Delegatable Pseudorandom Functions and Applications

Aggelos Kiayias
Dept. Informatics & Telecom.
National and Kapodistrian U. of Athens, Greece
aggelos@di.uoa.gr

Stavros Papadopoulos
Dept. of Computer Science
Hong Kong U. of Science and Technology, Hong Kong
stavrosp@cse.ust.hk

Nikos Triandopoulos
RSA Laboratories
Cambridge, MA, USA
nikolaos.triandopoulos@rsa.com

Thomas Zacharias
Dept. Informatics & Telecom.
National and Kapodistrian U. of Athens, Greece
thzacharias@di.uoa.gr

Abstract

We put forth the problem of delegating the evaluation of a pseudorandom function (PRF) to an un-
trusted proxy and introduce a novel cryptographic primitive called delegatable pseudorandom functions,
or DPRFs for short: A DPRF enables a proxy to evaluate a pseudorandom function (PRF) on a strict
subset of its domain using a trapdoor derived from the DPRF secret key. The trapdoor is constructed
with respect to a certain policy predicate that determines the subset of input values which the proxy is al-
lowed to compute. The main challenge in constructing DPRFs is to achieve bandwidth efficiency (which
mandates that the trapdoor is smaller than the precomputed sequence of the PRF values conforming
to the predicate), while maintaining the pseudorandomness of unknown values against an attacker that
adaptively controls the proxy. A DPRF may be optionally equipped with an additional property we call
policy privacy, where any two delegation predicates remain indistinguishable in the view of a DPRF-
querying proxy: achieving this raises new design challenges as policy privacy and bandwidth efficiency
are seemingly conflicting goals.

For the important class of policy predicates described as (1-dimensional) ranges, we devise two
DPREF constructions and rigorously prove their security. Built upon the well-known tree-based GGM
PRF family [17], our constructions are generic and feature only logarithmic delegation size in the number
of values conforming to the policy predicate. At only a constant-factor efficiency reduction, we show that
our second construction is also policy private. Finally, we describe that their new security and efficiency
properties render our DPRF schemes particularly useful in numerous security applications, including
RFID, symmetric searchable encryption, and broadcast encryption.



1 Introduction

Due to its practical importance, the problem of securely delegating computational tasks to untrusted third
parties comprises a particularly active research area. Generally speaking, secure delegation involves the
design of protocols that allow the controlled authorization for an—otherwise untrusted—party to compute
a given function while achieving some target security property (e.g., the verifiability of results or privacy
of inputs/outputs) and also preserving the efficiency of the protocols so that the delegation itself remains
meaningful. Beyond protocols for the delegation of general functionalities (e.g., [18, 33]) a variety of
specific cryptographic primitives have been considered in this context (see related work in Section 2).

Quite surprisingly, pseudorandom functions (PRFs), a fundamental primitive for emulating perfect ran-
domness via keyed functions which finds numerous applications in information security, have not been
explicitly studied in the context of delegation of computations (of PRF values). Hereby, we initiate a study
on this matter.

A new PRF concept. We introduce a novel cryptographic primitive, called delegatable pseudorandom
function (DPRF), which enables the delegation of the evaluation of a PRF to an untrusted proxy according
to a given predicate that defines the inputs on which the proxy will evaluate the PRF.

Specifically, let F be a PRF family, and P a set of predicates, called the delegation policy, defined
over the domain of . A DPREF is a triplet (F,T,C) constructed with respect to P, which provides the
elementary functionality shown in Figure 1: For any secret key k£ and a predicate P € P, the delegator
computes a trapdoor 7 via algorithm 7', and 7 is transmitted to the proxy. The latter then runs algorithm C'
on 7 to derive exactly the set of PRF values Bp = {fi(z)|P(x)}, where fi € F, i.e., the PRF value on
every input z satisfying predicate P, overall correctly enabling the evaluation of PRF f; subject to predicate
P without explicit knowledge of secret key k, or even the input values Ap = {z|P(x)}.

Delegator Proxy

T ’ S
f I
k, P Bp = {fi(z) | P(z)}

Figure 1: The DPRF functionality

What motivates the above scheme is bandwidth efficiency: As long as the trapdoor 7 is sublinear in
the size |Bp| of delegated PRF values, the delegation is meaningful as the delegator conserves resources
(otherwise, the proxy could be provided directly with all the PRF values Bp).

At the same time, the DPRF must retain the security properties of the underlying PRF, namely, (i) pseu-
dorandomness for any value x conforming to the delegation predicate P, i.e., P(x), and (ii) unpredictability
for any nonconforming value x such that = P(x). In addition, a DPRF can optionally satisfy a policy privacy
property which prevents the proxy from inferring information about P or the delegated (input) set Ap from
the trapdoor 7.

Our definitional framework. We introduce a formal definitional framework for the new primitive of



DPREFs, carefully capturing all the above technical requirements. We first rigorously define the correct-
ness and security requirements that any DPRF should meet. Correctness captures the ability of the proxy
to successfully evaluate the PRF on exactly those inputs specified by predicate P (i.e., set Ap). Security
captures the requirement that the delegation capabilities of the PRF do not compromise its core pseudoran-
domness property. Note that this condition goes beyond the standard security definition of PRFs, since the
pseudorandomness attacker may now adaptively query a trapdoor delegation oracle with predicates of its
choice.

Equally important is also the policy privacy property that a DPRF may optionally satisfy, intuitively cap-
turing the inability of a malicious proxy to learn any (non-trivial) property about the delegation set Ap (that
is not implied by set Bp). Our security notion postulates that for any two predicates P, P’ the corresponding
trapdoors are indistinguishable, provided that |Ap| = |Ap/| and no other PRF queries trivially separating
Vp and Vpr are posed by the adversary.

GGM-based realization for range predicates. We devise two bandwidth-efficient and provably secure
DPREF constructions for the case where the delegation policy contains predicates described by I-dimensional
ranges. Range-based policies is an interesting use case, as many applications maintain an ordering over the
PRF inputs, and delegation rights are defined with respect to ranges of such inputs.

Our first DPRF scheme is called best range cover, or BRC for short, and relies on the well-known GGM
PRF family [17]. This family defines a PRF based on the hierarchical application of any length-doubling
pseudorandom generator (PRG) according to the structure induced by a tree, where input values are uniquely
mapped to root-to-leaf paths. By exploiting the above characteristics, our BRC scheme features logarithmic
delegation size in the number | Bp| of values conforming to the policy predicate, by having the trapdoor
T comprise a subset Ip of internal PRG values that (almost optimally) cover the target range Bp of PRF
values. We provide a formal security proof for the above scheme which, interestingly, does not trivially
follow from the GGM security proof. The reason is that the adversary can now employ delegation queries
to learn any internal PRG value in the tree, and not simply leaf PRF values as in the original security game
in [17]. We note that, although similar “range-covering” GGM-based constructions appear in the literature,
e.g., in [30], no formal security analysis has been given.

However, our BRC scheme does not satisfy policy privacy, as the structure of the PRG values in Ip leaks
information about predicate P. This motivates our second construction, called uniform range cover, or URC
for short. This scheme augments BRC in a way that renders all trapdoors corresponding to ranges of the
same size indistinguishable. This is achieved by carefully having 7 comprising a subset I, of PRG values
that cover the target range Bp of PRF values less optimally: I, contains PRG values that are descendants of
those values in Ip at a tree height that depends solely on | Bp| (which by definition leaks to the adversary).
More interestingly, by adopting the above change, URC retains both the asymptotic logarithmic bandwidth
complexity of BRC and its DPRF security, but it crucially achieves a policy privacy notion appropriately
relaxed to our setting of range predicates. Inherently, as we argue, no efficient tree-based DPRF scheme can
satisfy policy privacy, so we have to resort to a sufficient relaxation which we call union policy privacy.

Main applications. Finally, our DPRF schemes, equipped with bandwidth efficiency, security and policy
privacy (URC only), lend themselves to new schemes that provide scalable solutions to a wide range of
information security and applied cryptography settings involving the controlled authorization of PRF-based
computations. Generally, DPRFs are particularly useful in applications that rely on the evaluation of (secret)
key-based cryptographic primitives on specific inputs (according to an underlying policy): Using a DPRF
scheme then allows a cost-efficient, yet secure and private, key management for an untrusted proxy who is
otherwise capable in executing a particular computational task.

We outline several such applications in which DPRFs are useful, including authentication and access



control in RFIDs, efficient batch querying in searchable encryption, as well as broadcast encryption. Due to
the underlying GGM building component, our DPRFs are extremely lightweight, as their practical imple-
mentation entails a few repeated applications of any efficient candidate instantiation of a PRG that is length
doubling.

Summary of contributions. Our main contributions are:

* We initiate the study of policy-based delegation of the task of evaluating a pseudorandom function on
specific input values, and introduce the concept of delegatable PRFs (DPRFs).

* We develop a general and rigorous definitional framework for the new DPRF primitive, capturing
properties such as bandwidth efficiency, correctness, security and policy privacy, and also offering a
relaxed union policy privacy that is arguably necessary for tree-wise DPRF constructions.

* We present a framework for building DPRF schemes for the important case where the delegation
policy is governed by range predicates over inputs; our framework augments the generic GGM con-
struction framework of [17] to provide two concrete DPRF schemes, namely BRC and URC.

* We prove the security of our constructions in a modular way, thus also yielding the first security
analysis of similar GGM-based key-delegation schemes, and the union-policy privacy of URC.

* We describe several key applications of DPRFs in the context of efficient key-delegation protocols for
authentication, access control and encryption purposes.

Paper organization. Section 2 reviews related work. Section 3 formulates the DPRF primitive, Section 4
presents our two DPRF constructions for the case of range policies. Section 5 elaborates on the applicability
of DPRFs. Finally, Section 6 concludes our paper with directions to future work. Selected proofs appear in
the Appendix.

2 Related Work

We start by reviewing existing work related to DPRFs.

Secure delegation of computations. The notion of delegation of cryptographic operations is already ma-
ture: Starting from early work on proxy signatures [28] and proxy cryptography [5], basic primitives such
as signatures (e.g., [6, 28]) and encryption (e.g.,[2, 19, 22]) have been studied in the context of an untrusted
proxy who is authorized to operate on signatures or ciphertexts. Recently, there has also been an increased
interest in verifiability and privacy of general outsourced computations (e.g., [1, 9, 10, 18, 33]) or specific
crypto-related operations (e.g., [4, 15, 20]). To the best of our knowledge, however, no prior work explicitly
and formally examines the delegation of PRFs.!

