
Abstract Coffin–Lowry Syndrome (CLS) is an

X-linked syndromic form of mental retardation associ-

ated with skeletal abnormalities. It is caused by muta-

tions of the Rsk2 gene, which encodes a growth factor

regulated kinase. Gene deletion studies in mice have

shown an essential role for the Rsk2 gene in osteoblast

differentiation and function, establishing a causal link

between Rsk2 deficiency and skeletal abnormalities of

CLS. Although analyses in mice have revealed prom-

inent expression of Rsk2 in brain structures that are

essential for learning and memory, evidence at the

behavioral level for an involvement of Rsk2 in cognitive

function is still lacking. Here, we have examined Rsk2-

deficient mice in two extensive batteries of behavioral

tests, which were conducted independently in two

laboratories in Zurich (Switzerland) and Orsay

(France). Despite the known reduction of bone mass,

all parameters of motor function were normal, confirm-

ing the suitability of Rsk2-deficient mice for behavioral

testing. Rsk2-deficient mice showed a mild impairment

of spatial working memory, delayed acquisition of a

spatial reference memory task and long-term spatial

memory deficits. In contrast, associative and recogni-

tion memory, as well as the habituation of exploratory

activity were normal. Our studies also revealed mild

signs of disinhibition in exploratory activity, as well as a

difficulty to adapt to new test environments, which

likely contributed to the learning impairments dis-

played by Rsk2-deficient mice. The observed behavioral

changes are in line with observations made in other

mouse models of human mental retardation and support

a role of Rsk2 in cognitive functions.
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Introduction

Mental retardation is a common human disorder

characterized by impairment of intellectual functions

and adaptive behaviors as expressed in conceptual,

social, and practical skills. The disability is detected at

birth or early in childhood, and may result from genetic

alteration, environmental insult, or a combination of

both. Whereas mental disability is the only symptom of

the disease in non-syndromic forms, syndromic forms

of mental retardation are characterized by a combina-

tion of mental disabilities with physical malformations

and/or metabolic disturbances. Coffin–Lowry Syn-

drome (CLS) is a rare syndromic form of mental
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retardation that shows X-linked inheritance with an

estimated incidence of 1 in 50,000–100,000 males

(Coffin et al. 1966; Lowry et al. 1971). It is character-

ized by moderate to severe psychomotor retardation,

growth retardation (short stature), facial and digital

dysmorphisms, as well as progressive skeletal defor-

mations (Hanauer and Young 2002). Genetic analysis

mapped the CLS locus to an interval of 2–3 megabases

at Xp22.2 (Hanauer et al. 1988) and identified within

that interval the ribosomal S6 kinase Rsk2 gene as the

cause of CLS (Trivier et al. 1996). In humans, Rsk2

belongs to a family of four highly homologous proteins

(RSK1–4), encoded by distinct genes.

The Rsk2 gene is subject to strong allelic heteroge-

neity. Over 130 mutations distributed throughout the

gene have so far been identified in CLS patients, the

majority being unique to single families with no

obvious correlation with the severity of clinical fea-

tures (Delaunoy et al. 2001; Jacquot et al. 1998; Tou-

raine et al. 2002). Cognitive deficiencies in CLS

patients are prominent, but markedly variable in

severity, including between siblings (Hanauer and

Young 2002). The vast majority of male patients are,

however, severely affected. They suffer from a low

intelligence quotient (IQ), ranging from 15 to 60, and

retarded language skill acquisition that increases in

severity with the occurrence of hearing loss in a few

patients. Female carriers, however, fall along a contin-

uum ranging from severe retardation to relatively

normal intellectual performance. Although systematic

assessment of learning and memory abilities in iden-

tified CLS patients with Rsk2 mutations is still lacking,

learning and memory disabilities have been noted

during examination of a few males and female carriers

with relatively mild levels of mental retardation (R.

Touraine and A. Hanauer, personal communication).

Rsk2 is a serine/threonine kinase and a cytosolic

substrate in the Ras/MAPK signaling pathway. It is

activated by extracellular signal-regulated kinase

(ERK). Among the several cytosolic and nuclear

substrates identified so far, Rsk2 can phosphorylate

histones (Sassone-Corsi et al. 1999) and various tran-

scription factors such as ATF4 and the cAMP response

element binding protein, CREB (De Cesare et al.

1998; Frodin and Gammeltoft 1999; Yang et al. 2004),

suggesting an important role for CRE-mediated tran-

scription. Numerous studies implicate the MAPK/ERK

signaling cascade and CREB-mediated gene transcrip-

tion in synaptic plasticity and memory. For review, see

Bozon et al. (2003), Davis and Laroche (2006) and

Sweatt (2001, 2004). This suggests that loss of Rsk2

function may contribute to the cognitive deficits in CLS

patients. Moreover, in brain, Rsk2 is expressed pre-

dominantly in cerebellum, hippocampus and neocortex

(Zeniou et al. 2002), regions that are implicated in

various kinds of learning and forms of memory.

To study Rsk2 function in vivo, two lines of Rsk2-

deficient mice were generated by targeted disruption of

the Rsk2 homologue in mice (Dufresne et al. 2001;

Yang et al. 2004). A first study in one line reported

elevated and prolonged ERK activation in skeletal

muscle of Rsk2-null mice, suggesting that Rsk2 plays a

role in feedback inhibition of ERK in skeletal muscle

(Dufresne et al. 2001). The same study also reported

reduced body weight and length as well as motor

coordination deficits associated with or resulting in

impaired spatial navigation. Later, it was established

that the body weight difference is largely caused by a

specific loss of white adipose tissue (El-Haschimi et al.

2003). Rsk2-null mice also have impaired glucose

tolerance as well as elevated fasting insulin and glucose

levels. In a different line of Rsk2-null mice, bone

formation was delayed during embryonic development

and bone mass remained low throughout postnatal life

(Yang et al. 2004). These skeletal abnormalities resem-

bled those found in human CLS patients. The same

study identified lack of phosphorylation of the Rsk2

substrate ATF4 in osteoblasts as a mechanism contrib-

uting to the skeletal phenotype. To date, the conse-

quence of the gene’s disruption for behavioral and

cognitive abilities has not been explored systematically.

Here, we report the results of experiments carried out

independently in two laboratories in order to investi-

gate the phenotype of Rsk2-deficient mice in several

learning tasks including spatial working and reference

memory, associative and recognition memory, as well

as in behavioral tests for motor coordination and

activity, exploratory behavior, and anxiety related

responses.

Material and methods

Generation of animals

The generation of Rsk2-null mice by homologous

recombination has been described previously (Yang

et al. 2004). The targeting vector was constructed by

inserting a neomycine resistance gene, flanked by two

loxP sites and followed by three stop codons (in the

three forward reading frames) in exon 2 of Rsk2. The

construct was linearized and electroporated into

129X1/SvJ embryonic stem (ES) cells and NeoR clones

were selected. The ES cells carrying the correct

mutation were injected into C57BL/6J blastocysts.

Resulting mixed-background 129X1/SvJ · C5BL/6J
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mice carrying a targeted allele of Rsk2 were back-

crossed six times with C57BL/6J mice, before the

NeoR cassette was removed by crossing with a C57BL/

6J/CMV-Cre transgenic line. This produced mutant

mice with a single LoxP followed by three stop codons

within exon 2. Western blot analysis of various tissue

protein extracts, including brain, showed absence of

Rsk2 protein in mutant mice. Females heterozygous

for the mutation have been backcrossed for at least 15

generations to C57BL/6 males to generate Rsk2-null

(KO) and littermate control mice (Wt) for the present

study. The genotype of the mice was determined as

described previously (Yang et al. 2004).

General procedures

Animal housing and testing

The behavior of Rsk2-deficient mice was investigated

independently in two laboratories in Zurich (Switzer-

land) and Orsay (France). Upon arrival at the labora-

tories, mouse siblings were kept in groups (2–5 per

cages) with food and water ad libitum. They were

placed under a 12:12 h inverted cycle in Zurich (lights

off 08:00–20:00), whereas they were maintained under

standard illumination cycle in Orsay (lights on 07:00–

19:00). Mice were placed in individual cages 1 week

before all experiments in Zurich, and before the

conditioned taste aversion and hole-board tasks in

Orsay. Behavioral testing was undertaken between

08:00 and 20:00. A total of 202 male mice (107 Wt, 95

KO) distributed across eight cohorts were used. Five

cohorts (79 Wt, 73 KO) were used in Zurich: Three

cohorts were tested on a battery of tests in the

following order: water-maze place navigation, open-

field, elevated O-maze. A subset of these animals (39

Wt, 39 KO) was also tested on the radial maze. The

fourth cohort was tested on a serial reversal procedure

in the water-maze followed for some of the animals

(9 Wt, 9 KO) by radial maze and emergence/object

exploration tests. The fifth cohort was tested on the

water-maze place navigation task, followed by an

emergence/object exploration test. Three cohorts (28

Wt, 22 KO) were used in Orsay. Two of them were

tested in a series of tasks in the following order: open-

field activity and object recognition, water-maze place

navigation, grid-suspension and traction reflex tests,

spontaneous alternation in a cross maze, and condi-

tioned taste aversion. The third cohort was tested on

the elevated-plus maze followed by a hole-board task.

In positively reinforced learning paradigms, a gradual

food-restriction regimen was initiated 4 days before

testing, and the mice were maintained at 80–85% of

their free-feeding weight throughout. All animals were

tested between 2 and 7 months of age, and were tested

in only one test per day (the exception was the grid and

traction-reflex tests, which were conducted on the same

day) with at least 48 h between distinct experiments.

All experiments were conducted blind to the genotype.

Behavioral procedures were approved by Swiss animal

welfare authorities and conducted in accordance with

the European Communities Council Directive of

November 24, 1986, respectively.

Video tracking

Unless otherwise stated, animals tested in the water-

maze and exploratory tests were video-tracked using

ViewPoint 2.68 (Orsay) or Noldus EthoVision 3.0

(Zurich). These were used to record xy position, object

area and status of defined event-recorder keys as

required. Raw data recorded in Zurich were then

transferred to the public domain software Wintrack 2.4

(www.dpwolfer.ch/wintrack) for further analysis (Wol-

fer et al. 2001).

Tests of motor coordination

Inverted grid test

Sensorimotor abilities and muscle strength were eval-

uated by placing each mouse in the middle of a wire

grid inverted at a 180� angle. Time for the mice to

remain upside down on the grid was counted, with a

maximum of 60 s if the mouse did not fall.

Wire suspension test

To test both muscle strength and motor coordination,

the forepaws of each mouse was placed on a thin

horizontal wire (1.5 mm in diameter) 35 cm above a

table surface. Latency to bring at least one hindpaw up

to grip the wire was recorded. Each mouse was given

three trials (I0-min ITI) and the mean was calculated

per mouse. Each trial lasted for a maximum of 25 s.

Exploration and emotional reactivity

Open field

The round open-field arena (diameter: 150 cm) had a

white plastic floor, and sidewalls (35 cm high) made of

white polypropylene. Illumination was by indirect

diffuse room light (12 lux). Each mouse was released

near the wall and observed for 10 min. The same

procedure was repeated the following day. Three zones
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were defined: a circular centre field (50% of arena

surface), a transition zone and a wall zone (7 cm wide,

18% of arena surface). Video-tracked data were

processed as described in detail previously (Drai and

Golani 2001; Madani et al. 2003). Paths were seg-

mented into three motion states: (i) bouts of progres-

sive (long-distance) locomotion, (ii) periods of relative

immobility (resting, grooming or freezing), (iii) epi-

sodes of small movements (lingering) which correlated

with exploratory behaviors (brief stopping, sniffing,

establishing snout contact with the apparatus or an

object, looking around, stretching postures, rearing or

leaning against the wall). Long distance locomotion

was further characterized by calculating the median

acceleration across all bouts of progressive locomotion

(darting) (Kafkafi et al. 2003b). In order to assess path

tortuosity and circling, the path of progressive move-

ment was divided into straight segments and clockwise

(negative) or counter-clockwise (positive) curves with

a consistent direction change during 1 s or longer. The

sum of all unsigned direction changes divided by total

distance moved was then used as estimate of path

tortuosity, while the sum of all signed direction changes

divided by total distance moved served as circling

index. To obtain an estimate of small scale gait

stability, a wobbling index was calculated as the sum

of unsigned direction changes between successive

segments of the path, divided by the distance moved.

