a storage server cannot modify stored data
without being detected by verifiers. In this game, the challenger C plays the role
of the verifier and the adversary A plays the role of the storage server. A is given
the access right to oracles OTag and ODK. A chooses data adaptively and obtains
corresponding tags. Once A decides the target data M∗, he modifies M∗ to M′

such that M′ 	= M∗ and receives a challenge from C. If A returns a proof that
passes the verification algorithm, he wins this game.

The proof unforgeability game GamePF−UF is as follows:
Setup. C generates public parameter π, user U ’s key tuple (skU , pkU , ktU), del-
egated verifier V ’s key tuple (skV , pkV , ktV), and the delegation key dkU→V . C
forwards (π, pkU , pkV , dkU→V) to A.

Delegable Provable Data Possession for Remote Data in the Clouds 103

Query. A queries oracle OTag and oracle ODK to obtain tags and delegation
keys.

– OTag: A chooses data M and obtains tags Σ, data identifier hM, and tag
identifier seed TM for M.

– ODK: A chooses a user U ′ and obtains the delegation key dkU→U ′ .

Challenge. After the query phase, A indicates which OTag-oracle query is the
target, denoted as (M∗, Σ∗, hM∗ , TM∗), and modifies M∗ = (m∗

1, m
∗
2, . . . , m

∗
n)

to M′ = (m′
1, m

′
2, . . . , m

′
n) such that M′ 	= M∗ (∃i, m′

i 	= m∗
i). C gives challenge

chal = (C, h s
M∗ , H3(C)s).

Answer. A returns proof pfchal,V by using M′. A wins GamePF−UF if
VrfyProof(π, chal, pfchal,V , hM∗ , TM∗ , skV) = true and M′ 	= M∗

(∃i, m′
i 	= m∗

i). The advantage AdvPf−UF
A is defined as Pr[A wins GamePF−UF].

We show that our scheme is proof unforgeable under the truncated 1-BDHE
assumption and the KEA1.

Theorem 1. If the truncated BDHE problem is (t, ε, 1)-secure, the above scheme
is (t − q1t1 − q2t2 − qT tT − qKtK − 2tA, 2�

2�−(q1+qT)qT

2k

2k−1
ε) proof unforgeable

in the random oracle model, where hash functions H1 and H2 are modeled as
random oracles OH1 and OH2 , (q1, q2, qT , qK) are the numbers of times that an
adversary queries (OH1 ,OH2 ,OTag,ODK)-oracles, (t1, t2, tT , tK) are the time used
by (OH1 ,OH2 ,OTag,ODK)-oracles to respond an oracle query, tA is the time used
by the KEA1 extractor A to extract an exponent, k is the security parameter,
and � is the bit-length of a tag identifier seed.

Proof. Let A be a probabilistic black-box adversary who wins the proof unforge-
ability game GamePF−UF with advantage ε′ in time t′. We construct an algorithm
B that uses A to solve the truncated 1-BDHE problem as follows:

Setup. Given an instance (g, gα, g′) of the truncated 1-BDHE problem, B
sets the public parameter π = (q, G, g, GT , gT , ê, H3), user U ’s key tuple
(skU , pkU , ktU) = (αu, gαu, H2(gαu)αu), where H2(gαu) = gαu′

and u, u′ ∈R Zq,
and delegated verifier V ’s key tuple (skV , pkV , ktV) = (αv, gαv, H2(gαv)αv), where
H2(gαv) = gαv′

and v, v′ ∈R Zq. Then B computes the delegation key

dkU→V = H2(pkV)skV/skU = (gαv′
)αv/αu = gαvv′/u

and invokes A as a subroutine: AOH1
,OH2

,OTag,ODK(π, pkU , pkV , dkU→V).

Query. A can query oracles OH1 , OH2 , OTag, and ODK during his execution. B
handles these oracles as follows:

– OH1 . B maintains a table TH1 = {(x, H1(x), r)} to look up the OH1-query
records. B takes x ∈ {0, 1}∗ as input and outputs y if record (x, y, ∗) exists in
TH1 . Otherwise, B outputs H1(x) = gr and inserts (x, gr, r) into TH1 , where
r ∈R Zq.

104 S.-T. Shen and W.-G. Tzeng

– OH2 . B maintains a table TH2 = {(gx, H2(gx), r)} to look up the OH2-query
records. B takes gx as input and outputs y if record (gx, y, ∗) exists in TH2 .
Otherwise, B outputs H2(gx) = gαr and inserts (gx, gαr, r) into TH2 , where
r ∈R Zq.