PREF extensions. Closer to our new DPRF primitive are the known extensions of PRFs, namely the verifiable
PRFs (VPRFs) (e.g., [12, 27, 29]) and the oblivious PRFs (OPRFs) (e.g., [16, 23]). A VPRF provides a PRF
value along with a non-interactive proof, which enables anyone to verify the correctness of the PRF value.
Although such proofs can be useful in third-party settings, they are not related to the delegation of the PRF
evaluation without the secret key. Similarly, an OPRF is a two-party protocol that securely implements
functionality (k,z) — (L, fix(x))—that is, a party evaluates a PRF value without knowledge of the secret

! Delegating PRF evaluation in a similar vein as we consider here, was considered in [7, 8] after our work was submitted for
publication.



key. Yet, although the party that provides the key can be viewed to preserve resources, this setting does
not match ours because there is no (i) input privacy (it is the second party who provides the input z), and
(ii) bandwidth efficiency when applied over many values. Other related work includes algebraic PRFss,
employed in [4] to achieve optimal private verification of outsourced computation.

GGM framework. This refers to the seminal work by Goldreich ez al. [17], which shows how to generically
construct a PRF given black-box access to a length-doubling PRG. The approach is based on a tree structure,
over which hierarchical invocations of the PRG produce the PRF values at the leaves. Our constructions
extend this framework in non-trivial ways: First, we support delegation of PRF evaluations; second, our
security is proved in a much stronger adversarial setting where the adversary gets to adaptively learn also
internal PRG values. The GGM framework, along with its tree-based key-derivation structure, have been
widely used in the literature; also for special/limited delegation purposes in the context of access control [30]
and forward security [21]. Yet, to the best of our knowledge, no such known key-derivation method has been
analyzed fully in a security model like ours, which allows for adaptive PRG queries and addresses policy
privacy issues.

3 Definitions

A pseudorandom function family (PRF) F is a family of functions {fx : A — B | k € K} so that K is
efficiently samplable and all 7, K, A, B are indexed by a security parameter A. The security property of a
PRF is as follows: For any probabilistic polynomial-time (PPT) algorithm .4 running in time polynomial in
A it holds that

| Pr[Af*0) = 1] — Pr[ARC) = 1]| = negl()) ,

where negl denotes a negligible function and the probability above is taken over the coins of A and the
random variables £ and R which are uniform over the domains C and (A — B) respectively.

Delegatable PRFs. The notion of delegation for PRFs is defined with respect to a delegation policy P, i.e.,
P is a set of predicates defined over A, also indexed by A, where each predicate P has an efficient encoding;
the set of elements in A that satisfy P is denoted as Ap = {x € A | P(x)}.

Definition 1 (Delegatable PRF) A rriple (F, T, C) is a delegatable PRF (DPRF) w.r.t. policy P provided
it satisfies two properties, correctness and security, that are defined individually below.

Correctness. 7' is a PPT algorithm such that, given a description of P € P and a key k£ € K, it outputs a
“trapdoor” 7. The latter is intended to be used along with the deterministic polynomial-time algorithm C'
for the computation of every element of A that satisfies the predicate P. For fixed P, k, the algorithm C' can
be considered as a function

C: StP,k — B x StP,k,

where Stpy, is a set of states, and the output C'(s) is a pair that consists of a PRF value and a (new) state.
We denote C'(s) = (CL(s),Cr(s)) and define recursively the set of reachable states from a subset S of
Stpy, as

R(S) £ SUR(CR(9)).

The elements of the DPRF that are produced given an initial state s will be defined using the complete
set of reachable states given s. For a singleton S = {s}, we will write R(s) instead of R({s}), and we
will denote by R(s) the closure of s under R, i.e., the fixpoint of the recursive equation for R that also
contains s.



Definition 2 (Correctness) The DPRF scheme (F,T,C) is correct for a policy P if for every P € P:
I {7 |7« T(Pk)}U{L} C Stpy, forany k.
2. Cr(L) = L (termination condition).
3. There is a polynomial q s.t. for every k, T < T'(P, k):

(i) L € R(r) (termination guarantee).
(ii) |R(7)| < q(X) (feasibility).
(iii) {fr(x)| P(x)} = Bp = {CL(s) | s € R(7)} (completeness).

According to the above conditions, all possible trapdoors corresponding to a certain policy predicate P
are valid initial inputs for C. Starting from an arbitrary trapdoor for P, the proxy can execute a number of
steps, compute the DPRF image of every argument x that fulfills P, and terminate when it reaches the final
state L, where no further useful information can be derived.

We note that condition 3.(ii) implies the restriction that the size of every policy predicate is polynomial.
This stems from the fact that we consider the setting where the proxy wishes to eventually compute all the
delegated PRF values. If this is not necessary (or desirable) for the DPRF application, the condition can be
relaxed to any size of Ap (including super-polynomial sizes). In this case, completeness (item 3.(iii) above)
will not suffice since the proxy cannot hope to be able to compute all the delegated PRF values. There are
a number of ways to capture this by suitably modifying the way C' works; for instance: (i) C' may sample
the uniform distribution over Bp, (ii) C' may be given the value x as input, and return f;(z) if x € Ap and
1 otherwise, (iii) C' may be given the lexicographic rank of an element x within Ap and return fy(z) or L
otherwise.

Security. For security we consider the case where the server is malicious and model DPRF security as
a game gg‘EC between an attacker A and a challenger C indexed by parameter A\. Due to the delegation
capabilities of DPRFs, the security game is more elaborate than the security of a plain PRF, as shown next.

DPRF Security Game G¢i-c(1*)

1. The challenger C selects k from /.

2. The adversary A is allowed to interact with C and ask two types of queries:
(a) PRF queries for a value © € A; to those queries C responds with fi(x) and adds the value x to a set
Lque.-
(b) delegation queries for a policy predicate P € P; to those queries C responds with 7 < T'(P, k) and
adds P to a set Ly

3. The adversary A submits a challenge query x* to which the challenger C responds as follows: it flips a
coin b and if b = 1 it responds with y* = fi(z*), otherwise responds with a random value y* from B.

4. The adversary A continues as in step 2.

5. The adversary A terminates by returning a single bit b. Subsequently the game returns a bit which is 1 if
and only if the following holds true:

(b="0) A (2" & Lque) ANVP € Lpoy : =P (z*).




Definition 3 (Security) A DPRF scheme (F,T,C') is secure for a policy P if for any PPT A, it holds that
1
Pr[Géc (1Y) =1] < 3 + negl(A).

We make the following observations about the definition. First, it is easy to see that a delegatable PRF
is indeed a PRF. Specifically, any PRF attacker .A against f; can be turned into an attacker A’ that wins
the DPRF game described above. We provide only a simple sketch of this which follows by a standard
“walking” argument (the reader familiar with such arguments may skip to the next paragraph). Fix some
PPT A and let « be its non-negligible distinguishing advantage. There will be some polynomial ¢ so that,
for any A, g() is an upper bound on the number of queries submitted to .A’s oracle by .A. Given such ¢ and
for fixed \, we define the hybrid oracle ( fi,/R); forany j € {0,...,g(\)} that operates as follows: (fi/R);
responds as fi(-) in the first j queries and as R(-) in the last ¢(\) — j queries. Taking such sequence of
oracles into account, by triangular inequality, it follows that there exists some value j € {0,...,q(\) — 1}
for which the distinguishing probability will be at least «v/q(\) for A to distinguish between two successive
hybrid oracles (f;/R); and (fi/R);+1 when R is a random function. This follows from the fact that A
distinguishes the “extreme” hybrids R(-) and fx(-) with probability a.. We now construct A’ as follows out
of A: A’ plays the DPRF game and queries the DPRF function for the first j queries of .A. Then it submits
the (j + 1)-th query of A as the challenge. Finally, it completes the simulation of A by answering any
remaining queries of .4 with random values drawn from B (w.l.0.g. the queries to the oracle are all distinct).
It is easy to see that the distinguishing advantage of A’ is a/q()), i.e., non-negligible in \.

Second, we observe that there is a trivial construction of a delegatable PRF from any PRF: Con-
sider an ordering < over A, e.g., the lexicographical order. For fixed P, k set T(P, k) = (fi(x1),...,
fk(®|ap|)) = 7, where ; is the i-th element of Ap according to <. Given 7, the set of states is Stp =
{r,(2,7),...,(|Ap|,7), L} and the reconstruction function C' can be simply defined to be a table-lookup.
It is straightforward to show that (F, T, C') is a DPRF as long as the underlying family F is a PRF, since
any delegation query can be interpreted as a series of polynomially many PRF queries.

The existence of a trivial DPRF construction w.r.t. arbitrary policies from any given PRF motivates
our primitive: Interesting DPRF constructions will be those that are bandwidth efficient, i.e., they provide
trapdoors with size that is sublinear in the number of elements that satisfy the corresponding policy predicate.

Policy privacy. We next introduce a property that goes beyond the standard (D)PRF security and is relevant
in the context of a delegatable PRF. In order to model this privacy condition we use an indistinguishability
game g;‘P carried out between an attacker A and a challenger C indexed by a security parameter A. The
game proceeds as follows:

Definition 4 (Policy privacy) A DPRF scheme (F,T,C) for a policy P satisfies policy privacy if for any
PPT A, it holds that

Pr[Gpp (1Y) = 1] < % + negl(\).

The above definition suggests that the trapdoor that corresponds to a certain policy predicate hides the
predicate itself (i) at least among all policy predicates that enable the same number of elements, and (ii)
when the adversary does not make queries whose responses leak unequal parts of the PRF image of the
two challenge predicates. Observe that all the restrictions stated are necessary: if |Ap,| # |Ap, |, then the
adversary can distinguish Py from P; by counting the number of new PRF values it computes starting from
state 7* and ending in L. In addition, if the number of elements that satisfy simultaneously any set S of



DPRF Policy Privacy Security Game Ggp (1)

1. The challenger C selects k from /C.
2. The adversary A is allowed to interact with C and ask delegation queries P € P.

