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Deliberate introduction of invisible invaders: A critical appraisal of the 
impact of microbial inoculants on soil microbial communities 
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A B S T R A C T   

Non-target effects of deliberately released organisms into a new environment are of great concern due to their 
potential impact on the biodiversity and functioning of ecosystems. Whereas these studies often focus on invasive 
species of macro-organisms, the use of microbial inoculants is often expected to have specific effects on particular 
functions but negligible overall effects on resident microbial communities. Here, we posit that such introductions 
often impact native microbial communities, which might influence ecosystem processes. Focusing on soil com-
munities, we used a literature search to examine the impact of microbial inoculation (often the release of 
beneficial microorganisms in agricultural systems) on resident microbial communities. Of 108 studies analyzed, 
86% showed that inoculants modify soil microbial communities in the short or long term. In addition, for studies 
analyzing the consequences of microbial inoculants in the longer term, 80% did not observe the resilience (return 
to the initial state) of the resident community following inoculation. Through the knowledge gathered from each 
study, we propose a synthetic and mechanistic framework explaining how inoculants may alter resident mi-
crobial communities. We also identify challenges as well as future approaches to shed more light on this unseen 
reality.   

1. Microbial invasions 

Fortuitous and deliberate introduction of non-native organisms 
across biogeographic barriers by human activities can perturb and 
subsequently alter biological diversity over space and time (Vitousek 
et al., 1997; Gaston et al., 2003; Hulme, 2009). Ecologists have shown 
that the invasion of habitats by exotic macro-organisms poses a signif-
icant threat, not only to the extinctions of resident species but also to 
ecosystem functioning in various environments (Roy et al., 2019). 
Human-mediated invasion (HMI) can decrease native species richness 
and evenness (Blackburn et al., 2004) as well as change the composition 
(Shiganova et al., 2001) and genetic diversity of resident communities 
(Kreiser et al., 2000; Kawamura et al., 2006; Roman and Darling, 2007). 
Many studies have focused on the impacts of introducing particular 
species on resident plant or animal communities (Py�sek et al., 2012; 
Falc~ao et al., 2017; Wainwright et al., 2017). Well-known examples are 

the effects of introducing predatory species to regulate prey populations 
on islands, potentially leading to undesired impacts on the native 
communities (Kenis et al., 2009; Bahlai et al., 2015). Aside from such 
negative consequences, invasion could also render positive outcomes 
and be perceived as beneficial. In particular, HMI can increase the 
abundance of some taxa and promote key ecosystem services (Simberloff 
et al., 2013). 

Contrary to large organisms, studies on the impact of microbial in-
vasions are less frequent (Litchman, 2010), despite the fact that mi-
crobes have been intentionally released into open environments for a 
long time. Some microorganisms are naturally released to the atmo-
sphere (Morris et al., 2014), aquatic (Amalfitano et al., 2015), and 
terrestrial ecosystems (Weil et al., 2017), but for deliberate invasion, it is 
mostly the case in the environmental/agricultural sector, where intro-
duced microorganisms are used for soil bioremediation, biocontrol, and 
biofertilization purposes (Vejan et al., 2016; Ahmad, 2017). In addition, 
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microbial releases into soil are emerging as an approach for the con-
servation or restoration of biodiversity (Harris, 2009; Sutherland et al., 
2019). Soil microbial introductions thus aim at regulating or improving 
ecosystem processes and services such as the promotion of plant yield, 
litter decomposition, nutrient cycling and the maintenance of soil 
fertility (Ouahmane et al., 2007; Bounaffaa et al., 2018; Rodríguez-Ca-
ballero et al., 2018; Tamayo-V�elez and Osorio, 2018). However, the 
effects sometimes deviate from the intended purposes. For instance, the 
introduction of Fusarium and Rhizoctonia strains to control invasive 
weeds can lead to a decline in the weed population and suppress the 
native plant species, through synergistic interactions with 
root-disrupting insects and other potentially growth-suppressive mi-
crobes (Kremer et al., 2006). Even though the soil microbial community 
might have the ability to reorganize and return to the original state 
(resilience) after the disturbance induced by inoculation, this result 
highlights the potential ecological and evolutionary impacts of micro-
bial inoculation to soil resident communities, which remain largely 
unknown. Understanding the effect of microbial inoculation on soil 
microbial communities may be hampered by the overwhelming di-
versity of the latter and by hurdles in the methods used to characterize 
this diversity (Allison and Martiny, 2008; Le Roux et al., 2011; Jurburg 
and Salles, 2015). Moreover, the assumed ubiquity of microbial species, 
their rapid growth, and high level of functional redundancy (Wertz 
et al., 2007) may also explain why inoculant-induced changes in the 
composition of soil microbial communities were either assumed to be 
insignificant or just overlooked. However, as the use of microbial in-
oculants increases with the deployment of sustainable agricultural 
practices (Verma et al., 2019), research needs to better evaluate to what 
extent such introductions, successful or not, impact the resident mi-
crobial communities. Recently, Trabelsi and Mhamdi (2013) evaluated 
15 studies addressing the impact of inoculation on those soil microbial 
communities they considered mostly significant. Clearly, several of 
these studies revealed substantial impacts of the inoculants on soil 
microbiomes. In addition, Ambrosini et al. (2016) presented an over-
view of plant-inoculant interactions and their impacts on microbial 
communities, indicating that these interactions might promote positive 
effects on soil fertility. Given the relevance of the topic, we present here 
the results of a systematic literature review on the extent to which soil 
communities are influenced by microbial releases, whether the soil 
microbiome is capable of returning to the original state after disturbance 
(resilient) as well as the mechanisms driving these potential 
inoculation-induced changes in soil microbial community. 