– OTag. B maintains a table TTag = {(M, hM, r, TM, Σ)} to look up the OTag-
query records. B takes M = (m1, m2, . . . , mn) as input, sets data identifier
hM = g′r, where r ∈R Zq, and chooses tag identifier TM ∈R {0, 1}� ran-
domly. For 1 ≤ i ≤ n, if TM||i has been queried to oracle OH1 , B aborts.
Otherwise, B inserts each (TM||i, gri/h mi

M , ri) into table TH1 , where ri ∈R Zq,
outputs (hM, TM, Σ = (σ1, σ2, . . . , σn)), where

σi = (H1(TM||i)h mi

M)skU = ((gri/h mi

M)h mi

M)αu = gαuri ,

and inserts (M, hM, r, TM, Σ) into TTag.
– ODK. B takes user U ′’s public key pkU ′ = gx and key token ktU ′ as input,
looks up whether record (gx, ∗, ∗) exists in table TH2 , and checks whether
ê(g, ktU ′) = ê(gx, H2(gx)). If not, B rejects. Otherwise, B outputs the dele-
gation key

dkU→U ′ = H2(gx)skU′/skU = (gαr)x/αu = gxr/u .

Challenge. After the query phase, A indicates which OTag-query is the target and
modifies data to M′. B looks up the corresponding record in table TTag, denoted
as (M∗ = (m∗

1, m
∗
2, . . . , m

∗
n), hM∗ = g′r

∗
, r∗, TM∗ , Σ∗ = (σ∗

1 , σ∗
2 , . . . , σ∗

n)), and
returns challenge chal = (C = (c1, c2, . . . , cn), h s

M∗ , H3(C)s), where ci, s ∈R Zq.

Answer. A returns integrity proof pfchal,V = (ρ, V, V ′, V ′′, V ′′′) using M′. If
M′ 	= M∗, we have V 	= h

s
∑n

i=1 cim
∗
i

M∗ except for a negligible probability. That
is, Pr[A guesses

∑n
i=1 cim

∗
i : ci ∈R Zq and M′ 	= M∗] = 1

q . Otherwise, A knows
the knowledge of M∗3. Thus, if pfchal,V can pass the verification procedure and
M′ 	= M∗, we have:

ρs = ê(
n∏

i=1

H1(TM∗ ||i)sciV, V ′′)skV (6)

ê(V, H3(C)) = ê(hM∗ , V ′) (7)
ê(V ′′, g) = ê(H2(pkV), V ′′′) (8)

V 	= h
s

∑ n
i=1 cim

∗
i

M∗ (9)

3 B can extract M∗ by choosing a sequence of linearly independent coefficients adap-
tively until collecting n valid responses from A. These n linearly independent vec-
tors Ci, 1 ≤ i ≤ n, form an n × n non-singular matrix [C1 C2 . . . Cn]T =
[ci,j]1≤i≤n, 1≤j≤n. B uses the KEA1 extractor A to extract the n constant terms∑n

j=1 ci,jm
∗
j from Vi and V ′

i , 1 ≤ i ≤ n, and solves the system of linear equations to
obtain M∗.

Delegable Provable Data Possession for Remote Data in the Clouds 105

B can compute ê(g, g′)α2
as follows:

1. Since (7) holds, we have h Δ
M∗ = H3(C) and V Δ = V ′ for some

Δ ∈R Zq. Thus, B can use the KEA1 extractor A to extract m′ =
A(h s

M∗ , H3(C)s, V, V ′) such that V = (h s
M∗)m′

. Since (9) holds, we have
m′ 	=

∑n
i=1 cim

∗
i .

2. Similarly, since (8) holds, B can use the KEA1 extractor A to extract t =
A(H2(pkV), g, V ′′, V ′′′) such that V ′′ = H2(pkV)t.