3. The adversary A submits two policy predicates Py, P, to C. The challenger flips a bit b and computes
T7* + T(Py, k). Tt returns 7* to the adversary.

4. The adversary continues as in step 2 and terminates returning a bit b. The game terminates with 1 provided
that

(b: 8) A (|AP0| = |AP1|) A (APo # APl)/\
NS C Looi : [([) Ap)N AR = |([] Ap) N Ap,|.

pPesS PeS

delegation queries and P, is different than the number of elements that satisfy S and Py, then the adversary
can distinguish the two predicates by counting the size of {Cr(s) | s € R(7*)} N (N peg Bp)-

Multiple-challenge policy privacy. While the above formulation can capture a wide set of attacks against
privacy, it can be strengthened further by allowing multiple challenge pairs of policy predicates. In this case,
the security game allows a multiple number of adversarial actions submitting pairs of policies (as in step 3 of
the game) to be interleaved with delegation queries. The challenger always responds based on the same coin
flip b. Interestingly, this multiple-challenge policy privacy formulation can be shown to be strictly stronger
than Definition 4.

We next argue that even though desirable, the above formulations of privacy conflict with our efficiency
considerations (sublinear-size trapdoors) for a wide class of schemes. This will motivate relaxing the policy
privacy property as we will see in the end of the section; the reader unwilling to go over the details of the
lower bound type of argument we sketch below may skip directly to the policy privacy relaxation in the end
of the section.

Assume that the policy predicates are ranges [a, b] that lie in an interval [0,2* — 1]. Then, no efficient
and policy private DPRF scheme exists, if the trapdoor generation algorithm 7'( P, k) is deterministic, and
the delegated computation is tree-wise, i.e., for each range, the trapdoor is a data structure of keys and
meta-data that enable in a deterministic way the calculation of the final set of values through a tree-like
deterministic derivation whose generated tree structure depends only on the meta-data. Indeed, if policy
privacy is satisfied, then for every 0 < j < b — a, the delegated computation of the intersection [a + 7, b]
PRF values must be indistinguishable for [a, b] and [a + j, b+ j]. Otherwise, an adversary can make queries
for all the PRF values in [a + j,b] and, since it knows the way that each unique trapdoor of [a, b] and
[a+ j,b+ j] computes the PRF values of the range [a + 7, b], can thus distinguish the two range predicates
by making the corresponding equality tests. By induction, this implies that for any j € {0,...,b — a}, in
the trapdoor of [a, b] there exist distinct keys dy, . . . , d; that allow the computation of fy(a),. .., fr(a+j),
respectively. Thus, the size of the trapdoor of the range [a, b] consists of at least r = b—a+1 = #/a, b] keys
which means that the DPRF cannot be efficient (i.e., enabling the delegation of the range with a trapdoor
size less than the set of values being delegated).

The above argument suggests that, if policy privacy is to be attained, we need trapdoors at least as long as
the values we delegate. Note the trivial construction for ranges mentioned above, i.e., when the trapdoor of
[a, b is the (fx(a), fr(a+1),..., fr(b)), does not satisfy policy privacy. For instance, when delegating [1, 3]
and [3, 5] the attacker can easily distinguish them by obtaining the value fx(3) (it belongs in the intersection
hence the attacker is allowed to have it) and checking its location within the trapdoor vector. To achieve



policy privacy for the trivial construction one needs to additionally permute the PRF values in the trapdoor
in some fashion: it can be easily shown that a lexicographic ordering of these values suffices.

In our upcoming constructions, we obtain efficient DPRFs that use tree-wise derivations where the
values computed are at the leaves of a full binary tree, and the policy predicates are ranges covered by
proper subtrees. In this case, even allowing a probabilistic trapdoor generator does not suffice to provide
policy privacy for a very efficient scheme. To see this, let [a, b] be a range of size r and 7 be a trapdoor
for [a, b] of size g(r) = O(log°r), i.e., g(r) is polylogarithmic in r, hence also in A. By the Pigeonhole
principle, there exists a delegation key y in 7 that computes all the values corresponding to a set 7' C [a, b)
of size at least r/g(r), that is, a subtree 7" of depth at least d > log(r) — log(g(r)) = w(1). Assuming
w.l.o.g. that r/g(r) is an integer, the latter implies that there exists a value x € [a, b] with an all-one suffix
of length d that is computed by this key y. Since there are g(r) such possible values = € [a, b], an adversary
has significant probability 1/¢g(r) of guessing z. Then it can make a query x, receive f(z) and submit as
the challenge the two policies Py = [a, b] and P; = [z, b+ (x — a)]. After it receives the challenge trapdoor
7%, it can locate all keys that correspond to subtrees of size > d and check if there is a minimum leaf
value (an all-zero path) in some of these subtrees that equals to fx(x). Then, the adversary can distinguish
effectively Py, Py since = cannot be covered by any subtree of size d in a trapdoor for [x,b + (z — a)] (it
must be covered by a leaf while d > 1). This argument can be extended to more general tree-like delegation
schemes and for the case g(r) = o(r) but we omit further details as it already demonstrates that efficient
tree-like constructions require a somewhat more relaxed definition of policy privacy (which we introduce
below).

Union policy privacy. We finally introduce the notion of union policy privacy, where the adversary is
restricted from making queries in the union of the challenge policy predicates (but is allowed to query
at arbitrary locations outside the targeted policy set). This is a strict relaxation of Definition 4, and we
model it by a game G{jbp (1) that proceeds identically as Ggp(1*), but terminates with 1 provided that
all the following (weaker set of) conditions are met: b = b, |Ap,| = |Ap,|, Ap, # Ap, and VP € Ly :
ApN(Ap,UAp,) = 0. To see the connection with Definition 4 observe that the latter condition is equivalent
to
VS C Lpol : }( m AP) ﬁApO} = ‘( m Ap) ﬁApl‘ =0.
Pes Pes

Note that for policies P consisting of disjoint predicates, the games Gpb (1*) and Gijpp (1) are equivalent.

4 Constructions

In this section we present DPRF schemes for range policy predicates. In Section 4.1 we describe a first con-
struction, called best range cover (BRC), which satisfies the correctness and security properties of DPRFs,
achieving trapdoor size logarithmic in the range size. However, BRC lacks the policy privacy property. In
Section 4.2 we build upon BRC and obtain a (union) policy-private DPRF scheme, called uniform range
cover (URC), which retains the trapdoor size complexity of BRC. In Section 4.3 we include the security
proofs of the two schemes. In Section 4.4 we prove the union policy privacy property of URC.

4.1 The BRC Construction

Let G : {0,1}* — {0,1}?* be a pseudorandom generator and Go(k), G (k) be the first and second half
of the string G(k), where the specification of G is public and k is a secret random seed. The GGM
pseudorandom function family [17] is defined as F = {fx : {0,1}" — {0, 1})‘}k€{071}x, such that

9



fe(@n—1--20) = Ggo(- -+ (Gs,_,(k))), where n is polynomial in X and z,,_1 - - - z¢ is the input bitstring
of size n.

The GGM construction defines a binary tree on the PRF domain. We illustrate this using Figure 2,
which depicts a binary tree with 4 levels. The leaves are labeled with a decimal number from 0 to 15,
sorted in ascending order. Every edge is labeled with O (resp. 1) if it connects a left (resp. right) child.
We label every internal node with the binary string determined by the labels of the edges along the path
from the root to this node. Suppose that the PRF domain is {0,1}*. Then, the PRF value of 0010 is
11(0010) = Go(G1(Go(Go(k)))). Observe that the composition of G is performed according to the edge
labels in the path from the root to leaf 2 = (0010)2, selecting the first (second) half of the output of G when
the label of the visited edge is O (resp. 1). Based on the above, the n-long binary representation of the leaf
labels constitute the PRF domain, and every leaf is associated with the PRF value of its label.

, A

f5(00) = Go(Go ék)) . 1 .

(l (o), () ()
(@ ) ) ) O ) ()
010/0]0]0]0]0]610/0/0010I0I010

(0010) [2,7] (0111)
fx(0010) = Go(G1(Go(Go(k))))

Figure 2: A GGM tree example

Note that we can also associate every internal node of the GGM tree with a partial PRF value, by per-
forming the composition of G as determined by the path from the root to that node. For example, node 00 in
Figure 2 is associated with partial PRF Go(Go(k)). Henceforth, for simplicity, we denote by fi,(zp—1 - - x;)
the partial PRF G, (- - - (G4, _, (k))). Observe that if a party has the partial PRF f, (2,1 - - x;), then it can
compute the PRF values of all 27 inputs that have prefix x,,_1 - - - x, simply by following a DFS traversal in
the subtree with root ,,_1 - - - ; and composing with seed f;(z,,—1 - -- ;). In our running example, using
the partial PRF value at node 00, we can derive the PRF values of the inputs in (decimal) range [0, 3] as
££(0000) = Go(Go(fx(00))), £(0001) = G1(Go(f(00))), f(0010) = Go(G1(f(00))), and f,(0011)
— G (G (f(00))).

For any range [a, b] of leaf labels, there is a (non-unique) set of subtrees in the GGM tree that cover
exactly the corresponding leaves. For instance, [2,7] is covered by the subtrees rooted at nodes 001 and
01 (colored in grey). According to our discussion above, a party having the partial PRF values of these
subtree roots and the subtree depths, it can derive all the PRF values of the leaves with labels in [a, b]. In
our example, having (f;(001),1) and (fx(01),2), it can derive the PRF values of the leaves with labels in
[2,7]. Our first construction is based on the above observations. In particular, given a range policy predicate
[a,b] € P with size |Ap| = b — a + 1, it finds the minimum number of subtrees that cover [a, b]. As such,

10



we call this scheme as best range cover (BRC).