Regarding microbial releases in an agricultural context, the Euro-
pean Regulation Number 1107/2009, Article 24, expects firms or 
practitioners to demonstrate that there are no ‘unacceptable effects on 
the environment’, and states that the objective to protect human, animal 
and environmental health should predominate regarding the objective 
to increase plant production (Commission, 2009). This is open to 
interpretation, but lack of inoculant persistence in the environment and 
of important effects of the inoculant on the soil microbiota are often 
expected, in addition to a significant effect on the targeted agro-
ecosystem function. Actually, microbial releases into soil often result in 
transient loads of inoculant that quickly fade away with time. For 
instance, it has been shown that following maize seed inoculation with 
Azospirillum lipoferum CRT1, the inoculant disappeared at the 6-leaves 
stage (Florio et al., 2017). Given this transitory survival, many practi-
tioners and scientists assumed that microbial releases would have 
negligible effects on the resident soil microbial communities. However, 
quick disappearance of a bacterial inoculum in soil does not necessarily 
imply a lack of lasting legacy on the soil resident community. For 
example, the introduction of non-pathogenic Escherichia coli into soil 
shifted the niche structure and increased the niche breadth of resident 
bacterial communities, leading to changes in the relative abundances of 
important bacterial genera in soil such as Bacillus, Pseudomonas, Bur-
kholderia, and Bradyrhizobium (Mallon et al., 2018). 

In this review, we posit that the effect of microbial inoculation on soil 

resident microbial communities is often significant. In the first part, we 
examine the significance of shifts in resident microbial composition in 
response to inoculation and their potential to influence soil ecosystem 
processes. We base our analyses on a systematic literature search and 
more detailed presentation of selected examples, highlighting that mi-
crobial inoculants do not need to be long-lasting in soil to alter resident 
communities. In the second part, we discuss microbial community 
resilience and recovery time, i.e. we examine whether the inoculant- 
induced shifts are transient or persistent. We then present our current 
understanding of the mechanisms that underly the alteration in resident 
microbial abundance, structure, and activities. Finally, we describe the 
current challenges and recommend potential approaches to foster our 
knowledge in this area. 

2. Microbial releases can modify the structure of native soil 
communities 

To evaluate whether microbial inoculants alter soil microbial com-
munity composition, we reviewed studies that addressed the impact of 
microbial inoculation on soil microbial communities. A search in Web of 
Science on February 27, 2019 using the keywords (‘‘impact’’, “inocul*” 

and ‘‘microbial communit*’’) or (“effect”, “inocul*” and ‘‘microbial 
communit*’’) in their titles, abstract, or subject words generated 855 
references. Screening process on their abstracts and titles reduced the 
855 hits to 125 relevant articles (Fig. 1a). Studies that were not con-
ducted in soil, did not employ microbial inoculation, and whose impact 
did not refer to native soil microbial communities, were excluded. The 
full text of each of these 125 articles was assessed; from these, 17 studies 
that relied only on plate counts were excluded due to methodological 
issues associated with cultivation constraints. From the remaining 108 
studies, 86 used bacterial inoculants, 22 inoculated fungi, while only 2 
used the combination of both. All included proper control samples and 
when inoculation implied soil disturbance (e.g. sowing with seeds 
coated with an inoculant in Florio et al., 2017), we verified that the 
control included the same disturbance (e.g. sowing with non-inoculated 
seeds). We further grouped the studies into three categories according to 
the method used to measure the impact on resident soil microbial 
communities: 26 studies used high throughput sequencing (HTS) 
(Figs. 1b), 78 used profiling methods including molecular, fatty acid, 
and physiological profiling (Fig. 1c), and 4 used quantitative PCR tar-
geting particular taxonomic or functional groups (Fig. 1d). Here, we 
decided to group studies that used profiling methods along with HTS in 
an HTS method cluster while studies that used sanger sequencing of 
amplicon clone libraries derived from specific DGGE bands were 
included in a profiling method cluster. 

