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Abstract

In BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the
development of T helper 2 (Th2) responses and the production of interleukin (IL)-4 and IL-13, which share a common
receptor subunit, the IL-4 receptor alpha chain (IL-4Ra). While IL-4 is the main inducer of Th2 responses, paradoxically, it has
been shown that exogenously administered IL-4 can promote dendritic cell (DC) IL-12 production and enhance Th1
development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on
DCs during in vivo infection, DC specific IL-4Ra deficient (CD11ccreIL-4Ra-/lox) BALB/c mice were generated by gene targeting
and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional
characterization showed abrogated IL-4Ra expression on dendritic cells and alveolar macrophages in CD11ccreIL-4Ra-/lox

mice. Following infection with L. major, CD11ccreIL-4Ra-/lox mice became hypersusceptible to disease, presenting earlier and
increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2
antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11ccreIL-4Ra-/lox mice
was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the
brain. DCs showed increased parasite loads in CD11ccreIL-4Ra-/lox mice and reduced iNOS production. IL-4Ra-deficient DCs
produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19
and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that
abrogation of IL-4Ra signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and
increased survival of parasites in infected DCs due to reduced killing effector functions.
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Introduction

Leishmania spp. are protozoan parasites that are transmitted by

Phlebotomus spp. sandflies and can cause several forms of disease in

humans, ranging from localized cutaneous lesions to visceral

Leishmaniasis, where parasites invade internal organs such as the

spleen and liver. The incidence of disease is approximately 1.5

million per annum for cutaneous Leishmaniasis, and 500 000 per

annum for visceral Leishmaniasis, which is usually fatal if left

untreated [1]. Currently there is no vaccine. To identify correlates

of immune protection, which may aid in vaccine design and

therapeutic strategies, experimental models of cutaneous Leish-

maniasis have been established in which disease is induced by

infecting mice subcutaneously with L. major. Susceptible BALB/c

mice show progressive lesion development with dissemination of

parasites to visceral organs, while resistant C57BL/6 mice are able

to control infection and heal lesions [2–4]. Lack of healing in

BALB/c mice is associated with a T helper (Th) 2 response

characterized by secretion of interleukin (IL)-4, IL-5, IL-9 and IL-

13 [3,5–8], high anti-Leishmania antibody titres [8,9] and

alternative activation of macrophages [9,10]. In contrast, resistant

C57BL/6 mice develop protective Th1 responses with production

of IL-12 and IFN-c, associated with classical activation of

macrophages and killing of parasites by effector nitric oxide

production [9,11–14]. IL-4 and IL-13, both of which signal

through a common receptor chain, the IL-4 receptor alpha (IL-

4Ra) are known to be important susceptibility factors in L. major

infection [3,6,8,15,16]. Both BALB/c and C57BL/6 mice secrete

IL-4 early after infection however, production of IL-4 is sustained

in susceptible BALB/c mice and transient in resistant C57BL/6
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mice [17,18]. It appears that resistant mouse strains redirect the

early Th2 response in an IL-12-dependent mechanism, while in

susceptible mice the Th2 response persists and dominates the

disease outcome by suppressing effector mechanisms needed for

parasite killing [3].

While IL-4 is the primary inducer of Th2 responses [19],

paradoxically it has also been shown that IL-4 promotes IL-12

production by bone marrow-derived dendritic cells (BMDCs)

stimulated with CpG or LPS [20–23]. Furthermore, administra-

tion of 1 mg of recombinant IL-4 at 0 and 8 hours after infection

with L. major led to increased IL-12 mRNA expression by dendritic

cells (DCs) in vivo, promoted Th1 responses and rendered mice

resistant to infection [21]. It has also been shown that global

abrogation of IL-4Ra renders mice resistant to L. major only in the

acute phase of infection, with mice continuing to develop necrotic

footpad lesions during the chronic phase [15]. However, specific

abrogation of IL-4Ra on CD4+ T cells does lead to resistance,

indicating a protective role for IL-4Ra signalling on non-CD4+ T

cells [24].

A candidate for this protective role may therefore be DCs.

These sentinels of the immune system are specialized antigen-

presenting cells, proficient at uptake of antigen, migration to the

lymph nodes (LN) and activation of lymphocytes. Consequently,

they play a critical role in the initiation and differentiation of the

adaptive immune response [25,26]. To investigate the role of IL-

4Ra signaling on DCs in resistance to Leishmania, CD11ccreIL-

4Ra-/lox mice, deficient in IL-4Ra signaling on DCs, were

generated and infected with L. major LV39 and IL81 strains.

CD11ccreIL-4Ra-/lox mice were hypersusceptible to both strains of

L. major, with increased footpad swelling and necrosis and

substantially increased parasite burdens in peripheral organs,

including the brain. Hypersusceptibility in CD11ccreIL-4Ra-/lox

mice was associated with an upregulation of Th2 responses,

impairment in iNOS production by macrophages and inflamma-

tory DCs and increased parasite loads in LN and spleen DCs.

Therefore, it is clear that IL-4Ra signaling has important effects

on DC phenotype during cutaneous L. major infection, and is

necessary to avoid rapid disease progression in the host. This study

therefore expands our knowledge on the role of dendritic cells

during cutaneous Leishmaniasis and on the effects of IL-4Ra
signaling on dendritic cells.

Results

Generation and characterization of CD11ccreIL-4Ra-/lox

mice
Mice expressing cyclization recombinase (Cre) under control of

the cd11c locus [27] were backcrossed to BALB/c for 9

generations, then intercrossed with global IL-4Ra (IL-4Ra-/-)
[15] BALB/c mice to generate CD11ccreIL-4Ra-/- BALB/c mice.

These mice were subsequently intercrossed with floxed IL-4Ra
(IL-4Ralox/lox) BALB/c mice (exon 6 to 8 flanked by loxP) [28] to

generate CD11ccreIL-4Ra-/lox BALB/c mice (Figure 1A).

CD11ccreIL-4Ra-/lox mice were identified by PCR genotyping

(Figure 1B). Analysis of IL-4Ra surface expression on different cell

types by flow cytometry demonstrated that IL-4Ra was efficiently

depleted in DCs of the lymph nodes, spleen, skin and lungs, when

compared with IL-4Ra-/lox littermate controls and IL-4Ra-/- mice

(Figure 1C). As expected CD11c+ alveolar macrophages also had

abrogated IL-4Ra surface expression. Other cell types such as T

cells, B cells and macrophages had comparable IL-4Ra expression

to IL-4Ra-/lox littermate controls. Cre-mediated IL-4Ra deletion

in DCs was confirmed at the genomic level by performing PCR for

IL-4Ra exon 8 (absent in IL-4Ra-deficient cells) normalized to IL-

4Ra exon 5 (present in all cells) using DNA from CD11c+MHCII+

DCs sorted from the spleens of naı̈ve mice (Figure 1D).

To assess functional impairment of DCs in CD11ccreIL-4Ra-/lox

mice, we generated bone marrow-derived dendritic cells and

stimulated them with LPS in the presence or absence of IL-4 or

IL-13. IL-4 is known to enhance DC production of IL-12 in an IL-

4Ra dependent manner, so called ‘‘IL-4 DC instruction’’ [21–23].