As a measure of spatial and temporal scatter of

exploration activity we calculated % of arena surface

explored by dividing the arena into quadratic tiles of

5 · 5 cm2 and by counting tiles in which at least one

scanning episode had occurred (Madani et al. 2003).

Repeating sequences of tile visits were counted to

obtain an index of large-scale stereotypical movements

(Madani et al. 2003). Finally, diversity of exploration

was estimated as average distance between any two

scanning episodes, weighted by the distribution of their

duration (Kafkafi et al. 2003a).

Elevated O-maze

The apparatus was a 5.5 cm wide annular runway (grey

plastic, 46 cm outer diameter) placed inside the open-

field arena 40 cm above the floor (Konig et al. 1996;

Madani et al. 2003). The two opposing closed 90�
sectors were protected by 16 cm high inner and outer

walls. The remaining two open sectors had no walls.

Animals were released in one of the closed sectors and

observed for 10 min. The video-tracking system

detected entries into open sectors only when the

animal moved into it with all four paws. Head dips

were recorded and classified as protected dips (occur-

ring when the animal was in a transition zone with its

body partially between the protection walls) or unpro-

tected dips (occurring after the animal had entered an

open sector).

Elevated plus-maze

The plus-maze (black-hard plastic, 65 cm above the

floor, equipped with a video camera) had two facing

arms enclosed with high walls (20 · 8 · 25 cm), two

open arms (20 · 8 cm) and a central area (8 · 8 cm) to

form a plus sign. Illumination was 150 lux in open and

30 lux in enclosed arms. Each mouse was placed in the

central area with the head facing an open arm and

observed for 15 min. Number of entries and time spent

in open or enclosed arms were recorded by blocks of

5 min.

Emergence test and object exploration

Frames of non-reflective aluminum (37 cm high) were

used to partition the open-field into four 50 · 50 cm

arenas, for concurrent observation of four mice.

During the emergence test, each arena had a

12 · 8 · 4 cm plastic home box with an aperture of

6 · 2.5 cm, positioned in a corner at 5 cm from the

nearest wall, with the aperture facing away from the

wall. The novel object was a 12 · 4 cm semi-transpar-

ent 50 ml Falcon tube positioned vertically in the

centre of the arena. For analysis, we defined a central

circular object zone of 18 cm in diameter and square

shaped corner zones of 5 · 5 cm. The day prior to the

emergence test, a clean home box was placed in the

home cage of each mouse. The next day, mice and

home boxes were introduced into the arenas and

observed for 30 min. The object exploration test was

run one day later. Each mouse was observed for 30 min

in the empty, clean arena. Then, the novel object was

introduced and observation continued for another

30 min. Behavioral measures were calculated from

video-tracked data using the same principles as in the

open field test. In addition, vertical activity (which may

include rearing, leaning, or other movements that do

not translate into locomotion) was estimated by

counting reductions of tracked subject size (number

of pixels above threshold assigned to the subject) while

the animal was not engaging in progressive movement

(Madani et al. 2003). Automatic observer-independent

estimates of object exploration (Berger et al. 2006;

Madani et al. 2003; Wolfer et al. 2004; Zorner et al.

2003) were obtained based on methods introduced by

Dulawa et al. (1999) by measuring small movements

and vertical activity that occurred while the animal was
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inside the object zone. With an object zone diameter of

18 cm, the tracking system registered activity to this

zone whenever the animal was at least touching the

object with its nose. To reduce error introduced by

occasional, object-unrelated small movements inside

the object zone, the measures were corrected by

subtraction of the values obtained in the absence of

the object during the habituation period.

Learning and memory

Spontaneous alternation in a cross maze

The apparatus consisted of a transparent cross maze

with four arms (7.5 · 33 · 11 cm) radiating at 90� from

a central area (7.5 · 7.5 cm). The maze was placed in a

well-lit room (70–80 lux) with several extra-maze cues.

Mice were individually placed in the centre of the cross

maze and allowed to freely explore the four arms for

10 min. The number of visits and the temporal order of

visits to individual arms were recorded. The mean

number of different arms visited within every set of four

arm entries was calculated. In addition, all sequences of

2, 3 or 4 consecutive visits (S2, S3, or S4) were analyzed

separately and the number of sequences in which all

visited arms were different (sequences of alternated

choices) was quantified. Chance levels are 75% for S2,

37.5% for S3 and 9.37% for S4. As an indicator of

stereotyped response patterns that may interfere with

performance, chaining responses (visiting 3 or 4 arms in

clockwise or anti-clockwise order) were quantified.

Open field activity and object recognition

The test box, equipped with a video camera, consisted

of a square open-field (50 · 50 · 50 cm) with black

walls and a white floor covered with sawdust. Exper-

iments were undertaken under homogeneous dim

illumination (<50 lux). The objects were small wooden

or plastic toys of different colors and shapes (3–6 cm

diameter · 3–6 cm high) or made out of Lego� pieces

(6 · 4 · 3.5 cm). Three objects were place near the

corners at 15 cm from the walls. The objects and their

spatial arrangement in the test box were chosen in a

pseudorandom order and were counterbalanced

between mice. The testing procedure started with a

4-day period of habituation consisting of two daily

sessions of 10 min separated by a 5-h delay, as

previously described (Vaillend et al. 2004). On day 1,

littermate mice from a given cage were placed all at

once in the empty open-field and allowed to move

freely for 10 min. On days 2–3, mice were individually

exposed to the open field and spontaneous locomotor

activity was recorded. On day 4, two identical plastic

objects that were not subsequently used were placed in

the box for 10 min. The object discrimination tasks

started 48 h after habituation. Each mouse was suc-

cessively tested on two versions of the object discrim-

ination task (spatial versus non-spatial) with a 24-h

delay between the two experiments (Bozon et al.

2002). Each experiment consisted of a single acquisi-

tion session (two trials of 10 min with a 10-min ITI)

followed by a 5-min retention test 24 h later. In the

non-spatial version, one of the three objects was

replaced by a novel object during the retention test,

whereas one of the objects was moved to a novel

position in the spatial version. Object changes during

the test phase were counterbalanced among individuals

and genotypes. Behavioral parameters were recorded

minute by minute during each test phase. During

pretraining, the arena was divided into virtual square

sectors (5 · 5 grid) to quantify locomotor activity,

expressed as the number of sectors crossed (horizontal

activity) and the number of rearings and leanings

(vertical activity). During both acquisition and reten-

tion phases, the latency of the first contact with an

object and the time spent in contact with it were

recorded. Contact was defined as the mouse’s snout or

paws touching the object. Retention performance was

expressed as 100% · time spent exploring the novel or

displaced object/(time spent exploring the novel or

displaced object + average time spent exploring the

two unchanged objects).

Conditioned taste aversion

Three days prior to testing, mice were placed on a

water-restriction regime with access to water for

30 min/day, from two identical bottles placed in their

home cages. The bottles were weighed to evaluate fluid

consumption. On the conditioning day, mice had free

access to a 15%-sucrose solution for 30 min, in two

identical bottles. One hour later, mice were injected

(i.p.) with either 0.9% saline, or lithium chloride (LiCl:

0.3 M, 2% body weight). Twenty-four hours later, mice

were given a two-bottle choice test between the water

and sucrose for 30 min. The relative position of the two

bottles was counterbalanced between mice. Condi-

tioned taste aversion was expressed as the percent

sucrose solution consumed over total fluid intake.

Spatial working memory procedure on the radial maze

The apparatus consisted of eight arms (7 · 38 cm, grey

poly-vinyl chloride) with clear Perspex sidewalls (5 cm

high) extending from an octagonal central platform
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(diameter 18.5 cm). The maze was placed 38 cm above

the floor in a dimly lit room (12 lux) rich in salient

extra-maze cues. Single 6 mg millet-grains (Demeter

Bio Goldhirse, Steiner Mühle AG, Zollbrück, Switzer-

land) were placed as baits in small metal cups (diam-

eter 3 cm, 1 cm deep) at the end of the arms, in such a

way that the mouse could not see them without

completely entering the arm. Before each test session,

the mouse was placed in a reversed box on the central

platform. Food-deprived mice (85% of free-feeding

weight) began with two habituation sessions during

which they learned to eat pellets distributed all over

the maze. A 10 day-training period (1 trial/day) ensued

where each arm was baited with a single pellet and

time taken to eat all the pellets was recorded. Each

trial was given a maximum of 10 min. Working

memory errors (re-entries into previously visited arms)

were recorded in addition to two types of procedural

errors: arm omission and bait neglect (visits to the bait

zone without bait collection). Aborted choices (exit

without reaching the goal zone) were counted as well.

As indicators of stereotyped response patterns that

may interfere with spatial learning we recorded chain-

ing responses (visiting three or more arms in ascending

or descending order), choice angle repetitions (e.g. 1–

2–3–4 or 6–4–2) and the frequency of the preferred

choice angle.

Hole-board task

The apparatus consisted of an elevated square board

(50 · 50 cm; 90 cm above the floor) placed in a well-lit

room (500 lux) with several extra-maze cues. A food

cup (2.5 cm wide/2 cm deep) was placed below the

surface of the floor of the board, 14 cm from each

corner. Beneath each of the four food cups, there were

five visible but inaccessible pellets to prevent the use of

olfactory cues. Mice were first habituated to the task for

3 days (one 10-min session per day; four pellets were

placed in each cup and 16 scattered on the board on day

1, then only four pellets in the cups on days 2–3).

Following habituation mice were tested for 5 days in a

spatial discrimination task, with only one food cup

baited with one pellet. Testing continued until mice

reached a criterion of choosing the correct hole first on

eight out of nine consecutive trials or until 60 trials had

been given (Brosnan-Watters and Wozniak 1997). On

each trial, mice were placed on the board until the pellet

was retrieved and consumed. Between trials, mice were

returned to their home cages and the hole-board was

randomly rotated and cleaned with alcohol, to prevent

the use of olfactory cues. The number of trials required

to reach criterion was recorded.

Spatial learning in the water-maze was assessed using

four different place navigation procedures. A proce-

dure with two blocks of four trials per day for 11 days

was used in Orsay. Six trials · 5 days, 2 trials · 14 days

and a serial reversal procedures were performed in

Zurich.