The BRC DPRF construction is a triplet (F, T, C'), where F is the GGM PRF family described above
with tree depth n. The delegation policy is P = {[a,b] | 0 < a < b < a+ X7 < 2"}, where vy is a
constant integer. Note that when a = b the trapdoor sent to the proxy is simply the PRF value fi(a). In
the rest of the section, we focus on the non-trivial case where the range is not a singleton. When a < b, the
trapdoor generation algorithm 7" of BRC is given below. This algorithm takes as input a secret key k£ and
a range predicate [a,b] € P. It outputs a delegation trapdoor 7 that enables the computation of f(z) for
every x whose decimal representation is in [a, b] (i.e., the PRF values of the leaves in the GGM tree with
labels in [a, b]). T initially finds the first bit in which a and b differ (Line 2), which determines the common
path from the root to leaves a and b. Suppose that this common path ends at node u. If [a, b] is the set of
labels that belong to the subtree with root u, then 1" outputs a single pair consisting of the partial PRF value
that corresponds to u along with the depth of the subtree (Lines 3-5). Otherwise, 1" traverses the left and
right subtree of u separately (Lines 3,7-13 and 14-21, respectively). We will describe only the left traversal
(the right one is performed symmetrically). 7' considers the path p,_,, starting from the left child of w,
denoted by v, to a. It checks whether a is the leftmost leaf of v’s subtree. In this case the PRF value of v
is included in 7 along with the depth of v’s subtree, and the traversal terminates (Lines 3,7). Otherwise, if
Dy—sq proceeds to the left child of v, it includes in the trapdoor the PRF value of the right child of v together
with the depth of the subtree rooted at that child. In any case, it continues the traversal in the same fashion
with the next node of p,_,, (Lines 8-13).

The Trapdoor Generation Algorithm 7" in BRC
Imput: 0,0 : 0 < a < b < a+ A" <2" —1and
ke {0,1}*

Output: Trapdoor 7 for computing the PRFs for [a, b]
L7+ ()

2. t+ max{i | a; # b;}

3. if (Vi <t: a; =0) then

4. if(Vi<t:b;=1) then

5. return (fi(an—1---ary1),t+ 1)

6. else

7. Append (frx(an—1---a¢),t)tor

8. else

9. o min{i | i <tAa; =1}

10. fori=t—1tou+1

11. if a; = 0 then

12. Append (fi(an—1---a;411),9)to T

13.  Append (fi(an—1---au), 1) tor
14.if (Vi <t :b; = 1) then

15.  Append (fr(by—1---b:),t)toT
16. else

17. v« min{i | i <tAb; =0}
18. fori=t—1tov+1

19. if b, = 1 then

20. Append (fi(bp—1---b;+10),%) to T
21.  Append (fi(bp—1---b,),v)toT
22.return T

In the example of Figure 2, for input [2,7], T outputs trapdoor 7 = ((f%(001),1), (fx(01),2)). By its
description, it is easy to see that the algorithm covers the input range with maximal subtrees.

11



We next describe the reconstruction algorithm C' of BRC. For fixed P = [a, b] of size r and key £,
we define the set of states as Stpy, = {7, (1,7),...,(r —1,7), L}, where 7 = ((y1,d1), ..., (YUm,dm))
is the trapdoor produced by algorithm 7. Note that, every y;,2 = 1,...,m corresponds to a partial PRF
value associated with the root of a GGM subtree. Therefore, there is a natural ordering of PRF values
for a given 7, starting from the leftmost leaf of the subtree of y; to the rightmost leaf of the subtree of
Ym. This order is not necessarily the same as the order of the leaves in the GGM tree. Starting from
the PRF value of the leftmost leaf of the y; subtree, C' computes in every next step the PRF value of
the next leaf in the ordering discussed above. Specifically, C' starts with state 7 and computes C'(7) =
(Go(--+ (Go(y1))), (1,7)), where the Gy composition is performed d; times. Next, given state (i,7), C
locates the unique subtree that covers the (i + 1)-th leaf = in the ordering of 7. Specifically, it finds the
pair (y¢, dy) in 7, where ¢ is such that 22;11 20 < j < 22:1 240, Then, the suffix x4, - - - 29 is the binary
representation ofi—zz;ll 2% € [0, 29 —1]. Given this suffix, C' can compute f5,(2) = Gy (- - - (Gzy, (Y1)
and output C((i,7)) = (Ga, (- (Gay, (Y1), (i + 1,7)). Note that, for input state (r — 1,7), C outputs
(G1(--- (G1(ym))), L), where the Gy composition is performed d,;, times.

Considering the tree of Figure 2, the trapdoor for range [2, 14] is ((fx(01),2), (fx(001),1), (f%(10),2),
(fx(110),1), (f%(1110),0)). Algorithm C' computes the PRF values for leaves 4, 5, 6, 7, 2, 3, 8, 9, 10, 11,
12, 13, 14 in this order, i.e.,

C(7) = (Go(Go(fx(01))), (1, 7)) = (fx(0100), (1,7)) —
C((1,7)) = (G1(Go(fx(01))), (2, 7)) = (fx(0101), (2, 7)) —

C((12.7)) = {f(1110), 1).

Based on the above description, some partial PRF values are computed multiple times in C, e.g., f(011)
is computed twice; once during calculating f,(0110) and once for fx(0111). Note that this can be easily
avoided by employing a cache of size O(r); every PRF value is computed once, stored in the cache, and
retrieved in a next step if necessary. In this manner, the computational cost of C' can become O(r), since we
compute one PRF value for every node in the subtrees covering the range (of size 7).

The correctness of BRC is stated in the following theorem.

Theorem 1 The BRC DPRF construction (F,T,C) w.rt. policy P = {[a,b] | 0 < a <b<a+ N <
2" — 1}, where n is the depth of the underlying GGM tree, -y is a constant integer, and X is the maximum
range size, is correct.

Proof. We will prove that all conditions of Definition 2 are satisfied. Condition 1 can be easily seen to
be satisfied by the definition of the set of states Stpj. Moreover, since R(7) = Stpy, conditions 2, 3.(i)
and 3.(ii) are directly satisfied by the description of algorithm C' and because the size of range r (which
determines the number of values conforming to the range policy predicate) is upper bounded by A7 which
is a polynomial. Therefore, it remains to prove that condition 3.(iii) is satisfied. Based on our description on
C, it is apparent that the algorithm computes exactly the PRF values of the leaves covered by the subtrees
corresponding to the partial PRF values included in 7 by algorithm 7'. Hence, it suffices prove that the labels
of these leaves are exactly [a, b].

Let t = max{i | a; # b;}. Also, let V1, V3 be the sets of arguments of the PRF values that are computed
in Lines 3-13 and 14-21 of algorithm T, respectively. If V5, = (), then the input range is exactly covered by

12



a single subtree (checks in lines 3 and 4 are true) and V; = [a, b]. Otherwise, it holds that

Vl:{$€[0,2n_1]‘wn_l"'qft:an_l"'at/\
ANFi<t:[z;=1ANa;=0]Vez=a)}=
:{x€[0,2n_1]|a§$§an_lat11}

= [a,anfl"‘atl"'l]

Similarly, we get that Vo = [b,,—1 - - - b0 - - - 0, b]. Observe that, by the definition of ¢, a; = 0 and b, = 1.
Thus, it holds that a,—1---a;l---1+ 1 = by_1---b0---0. This means that [a,b] = V7 U V4, which
concludes our proof.

We next discuss the trapdoor size complexity in BRC. Let V1, V5 defined as previously. Then, |V3| +
|Va| = r. We will analyze | V1| (the analysis for V5 is similar). Observe that, in every step in Lines 3-13,
the algorithm covers more than ||V;]/2] values of Vi with a maximal subtree of the sub-range defined by
V1. Tteratively, this means that the algorithm needs no more than log(r) maximal subtrees to cover the entire
sub-range of ;. Consequently, the total number of elements in 7 is O(log(r)).

We have explained the correctness of BRC and its efficient trapdoor size. We also prove its security
in Section 4.3. However, BRC does not satisfy policy privacy, even for non-intersecting policy pred-
icates. We illustrate with a simple example using the tree from Figure 2. Consider ranges [2,7] and
[9, 14], both with size 6. The trapdoors generated for these ranges are (((fx(001),1), (f%(01),2)) and
((fx(101),1), (fx(1001),0), (fx(110),1), (fx(1110),0)), respectively. Clearly, these trapdoors are distin-
guishable due to their different sizes. This motivates our second DPRF construction presented in the next
sub section.

4.2 The URC Construction

Consider again the ranges [2, 7] and [9, 14] in the tree of Figure 2, for which BRC generates two distinguish-
able trapdoors, <<(fk<001)7 1)7 (fk(()l)ﬂ 2)) and <(fk(101>7 1)7 (fk(lOOI)ﬂ O)v (fk(110)7 1)7 (fk(1110)7 O))?
respectively. Instead of computing the trapdoor of [2, 7] as above, assume that we generate an alternative
trapdoor equal to ((fx(010), 1), (fx(0010),0), (fx(011),1), (fx(0011),0)). Observe that this trapdoor ap-
pears to be indistinguishable to that of [9, 14]; indeed, the two trapdoors have the same number of elements,
the first parts of their elements are all partial PRFs, whereas their second parts (i.e., the depths) are pairwise
equal. This suggests that, we could achieve policy privacy, if we could devise a trapdoor algorithm 7" such
that, for any range predicate of a fixed size r it always generates a trapdoor with a fixed number of elements
and a fixed sequence of depths. More simply stated, the algorithm should produce uniform trapdoors for
ranges of the same size. The challenge is to design such an algorithm retaining the logarithmic trapdoor size
of BRC. Next, we present our second DPRF construction, called uniform range cover (URC), which enjoys
the efficiency of BRC and the union policy privacy property.

URC builds upon BRC. In particular, it starts by producing a trapdoor as in BRC, and then modifies it
to generate a uniform trapdoor for the given range r. Before embarking on its detailed description, we must
investigate some interesting properties of the trapdoors of BRC, and provide some important definitions.
Recall that a trapdoor in BRC is a sequence of elements, where the first part is a (full or partial) PRF value,
and the second is a depth value.

Definition 5 Let r be an integer greater than 1. A pair of non-negative integral sequences D = ((k1,. .., ke),
(l1,...,1q)) is called a decomposition of T if the following hold:

13



(i) Yiog 25+ 35 20 =
(ii) k1 > > keandly > --- > 1y

A decomposition of 1 D = ((ki1,...,ke), (l1,...,1q)) is a worst-case decomposition (w.c.d.) of r if it
is of maximum size, ie., for every decomposition of r D' = ((ky,..., kL), (I{,...,1})), we have that
d +d < c+d. Wedefine Mp = max{ki, 1} as the maximum integer that appears in D.