3. After knowing m′ and t, since (6) and m′ 	=
∑n

i=1 cim
∗
i hold, B can compute

ê(g, g′)α2
as follows:

ρs = ê(
n∏

i=1

H1(TM∗ ||i)sciV, V ′′)skV

⇒ ρs = ê(
n∏

i=1

(gr∗
i /h

m∗
i

M∗)scih sm′
M∗ , H2(pkV)t)αv

⇒ ρs = ê(
n∏

i=1

(gr∗
i /g′r

∗m∗
i)scig′r

∗sm′
, gαv′t)αv

⇒ ρ = ê(
n∏

i=1

(gcir
∗
i /g′r

∗cim
∗
i)g′r

∗m′
, gαv′t)αv

⇒ ρ = ê(g
∑ n

i=1 cir
∗
i g′r

∗(m′−∑ n
i=1 cim

∗
i), gαv′t)αv

⇒ ê(g′r
∗(m′−∑ n

i=1 cim
∗
i), gαv′t)αv =

ρ

ê(gα
∑ n

i=1 cir∗
i , gαv′t)v

⇒ ê(g, g′)α2
= (

ρ

ê(gα
∑ n

i=1 cir∗
i , gαv′t)v

)1/vv′tr∗(m′−∑ n
i=1 cim

∗
i)

B aborts on handling oracle OTag if tag identifier TM has been queried to oracle
OH1 . That is, record (TM, ∗, ∗) exists in table TH1 . For each OTag-query, we have
Pr[(TM, ∗, ∗) ∈ TH1] = |TH1 |/2|TM| ≤ (q1 + qT)/2�. Take the union bound on
the qT OTag-queries, we have Pr[B aborts] ≤ (q1 + qT)qT /2�. Moreover, B loses
a negligible portion 1

q = 1
2k that M′ 	= M∗ but V = h

s
∑ n

i=1 cim
∗
i

M∗ . Therefore,

the reduced advantage is ε = (1 − (q1+qT)qT

2�)(1 − 1
2k)ε′. Besides of handling

(OH1 ,OH2 ,OTag,ODK)-oracles, B uses the KEA1 extractor A two times to extract
two exponents. Therefore, the reduced time is t = t′ + q1t1 + q2t2 + qT tT +
qKtK + 2tA. By choosing appropriate q1, q2, qT , qK , � ∈ Poly(k), we have ((q1 +
qT)qT /2�, 1/2k) ∈ negl(k)2 and q1t1 + q2t2 + qT tT + qKtK ∈ Poly(k).
�

In the proof unforgeability game GamePF−UF, the challenge chal is chosen by the
challenger C. GamePF−UF can be adapted for existential unforgeability by letting
adversary A choose chal by himself. In our security proof, this modification only
needs one more execution of the KEA1 extractor to know A’s choice for the
randomness s of chal.

106 S.-T. Shen and W.-G. Tzeng

4.2 Proof Indistinguishability

This game models the notion that a third party without being authorized cannot
verify validity of data integrity proofs even if he eavesdrops network communi-
cations after the setup phase. In this game, the challenger C plays the role of
the storage server, and the adversary A plays the role of the third-party user. A
is given access right to oracle OProof . A is trained with valid proofs and tries to
verify validity of the target proof. If A answers validity correctly, he wins this
game.

The proof indistinguishability game GamePF−IND is as follows:
Setup. C generates public parameter π, user U ’s key tuple (skU , pkU , ktU),
delegated verifier V ’s key tuple (skV , pkV , ktV), delegation key dkU→V , data
M = (m1, m2, . . . , mn), tags Σ = (σ1, σ2, . . . , σn), data identifier hM, and tag
identifier seed TM for M. C forwards (π, pkU , pkV , ktV , dkU→V , hM, TM) to A.
Query-1. A queries oracle OProof to obtain samples of valid proofs.

– OProof : A chooses challenge chal and obtains a valid proof pfchal,V for
(M, chal).

Challenge. Same as the query-1 phase except that validity of the returned
proof pf ∗

chal,V depends on an uniform bit b. If b = 1, the C returns a valid proof.
Otherwise, C returns an invalid proof.
Query-2. Same as the query-1 phase.
Answer. A answers b′ for the challenged proof pf ∗

chal,V . A wins GamePF−IND if
b′ = b. The advantage AdvPrf−IND

A is defined as
∣∣Pr[A wins GamePF−IND] − 1

2

∣∣.

We show that our scheme is proof indistinguishable under the truncated deci-
sional 1-BDHE assumption.

Theorem 2. If the truncated decisional BDHE problem is (t, ε, 1)-secure, the
above scheme is (t− q1t1− q2t2− qP tP , 2ε) proof indistinguishable in the random
oracle model, where hash functions H1 and H2 are modeled as random oracles
OH1 and OH2 , (q1, q2, qP) are the numbers of times that an adversary queries
(OH1 ,OH2 ,OProof)-oracles, and (t1, t2, tP) are the time used by (OH1 ,OH2 ,OProof)-
oracles to respond an oracle query.