Water-maze two blocks of four trials per day

for 11 days

The maze consisted of a circular tank (150 cm diam-

eter) filled with water (22�C) to 15 cm below the top of

the sidewall, made opaque by addition of a white non-

toxic paint (Opacifier 631, Morton SA, France). A

circular escape platform (10-cm diameter) was placed

in the centre of the maze during pre-training or the

centre of a quadrant (35 cm from the wall) during

training. The platform, placed 0.5 cm below the water

surface, was not visible. The maze was placed in a well-

lit room (380 lux) containing several extra-maze cues

on the walls. A video camera, mounted on the ceiling

above the maze to record swim paths, was connected to

a computer located in an adjacent room. The day

before training, mice underwent 2 pre-training sessions

(four trials in the morning and afternoon). An habit-

uation session started with the mouse standing on the

platform for 60 s in the centre of the maze. Then, a

trial started by introducing the mouse into the maze

facing the wall at one of the four designated starting

points in a pseudorandom order. Immediately, the

mouse was gently guided by hand to the platform and

allowed to remain on it for 60 s. During the training

phase, mice were given two blocks of four trials a day

for 11 days. The two trial blocks were separated by a 5-

h interval. During each block, the mouse was intro-

duced into the maze from three different starting

points and allowed to swim freely until it reached the

platform. Mice failing to find the platform after 90 s

were gently guided to it by hand and a maximum

escape latency of 90 s was recorded. Mice were

allowed to remain 60 s on the platform before the

start of the next trial. Probe tests were performed 24 h

and 9 days after the last training session in both groups

of mice. They consisted of a single trial during which

the platform was removed and mice were allowed to

search the platform for 90 s. After the first probe test

(24 h), mice were given four additional training trials

to prevent extinction. The data, recorded by video-

tracking were used to reconstruct swim paths and to

calculate averaged swim speed, swim path lengths and

time spent in various virtual areas of the maze: the four

quadrants; the four platform annuli, four extended

annuli of 48-cm in diameter beyond that of the
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platform, and a virtual corridor 19 cm in width,

set along the wall to quantify thigmotaxis. Memory

retention was evaluated during the probe test by

comparing the time spent in the quadrant which

previously contained the platform, to chance level

(25%) and the annulus crossing index which represents

the number of crosses over the platform site in the

quadrant that contained the platform divided by

crosses over identical areas in equivalent positions in

target, adjacent left, adjacent right, and opposite

quadrant.

Water-maze 6 trials · 5 days

A round white propylene swim tank (150 cm diameter)

was placed under dim light (12 lux) and filled with water

(temperature 24–26�C) made opaque by addition of

milk (Mohajeri et al. 2004). A white escape platform

(14 · 14 cm) made of wire mesh was submerged 0.5 cm

below the water surface and remained in the same

position during all training trials of the same animal. To

minimize handling, mice were transferred to the pool

using a white plastic cup and released a pseudo-

randomly distributed points along the periphery of the

pool. After they had reached the platform and stayed on

it for 5 s, they were allowed to climb onto a wire mesh

grid and transferred without further handling to their

cage under a red warming lamp. The mice were trained

for 5 days with six trials (max 120 s) per day (45 min

average ITI). During the first 3 days (acquisition

phase), the platform remained in a constant position

and was then moved to the opposite quadrant for the

remaining 2 days (reversal phase). The first 60 s of the

first trial of the reversal phase served as probe trial to

test for spatial retention. Learning was assessed by

escape latency, swim path length, time spent floating

(episodes of immobility or decelerations with speed

minimum <0.06 m/s), and swim speed (excluding float-

ing episodes). Path efficiency was defined as percent

path during which the speed vector component pointing

toward the goal was 75% or more. Wall oriented

behavior was quantified by determination of percent

time spent in a 10-cm wide wall zone, number of wall

contacts, and percent path traveled parallel to the pool

wall (path not meeting the efficiency criterion and

having a radial speed vector component of 25% or less).

Further, we calculated a circling index (absolute value

of sum of all signed direction changes divided by

distance swum). Spatial retention during the probe trial

was assessed using percent time in quadrant and

number of annulus crossings (target versus non-target

quadrants). The annulus crossing index was calculated

as specified above.

Water-maze 2 trials · 14 days

This experiment used the same apparatus and general

procedures as described above. Animals were trained

for 14 days with two trials (max 90 s) per day and an

ITI of 60 s. Two 60-s probe trials were given, one on

day 11 before the two training trials, the second 24 h

after the last training day.

Water-maze serial reversal

The experiment used the same apparatus and general

procedures as described above. The mice were pre-

trained in a cue navigation task for 2 days with six trials

each. During this phase, the platform was marked with

a flag and moved to a new position for every trial.

Then, mice had to learn five consecutive positions of a

hidden platform as previously described (Chen et al.

2000). The maximum number of training days was 5 for

the first platform position and 4 for the following

platform positions. Mice were trained for a maximum

of eight trials per day, with a 10-min ITI during which

they were returned to their cages. The mice were

trained to the same platform position until they

reached the criterion of three consecutive trials with

an escape latency £15 s, or until completing the

maximum number of training trials for each platform

position. When the criterion was reached, the training

was stopped and the mouse was then tested on a new

platform position the following day.

Statistical analysis

Data were analyzed using ANOVA with genotype

(Wt, KO) as the between-subject factor. Where more

than one cohort had been tested, cohort was intro-

duced as an additional between-subject factor to

reduce unexplained variance and to determine whether

genotype effects were cohort dependent. Because this

was not the case, the cohort factor is not shown in the

results. Similarly, we included absence/presence of the

CMV-Cre transgene as additional between-subject

factor in the analysis of the Zurich open-field, O-maze,

radial maze, and 6 trials · 5 days water-maze data

because part of the animals still carried the CMV-Cre

transgene that had served to remove the NeoR

cassette. As there were no effects or interactions

associated with this factor, it is not reported in the

tables and figures. When required, the models were

complemented by a within-subject factor to examine

time or place dependence of effects. Statistical com-

putations were done using Statview 5.0 (www.

statview.com, no longer sold). Partial omega scores
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(the proportion of variance accounted for by genotype

if only this factor were in the design, range 0–1) were

calculated manually using the ANOVA tables pro-

vided by Statview (Keren and Lewis 1979). An alpha

value of p < 0.05 was considered statistically signifi-

cant. In order to correct for multiple comparisons,

conceptually related variables were grouped and

significance thresholds adjusted using the false discov-

ery rate control procedure by Benjamini et al. (Ben-

jamini et al. 2001; Benjamini and Hochberg 1995).

Results

Rsk2-deficient mice appeared healthy and showed no

overtly abnormal spontaneous behavior. They were

0.5–0.7 g lighter than controls before and after the 6

trials · 5 days water-maze procedure, but showed

similar weight loss during the experiment (Zurich: 45

KO, 25.5 ± 3.3 g before, 24.4 ± 3.1 g after; 52 Wt,

26.2 ± 3.2 g before, 24.9 ± 3.2 g after; genotype

F(1,85) = 6.8, p < 0.0108, time F(1,85) = 196.2,

p < 0.0001, genotype · time F(1,85) = 2.3 ns). Body

weights measured before the holeboard task showed

no significant effect of genotype, but again Rsk2-

deficient mice were on average 0.6 g lighter (Orsay: 11

KO, 28.9 ± 0.3 g and Wt, n = 13, 29.5 ± 0.6 g;

F(1,22) = 0.605, p < 0.4450). There was no genotype

effect on video-tracked subject size during the emer-

gence and object exploration tests (Table 1). Rsk2-

deficient mice were not impaired in sensorimotor tests

involving muscle strength and motor coordination. In

the inverted grid test, the mean time to remain

suspended to the grid was similar in control (60 ± 0 s;

n = 15) and Rsk2-deficient mice (56.09 ± 3.34 s;

n = 11) mice (genotype F(1,24) = 1.78 ns). In the

traction reflex test, there was no significant genotype

effect on the mean latency to bring hind-paws up to the

wire, but Rsk2-deficent mice had on average slightly

longer latencies (6.03 ± 1.17 s; n = 11) as compared to

controls (3.91 ± 0.62 s; n = 15) across the three con-

secutive trials (genotype F(1,24) = 2.96, p = 0.0982).

Exploration and emotional reactivity

In the open-field as well as while exploring the empty

arena in preparation of the object recognition task,

Rsk2-deficient mice showed normal levels of locomo-

tor activity over several days of testing (Fig. 1A,

Table 1). Habituation of locomotor activity across

two days in the open field test was similar to controls

(Fig. 1A). Mutant and control mice spent equal

amounts of time with progressive locomotion, small

exploratory movements and resting. Moreover, irre-

spective of genotype, the mice showed a strong

avoidance of the central zone of the open-field arena

(Fig. 1B, Table 1). Fine-level analysis of locomotor

patterns expressed in the large open-field revealed no

evidence for neurological deficits or gait instability:

indices of circling, path tortuosity, and wobbling were

unaffected by the mutation. Also, exploratory excur-

sions of Rsk2 mice were as spatially diverse as in

control mice, and there was no evidence for abnormal

large-scale stereotypical movements (Table 1). How-

ever, we found a clear increase in acceleration during

episodes of progressive movement in Rsk2-deficient

mice, indicating increased darting behavior (Kafkafi

et al. 2003b).

On the elevated O-maze, Rsk2-deficient mice and

controls were similar with respect to general activity

and avoidance of open sectors (Fig. 1C, Table 1).

Exploratory head dips were overall slightly more

frequent in mutants, but the ratio of protected to

unprotected dips was indistinguishable from controls.

In the plus-maze test, mice showed genotype-indepen-

dent avoidance of the open arms as well (Fig. 1D).

When exposed to a novel arena that offered a retreat

opportunity in the form of a small familiar home box

(emergence test), Rsk2-deficient mice were more active

than wild-type mice but showed a similar rate of

habituation (Fig. 1E, Table 1). They spent clearly less

time in the home box, and showed reduced avoidance

of the central zone of the arena. When a novel object

was introduced into the now familiar arena following a

30-min period of habituation, Rsk2-deficient mice

spent less time retreating to the corners, displayed an

increased tendency to engage in large-scale stereotyp-

ical movements, and had elevated scores of estimated

vertical activity. There was no significant genotype

effect on measures estimating object-directed explor-

atory activity, but Rsk2-deficient mice were on average

slightly faster to approach the object for the first time

(Fig. 1G,H, Table 1). Significantly increased explora-

tion of novel objects was detected in Rsk2-deficient

mice during the acquisition phase of the object

recognition task. When encountering objects for the

first time during the first training phase, Rsk2-deficient

mice showed increased object investigation, whereas

exploration times were comparable between genotypes

when mice were exposed to objects a second time 48 h

later (Fig. 1F).

Learning and memory

To examine spatial working memory, we used an 8-arm

radial maze and the spontaneous alternation paradigm
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in a cross-maze. In the 8-arm radial maze task, Rsk2-

deficient mice showed a modest impairment (Fig. 2A,

Table 2). The number of working memory errors was

significantly increased with all training days contribut-

ing equally to the effect. The fact that mutants made

more errors than controls only before taking the last

bait, indicates that error probability increased with the

amount of spatial information to be retained within a

trial (Fig. 2B). Bait neglect and arm omission errors

were as infrequent as in controls, indicating normal

adaptation to the task situation. Mutants did not show

an increased tendency for chaining responses or choice

angle repetitions, but aborted arm visits occurred more

often than in controls. Alternation rates in the cross-

maze were significantly different from chance in both

genotypes, but mutants also visited more arms in the

available time than controls (Table 2). There was no

significant effect of genotype on average number of

different arm choices within every set of four arm

entries, but Rsk2-deficient mice obtained on average

slightly poorer scores (Fig. 2C, Table 2).