By the description of algorithm 7" in BRC for fixed range size r, the depths in the trapdoor can be
separated into two sequences that form a decomposition of r, unless the input range is exactly covered by
a single subtree. Each sequence corresponds to a set of full binary subtrees of decreasing size that cover
leaves in the range predicate. The usage of the worst case decomposition will become clear soon.

The following lemma shows that the maximum integer that appears in any decomposition of r and,
hence, the maximum depth of a subtree in a cover of a range of size r, can have just one of two consecutive
values that depend only on 7.

Lemmal Let D = ((ky,...,k.),(l1,...,1q)) be a decomposition of r. Define B(r) = [log(r + 2)] — 2.
Then Mp € {B(r), B(r) + 1}. In addition, if Mp = B(r) + 1 then the second largest value is less than
Mp.

Proof. By the two properties of D, we have that

c d
r= 2N 4 ) ol <oty ohtl g <
i=1 j=1
< 2Mp¥2 _ 9 o 9MDF2 > L 0 = Mp > B(r).

Since 2B(M+2 > olog(r+2) ~ ;. > 9k1 4 911 we have that the maximum value Mp € {ki1,11} is less than
B(r) + 2 and k1, [; cannot be both equal to B(r) + 1.

By Lemma 1, the trapdoor that is generated by BRC for a range P = [a, b] of size | Ap| = r, even if this
trapdoor corresponds to a w.c.d. of r, consists of at most |{0, ..., B(r)}|+[{0,...,B(r)+1}| =2B(r)+3
pairs. Hence, the trapdoor size is O(log(r)), which complies with the bound we described in Section 4.1.
Moreover, since |Ap| < A7, every trapdoor has no more than 2[log(A\Y 4 2)] — 1 pairs.

Observe that two trapdoors with depths that form the same decomposition appear indistinguishable.
Moreover, we have proven that a trapdoor following a w.c.d. retains the logarithmic size in r. Therefore,
our goal for the trapdoor algorithm 7" in URC is to construct a converter that takes as input a BRC trapdoor,
and produces an alternative trapdoor that complies with a fixed w.c.d. Before proceeding to the details of 7',
we must prove the following vital theorem.

Theorem 2 Let D = ((ki,...,k.),(l1,...,1lq)) be a decomposition of r. Then all the elements in{0, ..., Mp}
appearin D iff D is a w.c.d. of r.

Proof. Assume that the implication does not hold and let = be the maximum integer in {0, .. ., Mp} that does
not appear in D. Since z < Mp, x+1isin{0,..., Mp}. Assume w.l.o.g. that [; = = + 1. If x > k1, then
the decomposition of r, ((z, k1, ..., k), (I, ..., lj—1,2,1j41,...,1q)), is of greater size than that of D. If

i = min{7 | < k;}, then the decomposition of r, ((k1, ..., ki, T, kix1, ..., ke), (L, -+, lim1, 2, L, - -+, La)),
is of greater size than that of D. Both cases contradict to the hypothesis, hence, x must appear in D.

14



For the converse, let D' = ((k{,...,k.),(l},...,l},)) be a w.c.d. of 7. Then the integers 0, ..., Mp
appear in D’. By Lemma 1, all integers O, ..., B(r) appear in D and D’. By removing the integers

0,...,B(r) from D and D’, the remaining integers are y; > ... > ys and 21 > ... > z, respectively.
Since an integer cannot appear more than twice in a decomposition of r and, by Lemma 1, the maximum
possible value B(r)+ 1 cannot appear more than once, we have that y1, ..., ys and 21, . . ., z; are sequences

of distinct integers s.t. > ;_; 2¥i = 25‘:1 2% . Assume that there exists a minimum index p < ss.t. y, # 2,
and that w.1.o.g y, > z,. Then we have the contradiction

izyi N e =
=1

1<p i<p
t s
SIS SRS S
i<p i>p j=1 i=1
Thus, {y1,...,ys} and {z1, ..., 2;} are equal, and therefore D is a w.c.d. of r.

A consequence of Theorem 2 and Lemma 1 is that, for every integer » > 1, a w.c.d. of r is a proper
rearrangement of the integers that appear in the w.c.d. of  where the first sequence is (B(r), ..., 0) and the
second sequence is the remaining integers in the decomposition in decreasing order. We term this unique
w.c.d. as the uniform decomposition of r. The main idea in URC is to always generate a trapdoor that
complies with the uniform decomposition of 7.

We are ready to describe algorithm 7" in URC, whose pseudocode is provided below.

The Trapdoor Generation Algorithm 7Tygrc
Input: a,b: 0<a<b<a+ A" <2" —landk € {0,1}}
Output: Trapdoor 7 for computing the PRFs for [a, b]

1. Invoke Tgrc(a, b, k) and receive the output 7
2. if 7 consists only of pair (y, d) then
3. T <(G0<y)’d_1>7(G1(y>7d_1)>
4. LetT = ((y1,d1)s-- -, (Yn,dm)) and
D = ((dy,...,de),(det1,---,dm)) be the
corredponding decomposition of r = b —a + 1
5. while there is a maximum integer x in {0, ..., Mp} that
does not appear in D:
6.  Find the rightmost pair (y;, 2 + 1) and compute values
y) = Go(yi). yi = G1(yi)
7.  Remove (y;, x + 1) from 7, insert the pairs
(y?, ) and (y}, z) in T respecting the strictly decreasing
order and update D accordingly
8. if the leftmost sequence of D is not (B(r),...,0) then

9. Fill leftmost sequence with values from rightmost
sequence until it complies with uniform decomposition of r
10. return 7

The process starts with invoking the T" algorithm of BRC to get an initial trapdoor 7 (Line 1). If the input
range is covered by a single subtree, then 7 is reformed into two pairs that correspond to the child subtrees,

15



so that the dephs in 7 always form a decomposition (Lines 2,3). Let D be the decomposition implied by
7 (Line 4). The loop in Lines 5-7 utilizes Theorem 2 and works as follows. It finds the highest depth z
that does not exist in D, and “splits” the partial PRF value y; in the rightmost pair in 7 with depth = + 1,
producing two new partial PRF values with depth z, i.e., ¥ = Go(y;) and y! = G1(y;). (Line 4). Note that
these values correspond to the two children of the subtree of y;. Thus, if we substitute element (y;, z + 1)
by (v?, ), (y}, =) in 7, then the trapdoor can still produce the same leaf PRF values as before. However, at
all times we wish the sequence of depths in 7 to form a decomposition. Hence, after removing (y;, « + 1),
we appropriately insert (y?, z) in the left pair sequence and (y;, ) in the right pair sequence of 7 (Line
7). Upon termination of the loop, all the values in {0, ..., Mp} appear in D and, thus, we have reached a
w.c.d. according to Theorem 2. The process concludes, after properly re-arranging the elements of 7, such
that they comply with the unique uniform decomposition of  (Lines 8,9). This is done deterministically, by
simply filling the missing depths from {0, ..., B(r)} in the left sequence with the unique appropriate pair
that exists (by Theorem 2) in the right sequence.

In our running example, for the range [2, 7], the T" algorithm in URC converts the original token retrieved
by the trapdoor algorithm of BRC, 7 = ((fx(001), 1), (fx(01),2)), as follows (we underline a newly in-
serted element to the left sequence, and depict as bold a newly inserted element to the right sequence):

<(fk(001)7 1)7 (fk(()l)? 2)>
!
<(fk(0010)70)7 (fk(01)72)7 (fk(0011)70)>
!
<(fk(01o)a 1)> (fk(()OlO)? O)a (fk(Oll)a 1)a (fk(()Oll)v 0)>

The C algorithm of URC is identical to BRC, because the trapdoor in URC has exactly the format
expected by this algorithm, i.e., pairs of PRF values corresponding to GGM subtrees along with their depths.
Moreover, during the evolution of the initial BRC trapdoor into one of uniform decomposition in the 7'
algorithm of URC, a partial PRF value y is substituted by two new PRF values that can generate the same
leaf PRF values as y. As such, the correctness of the BRC scheme is inherited in URC. Finally, due to
Lemma 1, the size of a w.c.d. (and, hence, also a uniform decomposition) of 7 is O(log(r)), which means
that the trapdoor size in URC is also O(log(r)).

4.3 Security

In this section we prove the security of BRC and URC. Both proofs rely on the security of the pseudorandom
generator of the underlying GGM construction. Note that the security proof does not follow straightfor-
wardly from the GGM proof because contrary to the case of GGM where the adversary obtains only leaf
PRFs, the adversary in a DPRF can obtain also partial PRF values in the GGM tree (via trapdoor queries).
Note that the tree structure of a trapdoor (which is independent of k) for a range predicate P of size r is
deterministic and public in both BRC and URC. Thus, when querying the oracle in the security game, the
adversary can map the partial or full PRF values appearing in 7 for a selected P to subtrees in the GGM tree.
Based on this observation, we prove first the security of BRC against adversaries that query only subtrees,
or equivalently prefixes for strings in {0, 1}", where n is the depth of the GGM tree. We call this type of
security subtree security. We conclude our proofs by showing that the subtree security of BRC implies the
security of both schemes.

In order to prove the subtree security property of BRC, we insure and exploit the subtree security for
two special cases. First, we consider the case that the adversary is non-adaptive, i.e., it poses all its queries
in advance.

16



Lemma 2 The BRC scheme with depth n and maximum range size \7 is subtree secure against PPT adver-
saries that make all their queries, even the challenge query, non-adaptively.

Proof. Let A be a non-adaptive prefix-only PPT adversary against a BRC scheme with depth n and max-
imum range size A7. Without loss of generality we assume that .4 always advances to step 3 (submits a
challenge to the challenger).

We define recursively two sequences of PPT algorithms A = A,,,..., A1 and S,,, ..., S as follows.

Fori =n—1,...,1, A; on input 1?, initially invokes .4; receiving all of its non-adaptive queries,
and chooses a random value k" in {0, 1}*. If a query z; - - - 24 has the same most significant bit (MSB) as
the challenge query, A; makes the query x;_1 - - - ¢, and responds with the received value y. Otherwise, it
responds with the value G, (- - - (G, _, (k))). It returns A;41’s output.