Proof. Let A be a probabilistic black-box adversary who wins the proof indis-
tinguishability game GamePF−IND with advantage ε′ in time t′. We construct an
algorithm B that uses A to solve the truncated decisional 1-BDHE problem as
follows:

Setup. Given an instance (g, gα, g′, Z) of the truncated decision 1-BDHE prob-
lem, B sets the public parameter π = (q, G, g, GT , gT , ê, H3), user U ’s key tuple
(skU , pkU , ktU) = (αu, gαu, H2(gαu)αu), where H2(gαu) = gu′

and u, u′ ∈R Zq,
delegated verifier V ’s key tuple (skV , pkV , ktV) = (αv, gαv, H2(gαv)αv), where
H2(gαv) = gv′

and v, v′ ∈R Zq, and the delegation key dkU→V = kt
1/skU
V =

Delegable Provable Data Possession for Remote Data in the Clouds 107

gvv′/u. Then B chooses data M = (m1, m2, . . . , mn), sets data identifier hM =
g′r, where r ∈R Zq, and chooses tag identifier seed TM. For 1 ≤ i ≤ n, B
sets H1(TM||i) = gri , where ri ∈R Zq. Then B invokes A as a subroutine:
AOH1

,OH2
,OProof (π, pkU , pkV , ktV , dkU→V , hM, TM).

Query-1. A can query oracles OH1 , OH2 , and OProof during his execution. B
handles these oracles as follows:

– OH1 . B maintains a table TH1 = {(x, H1(x), r)} to look up the OH1-query
records. B takes x ∈ {0, 1}∗ as input and outputs y if record (x, y, ∗) exists in
TH1 . Otherwise, B outputs H1(x) = gr and inserts (x, gr, r) into TH1 , where
r ∈R Zq.

– OH2 . B maintains a table TH2 = {(gx, H2(gx), r)} to look up the OH2-query
records. B takes gx as input and outputs y if record (gx, y, ∗) exists in TH2 .
Otherwise, B outputs H2(gx) = gr and inserts (gx, gr, r) into TH2 , where
r ∈R Zq.

– OProof . B takes challenge chal = (C = (c1, c2, . . . , cn), C′, C′′) as input and
checks whether ê(C′, H3(C)) = ê(hM, C′′). If not, B aborts. Otherwise, B
outputs a valid proof pfchal,V = (ρ, V, V ′, V ′′, V ′′′) as below: Let t ∈R Zq.

ρ = ê(
n∏

i=1

σci

i , dkU→V)t

= ê(
n∏

i=1

(H1(TM||i)h mi

M)skU ci , H2(pkV)skV/skU)t

= ê(
n∏

i=1

(grig′rmi)ci , gv′αv)t

= ê(g
∑n

i=1 cirig′r
∑n

i=1 cimi , gα)vv′t ,

V = C′∑ n
i=1 cimi , V ′ = C′′∑n

i=1 cimi , V ′′ = gv′t , and V ′′′ = gt .

Challenge. After the query-1 phase, A chooses challenge chal = (C =
(c1, c2, . . . , cn), C′, C′′), and B checks whether ê(C′, H3(C)) = ê(hM, C′′). If
not, B aborts. Otherwise, B outputs a proof pf ∗

V = (ρ∗, V, V ′, V ′′, V ′′′) as fol-
lows, where pf ∗

V is valid if Z = ê(g, g′)α2
. Let t = α.

ρ∗ = ê(g
∑n

i=1 cirig′r
∑ n

i=1 cimi , gα)vv′t

= ê(g
∑n

i=1 ciri , gα)vv′α × ê(g′r
∑n

i=1 cimi , gα)vv′α

= ê(gα
∑ n

i=1 ciri , gα)vv′ × ê(g′, g)α2vv′r
∑n

i=1 cimi

= ê(gα
∑ n

i=1 ciri , gα)vv′ × Zvv′r
∑ n

i=1 cimi ,

V = C′∑ n
i=1 cimi , V ′ = C′′∑ n

i=1 cimi , V ′′ = gαv′
, and V ′′′ = gα .

Query-2. Same as the query-1 phase.

108 S.-T. Shen and W.-G. Tzeng

Answer. A answers validity b of pf∗
V , and B uses b to answer the truncated

decisional 1-BDHE problem directly.