As expected, BMDCs derived from IL-4Ra-/lox mice and BALB/c

wildtype controls had significantly increased IL-12 production

after the addition of IL-4 (Figure 1E). In contrast, LPS/IL-4

stimulated BMDCs derived from CD11ccreIL-4Ra-/lox mice or

from global IL-4Ra-/- mice showed similar levels of IL-12 to those

stimulated with LPS alone, with IL-4 having no effect. This

demonstrates functional impairment of IL-4Ra signaling on DCs

from CD11ccreIL-4Ra-/lox mice. In fact, after the addition of LPS

alone, BMDCs with a functional IL-4Ra already showed a trend

towards increased IL-12p40 levels, suggesting that endogenous

levels of IL-4 found in the culture could influence these BMDCs.

IL-13 did not increase levels of IL-12, confirming previous DC

stimulation studies [22]. As previously reported [29], IL-4 and IL-

13 had no significant effect on BMDC maturation, as shown by

similar expression of MHCII, CD86, CD80, CD83 and CD40

(data not shown). Total yield of BMDCs per precursor cell seeded

was similar in CD11ccreIL-4Ra-/lox mice and littermate controls

and survival after maturation was not significantly different (data

not shown).

CD11ccreIL-4Ra-/lox mice are hypersusceptible to acute L.

major infection
In order to investigate the role of IL-4Ra signaling on DCs

during cutaneous Leishmaniasis, CD11ccreIL-4Ra-/lox mice were

infected subcutaneously with 26106 stationary phase metacyclic

promastigotes of L. major LV39 (MRHO/SV/59/P; Figure 2A, 2B

and 2C) or with a more virulent GFP-expressing L. major IL81

(MHOM/IL/81/FEBNI; Figure 2D, 2E and 2F) strains into the

hind footpad. As previously shown [15,24], C57BL/6 mice and

IL-4Ra-/- deficient BALB/c mice controlled lesion development

Author Summary

Leishmaniasis is a parasitic infection caused by protozoan
parasites of Leishmania species and is transmitted by the
sandfly. Disease in humans ranges from localized cutane-
ous lesions to disseminated visceral Leishmaniasis. Mouse
models of Leishmania major infection have demonstrated
that a ‘‘healing’’ response in C57BL/6 mice requires the
secretion of protective T helper (Th) 1 cytokines, including
IFN-c, which mediates parasite killing by inducing nitric
oxide production. Conversely, ‘‘non-healer’’ BALB/c mice
are unable to control infection and develop a Th2 immune
response characterized by the production of IL-4 and IL-13
cytokines. Although IL-4 is the main inducer of Th2
responses, it has been shown that IL-4 can instruct
dendritic cell (DC)-derived IL-12 production and Th1
development if administered during DC activation. To
further investigate the role of DCs, a DC specific IL-4Ra-
deficient mouse model was established. L. major studies
demonstrated hypersusceptibility to infection and strik-
ingly increased parasite loads in peripheral organs of mice
lacking IL-4Ra on DCs. Moreover, increased parasite
burdens were observed in host cells, including DCs, which
showed reduced killing effector functions. In summary, this
study demonstrates that IL-4Ra-mediated instruction of
DCs occurs in vivo and is necessary to avoid rapid
progression of disease in the host.

IL-4Ra Deficient DCs in Cutaneous Leishmaniasis
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during acute infection with both L. major strains (Figure 2A and

2D), which correlated with low parasite numbers in infected

footpads (Figure 2B and 2E) and draining lymph nodes (Figure 2C

and 2F). Susceptible WT BALB/c and IL-4Ra-/lox littermate

control mice developed progressive footpad swelling after infection

with both strains (Figure 2A and 2D), with increased parasite

burdens in the infected footpads (Figure 2B and 2E) and draining

LN (Figure 2C and 2F). Hemizygous (IL-4Ra-/lox mice) had

slightly reduced footpad swelling compared to BALB/c mice in

IL81 infection. The greater virulence of IL81 is reflected in more

rapid disease progression, with footpad swelling and parasite

burden reaching similar levels by 4 weeks to those obtained with

LV39 in 8 weeks. Of importance, CD11ccreIL-4Ra-/lox mice were

hypersusceptible to acute L. major infection compared to hetero-

zygous littermate controls and BALB/c mice, showing consider-

ably worsened disease progression when infected with either strain

(Figure 2A and 2D), with earlier and dramatically larger footpad

lesions, and development of early necrosis (Figure 2A and 2D).

Increased disease progression was accompanied by significantly

higher parasite numbers in the footpads (Figure 2B and 2E) and

LN (Figure 2C and 2F) of infected animals. In addition, infection

with a 10-fold lower dose of L. major LV39 also resulted in a

hypersusceptible phenotype in CD11ccreIL-4Ra-/lox mice (Sup-

plementary Figure S1 A–C). Histopathological analysis of

CD11ccreIL-4Ra-/lox footpads at week 4 after infection with the

virulent IL81 revealed severe destruction of epidermis, connective

tissue and bone as a result of footpad necrosis, accompanied by

increased inflammatory infiltrates and a high load of extracellular

L. major amastigotes (Figure 2G). In contrast, infected footpads of

IL-4Ra-/lox revealed moderate dermal inflammatory infiltrates

with mostly intact epidermis, connective tissue and bone.

Together, these data reveal that IL-4Ra signaling on DCs play

an important role in host protection against acute L. major

infection.

A shift towards Th2 responses in CD11ccreIL-4Ra-/lox

BALB/c mice
Th1/Th2-type responses were investigated in CD11ccreIL-

4Ra-/lox mice and controls during acute cutaneous leishmaniasis

(IL81). Antigen-specific restimulation of CD4+ T cells sorted from

the LN of infected mice and co-cultured with fixed antigen-

presenting cells and soluble Leishmania antigen (SLA) revealed a

significantly reduced IFN-c response in CD11ccreIL-4Ra-/lox mice

in comparison to the resistant C57BL/6 or IL-4Ra-/- strains as

well as to the susceptible IL-4Ra-/lox littermate controls

(Figure 3A). Conversely, the levels of IL-4, IL-13 and IL-10 were

significantly higher in CD11ccreIL-4Ra-/lox mice compared to IL-

4Ra-/lox, IL-4Ra-/- and C57BL/6 mice (Figure 3B, 3C and 3D).

The observed shift in cytokine responses was confirmed in LN

cells, stimulated with anti-CD3 or SLA (data not shown) and

systemically in the quality of Leishmania-specific antibody immune

responses. Sera of week 4 infected mice revealed a predominant

type 1 antibody response in IL-4Ra-/- mice, as shown by elevated

levels of Leishmania-specific IgG2a (Figure 3E). In contrast,

CD11ccreIL-4Ra-/lox mice displayed a predominant type 2

antibody response shown by marked production of IgG1 and

total IgE, which was significantly higher than that observed in

littermate IL-4Ra-/lox mice (Figure 3F and 3G). A shift towards

Th2-type responses also occurred in CD11ccreIL-4Ra-/lox mice in

a 10-fold lower dose L. major LV39 infection (Supplementary

Figure S1 D–H).