The complete list of HTS method-based studies with all related in-
formation and parameters is displayed in Table 1. The lists of the 78 
studies using profiling methods and of the 4 qPCR-based studies can be 
found in the supplementary document (Tables S1 and S2). The result 
showed that, in over 96% of the HTS studies, microbial release led to 
changes in microbial community composition. For studies using 
profiling methods, 82% showed an impact following inoculation 
whereas 18% did not report any significant effect. Those corresponded 
to 14 studies based on molecular profiling such as DGGE and [T]RFLP. 
Regarding studies using qPCR targeting taxonomic or functional groups, 
all of them reported a significant impact (Fig. 2). In general, 30% of the 
studies using DGGE, TGGE, or [T]RFLP did not report any significant 
effect of inoculation whereas the other methods did, highlighting that 
the outcome might be associated with the method used to characterize 
inoculant effect of the soil resident community. Furthermore, studies 
that used HTS in combination with other methods (11%) indicate that 
impact was observed for all methods tested. Keeping in mind these 
methodological limitations, the data presented in the 108 studies allow 
us to draw a few generalizations. 

First, changes in microbial composition in response to microbial 
release were observed in different conditions and through diverse 
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methodological approaches. For example, using amplified ribosomal 
RNA gene restriction analysis (ARDRA) and 16S rRNA gene amplicon 
sequencing, the release of Sinorhizobium meliloti L33 was found to reduce 
the diversity of beneficial Pseudomonas spp, including Pseudomonas 
putida in the rhizosphere (Schwieger and Tebbe, 2000). Furthermore, 
the release of biofertilizer containing B. amyloliquefaciens W19 and 
Trichoderma guizhounse NJAU 4742 enhanced the abundance of taxa 
with potentially antagonistic effect towards plant pathogens (Lysobacter 
spp, Gp4 and Gp6 of the Acidobacteria, Bacillus, as well as Nitrospira spp), 
as determined by amplicon sequencing of the 16S rRNA gene (Xiong 
et al., 2017). This result might be caused by a synergism effect or the 
ability of inoculants to recruit microbes with such traits (for detail of 
mechanisms, see next section). In this sense, the release of an inoculant 
can potentially affect the structure of the resident soil communities. 
Microbial invasion might also impact the genetic diversity of indigenous 
resident communities through interactions and horizontal gene transfers 
(HGT) favoring genetic changes. Transfer of a mobilizable plasmid was 
found in the wheat rhizosphere in the field, from Pseudomonas fluo-
rescens to Gram-negative bacteria with dominance of Enterobacter spp 
(Van Elsas et al., 1998). HGT has also been observed in Brazil, where 
massive inoculation of soybean specific Bradyrhizobium strains takes 
place every cropping season (Araujo et al., 2012; Hungria and Mendes, 
2015). For instance, Barcellos et al. (2007) and Silva Batista et al. (2007) 
observed high rates of horizontal transfer of symbiotic genes from the 
inoculants Bradyrhizobium japonicum and Bradyrhizobium elkanii to 
indigenous rhizobia in the Cerrado. In India, Satya Prakash and Anna-
purna (2006) and Ansari et al. (2014) reported an increase in the genetic 

diversity of indigenous soil Rhizobia following massive inoculation of 
Bradyrhizobium commercial strains. 

Second, inoculation-induced changes in abundance and structure of 
soil microbiomes might lead to shifts in the functioning of the latter. For 
instance, the overrepresentation of microbes having antagonistic effects 
on plant pathogens can induce suppressiveness in conducive soil (Shen 
et al., 2015; Xiong et al., 2017). Moreover, the abundance of bacteria 
known to cause N losses and induce plant diseases such as Rhodanobacter 
spp and Mycobacterium spp, respectively, decreased upon the introduc-
tion of Paenibacillus mucilaginosus 3016, whereas the abundance of 
beneficial bacteria such as Bradyrhizobum spp and Pseudomonas spp 
increased. Importantly, these changes were related to modified enzy-
matic activity levels in the soil (Ma et al., 2018). Actually, several studies 
showed that the introduced microbial inoculants could change soil 
phosphatase, sulfatase, chitinase, esterase, urease, and other enzyme 
activities, thus impacting nutrient cycling, fertilization, decomposition 
and biocontrol activities (Mar V�azquez et al., 2000; Nassal et al., 2018; 
Wu et al., 2018). 