Rsk2-deficient mice were not impaired during

acquisition of the appetitive spatial learning task in

the hole-board, which required the use of distal cues to

locate a food pellet. On the contrary, mutant mice

reached the learning criterion faster than controls on

the first training day (Fig. 2D). Whereas scores

reached on this first session may reflect differences in

procedural, attentional or motivational factors, the

learning curve established over the following training

days suggests that spatial learning and consolidation

processes were not impaired in Rsk2-deficient mice in

this task. Also, no impairment was found in Rsk2-

deficient mice during acquisition and retention (24 h

delay) of the object recognition tasks, with both Rsk2-

deficient and control mice showing an indistinguishable

and robust preference for the novel and displaced

objects 24 h after training (Fig. 2E). This suggests that

Table 1 Factorial ANOVA
of exploration and anxiety
tests

Note: Type I error p-values
are shown if <0.1, followed by
estimated effect sizes as
partial omega squared.
Arrows indicate direction of
mean differences if type I
error p < 0.25. Conceptually
related variables were
grouped and significance
levels adjusted using the false
discovery ratio control (FDR)
procedure. Effects considered
statistically significant are
flagged in the last column of
the table

F(df1,df2) Type-I p x2
P FDR

Open field (Zurich: 45 KO, 53 Wt)
Total distance moved F(1,88) = 0.2 ns

Progression velocity F(1,88) = 2.4 ›ns
% Time progressing F(1,88) = 0.3 ns
% Time immobile F(1,88) = 0.4 ns

Median acceleration (darting) F(1,88) = 13.7 ›p < 0.0004 0.113 Sig.
Circling index F(1,88) = 1.6 fl ns
Tortuosity index F(1,88) = 0.1 ns
Wobbling index F(1,88) = 0.1 ns

Distance to center F(1,88) = 0.1 ns
% Arena explored F(1,88) = 1.2 ns
Diversity of exploration F(1,88) = 0.3 ns
Large-scale stereotypy of locomotion F(1,88) = 0.2 ns

Open field (Orsay: 11 KO, 15 Wt)
Sectors crossed total F(1,24) = 0.9 ns

Rearings total F(1,24) = 1.3 ns
Sectors crossed in center F(1,24) = 2.4 flns

Rearings in center F(1,24) = 1.2 ns
Time in center F(1,24) = 0.1 ns

O-maze test (Zurich: 47 KO, 53 Wt)
Total distance moved F(1,87) = 1.9 ›ns
Head dips F(1,87) = 6.6 › p < 0.0117 0.054 Sig.

% Protected head dips F(1,87) = 0.9 ns
Emergence test (Zurich: 19 KO, 21 Wt)
Tracked subject size F(1,36) = 1.0 ns
Total distance moved F(1,36) = 5.4 › p < 0.0260 0.099 Sig.
Distance to center F(1,36) = 8.4 fl p < 0.0063 0.157 Sig.

Time in box F(1,36) = 12.5 fl p < 0.0011 0.225 Sig.
Object exploration (Zurich: 19 KO, 21 Wt)
Tracked subject size F(1,36) = 1.3 ns
Total distance moved F(1,36) = 1.9 › ns

Estimated overall vertical activity F(1,36) = 6.1 › p < 0.0185 0.113 Sig
stereotypy count F(1,36) = 12.1 › p < 0.0013 0.218 Sig.

% Time in corner F(1,36) = 5.8 fl p < 0.0218 0.106 Sig.
Latency to first object contact (log) F(1,36) = 5.4 fl p < 0.0262 0.099

Horizontal object exploration F(1,36) = 0.4 ns
Vertical object exploration F(1,36) = 0.4 ns
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long-term object recognition memory and long-term

memory of the spatial arrangement of objects is not

affected by the lack of Rsk2. Long-term associative

memory was assessed in a conditioned taste aversion

task. Compared with unconditioned controls, both

Rsk2-deficient and control mice consumed significantly

less of the sucrose solution 24 h after sucrose con-

sumption had been paired with malaise induced by

LiCl (Fig. 2F).

When tested in a place navigation task with two

blocks of four trials per day and an ITI of 60 s, Rsk2-

deficient mice showed a severe acquisition impairment,

characterized by very slow learning (Fig. 3A, Table 3).
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Fig. 1 Exploration and anxiety tests. (A) Distance moved in the
open field during the first and second 5 min of the first and
second day (Zurich: 47 KO, 53 Wt). Rsk2-deficient and control
mice were indistinguishable with respect to total distance moved.
Habituation of locomotor activity across two days in the open
field test was similar to controls, even though Rsk2-deficient
mice showed slightly more between day habituation and
somewhat less within day habituation (genotype F(1,86) = 0.1
ns, time F(3,258) = 73.6, p < 0.0001, genotype · time
F(3,258) = 2.8, p < 0.0382, time in Wt F(3,141) = 35,9,
p < 0.0001, time in KO F(3,117) = 42.0, p < 0.0001). (B) Time
spent in the center, transition and wall zone of the open field.
The stippled line indicates chance levels based on relative zone
area. Both Rsk2-deficient mice and controls strongly avoided the
center field in favor of the wall zone (zone F(2,176) = 644.0,
p < 0.0001, genotype · zone F(2,176) = 0.4 ns; time in center
versus 50% chance: t(99) = –60.192, p < 0.0001). (C) Time spent
on the open/closed sectors of the O-maze and in transition zone
between the two (Zurich: 47 KO, 52 Wt). The stippled line
indicates chance levels based on relative sector and zone size.
Both groups strongly avoided the open sectors with Rsk2-
deficient mice spending slightly more time in the transition zone
(zone F(2,174) = 549.6, p < 0.0001, genotype · zone
F(2,174) = 2.9, p < 0.0584; genotype on open sectors
F(1,87) = 0.2 ns, genotype in transition zone F(1,87) = 4.7,
p < 0.0323, genotype on closed sectors F(1,87) = 2.2 ns; time
on open sector versus 39% chance: Wt: t(98) = –74.824,
p < 0.0001, KO t(98) = –44.655, p < 0.0001). (D) Percent time
on the open arms of the elevated plus maze (Orsay: 11 KO, 13
Wt). The two groups showed the same strong avoidance of the
open arms (genotype F(1,22) < 0.1 ns; time on open arms versus
50% chance: t(23) = 45.353, p < 0.0001). (E) Distance moved
during the emergence test plotted in bins of 10 min (Zurich: 19
KO, 21 Wt). Rsk2-deficient mice were overall more active than
controls but showed similar habituation during the 30 min
observation period (genotype F(1,36) = 5.5, p < 0.0243, time
F(2,72) = 125.3, p < 0.0001, genotype · time (F(2,72) = 2.4,
p < 0.0943). (F) Object investigation time during the two
acquisition trials of the object recognition test (Orsay: 11 KO,
15 Wt). On the first day, Rsk2-deficient mice spent more time
investigating the objects than controls (genotype F(1,24) = 3.8,
p < 0.0622, day F(1,24) = 29.2, p < 0.0001, genotype · day
F(1,24) = 4.3, p < 0.0487, genotype on day 1 F(1,24) = 4.6,
p < 0.0420). (G) Time course of estimated horizontal explor-
atory activity directed toward the object during the object
exploration test, plotted in bins of 10 min. The first three points
show the habituation phase without object (Zurich: 19 KO, 21
Wt). Estimated object exploration was not significantly increased
in Rsk2-deficient mice (genotype F(1,36) = 0.4 ns, time
F(5,180) = 20.4, p < 0.0001, genotype · time F(5,180) = 0.4 ns).
(H) Large-scale stereotypical movements during the object
exploration test, plotted in bins of 10 min. In presence of the
object, Rsk2-deficient mice displayed more repetitive locomo-
tion than controls (genotype F(1,36) = 4.2, p < 0.0489, time
F(5,180) = 5.5, p < 0.0001, genotype · time F(5,180) = 3.2,
p < 0.0095; genotype during first, second and third 10 min of
object exploration: F(1,36) = 7.0, p < 0.0121, F(1,36) = 2.4 ns,
F(1,36) = 7.0, p < 0.0121)
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Mutant mice spent much more time near the wall.

They took much more time and swam a much longer

distance to reach the goal. Even though mutants swam

more slowly, the massively increased swim path lengths

indicate that the speed difference accounted only for a

minor part of the performance deficit. Towards the end

of training, Rsk2-mutant mice improved their perfor-

mance and despite the dramatic delay in learning they

were not significantly impaired in a probe trial given

24 h after the end of training (Fig. 3B, Table 3). When

the probe trial was repeated 9 days later, there was a

pronounced and statistically significant deficit (Fig. 3C,

Table 3).

Another group of Rsk2-deficient mice were assessed

in a protocol using 6 trials/day and an ITI of 45 min.

Again, Rsk2-deficient mice had increased escape

latencies and longer swim paths (Fig. 3D, Table 3),

but the impairment was much smaller than in the

experiment shown in Fig. 3A. Mutants did not spend

significantly more time near the wall, but approached

the wall slightly more often. Their swim speed was

indistinguishable from that of controls and there was

no increased tendency for passive floating. Toward the

end of training, performance of Rsk2-deficient mice

was comparable to that of controls, and during the

probe trial, 24 h later, they were normal as judged from

% quadrant time and the annulus crossing index

(Fig. 3E, Table 3). They did, however, spend more

time in the wall zone of the pool. When the platform

was moved to the opposite quadrant after 3 days of

training, Rsk2-deficient mice had initially longer swim

paths than controls but became as fast as controls

within a few trials (Fig. 3D). Like controls, they

abandoned searching the old goal quadrant after four

reversal trials (Fig 3F).

The acquisition deficit of Rsk2-deficient mice

became stronger in the same pool when another cohort
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Fig. 2 Spatial learning in dry land mazes and associative
memory. (A) Working memory errors on the 8-arm radial maze
(Zurich: 48 KO, 48 Wt). Each point represents two trials. Rsk2-
deficient mice made more errors than controls throughout
training (genotype F(1,88) = 8.6, p < 0.0044, time
F(4,352) = 4.2, p < 0.0001, genotype · time F(4,342) = 1.0 ns).
(B) Working memory errors by bait (errors before 1st bait,
between 1st and 2nd, 2nd and 3rd, etc.). Rsk2-deficient mice
made more working memory errors only while attempting to
retrieve the very last bait (genotype F(1,88) = 9.0, p < 0.0035,
bait F(7,616) = 144.1, p < 0.0001, genotype · bait F(7,616) = 4.8,
p < 0.0001; genotype during retrieval of last bait F(1,88) = 13.2,
p < 0.0005). (C) The mean number of different arms visited
within every set of four arm entries on the cross maze was not
significantly reduced in Rsk2-deficient mice (Orsay: 11 KO, 15
Wt; genotype F(1,24) = 3.0, p < 0.0949). (D) Trials to criterion in
the hole-board task (Orsay: 11 KO, 13 Wt). Points represent
testing days. Rsk2-deficient mice required less trials to reach
criterion on the first day and were indistinguishable from
controls thereafter (genotype F(1,22) = 1.2 ns, time
F(4,88) = 145.1, p < 0.0001, genotype x time F(4,88) = 3.1,
p < 0.0187; genotype day 1: F(1,22) = 6.9; p = 0.0157). (E)
Percent exploration time of familiar versus changed object in
the object discrimination task after a delay of 24 h (Orsay: 11
KO, 15 Wt). The first four bars show the results of the trial in
which one of the objects had been displaced, the second four
those of the trial in which one object had been replaced by a new
one. In both tests the mice showed increased interest in the
changed object regardless of their genotype (object displace-
ment: object F(1,24) = 24.6, p < 0.0001, genotype · object
F(1,24) = 0.1 ns; object exchange: object F(1,24) = 29.2,
p < 0.0001, genotype · object F(1,24) = 0.0 ns). (F) Percent
sucrose (sucrose/sucrose + plain water) consumed during the
choice test 24 h after pairing of sucrose with either LiCl (5 KO, 7
Wt) as unconditioned stimulus or NaCl (5 KO, 8 Wt) as control
(Orsay). Regardless of genotype the mice consumed less sucrose
if it had previously been paired with LiCl induced nausea
(genotype F(1,21) < 0.1 ns, US F(1,21) = 10.1, p < 0.0045,
genotype x US F(1,21) = 0.1 ns)
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was challenged by giving only two trials a day (Fig. 4A,

Table 3). In a probe trial given after 10 days of training

Rsk-2 deficient mice searched normally according to %

quadrant time, but their annulus crossing index was

reduced and they spent more time in the wall zone

(Fig. 4B, Table 3). However, in a second probe trial,

24 h after four additional days of training, they were no

longer impaired. To challenge the mice with a more

complex spatial problem, a further cohort of mice was

tested on a serial reversal task. In a series of five spatial

problems, each mouse was required to orient to a new

goal position as soon as it had learned to escape

reliably. Rsk2-deficient mice performed excellently in

the preparatory cue navigation task (Fig. 4D), but

needed more trials than controls to learn the five

spatial problems (Fig. 4E). There was no significant

effect of genotype on cumulative escape latency and

swim path length, but the values of Rsk2-deficient mice

were on average higher than in controls (Table 3). The

impairment in this task did not become more severe

with an increasing number of platform relocations.