As IFN-c-induced nitric oxide synthase (iNOS) production by

classically activated macrophages (caMphs) is a key control

mechanism in L. major infection [14], the activation state of

macrophages was determined in the infected footpad at week 4

after infection. Inflammatory macrophages (CD11b+MHCII+

CD11c2) from CD11ccreIL-4Ra-/lox mice had significantly

reduced iNOS expression compared to those of littermate IL-

4Ra-/lox control mice (Figure 3H). Conversely, expression of

arginase 1, a marker of alternatively activated macrophages

(aaMphs), was higher in macrophages of CD11ccreIL-4Ra-/lox

mice (Figure 3I). This altered phenotype was confirmed in iNOS

and arginase activity assays performed on total footpad cells

stimulated with LPS (Figure 3J and 3K). Together, these results

demonstrate a shift towards Type 2 responses and reduced

macrophage effector functions in CD11ccreIL-4Ra-/lox mice.

CD11ccreIL-4Ra-/lox mice have increased parasite loads in
peripheral organs
In L. major LV39 infection, parasites were present only in

footpads and the draining lymph nodes at week 3, whereas by

week 8 parasites had disseminated to the spleen and liver in both

CD11ccreIL-4Ra-/lox mice and littermate controls (Figure 4A and

4B). Parasite burdens were much higher in the organs of infected

CD11ccreIL-4Ra-/lox mice, compared to littermate control mice.

Moreover, in some CD11ccreIL-4Ra-/lox mice, but not in control

mice, L. major parasites had disseminated as far as the brain by

week 8 after infection (Figure 4B). Similar disease progression was

observed after infection with L. major IL81 (Figure 4C), where

CD11ccreIL-4Ra-/lox mice already displayed noticeable spleno-

megaly at 4 weeks post infection (data not shown), and had

strikingly increased parasite burdens in all organs analyzed,

including the brain (Figure 4C). Histological analysis confirmed

the increased presence of disseminated parasites in the spleen and

liver of CD11ccreIL-4Ra-/lox mice (IL81, week 4), as shown by the

high load of extracellular L. major amastigotes (spleen) and the

prevalence of inflammatory foci and leishmanial bodies in

mononuclear cells (liver) (Figure 4D). The presence of parasites

in brains of perfused CD11ccreIL-4Ra-/lox mice (IL81, week 4) was

also confirmed by confocal microscopy (Figure 4E). Parasites were

not visible in the brains of littermate controls (data not shown).

These results demonstrate a drastic increase in numbers of

disseminated parasites in peripheral organs of infected

CD11ccreIL-4Ra-/lox mice. Although it has been reported that

dissemination could occur within hours after high-dose parasite

inoculation [30], infection with GFP+ L. major IL81 and analysis by

flow cytometry demonstrated that GFP+ parasites was not

detectable in the spleen at 1 or 3 days post infection, whereas at

Figure 1. Generation and characterization of CD11ccreIL-4Ra-/lox BALB/c mice. (A) IL-4Ra-/- BALB/c mice were intercrossed with CD11ccre

expressing and IL-4Ralox/lox mice to generate CD11ccreIL-4Ra-/lox BALB/c mice. (B) Genotyping of CD11ccreIL-4Ra-/lox mice. The deleted IL-4Ra PCR is
471 base pairs, loxP is 450 base pairs (floxed) or 356 base pairs (wildtype) and CD11ccre specific is 517 base pairs. (C) IL-4Ra surface expression was
analyzed by flow cytometry from naı̈ve IL-4Ra-/lox (solid line), IL-4Ra-/- (dashed line) and CD11ccreIL-4Ra-/lox (grey tinted) mice. DCs were
CD11c+MHCII+ (SiglecF2 in lungs), alveolar macrophages were CD11c+SiglecF+, peritoneal macrophages were F480+CD11b+, B cells were CD19+CD32

and T cells were CD3+CD192. GM=geometric mean. (D) Genomic DNA was extracted from spleen DCs and IL-4Ra exon 8 (deleted in IL-4Ra deficient
cells) was determined by RT-PCR and normalized to exon 5 (present in all cells). (E) Bone marrow-derived DCs were stimulated with LPS in the
presence of absence of IL-4 or IL-13 and IL-12p40 was measured in the supernatants 48 hours later. (*, p,0.05, **, p#0.01.
doi:10.1371/journal.ppat.1003699.g001
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week 4 there was an increase in GFP+ cells compared to day 0

(Supplementary Figure S2).

IL-4Ra-deficient DCs are infected in LN and spleen at
week 4 after L. major IL81 infection and have impaired
killing effector functions
In order to determine if dendritic cells could harbor L. major

parasites, GFP-expressing L. major parasites (IL81) were used to

track infected cell populations in different organs by flow

cytometry at different time-points (day 3, day 7 and week 4) after

infection. Parasite replication occurred in GFP+ cell populations

that were sorted and plated out for limiting dilution assays,

indicating that GFP positivity was a good marker for viable

parasites associated with cells (Supplementary Figure S3). At day 3

after GFP-L. major IL81 infection, plasmacytoid DCs (pDCs),

macrophages and neutrophils had infiltrated the infected footpad

(Figure 5A). By 4 weeks post infection, numbers of infiltrating

cells had increased substantially, with conventional DCs (cDCs)

also now present in high numbers (Figure 5B). The number of

infiltrating cells was significantly higher in CD11ccreIL-4Ra-/lox

mice compared to IL-4Ra-/lox mice (Figure 5B). At the early time

point in FP, macrophages were infected with GFP+ Leishmania,

with similar numbers in CD11ccreIL-4Ra-/lox mice and littermate

controls (Figure 5C). This was in contrast to the draining lymph

node, where conventional and plasmacytoid DCs were infected,

with higher numbers of DCs infected in CD11ccreIL-4Ra-/lox

mice compared to controls (Figure 5D). Similar results were

obtained at day 7 post-infection (data not shown). At week 4 post

infection, the footpad harbored a pool of infected cells, namely

macrophages, cDCs and neutrophils (Figure 5E), while in the

Figure 2. CD11ccreIL-4Ra-/lox mice are hypersusceptible to cutaneous L. major infection. Mice were infected with L. major LV39 (MRHO/SV/
59/P) (A to C) or with the more virulent GFP-expressing L. major IL81 (MHOM/IL/81/FEBNI) parasite strain (D to F). Footpad swelling was measured at
weekly intervals in mice (5 per group) infected subcutaneously with 26106 stationary phase metacyclic L. major promastigotes into the hind footpad
(A and D). ‘‘N’’ indicates necrosis or ulceration/mouse. Parasite burden was determined by limiting dilution of single-cell suspensions from
homogenized footpads at 8 (B) or 4 week (E) after infection as well as from draining lymph nodes at 8 (C) or 4 week (F) after infection. At week 4 after
infection (IL81), formalin-fixed footpads (G) were stained with Giemsa for histopathology (original magnification640; asterisks indicate inflammatory
foci and insets, arrows indicate amastigote parasites 6800). A representative of two individual experiments is shown with mean values 6SEM.
Statistical analysis was performed defining differences to IL-4Ra-/lox mice as significant (*, p#0.05, **, p#0.01; ***, p#0.001).
doi:10.1371/journal.ppat.1003699.g002
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draining lymph node, the cDCs were still infected compared to

the other cell types (Figure 5F). Again the number of infected

DCs was significantly higher in CD11ccreIL-4Ra-/lox mice

(Figure 5E and 5F) compared to littermate controls. However,

overall numbers of DCs infiltrating the LN at week 4 after L.

major IL81 infection were similar in both CD11ccreIL-4Ra-/lox

mice and littermate control mice (data not shown), suggesting

that differences in parasite killing and not DC migration were

responsible for the increased number of infected DCs in

CD11ccreIL-4Ra-/lox mice.