In the above reduction, B doesn’t abort. When Z = ê(g, g′)α2
, A has advantage

ε′ to break proof indistinguishability game. Therefore, the reduced advantage of
B is ε = ε′/2 and the reduced time is t = t′ + q1t1 + q2t2 + qP tP . By choosing
appropriate (q1, q2, qP) ∈ Poly(k)3, we have q1t1 + q2t2 + qP tP ∈ Poly(k).
�

4.3 Delegation Key Unforgeability

This game models the notion that a third party cannot generate a valid dele-
gation key even if he eavesdrops network communications during the delegation
phase and corrupts some delegated verifiers. In this game, the challenger C pro-
vides samples of public keys, key tokens, and delegation keys. The adversary A
corrupts some of the samples to obtain the corresponding private keys and tries
to generate a valid delegation key for a user V∗.

The delegation key unforgeability game GameDK−UF is as follows:
Setup. C generates public parameter π and user U ’s key tuple (skU , pkU , ktU).
C forwards (π, pkU) to A.
Query. A queries oracle ODlg and oracle OCor to obtain samples of public keys,
key tokens, and delegation keys, and the corresponding private keys.

– ODlg: It samples a user V and returns (pkV , ktV , dkU→V).
– OCor: A chooses (pkV , ktV , dkU→V) from ODlg and obtains skV from OCor.

Answer. A generates a valid delegation key dkU→V∗ for a user V∗. A returns
(skV∗ , pkV∗ , ktV∗ , dkU→V∗) to C, where (skV∗ , pkV∗ , ktV∗) is a valid key tuple
for V∗. A wins GameDK−UF if VrfyDK(π, dkU→V∗ , pkU , pkV∗) = true. The
advantage AdvDK−UF

A is defined as Pr[A wins GameDK−UF].

We show that our scheme is delegation key unforgeable under the InvCDH
assumption.

Theorem 3. If the InvCDH problem is (t, ε)-secure, the above scheme is (t −
q2t2−qDtD−qCtC , eqCε) delegation key unforgeable in the random oracle model,
where hash function H2 is modeled as random oracle OH2 , e is the Euler’s number,
(q2, qD, qC) are the numbers of times that an adversary queries (OH2 ,ODlg,OCor)-
oracles, and (t2, tD, tC) are the time used by (OH2 ,ODlg,OCor)-oracles to respond
an oracle query.

Proof. Let A be a probabilistic black-box adversary who wins the delegation key
unforgeability game GameDK−UF with advantage ε′ in time t′. We construct an
algorithm B that uses A to solve the InvCDH problem as follows:

Setup. Given an instance (g, gα) of the InvCDH problem, B sets the public pa-
rameter π = (q, G, g, GT , gT , ê, H1, H3) and user U ’s key tuple (skU , pkU , ktU) =
(α, gα, H2(gα)α), where H2(gα) = gu and u ∈R Zq. B invokes A as a subroutine:
AOH2

,ODlg,OCor(π, pkU).

Delegable Provable Data Possession for Remote Data in the Clouds 109

Query. A can query oracles OH2 , ODlg, and OCor during his execution. B handles
these oracles as follows: B chooses probability δ = qC

qC+1 .

– OH2 . B maintains a table TH2 = {(gx, H2(gx), r)} to look up the OH2-query
records. B takes gx as input and outputs y if record (gx, y, ∗) exists in TH2 .
Otherwise, B outputs H2(gx) = gαr with probability δ or outputs H2(gx) =
gr with probability 1−δ, and inserts (gx, H2(gx), r) into TH2 , where r ∈R Zq.

– ODlg. B maintains a table TDlg = {(v, pkV)} to look up the ODlg-query
records. B samples a fresh delegated verifier V , (pkV , ∗, ∗) doesn’t exist in
table TH2 , randomly and generates V ’s key tuple (skV , pkV , ktV) = (v,
gv, H2(gv)v = (gαv′

)v) with probability δ or (skV , pkV , ktV) = (αv, gαv,
H2(gαv)αv = (gv′

)αv) with probability 1 − δ, where v, v′ ∈R Zq. B inserts
(pkV , H2(pkV), v′) into TH2 and inserts (v, pkV) into TDlg. Then B outputs
(pkV , ktV , dkU→V), where

dkU→V = kt
1/skU
V = (gαvv′

)1/α = gvv′
.