Rather, the data suggested that the impairment was

most severe in the first task of the series (Fig. 4E).

Also, there was no evidence of prolonged searching at

the pervious platform locations (Fig. 4F).

Discussion

Coffin Lowry syndrome is caused by mutations in the

Rsk2 gene (Trivier et al. 1996) and has long been

recognized as a rare but severe form of syndromic

X-linked mental retardation. To date, little develop-

ment has been made to aid the understanding of the

nature and etiology of cognitive deficits associated with

the illness. Here, we have conducted a battery of

cognitive and non-cognitive behavioral tests and show,

for the first time, that Rsk2-deficient mice display a

range of behavioral disturbances, including impair-

ments in spatial learning and memory and alterations

in exploratory behavior. Our main finding is that Rsk2-

deficient mice show impaired acquisition of several

place navigation tasks in the water-maze as well as

reduced spatial reference memory after an interval of

9 days. By contrast, spatial reference memory after an

interval of 24 h, as well as recognition memory for

novel objects or the spatial configuration of objects

were preserved in Rsk2-deficient mice. Further, a small

impairment on the 8-arm radial maze suggests a mild

deficit in spatial working memory.

The acquisition deficits in the water-maze were

robust as they were observed under various spatial

learning procedures conducted in the hands of two

independent laboratories. The magnitude of the

impairment clearly depended on the training schedule.

It was minimal when six trials were given per day with

an ITI of 45 min and became more severe when

training trials were either massed with shorter ITIs or

spread out across days. However, even the most severe

deficit was only partial, allowing the mice to acquire

the task with a delay after additional training. Together

with the observation that the acquisition deficit was

associated with increased wall hugging this suggests

that the deficit may, at least in part, be due to a general

difficulty in adapting to the test situation and to engage

in the initial learning steps (Lipp and Wolfer 1998;

Wolfer et al. 1998). The fact that the impairment of

Rsk2-mice in the serial reversal procedure was mar-

ginal and did not increase across tasks with increasing

spatial challenge supports this interpretation. The

absence of perseverant searching at previous platform

locations indicates that Rsk-2 deficient mice adapt well

to changing spatial configurations within a given

experimental setting.

As non-cognitive factors may interfere with perfor-

mance in tests of learning and memory, we also

Table 2 Factorial ANOVA
of working memory tasks

Note: effects shown in same
way as in Table 1

F(df1,df2) Type-I p x2
P FDR

8-arm radial maze (Zurich: 48 KO, 48 Wt)
Working memory errors F(1,99) = 7.6 › p < 0.0043 0.073 Sig.

Correct before first working memory error F(1,99) = 2.4 fl p < 0.0890 0.020
Correct choices in first 8 F(1,99) = 1.4 fl ns

Bait neglect errors F(1,99) = 1.2 › ns
Arm omission errors F(1,99) = 0.4 › ns
Aborted choices F(1,99) = 4.6 › p < 0.0068 0.065 Sig.

% Prefereed choice angle F(1,99) = 1.6 fl ns
% Choice angle repetitions F(1,99) = 1.4 fl ns
% Chaining F(1,99) = 1.2 ns

Spontaneous alternation (Orsay: 11 KO, 15 Wt)
Total visits F(1,24) = 5.4 › p < 0.0291 0.144 Sig.
% All different in four choices F(1,24) = 1.4 fl ns

% Different in four choices F(1,24) = 3.0 fl p < 0.0949 0.100

42 Behav Genet (2007) 37:31–50

123



evaluated the animals’ motor abilities and emotional

reactivity. Smaller body weight and size have been

reported both in Rsk2-deficient mice (Dufresne et al.

2001; El-Haschimi et al. 2003; Yang et al. 2004) and

children with CLS (Hanauer and Young 2002), and a

different line of Rsk2-deficient mice has been shown to

perform badly on a rotating rod (Dufresne et al. 2001).

Such physical effects of the mutation could potentially

interfere with learning and memory performance.

Direct body length measurements were not taken in

the present study, but body size as measured indirectly

by the video-tracking system was normal. The reduc-

tion of body weight was modest in our relatively young

Rsk2-deficient mice, which may be explained by the

fact that the smaller weight of Rsk2-deficient mice is

due to reduced accumulation of adipose tissue with age

(El-Haschimi et al. 2003). Moreover, Rsk2-deficient

mice used in the present study showed normal

performance in sensorimotor tests, though a marginal

deficit in the traction reflex test suggests that a mild

alteration of motor coordination cannot be completely

ruled out. However, the data show that differences in

swim speed in the water-maze or abnormal swimming

patterns such as circling could not account for the

deficit observed in spatial learning performance. Rsk2-

deficient mice also showed normal locomotor activity

during open-field exploration, indicating that the

effects of the mutation on the musculoskeletal system

did not interfere with performance in these tests. The

only clear change in locomotion patterns was an

increase in acceleration in the mutant mice during

bouts of progressive locomotion in a large open-field.

This phenomenon, also described as darting behavior,

is a robust trait of some inbred mouse strains, and has

been reliably used to differentiate DBA/2 from

C57BL/6 mouse strains (Kafkafi et al. 2003b). It is

not known whether these strain differences are due to

central or peripheral mechanisms, therefore it is not

clear whether the more pronounced darting in Rsk2-

deficient mice results from changes in the musculo-
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Fig. 3 Water-maze learning in place navigation procedures with
two blocks of four trials per day (60 s ITI) for 11 days (Orsay: 10
KO, 15 Wt, A–C) and with six trials per day (45 min ITI) for
5 days (Zurich: 45 KO, 52 Wt, D–F). (A) Swim path to reach the
hidden platform. Each point represents one training day. Rsk2-
deficient mice showed poorer performance and delayed learning
(genotype F(1,23) = 19.1, p < 0.0002, time F(1,10) = 26.3,
p < 0.0001, genotype · time F(10, 230) = 3.614, p < 0.0002).
(B) Percent time spent in the target, opposite, adjacent left
and adjacent right quadrants during the first probe trial 24 h after
completion of training (place F(3,69 = 31.1, p < 0.0001, geno-
type · place F(3,69) = 2.5, p < 0.0674; target versus 25% chance
in Wt: t(14) = 8.0, p < 0.0001, KO t(9) = 3.5, p < 0.0064). (C)
Percent time spent in the target, opposite, adjacent left and
adjacent right quadrants during the second probe trial 9 days
later (place F(3,69) = 20.4, p < 0.0001, genotype · place
F(3,69) = 4.2, p < 0.0083; target versus 25% chance in Wt:
t(14) = 7.1, p < 0.0001, KO t(9) = 2.4, p < 0.0380; target Wt
versus KO t(23) = 2.9, p < 0.0079). (D) Swim path length during
acquisition and reversal training. Each point represent two
subsequent trials. Rsk2-deficient mice performed more poorly
during most of acquisition and at the beginning of reversal
(genotype F(1,85) = 17.1, p < 0.0001, time F(14,1190) = 65.2,
p < 0.0001, genotype · time F(14,1190) = 1.8, p < 0.0295). (E)
Percent time spent in the target, opposite, adjacent left and
adjacent right quadrants during the probe trial 24 h after
completion of 3 days of acquisition training. Rsk2-deficient mice
did not differ from controls with respect to their preference for
the trained quadrant (place F(3,255) = 37.5, p < 0.0001, geno-
type · place F(3,255) = 0.9 ns; target versus 25% chance:
t(96) = 9.2, p < 0.0001). (F) Percent time spent in the previous
goal quadrant during the first day of reversal training. Each point
represents two subsequent trials. Rsk2-deficient mice abandoned
searching in the previous target quadrant as rapidly as controls
(genotype: F(1,85) = 2.2 ns, time F(2,170) = 69.2, p < 0.0001,
genotype · time F(2,170) = 0.3 ns)
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skeletal system or is due to a central effect of the

mutation.

In the spatial navigation tasks, Rsk-2 mutant mice

showed increased wall hugging behavior. Their ten-

dency to orient toward the wall varied across protocols

and correlated well with the magnitude of the perfor-

mance deficit (Table 3). It has been proposed that wall-

hugging may result from increased anxiety in the water

maze (Hodges 1996; Wolfer et al. 1998). However, we

found that these mice showed no indication of

increased anxiety-related responses in the open-field,

the elevated plus maze or the O-maze. Instead, they

tended to show hyper-responsiveness toward changes

in the environment. Rsk2-deficient mice made more

head dips on the O-maze, showed increased explora-

tion of the arena during the emergence test, visited the

arms more frequently during the spontaneous alterna-

tion task, and reacted more strongly when new objects

were added to a familiar arena during the first training

day of the object exploration and recognition tasks.

In general, our battery of non-cognitive tests suggest

that Rsk2-deficient mice do not suffer from increased

anxiety and are not generally hyperactive but tend to

be hyper-responsive to environmental stimuli. There-

fore, we believe that the thigmotaxic behavior in the

water-maze is not indicative of an anxiety-induced

Table 3 Factorial ANOVA
of water-maze learning

Note: effects shown in same
way as in Table I.

F(df1,df2) Type-I p x2
P FDR

2 · 4 trials · 11 days (Orsay: 10 KO, 15 Wt)
Average escape latency F(1,23) = 25.5 › p < 0.0001 0.495 Sig.

Average swim path length F(1,23) = 19.1 › p < 0.0002 0.420 Sig.
% Time in wall zone F(1,23) = 25.5 › p < 0.0001 0.495 Sig.

Average swim speed F(1,23) = 6.2 fl p < 0.0201 0.173 Sig.
Probe (24 h): annulus crossing index F(1,23) = 2.6 fl ns
Probe (24 h): % time in wall zone F(1,23) = 4.1 › p < 0.0555 0.109
Probe (9 days): annulus crossing index F(1,23) = 4.9 fl p < 0.0364 0.136 Sig.
Probe (9 days): % time in wall zone F(1,23) = 5.3 › p < 0.0306 0.147 Sig.
6 trials · 5 days (Zurich: 45 KO, 52 Wt)
Average escape latency F(1,85) = 11.6 › p < 0.0010 0.098 Sig.

Average swim path length F(1,85) = 17.2 › p < 0.0001 0.143 Sig.
% Time in wall zone F(1,85) = 2.4 › ns
Number of wall approaches F(1,85) = 7.3 › p < 0.0082 0.061 Sig.

Average swim speed F(1,85) = 0.1 ns
Time spent floating (log) F(1,85) = 1.0 ns
Circling index F(1,85) = 4.0 ns

Path efficiency F(1,85) = 5.7 fl p < 0.0192 0.046 Sig.
% Path parallel to border F(1,85) = 13.9 › p < 0.0003 0.118 Sig.