Figure 3. T helper 2 immunity is enhanced in hypersusceptible CD11ccreIL-4Ra-/lox mice in response to acute L. major IL81 infection.
Experimental mice were infected subcutaneously with 26106 stationary phase metacyclic GFP-expressing L. major IL81 promastigotes into the hind
footpad (A–D). At week 4 post infection, total CD4+ T cells from the draining lymph node were restimulated for 72 hrs with fixed APCs and soluble
Leishmania antigen (SLA). The production of IFN-c (A), IL-4 (B), IL-13 (C) and IL-10 (D) was determined by ELISA. (E–G) Antigen-specific IgG2a (E), IgG1
(F) and total IgE (G) antibody production was quantified from infected sera by ELISA. (H–I) Expression of iNOS and arginase 1 in total footpad cells.
Total cells were isolated from footpads at week 4 after infection, surface-stained for CD11bhighMHCIIhighCD11c2 macrophages followed by
intracellular staining for iNOS (H) and arginase 1 (I). GM=geometric means. (J–K) Production of NO and arginase 1 in total footpad cells. Total cells
were isolated from footpads at week 4 after infection and stimulated with 10 ng/ml LPS for 72 h. Production of NO was determined in cell
supernatants (J) and cell lysates were assayed for arginase 1 production (K). A representative of two individual experiments is shown with mean
values 6SEM. Statistical analysis was performed defining differences to IL-4Ra-/lox mice as significant (*, p#0.05, **, p#0.01; ***, p#0.001).
doi:10.1371/journal.ppat.1003699.g003
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Infected DCs were also found in the spleen, with significantly

increased numbers of infected cells in CD11ccreIL-4Ra-/lox mice

compared to controls (Figure 6A). However, overall numbers of

DCs infiltrating the spleen were also increased to a similar degree

in both CD11ccreIL-4Ra-/lox mice and littermate controls at week

4 (data not shown), again suggesting that differences in parasite

Figure 4. Impairment of IL-4Ra signaling in vivo results in increased L. major parasite loads in peripheral organs. CD11ccreIL-4Ra-/lox and
littermate mice were infected subcutaneously with 26106 stationary phase metacyclic L. major (L. m LV39) promastigotes into the hind footpad.
Parasite load was determined by limiting dilution assay (LDA) of single-cell suspensions from homogenized footpad, lymph node, spleen, liver and
brain at week 3 (A) and week 8 (B) after infection. Similarly, organs were harvested from mice infected with GFP-expressing L. major (L. m IL81) at
week 4 after infection for limiting dilution assay (C). At the same time point, histopathology was analysed using formalin-fixed spleen and liver (D)
stained with H&E and Giemsa, respectively (original magnification6100; asterisks indicate inflammatory foci and insets, arrows indicate amastigote
parasites6800). Frozen brain sections (E) were stained with Hoechst nuclear stain (blue) and visualized by confocal microscopy for the presence of
GFP-L. major amastigote parasites (original magnification6400). A representative of two individual experiments is shown with mean values 6SEM.
Statistical analysis was performed defining differences to IL-4Ra-/lox mice (*, p#0.05, **, p#0.01, ***, p#0.001).
doi:10.1371/journal.ppat.1003699.g004

IL-4Ra Deficient DCs in Cutaneous Leishmaniasis

PLOS Pathogens | www.plospathogens.org 7 October 2013 | Volume 9 | Issue 10 | e1003699



killing and not DC migration were responsible for the increased

parasite loads in CD11ccreIL-4Ra-/lox mice. Although it is well

known that iNOS-mediated NO production in classically-activat-

ed macrophages drives intracellular killing of L. major parasites, a

recent study has now implicated a population of iNOS+ –

producing inflammatory DCs in controlling Leishmania infection

[31]. We therefore examined iNOS production by DCs in

CD11ccreIL-4Ra-/lox and littermate control mice using intracellu-

lar FACS. In hypersusceptible CD11ccreIL-4Ra-/lox mice, a

significantly reduced percentage of CD11chighMHCIIhigh DCs

produced iNOS compared to DCs from IL-4Ra-/lox littermate

control mice (Figure 6B). This was confirmed at the level of

intracellular NO expression, which was also reduced in DCs from

CD11ccreIL-4Ra-/lox mice (Figure 6C). Together, these data

demonstrate that DCs from CD11ccreIL-4Ra-/lox mice have

reduced NO killing effector functions, further explaining the

increased parasite burdens in the DCs of these mice.

IL-4Ra-deficient DCs have impaired DC instruction during
infection in vivo
Previous studies using BMDCs found that IL-4-mediated

instruction results in reduced IL-10 production that is responsible

for increased IL-12p40 production by DCs upon stimulation with

IL-4 plus CpG or LPS [21,23]. To test whether endogenous

amounts of IL-4 could mediate DC instruction in vivo, CD11ccreIL-

4Ra-/lox mice and controls were infected with L. major IL81. At 4

Figure 5. Cell populations infected with L. major parasites. CD11ccreIL-4Ra-/lox and littermate mice were infected subcutaneously with 26106

stationary phase metacyclic GFP-expressing L. major IL81 promastigotes into the hind footpad. (A–B) Total cells from footpads were analysed for
different cell populations at day 3 (A) and week 4 (B) after infection. (C–F) Number of GFP+ L. major parasites was identified within indicated cell
populations derived from footpad (C, E) and lymph node (D, F) at day 3 and week 4 after infection, respectively. Cell populations were differentiated
based on the following markers; conventional dendritic cells (cDCs; CD11chighMHCIIhigh), plasmacytoid DCs (pDCs; CD11c+PDCA+SiglecH+),
macrophages (Mph; CD11bhighMHCIIhighCD11c2), Eosinophils (Eos; SiglecF+CD11c2), Neutrophils (Neut; GR-1highSSChighFSChigh CD11c2). Data is
expressed as mean 6 SEM. Statistical analysis was performed defining differences to IL-4Ra-/lox mice (*, p#0.05, **, p#0.01, ***, p#0.001).
FP = Footpad and LN= Lymph node.
doi:10.1371/journal.ppat.1003699.g005
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weeks post infection, total LN cells were restimulated with SLA

and cytokines were measured in the supernatant. Lymph node

cells from infected CD11ccreIL-4Ra-/lox mice produced signifi-

cantly reduced IL-12p40 but increased IL-10 compared to

littermate IL-4Ra-/lox mice (Figure 7A). Moreover, intracellular

cytokine staining revealed that DCs from CD11ccreIL-4Ra-/lox

mice produced less IL-12p40 and more IL-10 than those from

littermate IL-4Ra-/lox controls (Figure 7B and Figure S4).

Quantification of mRNA found decreased expression of the

Th1-promoting cytokine genes for IL-12p40 (Figure 7C) and IL-

18 (Figure 7D) in sorted LN DCs from CD11ccreIL-4Ra-/lox mice

compared to controls. In contrast, there was a trend towards

increased mRNA expression of IL-10 as well as significantly

increased mRNA expression of IL-23 and activin A, cytokines

which are involved in inducing Th2 responses by promoting Th17

and alternative activation of macrophages, respectively [32,33]

(Figure 7E–G). In addition, differences in IL-12p70 production

were detected in vitro. L. major/IL-4 stimulated BMDCs derived

from IL-4Ra-/lox mice showed increased IL-12p70 production,

whereas IL-4 had no additive effect on IL-12p70 production in

BMDCs from CD11ccreIL-4Ra-/lox mice (Figure 7H). IL-13 did

not increase IL-12p70 production, as previously shown [22].