Third, based on studies presented in the aformentioned tables, even 
though the abundance of inoculants decreased – sometimes below the 
detection limit – following inoculation, microbial community composi-
tion was still impacted (Kozdr�oj et al., 2004; Cordier and Alabouvette, 
2009; Mallon et al., 2018). In some cases, when invader survivability 
became low, the impact was found to be transient (Johansen and Olsson, 
2005; Baudoin et al., 2009; Yin et al., 2013). However, we advocate that 
the magnitude of this impact, either long-lasting or transient, might not 
necessarily relate to the fate of the inoculant populations. As shown in 

Fig. 1. Flow diagrams describing the process of article selection and screening of selected articles based on the presence/absence of impact, multiple measurement of 
impact, and evaluation of post-inoculation resilience. Fig. 1a describes the selection process of studies which consist of abstract screening and full text assessment, 
providing the reasons of possible exclusion of a given study. Fig. 1b describes the identification of studies employing high-throughput sequencing (HTS). Studies that 
used profiling methods along with HTS were included in HTS method. Fig. 1c describes the identification of studies employing profiling methods, including molecular 
(i.e. DGGE, TRFLP, ARISA), fatty acid (i.e. FAME, PLFA) and physiological (CLPP) profiling methods. Studies that used Sanger sequencing of amplicon clone libraries 
derived from specific DGGE bands were included in profiling method. Fig. 1d describes the identification of studies employing qPCR methods. 
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several studies, even though the number of inoculant cells declined 
following introduction into soil, changes in community composition 
persisted (Kozdr�oj et al., 2004; Renoud, 2016; Mallon et al., 2018). 

It remains unclear whether the measured changes are due to direct 
effects from the inoculants or indirect effects, for instance through nu-
trients released from dead or moribund inoculant cells. In the case where 
the inoculants survive to a level sufficiently high for the intended pur-
poses, the effect is likely due to the inoculants themselves. For example, 
Fu et al. (2017) observed long-lasting changes in microbial composition 
when the inoculant, Bacillus amyloliquefaciens NJN-6, showed relatively 
stable abundance between 2.5 and 3.0 log copies of 16S rRNA gene/-
gram soil within 3 years of experiment. On the other hand, one could 
argue that when survival is low due to biotic and abiotic factors, the 
observed changes in community structure could at least partly be due to 
the nutrient flush caused by dead (lysed) inoculant cells, which in turn 
could promote an increase in the abundance of some resident taxa (but 
see next section for an alternative explanation). Regardless of the po-
tential mechanism, an impact can be observed in most cases. 

We hypothesized that the level of inoculation might positively 
determine the magnitude of inoculation impact as higher inoculation 
level might render longer inoculant survival. However, it was not 
possible to test any direct relationship between inoculation level and 
impact since the studies referred to releases of different microbial spe-
cies with distinct experimental set up. Moreover, each study also applied 
different inoculation methods such as soil amendment, direct intro-
duction, seed coating, etc. Hence, inferring general conclusions about 
the relationship between inoculation level and impact would be invalid 
and requires a more systematic testing of the inoculant level across a 
broad range of strains, soils and inoculation methods. However, in a 
recent study, Dong et al. (2019) revealed that increasing inoculated 
biofertilizer concentrations led to a greater impact on soil resident mi-
crobial diversity, providing evidence for our hypothesis. 

3. Resilience of soil microbial communities in response to 
inoculation 

Regardless of the main mechanism through which inoculation im-
pacts the native soil microbiome, it remains unclear whether the impact 
persists for longer periods of time or vanishes more or less quickly, i.e. 
how resilient the native communities are. We advocate that it is logical 
to assume that persisting microbial inoculants will have longer impact 
compared to short-lived inoculants. Given the paucity of current infor-
mation, further studies need to consider the long-term assessment of 
community resilience, next to the impact of recurrent application of 