Probe (trial 19): annulus crossing index F(1,85) = 3.3 › p < 0.0713 0.026
Probe (trial 19): % time in wall zone F(1,85) = 4.6 › p < 0.0345 0.036 Sig.
2 trials · 14 days (Zurich: 11 KO, 13 Wt)
Average escape latency F(1,22) = 5.3 › p < 0.0318 0.151 Sig.

Average swim path length F(1,22) = 7.8 › p < 0.0106 0.221 Sig.
% Time in wall zone F(1,22) = 5.4 › p < 0.0296 0.155 Sig.
Number of wall approaches F(1,22) = 13.2 › p < 0.0015 0.336 Sig.

Average swim speed F(1,22) = 1.4 ns
Time spent floating (log) F(1,22) = 0.8 ns
Circling index F(1,22) = 0.2 ns

Path efficiency F(1,22) = 7.6 fl p < 0.0114 0.216 Sig.
% Path parallel to border F(1,22) = 14.2 › p < 0.0010 0.356 Sig.

Probe (trial 21): annulus crossing index F(1,22) = 4.4 fl p < 0.0480 0.124 Sig.
Probe (trial 21): % time in wall zone F(1,22) = 4.7 › p < 0.0416 0.133 Sig.
Probe (trial 30): annulus crossing index F(1,22) = 0.3 ns
Probe (trial 30): % time in wall zone F(1,22) = 0.2 ns
Serial reversal (Zurich: 15 KO, 13 Wt)
Cumulative escape latency F(1,26) = 5.1 › p < 0.0333 0.127

Cumulative swim path length F(1,26) = 6.1 › p < 0.0203 0.155
Average time in wall zone F(1,26) = 0.7 ns
Cumulative number of wall approaches F(1,26) = 5.5 › p < 0.0267 0.140

Average swim speed F(1,26) = 0.9 ns
Cumulative time spent floating (log) F(1,26) = 0.8 ns
Average circling index F(1,26) = 1.0 ns

Average path efficiency F(1,26) = 1.5 fl ns
Average % path parallel to border F(1,26) = 1.6 › ns
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inability to learn the spatial memory task, but may well

reflect a general maladaptive reaction to the unfamiliar

test situation (Lipp and Wolfer 1998; Wolfer et al.

1998).

Taken together, Rsk2-deficient mice displayed

selective learning impairments, to which impaired

adaptation to the test environment likely makes a

strong contribution, along with a moderate hyper-

reactivity to environmental change. How does this

compare to the behavioral changes seen in other

models of human mental retardation? Table 4 gives a

synopsis of findings reported in some other mouse

models of monogenic forms of syndromic and non-

syndromic mental retardation. It is evident that

behavioral changes differ between different mouse

models and the cognitive alterations seem less severe

in mice than in mentally retarded humans. However, it

should be kept in mind that the definition of mental

retardation implies significant limitations both in

intellectual functioning (IQ < 70) and in adaptive

behavior, but not complete loss of cognitive abilities.

The sole use of IQ measures does not provide an

adequate, or sufficient portrayal of the patients’ entire

repertoire of cognitive and intellectual functioning, as

global IQ scores may mask the complex profile of the

cognitive deficits and understate their wide-ranging

effect on intellectual and social functions (Aylward

2002; Schalock et al. 1994). In CLS patients there is a

marked variability in the severity of cognitive deficits,

even between siblings, and environmental or other

non-cognitive factors can determine the severity of

mental retardation and how CLS patients cope with

cognitive demands. Although it is debatable whether

all features of human mental retardation can be

modeled in rodents, several mouse models of mental

retardation have been characterized by some mild,
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Fig. 4 Water-maze learning in a place navigation procedure of
two trials per day during 14 days with 30 s ITI (Zurich, 11 KO,
13 WT, A–C) and in a cue navigation procedure that was
followed by a serial reversal task (Zurich, 15 KO, 13 Wt; D–F).
(A) Swim path length while learning to find the hidden platform.
Each point represents the average of the two trials run on the
same day. Swim paths of Rsk2-deficient mice were longer than
those of controls (genotype F(1,22) = 7.7, p < 0.0111, time
F(13,286) = 18.8, p < 0.0001, genotype · time F(13,286) = 0.6
ns). (B) Percent time spent in the target, opposite, adjacent left
and adjacent right quadrants during the first probe trial 24 h after
10 days of training in the 2 trials · 14 days procedure. The mice
spent more time than expected by chance in the target quadrant
and there was no significant effect of genotype on the preference
for the target quadrant (quadrant F(3,22) = 19.2, p < 0.0001,
genotype · place, F(3,22) = 1.4 ns, time in target quadrant
versus 25% t(23) = 5.0, p < 0.0001). (C) Percent time spent in
the target, opposite, adjacent left and adjacent right quadrants
during a second probe trial 24 h after further 4 days of training in
the 2 trials · 14 days procedure. Again, the mice spent more
time than expected by chance in the target quadrant and there
was no significant effect of genotype on the preference for the
target quadrant (quadrant F(3,22) = 38.0, p < 0.0001, geno-
type · place F(3,22) = 0.1 ns, time in target quadrant versus
25% t(23) = 8.3, p < 0.0001). (D) Swim path length during
training in the cue navigation task. Each point represents two
successive trials. Rsk2-deficient mice were not impaired in this
test. During the first two trials they were even more efficient than
controls in reaching the platform (genotype F(1,26) = 1.8 ns,
time F(5,130) = 47.1, p < 0.0001, genotype · time
F(5,130) = 4.4, p < 0.0010; time in Wt F(5,60) = 33.2,
p < 0.0001, in KO F(5,70) = 14.0, p < 0.0001). (E) Trials needed
to reach criterion in tasks 1–5 of the serial reversal procedure.
Rsk2-deficient mice needed more training trials to reach
criterion, especially during the first task (genotype
F(1,26) = 8.0, p < 0.0088, task F(4,104) = 2.1, p < 0.0895, geno-
type · task F(4,104) = 1.5 ns). (F) Average % time spent in the
target zone of the previous task during tasks 2–5 (chance 12.5%).
Irrespective of genotype the mice spent more time in the
previous goal zone than expected by chance (genotype
F(1,26) = 0.1 ns, task F(3,78) = 2.7, p < 0.0516, genotype · task
F(3,78) = 1.9 ns)
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often transitory, learning deficits, that may be com-

bined with increased or stereotyped activity in explo-

ration tests. The behavioral profile of Rsk2-deficient

mice conforms to this general pattern. Our own results

indicate that maladaptive and exaggerated responses

to environmental change may play a significant role in

Table 4 Behavioral changes in mouse models of monogenic syndromic and non-syndromic human mental retardation and selected
references

Gene, human disease, mouse
model

Exploratory behavior, activity Learning and memory Other observations

FMR1 (FMRP, fragile X mental
retardation protein, RNA
binding protein that
modulates translation),
Fragile X syndrome (MR,
macroorchidism, facial
dysmorphisms), FMR1-KO
(Bakker et al. 1994)

Increased exploratory
behavior, reduced anxiety-
related responses (Bakker
et al. 1994; Mineur et al.
2002; Peier et al. 2000)

Normal fear conditioning (Peier
et al. 2000), moderate
impairment on radial-maze
(Mineur et al. 2002), reversal
learning in water-maze mildly
impaired (Bakker et al. 1994)

Increased startle response
(Nielsen et al. 2002),
enhanced prepulse inhibition,
audiogenic seizures (Chen
and Toth 2001), impaired
rotarod learning (Peier et al.
2000), reduced social
interaction (Mineur et al.
2006)

FMR2 (FMR2P, putative
transcription factor), FRAXE
syndrome (variable X-linked
MR), FMR2-KO (Gu et al.
2002)

Normal open-field exploration,
normal in light/dark box
(Gu et al. 2002)

Impaired contextual fear
conditioning, normal tone fear
conditioning (Gu et al. 2002)

Normal startle response and
prepulse inhibition, normal on
rotarod (Gu et al. 2002)

FRX2 (autosomal FMR1
homolog), FRX2-KO
(Bontekoe et al. 2002)

Hyperactive in open-field
(Bontekoe et al. 2002)

Impaired contextual fear
conditioning, delayed place
navigation acquisition
(Bontekoe et al. 2002)

Impaired on rotarod, reduced
prepulse inhibition, reduced
pain sensitivity (Bontekoe
et al. 2002)

GDI1 (regulator of Rab family
small GTPases), non-
syndromic X-linked severe
MR, GDI1-KO (D’Adamo
et al. 2002; Ishizaki et al.
2000)

Open-field, O-maze, light/
dark-box normal (D’Adamo
et al. 2002)

Marginal water-maze place
navigation deficit, normal
delayed cue fear conditioning,
impaired trace fear
conditioning, impaired radial
maze learning (D’Adamo
et al. 2002)

Reduced aggression (D’Adamo
et al. 2002)

MECP2 (methyl-CpG-binding
protein 2), Rett syndrome
(X-linked MR, neurological
deficits), conditional MECP2-
KO (Guy et al. 2001)

Impaired water-maze place
navigation, contextual fear
conditioning, and social
recognition (Moretti et al.
2006)

Motor deficits, death at 6–
12 weeks, later onset of
symptoms in heterozygous
mice (Guy et al. 2001)

L1 (Ig superfamily cell adhesion
protein), CRASH syndrome
(X linked MR, spastic
paraplegia, hydrocephalus,
corpus callosum hypoplasia),
L1-KO (Cohen et al. 1998;
Dahme et al. 1997)

Stereotyped circling in open-
field (Fransen et al. 1998)

Slightly impaired water-maze
place navigation, normal
passive avoidance (Fransen
et al. 1998)

Reduced startle response,
reduced prepulse inhibition
(Irintchev et al. 2004),
reduced pain sensitivity
(Dahme et al. 1997)

ARHGEF6 (guanine nucleotide
exchange factor for Rho
GTPases), non-syndromic X-
linked severe MR (Kutsche
et al. 2000), ARHGEF6-KO

Disinhibited object
exploration (Wolfer et al.
2005)

Navigation errors and
perseverance in the water-
maze place navigation task
(Wolfer et al. 2005)

PAH ( phenylalanine
hydroxylase), phenylketonuria
(autosomal recessive MR,
neurological deficits, epilepsy)
, Pah(enu2) mouse
(McDonald et al. 1990)

Impaired olfactory
discrimination, impaired
latent learning (Zagreda et al.
1999), impaired spatial and
non-spatial recognition (Cabib
et al. 2003)

NF1 (neurofibromin, negative
regulator of Ras),
neurofibromatosis type 1
(autosomal dominant, mild
MR, tumors), NF1+/– mouse
(Silva et al. 1997)

Normal open-field exploration
(Silva et al. 1997)

Normal cued fear conditioning,
mild place-navigation deficit
corrected by overtraining
(Silva et al. 1997)
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the cognitive deficits found in Rsk2-deficient mice,

suggesting that this should be further considered as a

putative factor involved in the expression of mental

retardation in rodents.

A possible route through which the loss of Rsk2

gene function may contribute to the cognitive deficits

observed in CLS patients and mutant mice is by

affecting the function of the MAPK/ERK signaling

pathway. This pathway plays a critical role in convey-

ing signals generated at the receptor to the nucleus to

trigger activity-dependent gene regulation that is

considered to be an important mechanism for the

maintenance of synaptic plasticity and the consolida-

tion of long-term memories. A number of studies have

shown that inhibition of ERK, the kinase upstream of

RSK leads to rapidly decaying LTP (Davis 2000;

English and Sweatt 1997) and an inability to form a

number of different types of long-term memory,

including fear associated memories (Atkins et al.