For i = n,...,1, oninput (29, z;) € {0,1}?*, S; invokes .A; and receives all of its queries. For every
query z;_i - - - &, it responds with G, (- - - (G, 5 (24, ,))) (or 2z, for i = 1). On the challenge phase, it
flips a coin b and acts as the challenger in a DPRF security game with A;. It returns 1 iff A; returns b.

We denote by ¢; and p; the probability that .S; outputs 1 when it receives its input from the uniform
distribution Uy in {0, 1}?* and the pseudorandom distribution G(U) ), respectively. By the definition of S;,
Pn = Pr[gg“EC(l’\) = 1] while ¢; < 1/2, since it corresponds to a totally random game.

We observe that A4,,_1,...,.4; behave like attackers against the subtree security of BRC schemes with
respective depths n — 1,...,1. The behavior of A; as an attacker is the same as A;;1’s, when the latter
interacts with a modified challenger that replaces the two possible partial PRF values for the MSB of a
prefix, with two random values. Thus, following the previous notation, we have that p; = ¢;41. Since
G(U,) and Uy are indistinguishable, it holds that |p; — ¢;| < €;(\), where €;(+) is a negligible function. We

also have
n n n
lpn — 1] = \Z(pz‘ —q)| < Z Ipi — qi] < Zei()\),
i1 i1 i1

hence Pr[Get (1Y) = 1] = p, < q1 +n-€(X) < 1/2 4+ n - €(\), where €(\) = max{e;(\)}.

We use the above lemma to prove the security of a special category of BRC schemes, where the max-
imum range size is at least half of A = [0,2" — 1], which represents the biggest interval where range
predicates are defined. This will serve as a stepping stone for designing our final security proof.

Lemma 3 The BRC scheme with depth n and maximum range size X" is subtree secure if 2"~ < \V < 27,

Proof. Let A be a prefix-only adversary. We construct a non-adaptive prefix-only adversary I3 for the subtree
security game that on input 1* chooses randomly a challenge z* in [0, 2" — 1] and makes the n queries that
cover all the possible values except from z*. Namely, B makes queries (z),_; & 1),...,(z;_; -z &
1),...,(z}_---x{ & 1) and submits challenge x*. It receives responses y,_1, . .., yo respectively, along
with y* which is the response to z*. Then, it invokes .4 and plays the security game with .4, as a challenger
that can respond approprietly for every value that is not x* or a range that does not contain x*. If A4 sets
x* as a challenge, then B responds with y*, and returns 4’s guess. Otherwise, .4 has either made a query
which is a prefix of z*, or it has submitted a challenge different than x*, so B terminates the game it plays
with A and returns a random bit, as its guess to its challenge.

Let E be the event that 3 guesses A’s challenge, i.e. A’s challenge is x*. By the description of B we
have that

Pr[GE (1N =1A-E]=1/2-(1—-1/2") and
Pr(Géec (1Y) = 1 A E] = 1/2" - PrGépc (1Y) = 1].

17



Since B is non-adaptive, by Lemma 2 we get that for some negligible function €(-), Pr[G&.(1*) = 1] <
1/2 + e(A). By adding the above equations we have that

1/2" - (Pr[Gebc(1) = 1] — 1/2) + 1/2 < 1/2 + €(N),

50, Pr[GeLc(12) = 1] < 1/2 42" - (X)) < 1/2 4207 - €(N).
We now apply Lemma 3 to prove the subtree security of BRC.

Lemma 4 The BRC scheme with depth n and maximum range size X" is subtree secure.

Proof. See Appendix A.
Finally, we prove that the subtree security of BRC implies the security of BRC and URC.

Theorem 3 The BRC and URC schemes with depth n and maximum range size X7 are secure.

Proof. Let A be a PPT adversary that wins the DPRF security game of either BRC or URC with non-
negligible advantage «(-). As noted in the beginning of this section, any query A makes, can be rep-
resented as a sequence of O(log(\Y)) subtrees, or equivalently of O(log()\Y)) prefixes. Thus, we can
construct a prefix-only adversary A’ that invokes A and when it receives a query sequence (3:711_1 e x%l,

c,xt - xph) from A, it makes all prefix queries separately, receives yi,...,Ym, and answers by
(Y1, Ym). A also transfers A’s challenge and outputs its guess. Therefore, it wins the DPRF secu-

rity game with advantage «/(+), which contradicts Lemma 4.

4.4 Policy Privacy

This section analyzes the policy privacy of URC. According to the lower bound argument we gave in Sec-
tion 3, URC cannot be expected to satisfy the general policy privacy property, because it is efficient. We
illustrate this explicitly with a toy example. For challenge ranges [2, 5] and [4, 7], the trapdoors will contain
PRF values corresponding to subtrees covering the ranges as [2,3], {4}, {5} and [4,5], {6}, {7}, respec-
tively. Therefore, the adversary can issue query for leaf 4 and receive a PRF value y. Having ((y1, 1),
(y2,0), (y3,0)) as challenge trapdoor, it can check whether yo = y, which happens only when [2, 5] was
chosen by the challenger.

Nevertheless, in the theorem below we prove that URC achieves union policy privacy. The above attack
is circumvented as in the union policy privacy game, the adversary cannot obtain a PRF value for a leaf in
the intersection of the challenge ranges, i.e., for 4 and 5.

Theorem 4 The URC scheme with depth n and maximum range size \" is a DPRF with union policy
privacy.

Proof. See Appendix A.

S Applications
In this section we discuss interesting applications of the general DPRF primitive and our specialized range

constructions. We stress, though, that their applicability is not limited to these scenarios; we are confident
that they can capture a much wider set of applications.

18



Authentication and access control in RFID. Radio Frequency Identification (RFID) is a popular technol-
ogy that is expected to become ubiquitous in the near future. An RFID rag is a small chip with an antenna.
It typically stores a unique ID along with other data, which can be transmitted to a reading device lying
within a certain range from the tag. Suppose that a trusted center (TC) possesses a set of RFID tags (at-
tached to books, clothes, etc), and distributes RFID readers to specified locations (e.g., libraries, campuses,
restaurants, etc.). Whenever a person or object carrying a tag lies in proximity with a reader, it transmits its
data (e.g., the title of a book, the brand of a jacket, etc.). The TC can then retrieve these data from the RFID
readers, and mine useful information (e.g., hotlist books, clothes, etc.).

Despite its merits, RFID technology is challenged by security and privacy issues. For example, due to
the availability and low cost of the RFID tags, one can easily create tags with arbitrary information. As such,
an adversary may impersonate other tags, and provide falsified data to legitimate readers. On the other hand,
a reader can receive data from any tag in its vicinity. Therefore, sensitive information may be leaked to a
reader controlled by an adversary. For example, the adversary may learn the ID and the title of a book stored
in a tag, match it with public library records, and discover the identity and reading habits of an individual.

Motivated by the above, the literature has addressed authentication and access control in RFID. A
notable paradigm was introduced in [30], which can be directly benefited by DPRFs. At a high level,
every tag is associated with a key, and the TC delegates to a reader a set of these keys (i.e., the reader is
authorized to authenticate and access data from only a subset of the tags). The goal is for the TC to reduce
certain costs, e.g., the size of the delegation information required to derive the tag keys while maintaining a
high number of distinct keys in order to ensure that attacks can be compartmentalized.

Observe that a DPRF (F, T, C) is directly applicable to the above setting. F is defined on the domain
of the tag IDs, and its range is the tag keys. Given a delegation predicate on the tag IDs, the TC generates
a trapdoor via algorithm 7', and sends it to the reader. The latter runs C' on the trapdoor to retrieve the tag
keys. In fact, for the special case where the access policy is a range of IDs, the delegation protocol sug-
gested in [30] is identical to the non-private BRC scheme (we should stress though that [30] lacks rigorous
definitions and proofs). Range policies are meaningful, since tag IDs may be sequenced according to some
common theme (e.g., books on the same topic are assigned consecutive tag IDs). In this case, a range policy
concisely describes a set of tags (e.g., books about a certain religion) and, hence, the system can enjoy the
logarithmic delegation size of BRC. However, as explained in Section 4, BRC leaks the position of the IDs
in the tree, which may further leak information about the tags. Although [30] addresses tag privacy, it pro-
vides no privacy formulation, and overlooks the above structural leakage. This can be mitigated by directly
applying our policy-private URC construction for delegating tag keys to the readers. To sum up, DPRFs
find excellent application in authentication and access control in RFIDs, enabling communication-efficient
tag key delegation from the TC to the reader. Moreover, policy-private DPRFs provide a higher level of
protection for the tag IDs against the readers.

Batch queries in symmetric searchable encryption. Symmetric searchable encryption (SSE) [11, 24]
enables queries to be processed directly on ciphertexts generated with symmetric encryption. Although SSE
is a general paradigm, here we focus on the definitions and schemes of [11]. Previous works support the
special case of keyword queries, and provide an acceptable level of provable security. The general framework
underlying [11] is as follows. In an offline stage, a client encrypts his data with his secret key k, and uploads
the ciphertexts c to an untrusted server. He also creates and sends a secure index I on the data for efficient
keyword search, which is essentially an encrypted lookup table or inverted index. Given a keyword w, the
client generates a query token 7,, using k, and forwards it to the server. It is important to stress that this
“trapdoor” is merely comprised of one or more PRF values computed on w with k, which were used as
keys to encrypt I. For simplicity and w.l.0.g., we assume that 7,, is a single PRF value. The server uses

19



Tw on I and retrieves the IDs of the ciphertexts associated with w. The results ¢y, . . ., ¢, are retrieved and
transmitted back to the client, who eventually decrypts them with his key. The security goal is to protect
both the data and the keyword from the server.