Discussion

Understanding mechanisms of immune control in cutaneous

Leishmaniasis is critical for the design of effective therapeutics and

vaccines. Although several studies have clearly established that IL-

4 is a key cytokine in the development of non-healing disease in

BALB/c mice [8,19,34,35], apparently contradictory evidence

also suggests that IL-4 has the ability to instruct protective Th1

responses [21,36–41]. The term ‘‘instruction theory’’ was coined

when IL-4 was found to promote increased production of IL-12 by

BMDCs [20–22]. IL-4, but not IL-13, enhances the production of

IL-12 induced by pathogen products via signalling through the

type 1 IL-4 receptor [21,22]. The mechanism behind instruction

was found to be inhibition of IL-10 by IL-4, leading to higher

levels of IL-12 and increased protective Th1 responses [23].

Several studies also indicate that IL-4 and IL-13 may play a role in

promoting DC maturation [22,42]. However, most in vitro and in

vivo studies on the effects of IL-4 and IL-13 on DCs have been

conducted with exogenously administered IL-4 or IL-13, and thus

the relevance of biological quantities of IL-4 signalling through IL-

4Ra on DCs during disease in vivo has not been demonstrated. To

address these issues, dendritic cell-specific (CD11ccreIL-4Ra-/lox)

BALB/c mice were generated using the cre/loxP recombinase

system under control of the cd11c locus. These mice were found to

have abrogated IL-4Ra expression on DCs and alveolar macro-

phages, with other cell types maintaining IL-4Ra expression and

functioning.

Infection of CD11ccreIL-4Ra-/lox mice with L. major LV39 and

IL81 revealed IL-4Ra signaling on DCs to be highly important in

protection against cutaneous Leishmaniasis. Compared to IL-

4Ra-/lox littermate controls, CD11ccreIL-4Ra-/lox mice showed

dramatically worsened disease progression, with increased footpad

swelling and necrosis, and significantly higher parasite burdens

both locally and in visceral organs such as the spleen and liver. As

expected, genetically resistant C57BL/6 mice effectively controlled

infection, as did global IL-4Ra-/- mice, which have been shown to

be resistant during the acute phase of L. major infection, with

disease progression in the chronic phase only [15,24]. Progressive

disease during L. major infection in BALB/c mice has been

attributed to the predominance of Th2 cytokines and type 2

antibody immune responses [8,9,11], with a previous study by our

laboratory showing that CD4+ T cell specific IL-4Ra deficient

mice were highly resistant to L. major infection [24]. Analysis of

CD4+ T cell cytokine responses in CD11ccreIL-4Ra-/lox mice

revealed a decrease in IFN-c accompanied by a marked increase

in IL-4, IL-13 and IL-10, while increased secretion of IgG1 and

IgE by B cells confirmed a shift towards a Th2-type immune

phenotype. Aside from its role in instruction, IL-10 is known to be

a susceptibility factor for L. major infection, being produced at

higher levels in susceptible BALB/c mice and capable of

suppressing Th1-mediated effector functions [3,43]. In humans,

IL-10 is strongly associated with persistent infection [44].

IFN-c plays an important role in mediating protective immunity

during L. major infection by classically-activating macrophages to

induce nitric oxide synthase-mediated NO production for

intracellular killing of parasites [9,14,45,46]. Latent Leishmaniasis

is reactivated in chronically infected healthy C57BL/6 mice by

inhibition of endogenous NOS-2, indicating that iNOS expression

is crucial for the sustained control of L. major infection [9,31,47].

Induction of iNOS-mediated NO production is counter-regulated

Figure 6. Infected DCs in CD11ccreIL-4Ra-/lox mice have reduced
iNOS production. CD11ccreIL-4Ra-/lox and littermate mice were
infected subcutaneously with 26106 stationary phase metacyclic GFP-
expressing L. major IL81 promastigotes into the hind footpad. (A) At
week 4 after infection, spleens were harvested to analyse number of
GFP+ L. major parasites within the indicated cell populations. Cell
populations were differentiated based on the following markers;
conventional dendritic cells (cDCs; CD11chighMHCIIhigh), plasmacytoid
DCs (pDCs; CD11c+PDCA+SiglecH+), macrophages (Mph; CD11bhighMH-
CIIhighCD11c2), Eosinophils (Eos; SiglecF+CD11c2), Neutrophils (Neut;
GR-1highSSChighFSChigh CD11c2). (B) Percentage of DCs producing iNOS.
Total lymph node cells were surface-stained for CD11chighMHCIIhigh DCs
followed by intracellular staining for percent iNOS-producing DCs. (C)
Histogram plots showing intracellular iNOS expression in CD11chighMH-
CIIhigh DCs. Data is expressed as mean 6 SEM. Statistical analysis was
performed defining differences to IL-4Ra-/lox mice (*, p#0.05, **,
p#0.01).
doi:10.1371/journal.ppat.1003699.g006

IL-4Ra Deficient DCs in Cutaneous Leishmaniasis

PLOS Pathogens | www.plospathogens.org 9 October 2013 | Volume 9 | Issue 10 | e1003699



by IL-4/IL-13 and IL-4Ra, which promote the development of

alternatively activated macrophages and arginase 1 production

through depletion of L-arginine as a substrate for iNOS.

Interestingly, IL-10 has also been shown to suppress intracellular

killing of pathogens in macrophages by suppressing IFN-c

responses [48–50] and can induce an alternatively activated

macrophage type phenotype in the absence of IL-4 and IL-13

[51]. Parasites such as Leishmania can utilize polyamines generated

by arginase 1 activity for their own growth, making alter-

natively activated macrophages a favorable environment for

their survival [52–54]. Accumulating reports have demonstrated

a role for alternative macrophage activation and arginase 1

expression in influencing susceptibility to L. major infection

[7,9,55,56]. LysMcreIL-4Ra-/lox mice which lack IL-4/IL-13

induced alternative activation of macrophages were found to have

increased resistance to infection [9], while neutralization of

endogenous arginase 1 with N-hydroxy-nor-L-arginine leads to

complete healing in BALB/c mice [55].