microbial inoculants, specifically whether the soil microbiome (i) re-
tains function and structure regardless the amount of inoculum added 
(resistance); (ii) shows capacity to self-organize after disturbance, 
returning to its original state (resilience); or (iii) is capable of building 
and enhancing its learning and adaptation capacity, by reaching an 
alternative stable state (Carpenter and Brock, 2008) (Fig. 3a). A careful 
examination of the studies listed in Table 1 and Supplementary Tables 
S1 and S2 showed that the time span for a soil microbial community to 
recover and return to its initial composition after microbial release 
varies a lot. For instance, the release of Pseudomonas fluorescens DR54 
affected the structure of resident microbiome associated with barley 
rhizosphere up to 6 days after inoculation but the latter returned to its 
original structure at day 9 (Johansen and Olsson, 2005). Other studies 
observed resilience only several months after inoculation (Yin et al., 
2013; Wang et al., 2018). However, to the best of our knowledge, studies 
on the impact of microbial inoculation on the soil microbiome have 
targeted resilience from a compositional perspective only. Thus, key 
aspects of microbial function have remained unaddressed. Here, we 
argue that addressing resilience from a functional perspective is key to 
determine whether the invaded communities could still retain their 
functioning despite changes in their composition. Further exploration of 
multi-omics studies is needed to foster our understanding in the impact 
and resilience of the resident microbiome facing microbial inoculation 
from functional point of view. 

Microbial ecology concepts outline that microbial resilience can be 
linked to specific population traits, such as the ability to grow rapidly 
and to exhibit physiological plasticity (Allison and Martiny, 2008). 
Previous studies confirmed that these are some of the features that allow 
microbial communities to recover from environmental perturbation 
(Schimel et al., 2007; Shade et al., 2012). Based on this concept, we 
propose that these traits play important roles in promoting the resilience 
of microbial community following inoculation, albeit experimental 
work should be done to prove the hypothesis. For instance, from an 
ecological perspective, the effect of introducing microbes to soil might 
be related to the physiological capacity of resident communities to 
withstand antagonistic effects from the invaders (see next section). 
Studies focusing on the transcription and regulation of genes associated 
with resistance or tolerance traits could provide evidence of potential 
resistance mechanisms. The methods and tools to study gene tran-
scription and regulation regarding physiological tolerance and adapta-
tion towards toxic and antibiotic compounds are available (Ramos et al., 
2009; Blair et al., 2015). When applied in the context of microbial in-
vasion, they could indicate whether defence mechanisms triggered after 
inoculation could nurture the survival of the invader or help recovery of 

Fig. 2. Proportion of published studies that report presence or absence of microbial inoculation impact with respect to methodology used to detect such effects.  
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the resident communities. 
From the resilience perspective, two additional points associated 

with technical issues and ecological concepts should be considered. 
Regarding the latter, even if soil microbiomes tend to return to their 
initial composition after invasion, we speculate that the abundance and 
diversity of some taxa might remain changed. Although this hypothesis 
needs to be further investigated in the context of inoculation impact, it 
has been verified in a study using another type of disturbance. Jurburg 
et al. (2017) measured the alteration of soil microbial community 
composition following heat disturbance and found that even though the 
majority of resident bacteria tend to be resilient (resilience at commu-
nity level 49 days after disturbance), the abundance of slow-growing 
Conexibacter and some Phenylobacterium strains were two times higher 
compared to those observed in the community prior to disturbance. 
Meanwhile Nitrosomonadaceae, Nitrospira, Xanthomonadaceae, Lyso-
nacter, and Chitinopagaceae remained largely supressed after distur-
bance, indicating a lack of resilience. These results also highlight the 
importance of evaluating the impact of inoculation in a temporal context 
since the effects might change overtime. However, to what extent these 
changes affect soil ecosystem functioning remains largely unknown. 

Microbial inoculants will have a direct effect promptly after being 
introduced into the new habitat. This effect is interesting for those who 
gauge the changes’ magnitude and sensitivity in a short-term duration. 
As time goes by, environmental change is likely to influence ecological 
and evolutionary processes. When they come into force, chronic impacts 
will be most likely detected and long-term evaluation is needed espe-
cially when the inoculants survive. However, most of the 108 studies 
addressing the impact of microbial releases on soil community (Table 1 
and Supplementary Tables S1 and S2) only measured the effects over 
short durations. Around 50% of HTS-method, 75% of qPCR method, and 
77% of profiling-method based studies presented in these tables moni-
tored the soil community status over less than 3 months after inocula-
tion. For instance, the inoculation impact of Arthrobacter 
chlorophenolicus A6L to microbial communities in 4-chlorophenol 
contaminated soil was only measured for 13 days (Jernberg and Jans-
son, 2002). Chen et al. (2013) measured the impact of Burkholderia sp 
J62 and Pseudomonas thivervalensis Y-1-3-9 on the microbiomes of cad-
mium contaminated soil at day 60 only. In both cases, the inoculation 
led to changes in the structure of the resident communities, but it re-
mains unclear whether the impact persisted for longer period of time. In 
Fig. 1b, from 26 HTS studies, 11 performed multiple measurements on 
soil community status and only 2 of them reported resilience capacity 
following inoculation. For profiling method, multiple measurements of 
the impact were conducted in 40 studies and only 10 of them showed 
tendencies to return to its original state (see Fig. 1c) In qPCR-based 
method, none of those studies indicated resilience capacity (see 