Suppose that the client wishes to search for a batch of N keywords wy, ..., wy. For instance, the client
may ask for documents that contain multiple keywords of his choice (instead of just a single one). As another
example, assume that the client’s data are employee records, and each record contains a salary attribute that
takes as values intervals of the form [iK, (i + 1)K] (i.e., instead of exact salaries). These intervals can serve
as keywords in SSE search. Suppose that the client wishes to retrieve records with salaries in a range of
intervals, e.g., [1K, 10K]. Observe that this cannot be processed with a single keyword query (no record
is associated with [1K, 10K]). To overcome this while utilizing the SSE functionality, the client can ask 9
distinct queries with keywords “[1K, 2K]”, “[2K, 3K]”, ..., “[9K, 10K]”, which cover the query range [1K,
10K]. Such scenarios are handled with “traditional” SSE as shown in Figure 3(a). Given a predicate P that
describes the keywords wq, . . ., wy in the batch query, the client generates IV trapdoors 7, , . . . , Ty, USING
the standard SSE trapdoor algorithm, and sends them to the server. The server then searches I with every
Tw; following the SSE protocol. Apparently, for large /N, the computational and communication cost at the
client is greatly impacted.

Client Server
T’LU1 9 9 TwN
Trapdoor +| Search [~1.¢
k, P ) Cly.-.,Cm

(a) “Traditional” SSE

Client Server I,c
e N e -
T plws s Twn
| T —| O h > Search
|
| DPRF T .
k,P ) C1, , Cm

(b) SSE augmented with DPRFs

Figure 3: Batch keyword query processing in SSE

We can augment the discussed SSE framework with DPRF functionality, in order to support batch
queries with sublinear (in N) processing and communication cost at the client, while providing provable
security along the lines of [24]. Figure 3(b) illustrates our enhanced SSE architecture. Recall that 7,

20



is practically a PRF on w; produced with key k. Therefore, instead of computing a PRF value for every
w; himself, the client delegates the computation of these PRF values to the server by employing a DPRF
(F,T,C), where F is defined over the domain of the keywords. Given predicate P and k, the client runs 7'
and generates trapdoor 7, which is sent to the server. The latter executes C' on 7 to produce T, , . .., Ty, -
Execution then proceeds in the same manner as in “traditional” SSE. Observe that, for the special case of
ranges, if URC is used as the DPRF, the computational and communication cost at the client decreases from
O(N) to O(log(N)). This transformation would work “out of the box™ in combination to any SSE scheme
that uses a PRF for creating tokens.

The above framework can be proven secure against adaptive adversaries along the lines of [11]. The
most important alteration in the security game and proof is the formulation of the information leakage of the
C algorithm of the DPRF. In particular the level of keyword privacy that is provided by the construction is
dictated by the level of policy-privacy that is attained by the underlying DPRF. Specifically, given a DPRF
with multi-instance policy-privacy, it is easy to show that the same level of keyword privacy as in [11] can
be attained. Weaker notions of policy privacy (such as single-instance or union) result in correspondingly
weaker notions of keyword privacy. For instance, recall that union policy privacy ensures indistinguishability
of queries not intersecting with previously asked queries. Thus, combining PRF-based SSE with our URC
construction will provide this level of keyword privacy. Given the lower bound arguments for tree-wise
constructions we sketched in Section 3, the privacy loss incurred by this tree-based design is the unavoidable
cost for the exponential efficiency improvement in client to server communication. Efficient constructions
attaining higher level of policy privacy might be feasible but they will have to follow a non tree-base design
paradigm.

Broadcast encryption. In a broadcast encryption scheme, cf. [14, 31, 32] a sender wishes to transmit data
to a set of receivers so that at each transmission the set of receivers excluded from the recipient set can be
chosen on the fly by the sender. In particular this means that the sender has to be able to make an initial key
assignment to the recipients and then suitably use the key material so that only the specific set of users of its
choosing can receive the message. In such schemes it was early on observed that there is a natural tradeoff
between receiver memory storage and ciphertext length (e.g., see lower bounds in [26]). The intuition behind
this is that if the receivers have more keys this gives to the sender more flexibility in the way it can encrypt
a message to be transmitted.

In the above sense one can think of the key assignment step of a broadcast encryption scheme as a PRF
defined over the set ® which contains all distinct subsets that the broadcast encryption scheme assigns a
distinct key. Given this configuration the user u will have to obtain all the keys corresponding to subsets
S € @ for which it holds that u € S (we denote those subsets by S, C ®). In DPRF language this would
correspond to a delegation policy for a PRF: users will need to store the trapdoor that enables the evaluation
of any value in the delegated key set S,.

Seen in this way, any DPRF is a key assignment mechanism for a broadcast encryption scheme that saves
space on receiver storage. For example our construction for ranges gives rise to the following broadcast en-
cryption scheme: receivers [n] = {1,...,n} are placed in sequence; each receiver u € [n] is initialized with
the trapdoor for a range [u — ¢, u + t] for some predetermined parameter ¢ € Z. In this broadcast encryption
scheme the sender can very efficiently enable any range of receivers that is positioned at distance at most
t from a fixed location v € [n]. This is done with a single ciphertext (encrypted with the key of location
v). Any receiver of sufficient proximity ¢ to location v can derive the corresponding decryption key from its
trapdoor. Furthermore, given the efficiency of our construction, storage on receivers is only logarithmic on
t. While the semantics of this scheme are more restricted than a full-fledged broadcast encryption scheme
(which enables the sender to exclude any subset of users on demand) it succinctly illustrates the relation be-

21



tween broadcast encryption and DPRF; further investigation in the relation between the two primitives from
a construction point of view will be motivated by our notion. Specifically, an efficient DPRF with domain
® over a policy set P = {S,, | u € [n]} will provide an efficient key assignment for a broadcast encryption
scheme operating over ®. Interestingly, the reverse is also true and a broadcast encryption scheme with
efficient key assignment will provide a DPRF with domain ® and the policy set {S,, | u € [n]}.

Regarding policy privacy, it is interesting to point out that this security property is yet unstudied in
the domain of broadcast encryption. A different privacy notion [3, 13, 25] was considered that deals with
the structure of ciphertexts in such schemes. Our policy privacy on the other hand deals with the privacy
of memory contents from the receiver point of view. Maintaining the indistinguishability of the storage
contents is a useful security measure in broadcast encryption schemes and our DPRF primitive will motivate
the study of this security property in the context of braodcast encryption (note that none of the tree-like
key-delegation methods used in broadcast encryption schemes prior to our work satisfy policy privacy).

6 Conclusion

We have introduced the concept of delegatable pseudorandom functions (DPRFs), a new cryptographic
primitive that allows for policy-based computation at an untrusted proxy of PRF values without knowledge
of a secret or even the input values. We provided formal definitions of the core properties of DPRFs for (1)
correctness, the ability of the proxy to compute PRF values only for inputs that satisfy a given predicate,
(2) security, the standard pseudorandomness guarantee but against a stronger adversary that also issues
delegation queries, and (3) policy privacy, preventing leakage of the secret preimages of the computed PRF
values. Moreover, we presented two DPRF constructions along with a comprehensive analysis in terms of
their security and privacy guarantees and some inherent trade-offs with efficiency. Our proposed DPRFs are
generic, yet practical, based on the well-understood and widely-adopted GGM design framework for PRFs
and, as we showed, they find direct application in many key delegation or derivation settings providing
interesting new results. Further exploration of DPRFs holds promise for new interesting results. Open
problems include: Designing DPRFs for other classes of predicates, establishing upper and lower bounds
on the connection between efficiency and policy privacy, and studying applications in other settings.

References

[1] M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra computations. In Proceedings
of the 5th ACM Symposium on Information, Computer and Communications Security, ASTACCS ’10,
pages 48-59, New York, NY, USA, 2010. ACM.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Trans. Inf. Syst. Secur., 9(1):1-30, Feb. 2006.

[3] A. Barth, D. Boneh, and B. Waters. Privacy in encrypted content distribution using private broadcast
encryption. In Financial Cryptography, pages 52—64, 2006.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In
Proceedings of the 31st annual conference on Advances in cryptology, CRYPTO’11, pages 111-131,
Berlin, Heidelberg, 2011. Springer-Verlag.

[5] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In
EUROCRYPT, pages 127-144, 1998.

22



[6] A.Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature schemes for delegation of signing
rights. Journal of Cryptology, 25:57-115, 2012. 10.1007/s00145-010-9082-x.

[7] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. JACR Cryptol-
ogy ePrint Archive, 2013:352, 2013.

[8] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. [ACR
Cryptology ePrint Archive, 2013:401, 2013.

[9] R. Canetti, B. Riva, and G. N. Rothblum. Practical delegation of computation using multiple servers.
In ACM Conference on Computer and Communications Security, pages 445-454, 2011.

[10] K.-M. Chung, Y. T. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homo-
morphic encryption. In CRYPTO, pages 483-501, 2010.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In CCS, 2006.

[12] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In S. Vaudenay,
editor, Public Key Cryptography - PKC 2005, volume 3386 of Lecture Notes in Computer Science,
pages 416-431. Springer Berlin / Heidelberg, 2005.

[13] N. Fazio and I. M. Perera. Outsider-anonymous broadcast encryption with sublinear ciphertexts. In
Public Key Cryptography, Lecture Notes in Computer Science. Springer, 2012.

[14] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO, pages 480-491, 1993.

[15] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In ACM Conference on Computer and Communications Security, pages 501-512,
2012.

[16] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom
functions. In TCC, pages 303324, 2005.

[17] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792—
807, 1986.

[18] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for
muggles. In STOC, pages 113-122, 2008.

[19] M. Green and G. Ateniese. Identity-based proxy re-encryption. [ACR Cryptology ePrint Archive,
2006:473, 2006.

[20] S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic computations. In
Proceedings of the Second international conference on Theory of Cryptography, TCC’05, pages 264—
282, Berlin, Heidelberg, 2005. Springer-Verlag.

[21] G.Itkis. Handbook of Information Security, chapter Forward Security: Adaptive Cryptography—Time
Evolution. John Wiley and Sons, 2006.

[22] A.-A.Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS, 2003.

23



[23] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and
secure computation of set intersection. In Proceedings of the 6th Theory of Cryptography Conference
on Theory of Cryptography, TCC *09, pages 577-594, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In CCS,
2012.

[25] B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption: Adaptive security and
efficient constructions in the standard model. In Public Key Cryptography, Lecture Notes in Computer
Science. Springer, 2012.

[26] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In EUROCRYPT, pages
512-526, 1998.

[27] A. Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh separation. In
CRYPTO, pages 597-612, 2002.

[28] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing operation. In Proceed-
ings of the 3rd ACM conference on Computer and communications security, CCS *96, pages 48-57,
New York, NY, USA, 1996. ACM.