Macrophages from the footpads of CD11ccreIL-4Ra-/lox mice

were found to have reduced iNOS expression and increased

arginase 1 expression compared to those from littermate control

IL-4Ra-/lox mice, demonstrating a shift in macrophage effector

function most likely as a consequence of increased IL-4, IL-13 and

IL-10. Recently it has been shown that DCs can also become

alternatively activated by upregulating markers such as Ym-1 and

RELM-a after administration of IL-4 [29]. In our study, the data

suggest that IL-4Ra-independent alternative activation of DCs is

also possible, as DCs from CD11ccreIL-4Ra-/lox had decreased

iNOS expression, possibly a consequence of reduced IFN-c and/

or increased IL-10 and activin A, and had higher parasite loads

than those from littermate controls. Previous studies have revealed

that iNOS-producing DCs constitute a major Th1-regulated

Figure 7. Abrogation of IL-4Ra expression in dendritic cells impairs dendritic cell instruction and alters DC phenotype in vivo. Mice
were infected subcutaneously with 26106 stationary phase metacyclic GFP-L. major IL81 promastigotes into the hind footpad. (A) After 4 weeks of
infection, total lymph node cells were restimulated with SLA and production of IL-12p40 and IL-10 was determined by ELISA. (B) Intracellular staining
of IL-12p40 and IL-10 in lymph node dendritic cells following incubation with PMA/Ionomycin/Monensin for 4 h at 37uC. Percent cytokine producing
cells are shown. mRNA expression of IL-12p40 (C), IL-18 (D), IL-10 (E), IL-23p19 (F) and Activin A (G) was determined by real-time RT-PCR from sorted
LN dendritic cells. Expression was normalised against the housekeeping gene HPRT. (H) IL-12p70 production from BMDCs infected with L. major in the
presence or absence of rIL-4 or rIL-13. Culture supernatants were collected after 48 hours to determine IL-12p70 levels by ELISA. Data is expressed as
mean 6SEM. Statistical analysis was performed defining differences to IL-4Ra-/lox mice (*, p#0.05, **, p#0.01, ***, p#0.001).
doi:10.1371/journal.ppat.1003699.g007
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effector cell population and contribute to resistance to infection by

L. major [31], L. monocytogenes [57] and Brucella spp. [58]. The

reduced ability of both macrophages and DCs to initiate NO-

mediated killing of L. major in CD11ccreIL-4Ra-/lox mice is

therefore likely to play a role in the uncontrolled parasite

replication observed both in the footpad and at peripheral sites.

In susceptible BALB/c mice, L. major parasites can disseminate

within 24 hours from the site of infection in the footpad to the

popliteal lymph nodes, spleen, liver, lungs and bone marrow

[30,59]. However, L. major parasites were not detected at early

time points during IL81 infection (day 1 and day 3) but were

detected at week 4, and were also detected at week 8 but not at

week 3 during LV39 infection, suggesting that parasite dissemi-

nation may have occurred at a later stage of infection.

Dissemination is inhibited by the administration of recombinant

IL-12 and resistant mouse strains restrict the spread of the

parasites [30]. While several susceptible mouse strains have been

reported to show some increase in dissemination [60–62],

disseminated parasite loads in CD11ccreIL-4Ra-/lox mice were

unusually dramatic, with relatively higher parasite burdens in the

spleens and footpads compared to other susceptible strains.

Unexpectedly, parasites were even identified within the brain of

some of the CD11ccreIL-4Ra-/lox mice. This suggests that the L.

major parasites managed to cross the immunological blood-brain

barrier, which has only rarely been reported for this cutaneous

strain with very low levels of parasites detected [63]. However,

dissemination of parasites to the central nervous system (CNS) has

been frequently observed in visceral Leishmaniasis in both humans

and dogs [64–67]. It has been suggested that parasites arrive in the

CNS via infected leukocytes [65] and/or disruption to the blood

brain barrier caused by inflammation [67]. Studying the

mechanisms by which other pathogens, such as bacteria, invade

the CNS may lend insights into Leishmania dissemination. Many

intracellular organisms such as Mycobacterium tuberculosis, Listeria

monocytogenes, Brucella spp. and Salmonella spp. appear to make use of

the ‘‘Trojan-horse’’ mechanism, using phagocyte facilitated

invasion for entry into the CNS [68]. After infection with

intracellular pathogens, phagocytes undergo phenotypical chang-

es, such as increased migratory activity and increased expression of

adhesion molecules and proinflammatory cytokines, all of which

could aid in dissemination and crossing of the blood-brain barrier

[68,69]. Whether infected phagocytes are recruited to the CNS by

specific or non-specific means is unknown [69]. In order to

determine which cells were infected by L. major, mice were infected

with GFP-IL81 parasites and cell populations containing parasites

were identified by flow cytometry.

At day 3 and 7 after infection, macrophages harbored L. major in

the footpad, while pDCs and cDCs were found to be infected in

the lymph node. Similar to other reports, this indicates that DCs

were responsible for transporting parasites to the lymph node [70].

At week 4, L. major parasites were still detected in macrophages in

the footpads, as well as in DCs and neutrophils, but in the LN they

were primarily found in DCs. The number of infected DCs in both

footpad and LN was significantly higher in CD11ccreIL-4Ra-/lox

mice. A previous study also reported that DCs were the primary

infected cell population in the draining LN of L. major infected

mice [70]. DCs were also infected with L. major parasites in the

spleen, with CD11ccreIL-4Ra-/lox mice again showing a greater

number of infected DCs. Numbers of DCs infiltrating the LN and

spleen were equivalent in both CD11ccreIL-4Ra-/lox mice and

littermate controls during infection. This suggests that the

increased survival and/or growth of parasites in DCs, as a

consequence of significantly reduced DC iNOS production, was

responsible for the increase in infected cell numbers in

CD11ccreIL-4Ra-/lox mice. Interestingly, a recent study found

that infected DCs, which are monocyte-derived CD11b+ inflam-

matory DCs expressing Ly6C, F480, Ly6G and iNOS, showed a

unique ability to disseminate to peripheral sites in M. tuberculosis

infection [71]. Furthermore, CD11b+Ly6C+ cells were found to be

the principal phagocytic cells harboring L. monocytogenes in

circulation [69,72]. We hypothesize that dendritic cells may

therefore play a role in disseminating L. major parasites to

peripheral sites and that their killing effector responses could be

important in controlling disease.

The reduced Th1 and increased Th2 responses in CD11ccreIL-

4Ra-/lox mice suggests that instruction theory is relevant in vivo,

and more importantly, that biological quantities of IL-4 acting

through DCs can promote resistance to Leishmania infection. DCs

from lymph nodes of CD11ccreIL-4Ra-/lox mice produced more

IL-10 and less IL-12 than those from IL-4Ra-/lox mice.

Quantification of mRNA expression also revealed interesting

differences in DCs from CD11ccreIL-4Ra-/lox mice. Expression of

the Th1-promoting genes for IL-12p40 and IL-18 was decreased

compared to DCs from littermate control mice, while expression

of the Th2-promoting genes for IL-23p19 and activin A were

significantly increased. IL-23 production by DCs has been shown

to promote Th17 [32], leading to increased neutrophils that

enhance susceptibility to L. major by acting as Trojan horses [73].

Activin A is a pleiotropic cytokine belonging to the TGF-beta

superfamily, and has previously been found to promote alternative

activation of macrophages by inducing Arginase 1 and decreasing

IFN-c-induced expression of iNOS [33]. The absence of IL-4Ra
signalling on DCs therefore appears to have a more complex

influence on the dendritic cells than just affecting IL-12 production

during cutaneous Leishmaniasis in vivo.

Dendritic cell instruction may not be restricted to Leishman-

iasis, since other disease models have also demonstrated a

protective role for IL-4. Experimental infections with Candida

albicans in IL-4 deficient mice led to impaired development of Th1

responses [38], and a Th1 promoting effect of IL-4 has also been

observed in autoimmunity [36,40,74], tumor immunity [39,75,76]

and contact sensitivity reactions [41,77]. There is also evidence to

suggest that IL-4 may promote Th1 development in humans, since

both human and mouse DCs produce increased levels of bioactive

IL-12 after stimulation with IL-4 [20]. A similar effect was

observed in human peripheral blood mononuclear cells (PBMCs)

treated with IL-4 plus lipopolysaccharide or Staphylococcus aureus

[78]. Incorporating exogenous IL-4 as an adjuvant for enhancing

strong Th1 responses could therefore be utilised to boost vaccine

efficiency against cutaneous Leishmaniasis. Accordingly, parallel

studies examining the efficacy of IL-4 as an adjuvant during

BMDC-mediated vaccination against L. major, found that IL-4

instruction of DCs was critical in eliciting protective immune

responses [79]. The role of IL-4Ra signalling on DCs in eliciting

immunity to other intracellular pathogens is therefore of interest to

vaccination strategies, and an exciting avenue to be explored.