– OCor. B takes (pkV , ktV , dkU→V) as input and rejects if either record
(pkV , ∗, ∗) doesn’t exist in table TH2 , record (∗, pkV) doesn’t exist in table
TDlg, or (ktV , dkU→V) isn’t consistent with TH2 and TDlg. B outputs skV = v
if pkV = gv. Otherwise, skV = αv, and B aborts.

Answer. A forges a delegation key dkU→V∗ for a user V∗ whose key tuple is (skV∗ ,
pkV∗ , ktV∗), and outputs (skV∗ , pkV∗ , ktV∗ , dkU→V∗). B rejects if either record
(pkV∗ , ∗, ∗) doesn’t exist in table TH2 or ê(pkU , dkU→V∗) 	= ê(pkV∗ , H2(pkV∗)). If
H2(pkV∗) = gαr∗

, B aborts. Otherwise, H2(pkV∗) = gr∗
, and B computes g

1
α as

follows:

ê(pkU , dkU→V∗) = ê(pkV∗ , H2(pkV∗))
⇒ ê(gα, dkU→V∗) = ê(gskV∗ , gr∗

)
⇒ dkU→V∗ = gskV∗r∗/α

⇒ g
1
α = (dkU→V∗)1/skV∗ r∗

In the above reduction, B doesn’t abort with probability δqC (1−δ). When choos-
ing δ = qC

qC+1 , we have δqC (1 − δ) = (1 − 1
qC+1)qC 1

qC+1 = (1 − 1
qC+1)qC+1 1

qC
≥

1
eqC

. Therefore, the reduced advantage is ε = ε′
eqC

, and the reduced time is
t = t′ + q2t2 + qDtD + qCtC . By choosing appropriate (q2, qD, qC) ∈ Poly(k)3, we
have (eqC , q2t2 + qDtD + qCtC) ∈ Poly(k)2.
�

5 Conclusion

We proposed a delegable provable data possession model that provides delegable
(authorized) verification on remote data. Delegable PDP allows a trusted third
party to check data integrity under data owner’s permission and prevents the
trusted third party to re-delegate this verification capability to others. This

110 S.-T. Shen and W.-G. Tzeng

feature is desired on private data in the public cloud. We provided a construction
for the delegable PDP problem and proved its security in the random oracle
model.

Due to using pairing operations on blocks directly, each block mi is limited to
k-bit long. We shall develop a new delegation method without using pairing in
the future. Dynamic operations, such as insertion, deletion, modification, etc.,
on stored data is useful. Supporting efficient dynamic operations on stored data
is another direction of our future works.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS 2007, pp. 598–609
(2007)

2. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of the 4th International Conference on Se-
curity and Privacy in Communication Networks, SecureComm 2008, pp. 9:1–9:10
(2008)

3. Ateniese, G., Kamara, S., Katz, J.: Proofs of Storage from Homomorphic Iden-
tification Protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

6. Bowers, K.D., Juels, A., Oprea, A.: Hail: a High-availability and Integrity Layer
for Cloud Storage. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 187–198 (2009)

7. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
CCSW 2009, pp. 43–54 (2009)

8. Chen, B., Curtmola, R., Ateniese, G., Burns, R.: Remote data checking for net-
work coding-based distributed storage systems. In: Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, CCSW 2010, pp. 31–42 (2010)

9. Curtmola, R., Khan, O., Burns, R.: Robust remote data checking. In: Proceedings
of the 4th ACM International Workshop on Storage Security and Survivability,
StorageSS 2008, pp. 63–68 (2008)

10. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: Mr-pdp: Multiple-replica provable
data possession. In: Proceedings of the 2008 the 28th International Conference on
Distributed Computing Systems, ICDCS 2008, pp. 411–420 (2008)

11. Damg̊ard, I.B.: Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

12. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, CCS 2009, pp. 213–222 (2009)

Delegable Provable Data Possession for Remote Data in the Clouds 111

13. Gentry, C.: Practical Identity-based Encryption without Random Oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

14. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
CCS 2007, pp. 584–597 (2007)

15. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

16. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for
data storage security in cloud computing. In: Proceedings of the 29th Conference
on Information Communications, INFOCOM 2010, pp. 525–533 (2010)

17. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

	Delegable Provable Data Possession
for Remote Data in the Clouds
	Introduction
	Delegable Provable Data Possession
	Related Work

	Preliminary
	Construction
	Performance

	Security Analysis
	Proof Unforgeability
	Proof Indistinguishability
	Delegation Key Unforgeability

	Conclusion
	References