1998; Schafe et al. 2000), recognition memory (Kelly

et al. 2003) and spatial memories (Blum et al. 1999;

Selcher et al. 1999). One downstream target of RSK is

the transcription factor CREB (Xing et al. 1996). In

aplysia (Bartsch et al. 1995) and drosophila (Yin et al.

1994), CREB activation is necessary for consolidating

memory and stabilizing synaptic plasticity. In several

studies, this has also been claimed for rodents (Bour-

tchuladze et al. 1994; Bozon et al. 2003; Kida et al.

2002), although the evidence is not unequivocal

(Balschun et al. 2003). It is noteworthy that the

severity of acquisition deficits of CREB deficient

mutant mice in water-maze tasks depended on the

training schedule in a way reminiscent of the pattern

observed in this study in Rsk2-deficient mice (Gass

et al. 1998; Kogan et al. 1997). In human CLS patients,

there is evidence for a direct relationship between the

magnitude of Rsk2-mediated CREB phosphorylation

and intelligence level (Harum et al. 2001). This sug-

gests that insufficient Rsk2 mediated CREB activation

plays a prominent role in cognitive dysfunction of CLS

patients. An important feature of the role of ERK and

CREB in memory consolidation is that the cognitive

impairment induced by inactivation of ERK and

CREB is much more severe than that which we

observed in Rsk2-deficient mice. Although Rsk2 serves

as an intermediate between ERK and CREB, the

mitogen- and stress-activated kinase (MSK) is also

activated by ERK and targets CREB. Therefore, Rsk2

activation may not be the only means of activating

CREB and there is growing evidence to suggest MSK

may play a critical role in CREB-mediated transcrip-

tion (Darragh et al. 2005; Wiggin et al. 2002). Rsk2 can

also phosphorylate histones (Sassone-Corsi et al. 1999)

and various transcription factors such as ATF4 (Yang

et al. 2004), which have both been implicated in

synaptic plasticity and memory formation (Alarcon

et al. 2004; Chen et al. 2003; Costa-Mattioli et al. 2005;

Korzus et al. 2004; Levenson et al. 2004). At present,

however, the signaling mechanisms involved in medi-

ating the cognitive disabilities observed here are not

known.

In conclusion, the present results show that Rsk2

gene mutation in mice results in a selective range of

cognitive and behavioral alterations that is in keeping

with the profile of alterations seen in other mouse

models of human mental retardation. The specific

deficits observed with these mice are also strengthened

by the fact that it could be reproduced in two indepen-

dent laboratories (Crabbe et al. 1999; Lewejohann et al.

2006; Wolfer et al. 2004). In all, the results strongly

argue in favor of the Rsk2-deficient mouse as an animal

model of mental retardation associated with the CLS

syndrome. This should be useful to investigate neuro-

biological mechanisms responsible for cognitive dys-

function in CLS and to test therapeutic strategies to

combat the effects associated with Rsk2 gene mutations.

Acknowledgments This work was supported by the Swiss
National Science Foundation and the NCCR ‘‘Neural Plasticity
and Repair’’, and by grants from GIS INSERM ‘‘Maladies
Rares’’ and ANR (No. ANR-05-NEUR-005-01) to A.H. and S.L.
We thank Inger Drescher and Rosmarie Lang for expert help
with the behavioral experiments. We thank Benoit Delatour for
the development of home-made programs to analyze behavioral
data in Orsay. We are grateful to Solange Pannetier, Nathalie
Samson, Sandra Vandergeenst, and Pascale Veyrac for animal
care.

References

Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S,
Kandel ER, Barco A (2004) Chromatin acetylation, mem-
ory, and LTP are impaired in CBP (±) mice; a model for the
cognitive deficit in Rubinstein-Taybi syndrome and its
amelioration. Neuron 42:947–959

Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD
(1998) The MAPK cascade is required for mammalian
associative learning. Nat Neurosci 1:602–609

Aylward GP (2002). Cognitive and neuropsychological out-
comes: more than IQ scores. Ment Retard Dev Disabil Res
Rev 8:234–240

Bakker CE, Verhehij C, Willemsen R, van der Helm R,
Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT,
Oostra BA, Reyniers E, et al (1994). Fmr1 knockout mice: a
model to study fragile X mental retardation. The Dutch-
Belgian Fragile X Consortium. Cell 78:23–33

Balschun D, Wolfer DP, Gass P, Mantamadiotis T, Welzl H,
Schutz G, Frey JU, Lipp HP (2003) Does cAMP response
element-binding protein have a pivotal role in hippocampal
synaptic plasticity and hippocampus-dependent memory?
J Neurosci 23:6304–6314

Behav Genet (2007) 37:31–50 47

123



Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen
M, Bailey CH, Kandel ER (1995) Aplysia CREB2 represses
long-term facilitation: relief of repression converts transient
facilitation into long-term functional and structural change.
Cell 83:979–992

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001).
Controlling the false discovery rate in behavior genetics
research. Behav Brain Res 125:279–284

Benjamini Y, Hochberg Y (1995) Controlling the false discovery
rate: a practical and powerful approach to multiple testing.
J Royal Stat Soc Ser B 57:289–300

Berger S, Wolfer DP, Selbach O, Alter H, Erdmann G,
Reichardt HM, Chepkova AN, Welzl H, Haas HL, Lipp
HP, Schutz G (2006). Loss of the limbic mineralocorticoid
receptor impairs behavioral plasticity. Proc Natl Acad Sci
USA 103:195–200

Blum S, Moore AN, Adams F, Dash PK (1999). A mitogen-
activated protein kinase cascade in the CA1/CA2 subfield of
the dorsal hippocampus is essential for long-term spatial
memory. Journal of Neurocience 19:3535–3544

Bontekoe CJ, McIlwain KL, Nieuwenhuizen IM, Yuva-Paylor
LA, Nellis A, Willemsen R, Fang Z, Kirkpatrick L, Bakker
CE, McAninch R, et al (2002) Knockout mouse model for
Fxr2: a model for mental retardation. Hum Mol Genet
11:487–498

Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G,
Silva AJ (1994) Deficient long-term memory in mice with a
targeted mutation of the cAMP-responsive element binding
protein. Cell 79:59–68

Bozon B, Davis S, Laroche S (2002) Regulated transcription of
the immediate-early gene Zif268: mechanisms and gene
dosage-dependent function in synaptic plasticity and mem-
ory formation. Hippocampus 12:570–577

Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S
(2003) MAPK, CREB and zif268 are all required for the
consolidation of recognition memory. Philos Trans R Soc
Lond B Biol Sci 358:805–814

Brosnan-Watters G, Wozniak DF (1997) A rotating holeboard
procedure for testing drug effects on spatial learning and
memory in mice. Brain Res Brain Res Protoc 1:331–338

Cabib S, Pascucci T, Ventura R, Romano V, Puglisi-Allegra S
(2003) The behavioral profile of severe mental retardation
in a genetic mouse model of phenylketonuria. Behav Genet
33:301–310

Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis
P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, et al
(2003) Inducible enhancement of memory storage and
synaptic plasticity in transgenic mice expressing an inhibitor
of ATF4 (CREB-2) and C/EBP proteins. Neuron 39:655–669

Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ,
Justice A, McConlogue L, Games D, Freedman SB, Morris
RG (2000) A learning deficit related to age and beta-
amyloid plaques in a mouse model of Alzheimer’s disease.
Nature 408:975–979

Chen L, Toth M (2001) Fragile X mice develop sensory hyperre-
activity to auditory stimuli. Neuroscience 103:1043–1050

Coffin R, Phillips JL, Staples WI, Spector S (1966) Treatment of
lead encephalopathy in children. J Pediatr 69:198–206

Cohen NR, Taylor JS, Scott LB, Guillery RW, Soriano P, Furley AJ
(1998). Errors in corticospinal axon guidance in mice lacking
the neural cell adhesion molecule L1. Curr Biol 8:26–33

Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M,
Bruno M, Bidinosti M, Ben Mamou C, Marcinkiewicz E,
Yoshida M, et al (2005) Translational control of hippocam-
pal synaptic plasticity and memory by the eIF2alpha kinase
GCN2. Nature 436:1166–1173

Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse
behavior: interactions with laboratory environment. Science
284:1670–1672

D’Adamo P, Welzl H, Papadimitriou S, Raffaele DB, Tiveron C,
Tatangelo L, Pozzi L, Chapman PF, Knevett SG, Ramsay
MF, et al (2002) Deletion of the mental retardation gene
Gdi1 impairs associative memory and alters social behavior
in mice. Hum Mol Genet 11:2567–2580

Dahme M, Bartsch U, Martini R, Anliker B, Schachner M,
Mantei N (1997) Disruption of the mouse L1 gene leads to
malformations of the nervous system. Nat Genet 17:346–349

Darragh J, Soloaga A, Beardmore VA, Wingate AD, Wiggin
GR, Peggie M, Arthur JS (2005) MSKs are required for the
transcription of the nuclear orphan receptors Nur77, Nurr1
and Nor1 downstream of MAPK signalling. Biochem J
390:749–759

Davis RJ (2000) Signal transduction by the JNK group of MAP
kinases. Cell 103:239–252

Davis S, Laroche S (2006). Mitogen-activated protein kinase/
extracellular regulated kinase signalling and memory stabil-
ization: a review. Genes Brain Behav 5(Suppl 2):61–72

De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P (1998)
Rsk-2 activity is necessary for epidermal growth factor-
induced phosphorylation of CREB protein and transcription
of c-fos gene. Proc Natl Acad Sci USA 95:12202–12207

Delaunoy J, Abidi F, Zeniou M, Jacquot S, Merienne K,
Pannetier S, Schmitt M, Schwartz C, Hanauer A (2001)
Mutations in the X-linked RSK2 gene (RPS6KA3) in
patients with Coffin–Lowry syndrome. Hum Mutat 17:103–
116

Drai D, Golani I (2001). SEE: a tool for the visualization and
analysis of rodent exploratory behavior. Neurosci Biobehav
Rev 25:409–426

Dufresne SD, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach
WG, Moller DE, Goodyear LJ (2001). Altered extracellular
signal-regulated kinase signaling and glycogen metabolism
in skeletal muscle from p90 ribosomal S6 kinase 2 knockout
mice. Mol Cell Biol 21:81–87

Dulawa SC, Grandy DK, Low MJ, Paulus MP, Geyer MA
(1999). Dopamine D4 receptor-knock-Out mice exhibit
reduced exploration of novel stimuli. J Neurosci 19:9550–
9556

El-Haschimi K, Dufresne SD, Hirshman MF, Flier JS, Goodyear
LJ, Bjorbaek C (2003) Insulin resistance and lipodystrophy
in mice lacking ribosomal S6 kinase 2. Diabetes 52:1340–
1346

English JD, Sweatt JD (1997) A requirement for the mitogen-
activated protein kinase cascade in hippocampal long-term
potentiation. J Biol Chem 272:19103–19106

Fransen E, Dhooge R, Vancamp G, Verhoye M, Sijbers J,
Reyniers E, Soriano P, Kamiguchi H, Willemsen R, Koek-
koek SKE et al (1998) L1 knockout mice show dilated
ventricles, vermis hypoplasia and impaired exploration
patterns. Hum Mol Genet 7:999–1009

Frodin M, Gammeltoft S (1999) Role and regulation of 90 kDa
ribosomal S6 kinase (RSK) in signal transduction. Mol Cell
Endocrinol 151:65–77

Gass P, Wolfer DP, Balschun D, Rudolph D, Frey JU, Lipp HP,
Schutz G (1998) Deficits in memory tasks of mice with
CREB mutations depend on gene dosage. Learn Mem
5:274–288