Materials and Methods

Generation and genotyping of CD11ccreIL-4Ra-/lox BALB/c
mice
CD11ccre mice [27] were crossed with IL-4Ralox/lox BALB/c

mice [28] and complete IL-4Ra-/- BALB/c mice [15] to generate

hemizygous CD11ccreIL-4Ra-/lox mice. Mice were backcrossed

to a BALB/c background for 9 generations to generate

CD11ccreIL-4Ra-/lox BALB/c mice. Hemizygous littermate con-

trols (IL-4Ra-/lox) were used as controls in all experiments. Mice

were genotyped as described previously [28]. All mice were housed
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in specific-pathogen free barrier conditions in individually

ventilated cages. Experimental mice were age and sex matched

and used between 8–12 weeks of age.

Ethics statement
This study was performed in strict accordance with the

recommendations of the South African national guidelines and

University of Cape Town of practice for laboratory animal

procedures. All mouse experiments were performed according to

protocols approved by the Animal Research Ethics Committee of

the Health Sciences Faculty, University of Cape Town (Permit

Number: 009/042). All efforts were made to minimize suffering of

the animals.

Analysis of IL-4Ra deletion efficiency
Genomic DNA was isolated from spleen DCs

(CD11c+MHCII+) sorted using a FACS Vantage flow cytometer

(BD Immunocytometry systems). Purity was determined by flow

cytometry and checked by cytospin and staining with the Rapidiff

Stain set (Clinical Diagnostics CC, Southdale, South Africa) and

was at least 99%. A standard curve was prepared from serial 10-

fold DNA dilutions of cloned IL-4Ra exon 5 and exon 8 DNA and

RT-PCR was performed using the following primers; exon 5:

forward 59 AACCTGGGAAGTTGTG 39 and reverse 59 CA

CAGTTCCATCTGGTAT 39, exon 8: forward 59 GTA-

CAGCGCACATTGTTTTT 39 and reverse 59 CTCGGCGCA

CTGACCCATCT 39.

Flow cytometry
The following antibodies were used for flow cytometry: SiglecF-

PE, CD11c-APC, MHCII-APC, F480-PE, CD11b-FITC, CD3-

FITC, CD19-PE, PDCA-APC, SiglecH-PE, CD11b-PE, CD11c-

PE, CD4-PerCP, CD8-PE, GR-1-PE, CD3-PerCP, anti-CD124-

PE, rat anti-mouse IgG2a-PE, CD11c-biotin, CD103-biotin,

CD124-biotin and rat-anti-mouse IgG2a biotin with streptavi-

din-APC (all BD Bioscience, Erembodegem, Belgium) and

MHCII-biotin with PerCP streptavidin (BD Bioscience). For

intracellular cytokine staining, popliteal lymph node cells from L.

major infected mice were seeded at 26106 cells/well and stimulated

at 37uC for 4 hours with phorbal myristate acetate (Sigma-

Aldrich) (50 ng/ml), ionomycin (Sigma-Aldrich) (250 ng/ml) and

monensin (Sigma-Aldrich) (200 mM) in DMEM/10% FCS.

Dendritic cells were stained with CD11c-PE-Cy7 (BD Bioscience)

and MHCII-APC, fixed and permeabilized, and intracellular

cytokines were stained with anti-IL-10, anti-IL-12 and isotype

controls (BD Bioscience) (all PE-labelled). Cells were acquired on a

FACS Calibur machine (BD Immunocytometry systems, San Jose,

CA, USA) and data were analyzed using Flowjo software

(Treestar, Ashland, OR, USA).

IL-4Ra responsiveness in bone marrow-derived dendritic
cells (BMDCs)
BMDCs were generated from bone-marrow progenitors of

CD11ccreIL-4Ra-/lox and littermate control mice using 200 U/ml

recombinant mouse granulocyte-macrophage colony-stimulating

factor (GM-CSF) (Sigma-Aldrich) as previously described [80]. On

Day 10, non-adherent cells were harvested and 56105 BMDCs

were stimulated with LPS (Sigma-Aldrich; 1 mg/ml) or Leishmania

major IL-81 promastigotes (MOI: 10 parasites/cell) in the presence

or absence of 1000 U/ml recombinant mouse IL-4 or IL-13 (rIL-

4/rIL-13, BD Biosciences) for 48 h. Following incubation, levels of

IL-12p40, IL-12p70 and IL-10 were measured in culture

supernatants by ELISA as previously described [15].

ELISAs
Cytokines in cell supernatants were measured by sandwich

ELISA as previously described [15]. For antibody ELISAs, blood

was collected in serum separator tubes (BD Bioscience, San Diego,

CA). Antigen-specific IgG1, IgG2a and IgG2b were quantified by

ELISA, as previously described [15]. Detection limits were 5 ng/

ml for IgG1 and IgG2b and 0.1 ng/ml for IgG2a and IgG3. Total

IgE was determined as described [15]. The detection limits was

8 ng/ml for total IgE.

Leishmania major infection
L. major LV39 (MRHO/SV/59/P) and GFP-expressing L. major

IL81 (MHOM/IL/81/FEBNI) (kind gift from Prof. Heidrun

Moll, University of Würzburg, Germany) strains were maintained

by continuous passage in BALB/c mice and prepared for infection

as described previously [15]. Anaesthetised mice were inoculated

subcutaneously with 26106 or 26105 stationary phase metacyclic

promastigotes into the left hind footpad in a volume of 50 ml of

HBSS (Invitrogen). Swelling of infected footpads was monitored

weekly using a Mitutoyo micrometer calliper (Brütsch, Zürich,

Switzerland).

Histology
Footpads, spleens and livers were fixed in 4% formaldehyde in

phosphate buffered saline and embedded in wax. Tissue sections

were stained with either haemotoxylin and eosin or Giemsa.

Immunohistochemistry
Following infection of mice with GFP-L. major IL81 parasites for

4 weeks, isolated brain tissue was immediately embedded in OCT

(Tissue-Tek; Sakura, Zoeterwoude, Netherlands) medium. Pre-

fixing of tissues was avoided to minimize background staining from

the fixative. OCT-embedded brain tissue were cut into 10 mm

frozen sections and mounted on 3-aminopropyltriethoxysilane-

coated slides. Following acetone fixation of tissue, sections were

stained with nuclear stain Hoechst. Coverslips were then mounted

on sections using Mowiol 4–88 mounting medium (Calbiochem)

with anti-fade (Sigma). Images were acquired and analyzed by

Ziess LSM 510 confocal microscope (Jena, Germany).

Detection of viable parasite burden
Infected organ and tissue cell suspensions were cultured in

Schneider’s culture medium (Sigma). Prior to removal of mouse

brain tissue for detection of parasite burden, animals were

perfused with 20 ml sterile saline solution. Detection of viable

parasite burden was estimated by two-fold limiting dilution assay

as previously described [15].