Fig. 1d). Thus, one faces the possibility that release-induced changes in 
community structure might be permanent (do not, or not easily, return 
to the initial composition). If the shift is irreversible, the altered com-
munity may undergo alternative stable state and potentially affect soil 
functioning; for instance, if a key narrow function like ammonia 
oxidation is affected. This is related with the phenomenon called hys-
teresis where a system is unable to recover to its initial state after 
perturbation (Beisner et al., 2003). For instance, Sun et al. (2013) 
showed increasing and decreasing relative abundance of Nitrosomonas 
and Nitrosospira respectively in the soil with intercropping combined 
with Rhizobium inoculation treatment. The community composition did 
not return to its original state even after 2 years since the Sinorhizobium 
meliloti CCBAU01199 was introduced. 

Finally, technical issues influence our perception of inoculant effects 
and post inoculation resilience of the resident community. As shown in 
Table 1 and the supplementary tables, different approaches ranging 
from profiling methods to advanced molecular techniques such as HTS 
have been used for evaluating inoculation effects over the short and 
longer term. The numbers of studies employing the different methods to 
detect possible inoculant effects are very different and restrict analysis of 
a possible effect of the method used on our capacity to detect an inoc-
ulant effect. For example, 100 and 80% of the studies employing 
phospholipid-fatty acid (PLFA) method and automated ribosomal 
intergenic spacer analysis (ARISA), respectively, detected an impact. 
However, we cannot say that the PLFA method allowed better detection 
of inoculant impact compared to ARISA because there were only 5 
studies employing ARISA for 14 studies based on PLFA. Actually, to 
make a fair comparison, a study should be conducted with the same 
experimental setup, same inoculation level, and same microbial inocu-
lant, comparing which methods are the most sensitive to detect an effect. 

The sensitivity of techniques such as micro-respiration metabolic 
profiling (biology based CLPP), fatty acid approaches (FAME and PLFA) 
or molecular fingerprint techniques (DGGE, ARISA, [T]RFLP) might 
limit our ability to detect changes to the most abundant microbial 
populations. Although this issue can be solved by using HTS approaches 
(the strength and limitation of each technique are discussed in Kirk et al. 
(2004)), they lack information on microbial activities or phenotypic 
characteristics. Further, when using DNA-based methods one cannot 
distinguish the origin of the DNA as it might come from living cells, 
lysates, dead cells, or free DNA. We thus advocate using a combination 
of HTS and other phenotypical methods, as impact and resilience can 
only be properly tackled when both taxonomic and functional commu-
nity traits are concomitantly assessed. 

Fig. 3. The impact of microbial inoculants on soil community structure and four possible mechanisms explaining how they can modify the soil microbial community 
composition. Fig. 3a summarizes the possible temporal dynamics of microbial community structure following microbial inoculation. In the first scenario (A), after 
inoculation the community resists, i.e. the community structure does not change. In the second scenario (B), the microbial inoculants change the initial composition 
of resident community. Here the initial invasion by the inoculants increases the abundances of red and black resident microbial populations but decreases yellow and 
purple populations. After the exclusion of inoculants, the initially impacted microbial composition can recover and return to its initial state (i.e. complete resilience). 
In the third scenario (C), the microbial inoculants will permanently change the initial composition of resident community, i.e. the inoculation-induced shift in 
community composition remains and the community reaches alternative stable state. In addition, we illustrate four possible mechanisms on how microbial inoculants 
alter resident community composition, beginning with resource competition (Fig. 3b). The introduced microbes (blue circles) are inoculated to a native community 
which consists here of eight taxa. The thick blue line indicates the entire niche of the native community. When microbial inoculant (blue peak) is introduced into the 
community, an overlapping zone is created as the invader and some resident taxa compete for similar resources. The initial population size of inoculant (blue peak) is 
high enough to outcompete resident taxa which compete for resources of similar preference, which then alters the community structure. The niche structure is altered 
in such a way that residents would preferentially occupy those niches on which the invader has little or no competitive advantage. The second mechanism explaining 
inoculation effect on soil microbial community composition is associated with antagonism (Fig. 3c). In the case where the inoculants produce antibiotics (depicted in 
orange), they eliminate some microbial taxa sensitive to antibiotics (Populations C and D) while resistant taxa (Populations A and B) will maintain their abundance. 
The third mechanism is related to synergism where the inoculants excrete secondary metabolites (in red) serving as nutrients for some resident taxa, which stimulates 
their growth (Fig. 3d). In this Fig., the secondary metabolites are able to increase the abundance of populations A and D while populations B and C remain unaffected. 
The fourth is indirect mechanism through which inoculation can affect soil microbial community by modifying the rate and composition of root exudates (Fig. 3e). 
Different organic compounds exuded by roots (depicted by clouds in pink, green, and orange) will then favour some microbial taxa. In Fig. 3e, populations A, B, and D 
are favoured by the inoculation-induced modification of exudates. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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4. Proposed mechanisms of how inoculation drives resident 
microbial community changes 