Gu Y, McIlwain KL, Weeber EJ, Yamagata T, Xu B, Antalffy
BA, Reyes C, Yuva-Paylor L, Armstrong D, Zoghbi H, et al
(2002) Impaired conditioned fear and enhanced long-term
potentiation in Fmr2 knock-out mice. J Neurosci 22:2753–
2763

48 Behav Genet (2007) 37:31–50

123



Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A
mouse Mecp2-null mutation causes neurological symptoms
that mimic Rett syndrome. Nat Genet 27:322–326

Hanauer A, Alembik Y, Gilgenkrantz S, Mujica P, Nivelon-
Chevallier A, Pembrey ME, Young ID, Mandel JL (1988)
Probable localisation of the Coffin–Lowry locus in Xp22.2-
p22.1 by multipoint linkage analysis. Am J Med Genet
30:523–530

Hanauer A, Young ID (2002) Coffin–Lowry syndrome: clinical
and molecular features. J Med Genet 39:705–713

Harum KH, Alemi L, Johnston MV (2001) Cognitive impair-
ment in Coffin–Lowry syndrome correlates with reduced
RSK2 activation. Neurology 56:207–214

Hodges H (1996) Maze procedures: the radial-arm and water
maze compared. Brain Res Cogn Brain Res 3:167–181

Irintchev A, Koch M, Needham LK, Maness P, Schachner M
(2004). Impairment of sensorimotor gating in mice deficient
in the cell adhesion molecule L1 or its close homologue,
CHL1. Brain Res 1029:131–134

Ishizaki H, Miyoshi J, Kamiya H, Togawa A, Tanaka M, Sasaki
T, Endo K, Mizoguchi A, Ozawa S, Takai Y (2000) Role of
rab GDP dissociation inhibitor alpha in regulating plasticity
of hippocampal neurotransmission. Proc Natl Acad Sci USA
97:11587–11592

Jacquot S, Merienne K, De Cesare D, Pannetier S, Mandel JL,
Sassone-Corsi P, Hanauer A (1998) Mutation analysis of the
RSK2 gene in Coffin–Lowry patients: extensive allelic
heterogeneity and a high rate of de novo mutations. Am J
Hum Genet 63:1631–1640

Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani
I (2003a) SEE locomotor behavior test discriminates
C57BL/6J and DBA/2J mouse inbred strains across
laboratories and protocol conditions. Behav Neurosci
117:464–477

Kafkafi N, Pagis M, Lipkind D, Mayo CL, Bemjamini Y, Golani
I, Elmer GI (2003b) Darting behavior: a quantitative
movement pattern designed for discrimination and replica-
bility in mouse locomotor behavior. Behav Brain Res
142:193–205

Kelly A, Laroche S, Davis S (2003) Activation of mitogen-
activated protein kinase/extracellular signal-regulated ki-
nase in hippocampal circuitry is required for consolidation
and reconsolidation of recognition memory. J Neurosci
23:5354–5360

Keren G, Lewis C (1979) Partial omega squared for ANOVA
designs. Educ Psychol Measur 39:119–128

Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I,
Masushige S, Silva AJ (2002) CREB required for the
stability of new and reactivated fear memories. Nat Neuro-
sci 5:348–355

Kogan JH, Frankland PW, Blendy JA, Coblentz J, Marowitz Z,
Schutz G, Silva AJ (1997) Spaced training induces normal
long-term memory in CREB mutant mice. Curr Biol 7:1–11

Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN,
Brownstein MJ, Zimmer A (1996) Pain responses, anxiety
and aggression in mice deficient in pre-proenkephalin.
Nature 383:535–538

Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone
acetyltransferase activity is a critical component of memory
consolidation. Neuron 42:961–972

Kutsche K, Yntema H, Brandt A, Jantke I, Nothwang HG, Orth
U, Boavida MG, David D, Chelly J, Fryns JP, et al (2000)
Mutations in ARHGEF6, encoding a guanine nucleotide
exchange factor for Rho GTPases, in patients with X-linked
mental retardation. Nat Genet 26:247–250

Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese
DL, Sweatt JD (2004) Regulation of histone acetylation
during memory formation in the hippocampus. J Biol Chem
279:40545–40559

Lewejohann L, Reinhard C, Schrewe A, Brandewiede J, Haem-
isch A, Gortz N, Schachner M, Sachser N (2006) Environ-
mental bias? Effects of housing conditions, laboratory
environment and experimenter on behavioral tests. Genes
Brain Behav 5:64–72

Lipp HP, Wolfer DP (1998) Genetically modified mice and
cognition. Curr Opin Neurobiol 8:272–280

Lowry B, Miller JR, Fraser FC (1971) A new dominant gene
mental retardation syndrome. Association with small stat-
ure, tapering fingers, characteristic facies, and possible
hydrocephalus. Am J Dis Child 121:496–500

Madani R, Kozlov S, Akhmedov A, Cinelli P, Kinter J, Lipp HP,
Sonderegger P, Wolfer DP (2003) Impaired explorative
behavior and neophobia in genetically modified mice
lacking or overexpressing the extracellular serine protease
inhibitor neuroserpin. MolCell Neurosci 23:473–494

McDonald JD, Bode VC, Dove WF, Shedlovsky A (1990)
Pahhph-5: a mouse mutant deficient in phenylalanine
hydroxylase. Proc Natl Acad Sci USA 87:1965–1967

Mineur YS, Huynh LX, Crusio WE (2006) Social behavior
deficits in the Fmr1 mutant mouse. Behav Brain Res
168:172–175

Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE (2002)
Behavioral and neuroanatomical characterization of the
Fmr1 knockout mouse. Hippocampus 12:39–46

Mohajeri MH, Madani R, Saini K, Lipp HP, Nitsch RM, Wolfer
DP (2004) The impact of genetic background on neurode-
generation and behavior in seizured mice. Genes Brain
Behav 3:228–239

Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R,
Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi
HY (2006). Learning and memory and synaptic plasticity are
impaired in a mouse model of Rett syndrome. J Neurosci
26:319–327

Nielsen DM, Derber WJ, McClellan DA, Crnic LS (2002)
Alterations in the auditory startle response in Fmr1 targeted
mutant mouse models of fragile X syndrome. Brain Res
927:8–17

Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R,
Nelson DL (2000) (Over)correction of FMR1 deficiency
with YAC transgenics: behavioral and physical features.
Hum Mol Genet 9:1145–1159

Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L,
Jacquot S, Hanauer A, Allis CD (1999). Requirement of
Rsk-2 for epidermal growth factor-activated phosphoryla-
tion of histone H3. Science 285:886–891

Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD,
LeDoux JE (2000) Activation of ERK/MAP kinase in the
amygdala Is required for memory consolidation of pavlovian
fear conditioning. J Neurosci 20:8177–8187

Schalock RL, Stark JA, Snell ME, Coulter DL, Polloway EA,
Luckasson R, Reiss S, Spitalnik DM (1994). The changing
conception of mental retardation: implications for the field.
Ment Retard 32:181–193

Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD
(1999) A necessity for MAP kinase activation in mammalian
spatial learning. LearnMem 6:478–490

Silva AJ, Frankland PW, Marowitz Z, Friedman E, Lazlo G,
Cioffi D, Jacks T, Bourtchuladze R (1997) A mouse model
for the learning and memory deficits associated with
neurofibromatosis type 1. NatGenet 15:281–284

Behav Genet (2007) 37:31–50 49

123



Sweatt JD (2001) The neuronal MAP kinase cascade: a
biochemical signal integration system subserving synaptic
plasticity and memory. J Neurochem 76:1–10

Sweatt JD (2004) Mitogen-activated protein kinases in synaptic
plasticity and memory. Curr Opin Neurobiol 14:311–317

Touraine RL, Zeniou M, Hanauer A (2002) A syndromic form
of X-linked mental retardation: the Coffin–Lowry syn-
drome. Eur J Pediatr 161:179–187

Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young
I, Mandel JL, Sassone-Corsi P, Hanauer A (1996) Mutations
in the kinase Rsk-2 associated with Coffin–Lowry syndrome.
Nature 384:567–570

Vaillend C, Billard JM, Laroche S (2004) Impaired long-term
spatial and recognition memory and enhanced CA1 hippo-
campal LTP in the dystrophin-deficient Dmd(mdx) mouse.
Neurobiol Dis 17:10–20

Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P,
Arthur JS (2002) MSK1 and MSK2 are required for the
mitogen- and stress-induced phosphorylation of CREB and
ATF1 in fibroblasts. Mol Cell Biol 22:2871–2881

Wolfer DP, Kuchenbecker K, Prut L, Neuhausser-Wespy F,
Kutsche K, Lipp, H P (2005) Impaired behavioral control
and altered processing of spatial information in mice
deficient for the X-chromosomal mental retardation gene
Arhgef6. Society for Neuroscience 35th Meeting

Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp HP, Wurbel H
(2004) Laboratory animal welfare: cage enrichment and
mouse behaviour. Nature 432:821–822

Wolfer DP, Madani R, Valenti P, Lipp HP (2001) Extended
analysis of path data from mutant mice using the public
domain software Wintrack. Physiol Behav 73:745–753

Wolfer DP, Stagliar-Bozizevic M, Errington ML, Lipp HP
(1998). Spatial memory and learning in transgenic mice:
fact or artifact?. News Physiol Sci 13:118–123

Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-
MAPK pathway to gene activation by RSK2, a growth
factor-regulated CREB kinase. Science 273:959–963

Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke
T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, et al
(2004) ATF4 is a substrate of RSK2 and an essential
regulator of osteoblast biology; implication for Coffin–
Lowry Syndrome. Cell 117:387–398

Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn
WG, Tully T (1994) Induction of a dominant negative
CREB transgene specifically blocks long-term memory in
Drosophila. Cell 79:49–58

Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A
(1999). Cognitive deficits in a genetic mouse model of the
most common biochemical cause of human mental retarda-
tion. J Neurosci 19:6175–6182

Zeniou M, Ding T, Trivier E, Hanauer A (2002) Expression
analysis of RSK gene family members: the RSK2 gene,
mutated in Coffin–Lowry syndrome, is prominently ex-
pressed in brain structures essential for cognitive function
and learning. Hum Mol Genet 11:2929–2940

Zorner B, Wolfer DP, Brandis D, Kretz O, Zacher C, Madani R,
Grunwald I, Lipp HP, Klein R, Henn FA, Gass P (2003)
Forebrain-specific trkB-receptor knockout mice: behavior-
ally more hyperactive than ‘‘depressive’’. Biol Psychiatry
54:972–982

50 Behav Genet (2007) 37:31–50

123


	Deletion of the Coffin-Lowry Syndrome Gene Rsk2 in Mice �is Associated With Impaired Spatial Learning and Reduced Control of Exploratory Behavior
	Abstract
	Introduction
	Material and methods
	Generation of animals
	General procedures
	Animal housing and testing
	Video tracking

	Tests of motor coordination
	Inverted grid test
	Wire suspension test

	Exploration and emotional reactivity
	Open field
	Elevated O-maze
	Elevated plus-maze
	Emergence test and object exploration

	Learning and memory
	Spontaneous alternation in a cross maze
	Open field activity and object recognition
	Conditioned taste aversion
	Spatial working memory procedure on the radial maze
	Hole-board task
	Water-maze two blocks of four trials per day �for 11 days
	Water-maze 6 trials x 5 days
	Water-maze 2 trials x 14 days
	Water-maze serial reversal

	Statistical analysis

	Results
	Exploration and emotional reactivity
	Learning and memory

	Discussion
	Acknowledgments
	References