Antigen-specific restimulation
CD4+ T cells were positively selected using anti-CD4 MACS

beads (Miltenyi Biotec) according to the manufacturer’s instruc-

tions (purity .95%). Thy1.2-labeled splenocytes were T cell

depleted by complement-mediated lysis to enrich antigen present-

ing cells (APCs). APCs were fixed with mitomycin C (50 mg/ml,

20 min at 37uC) and washed extensively in complete IMDM. A

total of 26105 purified CD4+ T cells and 16105 APCs were

cultured with SLA (50 mg/ml). After 72 h incubation at 37uC,

supernatants were collected and cytokine production analysed as

previously described [28].

Isolation of footpad and spleen cells
Muscle tissue was separated from infected footpads and

digested in DMEM medium supplemented with Collagenase IV
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(Sigman-Aldrich; 1 mg/ml) and DNase I (Sigma-Aldrich; 1 mg/

ml) at 37uC for 60 min. Following incubation, single cell

suspensions were isolated by straining through 40 mM cell-

strainers. Spleen cells were isolated by pressing through 70 mM

cell-strainers, red blood cell lysis was performed and white blood

cells were washed and resuspended in 10% DMEM (Gibco).

Cell sorting
Total lymph node or footpad cells were labeled with specific

mAbs and populations isolated by cell sorting on a FACS Vantage

machine. Macrophages from the footpad were gated as

CD11bhighMHCIIhighCD11c2 cells and DCs, macrophages,

neutrophils and B cells from the lymph node were gated as

CD11chighMHCIIhigh, CD11bhighMHCIIhighCD11c2, GR-1high-

SSChighFSChighCD11c2 and CD19+CD32CD11c2 cells, respec-

tively. Cells were .98% pure and used for further analysis.

Quantitative RT-PCR
Dendritic cells were stained with specific mAb and sorted from

the LN of infected mice. Total RNA was extracted from dendritic

cells using Tri reagent (Applied Biosystems, Carlsbad, Calif) and

mini-elute columns (Qiagen) according to the manufacturer’s

protocol. cDNA was synthesized with Transcriptor First Strand

cDNA synthesis kit (Roche), and real-time PCR was performed by

using Lightcycler FastStart DNA Master PLUS SYBR Green I

reaction mix (Roche) on a Lightcycler 480 II (Roche). Primers for

IL-12p40: forward 59 CTGGCCAGTACACCTGCCAC 39 and

reverse 59 GTGCTTCCAACGCCAGTTC 39, IL-18: forward 59

TGGTTCCATGCTTTCTGG 39 and reverse 59 TCCGTAT-

TACTGCGGTTGT 39, IL-10: forward 59 AGCCGGGAAGA-

CAATAACTG 39 and reverse 59 CATTTCCGATAAGG

CTTGG 39, IL-23p19: forward 59 CAGCTTAAGGATGCC-

CAGGTT 39 and reverse 59 TCTCACAGTTTCTCGATGCCA

39 and bA subunit (Activin A): 59 GAGAGGAGTGAACT

GTTGCT 39 and reverse 59 TACAGCATGGACATGGGTCT

39. Values were normalized according to the expression of the

housekeeping genes HPRT or rS12.

Nitric oxide synthase and arginase
Lymph node and footpad cells collected at week 4 after infection

were restimulated with LPS (Sigma-Aldrich; 10 ng/ml). Superna-

tants were collected at 48 hours for quantification of nitric oxide

[81] while arginase activity was measured in cell lysates [81].

Expression of intracellular iNOS and arginase was analyzed in

CD11bhighMHCIIhighCD11c2 macrophages and CD11chighMH-

CIIhigh DCs by flow cytometry using rabbit anti-mouse iNOS

(Abcam) with goat anti-rabbit PE (Abcam) and goat anti-mouse

arginase (Santa Cruz Biotechnology) with donkey anti-goat PE

(Abcam). Purified goat IgG and rabbit IgG were used as controls.

Statistics
Data is given as mean 6 SEM. Statistical analysis was

performed using the unpaired Student’s t test or 1-way Anova

with Bonferroni’s post test, defining differences to IL-4Ra-/lox mice

as significant (*, p#0.05; **, p#0.01; ***, p#0.001) unless

otherwise stated. (Prism software: http://www.prism-software.

com).

Supporting Information

Figure S1 CD11ccreIL-4Ra-/lox mice are hypersuscepti-

ble to a 10-fold lower dose infection with L. major. Mice

were infected with L. major LV39 (MRHO/SV/59/P) parasite

strain. Footpad swelling was measured at weekly intervals in mice

(5 per group) infected subcutaneously with a 10-fold lower dose of

26105 stationary phase metacyclic L. major promastigotes into the

hind footpad (A). ‘‘N’’ indicates necrosis or ulceration/mouse.

Parasite burden was determined by limiting dilution of single-cell

suspensions from homogenized footpads (B) and lymph nodes (C)

at week 8 after infection. (D–F) Antigen-specific IgG2a (D), IgG1

(E) and total IgE (F) antibody production was quantified in sera by

ELISA at week 8 post infection. (G–H) Total cells from the

draining lymph node were incubated for 72 hrs with medium,

aCD3 or soluble Leishmania antigen (SLA). The production of IFN-

c (G) and IL-4 (H) was determined by ELISA. A representative of

two individual experiments is shown with mean values 6SEM.

Statistical analysis was performed defining differences to IL-

4Ra-/lox mice as significant (*, p#0.05, **, p#0.01; ***, p#0.001).

(TIF)

Figure S2 Infiltration of GFP+-L. major parasites in

immune cell populations in spleen during infection in

CD11ccreIL-4Ra-/lox mice. Mice were infected subcutane-

ously with 26106 stationary phase metacyclic GFP-expressing

L. major IL81 (MRHO/SV/59/P) strain into the hind

footpad. At Day 0, Day 1, Day 3 and Week 4 after infection,

total spleen cells were surface stained for dendritic cells

(DCs-CD11chighMHCIIhigh), Macrophages (Mph-CD11bhigh

MHCIIhighCD11c2) and neutrophils (Neut-GR1highCD11c2).

The percentage of infiltrating GFP+-infected cells were deter-

mined by flow cytometry.

(TIF)

Figure S3 Viability of GFP+-L. major in immune cell

populations during acute L. major IL81 infection by

limiting dilution assay. Experimental mice were infected

subcutaneously with 26106 stationary phase metacyclic GFP-

expressing L. major IL81 promastigotes into the hind footpad.

At week 4 after infection, total lymph node cells were isolated

and DCs (CD11chighMHCIIhigh), macrophages (CD11bhigh

MHCIIhighCD11c2), neutrophils (GR1highCD11c2) and B cells

(CD19+CD32CD11c2) were isolated by cell sorting on a FACS

Vantage machine. Sorted cells were plated to determine viable

parasite burden by limiting dilution assay in two-fold dilutions.

(TIF)

Figure S4 Intracellular IL-12 and IL-10 in lymph node

DCs. Experimental mice were infected subcutaneously with

26106 stationary phase metacyclic L. major IL81 promastigotes

into the hind footpad. Total lymph node cells were incubated with

PMA/Ionomycin/Monensin for 4 h at 37uC, then surface-stained

for CD11chighMHCIIhigh DCs followed by intracellular FACS

staining for IL-12 and IL-10. Dot plots of percent cytokine

producing cells are shown.

(TIF)
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