Although our literature search showed that microbial inoculation 
often affects the resident soil microbial communities, the mechanisms 
underlying the impact are still poorly understood. Some of the studies 
analyzed pointed to a possible mechanism explaining inoculant effect on 
soil microbial community, but none of studies comprehensively dis-
cusses the relative importance of the different possible mechanisms at 
stake. Thus, here we present and discuss four mechanisms that can 
govern the changes in the soil native microbiome upon microbial inoc-
ulation (Fig. 3). 

The first mechanism refers to resource competition (Fig. 3b), which 
has been studied to dissect the relationship between biodiversity and 
invasibility in microbes (van Elsas et al., 2012; Eisenhauer et al., 2013; 
Mallon et al., 2015). Several studies have shown that the amount of 
(limiting) resources that are left unconsumed by native species and the 
consumption rate of resources by the native and invader species control 
the fate of invading species (van Elsas et al., 2012; Mallon et al., 2015; 
Wei et al., 2015; Yang et al., 2017). This means that the higher the 
number of vacant niches (not used by the resident community), the 
higher the chance of the inoculant to successfully establish in their new 
habitat. More precisely, Mallon et al. (2015) reported that low level of 
overlap between the soil community niche and the niche of an inocu-
lated bacteria is a good predictor for the capacity of the inoculated 
bacteria to maintain high abundance following inoculation. Similarly, 
Wei et al. (2015) observed that soil communities with high connectance, 
low nestedness, and a clear niche overlap with the invader, reduce in-
vasion success. 

Once establishment takes place, the introduced microbial inoculant 
might be able to outcompete some taxa and use existing resources to 
spread and grow (Fig. 3b). This would be applicable if the invaders 
possess special traits that make them competitively superior in utilizing 
resources, for instance by promoting soil acidification (Zhang et al., 
2009) or by having higher access to iron in soil due to siderophore 
production (Wandersman and Delepelaire, 2004). Once the invaders get 
established, their abundance could suppress functionally similar taxa 
from the resident communities – i.e. taxa that compete for similar re-
sources – and facilitate the enhancement of taxa that are functionally 
unrelated to the inoculants. 

It is interesting to note that inoculants that do not get established can 
also lead to shifts in the resident microbial communities. A recent study 
by Mallon et al. (2018) revealed that the soil invasion by E. coli led to 
important shifts in soil community composition and associated niche 
breadth, despite the fact that the invasive species declined dramatically 
in abundance 30 days after introduction. These authors concluded that 
resource competition played an important role and that the niche 
structure of the resident community got shifted away from invader’s 
resources. The observed shifts in soil microbial community structure 
could thus be explained by an increase in the abundances of rare or 
subordinate taxa due to competitive release caused by the direct 
competition between invasive species and microbial taxa initially 
abundant in the resident communities. Despite the lack of success in 
establishing itself, E. coli left a legacy – a reduction in the niche overlap 
between resident community and invader, leaving the niches occupied 
by the invader partly vacant for the duration of the experiment (30 
days). Since these shifts were consistently associated with a reduction in 
the use, by the resident community, of the niches used by the E. coli, the 
changes in community structure were likely due to competition for re-
sources rather than utilization of nutrients that become available in 
response to dead cells. Moreover, the consistent response observed 
across the various community diversity levels, including those where 
E. coli was still present at higher densities, supported this conclusion. 
This finding raises two important points. From an applied perspective, it 
might provide a window of opportunity for a new invasion by the same 
species – or functionally similar inoculants – which should then 

encounter less competition, facilitating the establishment phase of 
additional inoculations. Thus, recurrent inoculations could represent a 
strategy for inoculants that do not survive well in soils. From an 
ecological perspective, it raises the questions of how long this legacy 
effect holds – i.e. how resilient is the resident soil community after 
inoculation? (see previous section) – and then what the potential impact 
of recurrent inoculations is. 