[29] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS, pages 120-130,
1999.

[30] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseudonym protocol enabling own-
ership transfer of rfid tags. In Proceedings of the 12th international conference on Selected Areas in
Cryptography, SAC’05, pages 276290, Berlin, Heidelberg, 2006. Springer-Verlag.

[31] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In
CRYPTO, pages 41-62, 2001.

[32] M. Naor and B. Pinkas. Efficient trace and revoke schemes. Int. J. Inf. Sec., 9(6):411-424, 2010.

[33] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: verifiable compu-
tation from attribute-based encryption. In Proceedings of the 9th international conference on Theory
of Cryptography, TCC’12, pages 422-439, Berlin, Heidelberg, 2012. Springer-Verlag.

Proof of Lemma 4

By Lemma 3, it suffices to show for the case that \Y < 2"~!. This is definitely the interesting case, since
2™ is normally superpolynomial in A. Let A be a prefix-only adversary against BRC that makes at most
q()\) queries (including the challenge) and d be the minimum integer that \Y < 2¢. We construct a PPT
PRF distinguisher B that makes oracle queries of fixed size n’ = n — d > 1. On input 1%, B flips a coin b,
invokes .4 and initializes a security game, itself being the challenger. By the bound on the size of the ranges,
all queries of A have length greater than n’.Thus, for every query x,,_1 - - - x4, we have that t < d and B
responds by making a query x,,_1 - - - ¢4, which is of length n/, receiving a value y and answering to A as
Gz, (- (Gg,_,(y))). When A submits a challenge, 55 acts as a normal challenger according to the coin flip b
utilizing its oracle to determine the value up to level d as above. Finally, B returns 1 iff A returns b. Clearly,

24



when B’s oracle is a PRF fj, of length n/, B returns 1 iff A wins, i.e Pr[Gét (1) = 1] = Pr[Bfr()(1*) = 1].
Since f is a PRF, we have that for some negligible function €(-),

|Pr[Ggkc (1) = 1] — PeBRO (1Y) = 1]] < €(N). (1)

Consequently, we construct a prefix-only adversary A against a BRC with depth d and maximum range
size \7 as follows: A mvokes A and chooses a random index j € [¢()\)] and ¢(\) — 1 random values
ki,....kj—1,kj+1, ... e {0,1}*. Index j reflects A’s attempt to guess which of all of possible
different prefixes of length n that will appear in A’s queries will be the one that a prospective challenge
query will have. Then A keeps count of the different prefixes of length n’ that gradually appear and reacts
to a query x,,—1 - - - ; according to the following checks:

(i). Tp_1---xqis the i-th prefix and ¢ # j: A responds with G, (- - - (Ga,_, (k:))).

(i1). xp—1 - - x4 is the j-th prefix: if all of the queries made by A that have the j-th prefix, along with

Tp—1--- x4, cover the whole subtree with root prefix x, 1 --- x4, T}, then A terminates the game
with A and chooses a leaf z4_1 - - - zp of T} that has not been covered by A’s previous queries. It
submits z4_1 - - - 29 as its challenge and returns a random bit. Otherwise, A makes query ry_q--- Ty
and responds with the received value y.

(iii). t =0and z,,—1 - - - xg is A’s challenge: if z,_1 - x4 is not the j-th prefix, then A terminates the
game with A4, chooses a leaf z4_1 - - - zg of T} not yet covered by A’s queries, submits zq_; - - - 29 as
its challenge and returns a random bit. Otherwise, it submits challenge z4_1 - - - zg, receives value y*
and responds with y*.

If A does not terminate the security game with A, then it returns A’s guess. By the choice of d, 24-1 <
A7 < 24 hence Lemma 3 implies that A has negligible distinguishing advantage. Thus for some negligible
function 4(+),

Pr(Gstc(1)) = 1] < 1/2 + (). @)
By the description of A, the interaction between A and B in the case that B’s oracle is random is fully

simulated by A when the latter’s guess for the prefix of A’s challenge is correct. Formally, E be the event
that A guesses .A’s challenge. Then it holds that

Pr[BRO (1Y) = 1] = Pr[gA (1)) = 1|E]. 3)
By the description of A and (3) we have that
Pr(Gétc(1M) = 1A-E] =1/2- (1 —1/q(\)) and
Pr{Ggtc(1Y) = 1A B] = 1/g(\) - Pr[BRO (1) = 1],
where we used that Pr[E] = 1/¢(\). Therefore,
PriGgtc(1Y) = 1] = 1/2 4+ 1/g(\) - (Pr[BEO (1Y) = 1] - 1/2),

so by applying (2) we get
Pr[BRO (1Y) = 1] < 1/2+ q(\) - 6(N). (4)

Finally, by (1) and (4) we conclude that
Pr(Gebc(1*) = 1] < 1/2+¢(A) - 6(A) +¢(A) =
= 1/2 + negl(N).

25



Proof of Theorem 4

Let A be a PPT adversary that wins the union policy privacy game with non-negligible advantage «(-). Let
Py, Py be the two challenge ranges and b the chosen random bit, hence A receives the challenge trapdoor
7, for P,. Denote each element of a decomposition D as (z,L) or (z,R), if it is integer = and belongs
to the leftmost or rightmost sequence of D respectively. Define the ordering <p over the elements of
D as follows: (z,L) <p (y,R) or (z,R) <p (y,L), if x < y and (z,L) <p (z,R). We define a
sequence of hybrid games Gg'(1%),...,G#(1*), where N is the maximum size of a trapdoor output by
Turc- As shown in section 4.2, N = 2[log(A\7 4+ 2)] — 1. The game G; is executed as the original game
g{,‘PP (1*) during the pre-challenge and the post-challenge phase. Assume the pairs of the challenge trapdoor
Ty are arranged according to the ordering determined by the decomposition formed by the depths. The only
modification in g;“(l’\) is that in the first ¢ pairs of 73, the partial PRF values are the same as 7,’s, while all
the other elements are replaced by random values in {0, 1}*. In 964(1’\), the challenge trapdoor consists of
a number of pairs of random values attached to certain integers, independently of the choice of b. Therefore,
Pr[Gg'(1") = 1] = 1/2. Since G (1*) is the UPP game, it holds that

Pr(GR(1%) = 1] = Pr[Gg' (1Y) = 1] > a(N).

Let E, be the event that the size of the challenge ranges |Ap, |, | Ap, | that A submits is r. Then for some
challenge bit b € {0,1} and r € [A7]:

Pr[GH(1Y) = 1AbA B, — Pr[Get(1Y) = 1AD A E] > a(N)/2\7,

which implies that there exists an ¢ € [A\?] such that

Pr[GA(1N =1 AbAE,]—

5
—Pr[GA, (1) =1AbAE] > a(N)/2NX. ©)

We will show that for these fixed b, r, i, we can construct an adversary .A; for the security game of a BRC
construction with depth that has non-negligible winning advantage. The main idea is that .4; invokes .4 and
simulates either G; or G;_1 on selected challenge P, of size r depending on the value of the challenge bit b;
for the security game gg‘gc(ﬂ).

On input 1%, A; computes the uniform decomposition of r, U,., and arranges its elements according
to <y,. Let u; be the integer that appears in the i-th element of U,. The BRC that 4; attacks has depth
n — u;. Specifically, A; invokes A and answers all of its pre-challenge queries as follows: for each query
Tn—1-- Xy, iIf £ > uy, it just transfers the query, receives value ¥, and responds with y. Otherwise, it makes
qQUEry Tp—1 - - Ty, receives value y, and responds with Gy, (- - (G, _,(y))). In the challenge phase, if
|Ap,| # r, then A; terminates the game with A, chooses a valid random challenge, and returns a random
bit. Otherwise, it makes ¢ — 1 queries and computes the <y, -first ¢ — 1 partial delegation keys y1, ..., yi—1
of 7, as in the pre-challenge phase, and sets the string z;, _; - - - xy,. that corresponds to the i-th partial key as
its challenge, receiving y*. Note that since A is restricted from making queries within Ap, U Ap,, it makes
no queries with prefix zy_; ---xy,, thus A;’s challenge is valid. It arranges the values y1,...,¥;i—1,y"
according to the order that 7, imposes and “fills” the |U,.| — ¢ remaining positions of an array like trapdoor
7, with |U,| — 4 pairs consisting of random values from {0, 1}* along with the corresponding depths. It
returns 73 to A and answers to A’s post-challenge queries as in the pre-challenge phase. If A returns b, then
A; returns 1, otherwise it returns a random bit.

26



The probability that 4; wins the security game is

[QSEc( ) 1] = PT[QSEc( ) =1A-E]+
+Pr[gSEC( M =1AE, Ab; = 1]+ (6)
+Pr[gSEC( M =1AE, Ab; =0].

It holds that Pr[GZ (1) = 1 A ~E,] = 1/2- (1 — Pr[E,]).

For the other two terms in the right part of (6), we observe that when b; = 1, A; simulates G; when b
and F, occur, whereas when b; = 0, A; simulates G;_; when b and F, occur. Therefore, by the description
of A; we have that

PriGeic (1) = 1A B Aby=1] =
=1-Pr[G1(1") = 1ADA E ]+
+1/2-Pr[Gir (AN A#1ADAE,] =
=1/2-Pr[bA E,]+1/2-Pr[G(1Y) = 1AbA E,)).

and
[gSEC( MN=1AE ANb;=0] =
=0-Priga(1") = 1AbAEJ+
+1/2-Pr[GA, (1Y) #1AbAE,] =
=1/2-Prb A E,] —1/2-Pr[GA, (1Y) = 1A b A E,.

By the independency of b and E,., we have that Pr[bA E,.] = 1/2-Pr[E,]. Thus, we evaluate Pr[QSEC (1M =
1] according to (6) as

Pr(GgEc (1Y) =1] = 1/2+1/2- (Pr[G (1Y) = 1 AbA E,]—
—Pr[GA, 1N =1ADAE,]).

Therefore by (5), Pr[QSEC( M) =1] > 1/2 + a()\)/4N X7, which contradicts Theorem 3.

27



	Introduction
	Related Work
	Definitions
	Constructions
	The BRC Construction
	The URC Construction
	Security
	Policy Privacy

	Applications
	Conclusion