The second and third mechanisms driving changes in the soil 
microbiome following inoculation relate to direct antagonism (Fig. 3c) 
and synergism (Fig. 3d) between some resident microorganisms and the 
inoculants, through which inoculants can affect community composition 
by suppressing or fostering other soil microbes, respectively. Regarding 
antagonism, inoculants can directly influence the growth and activity of 
the resident communities, in particular through antibiosis – i.e. by 
secreting chemical compounds that kill or inhibit resident microbes in 
their vicinity (Fig. 3c). Several microbial inoculants released for agri-
cultural purposes, particularly those which intend to control the path-
ogens, have this capacity. For instance, particular species of Bacillus, 
Pseudomonas, Streptomyces, Burkholderia, Pantoea, Lysobacter and 
Enterobacter, are predominantly involved in antibiotic production 
(Dukare et al., 2018). Although these chemicals target certain patho-
gens, they might also have effects on non-target microbial taxa. For 
instance, the release of Pseudomonas fluorescens F113Rif producing 
antibiotic 2,4-diacetylphloroglucinol (Phl) decreased the genetic di-
versity of different rhizobia species in the sugar beet rhizosphere (Walsh 
et al., 2003). The residual impact was long-lasting, as indicated by the 
reduction of Phl sensitive taxa even after the field was disinfected and 
sown with uninoculated seeds from new plant species. 

Introduced microorganisms can also influence resident microbial 
communities through synergism, where microorganisms cooperate from 
marginal support to absolute mutual dependence (Fig. 3d). In this case, 
the arrival of inoculants that produce signalling metabolites such as 
precursors, vitamins, and certain amino acids, stimulates the growth of 
resident microbial communities (Schink, 2002). In addition, some mi-
crobes can be extremely dependent on their mutual partners in such way 
that neither species can function optimally in the absence of its partner 
(Kato et al., 2012). The importance of synergism and antagonism has 
been recently emphasized by Li et al. (2019) who reported that antag-
onistic and facilitative pairwise interactions within resident microbial 
communities predict well invasion by the plant–pathogenic bacterium 
Ralstonia solanacearum. 

The fourth mechanism explaining why inoculation can modify the 
soil microbial community is an indirect effect involving plant root ex-
udates (Fig. 3e). Many microbial inoculants including PGPR indeed in-
fluence the growth and development of the root system through the 
production of phytohormones and other molecules. These compounds 
promote lateral root branching and modify root functioning (Vacheron 
et al., 2013). In particular, introduced PGPR increase the rates of root 
exudation which in turn can modify the rhizospheric microbial com-
munity. For instance, Florio et al. (2017) reported that the PGPR Azo-
spirillum lipoferum CRT1, which is known to promote root exudation, 
induces an increase of the abundance of denitrifying heterotrophs only 
in soils where denitrifiers are limited by carbon availability. Further, 
Florio et al. (2019) showed that this PGPR inoculation effect on soil 
denitrifier functional groups was indeed modulated by manipulating the 
inputs of artificial root exudates to soil. Beyond exudate quantity, 
studies also showed that microbial inoculants can modify the composi-
tion of root exudates, in particular regarding amino acids and different 
groups of flavonoids (Matilla et al., 2010; Phillips, 2004). These exu-
dates contain diverse organic compounds which favour specific mi-
crobes to metabolize these compounds. For instance, the introduction of 
Chryseobacterium balustinum Aur9 changed flavonoid concentrations 
exuded by soybean roots (Dardanelli et al., 2010). These changes alter 
the abundance of rhizobia in the rhizosphere since flavonoids initiate 
the symbiosis with legumes (Khan et al., 2012). In addition, increasing 
benzoxazinoids concentration in maize root exudates was observed as a 
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response to inoculation with Azospirillum lipoferum CRT1, Azospirillum 
brasilense CFN-535, and UAP-154 (Walker et al., 2011). The increasing 
benzoxazinoid concentrations could increase the abundance of Pseudo-
monas putida in the maize rhizosphere (Neal et al., 2012) and the 
exudation of malic acid, ultimately stimulating the abundance of Bacillus 
subtilis (Rudrappa et al., 2008). From these examples, it is clear that 
changes in root exudation induced by microbial inoculants indirectly 
alter microbial composition in the rhizosphere. However, it is important 
to note that plant genotype, potentially via (shifted) exudation, can 
interfere with the inoculant and contribute to changes in soil microbial 
structure and composition (Aira et al., 2010; Andreote et al., 2010). A 
recent study by Xu et al. (2020) revealed a significant interaction effect 
between rhizobium inoculation and soybean genotype on rhizosphere 
fungal communities. Moreover, disentangling the complexity of who 
contributes what to whom remains challenging, as some microbial 
resident taxa altered by an inoculant can themselves induce cascading 
effects, e.g. on root exudation and the presence of complex 
cross-kingdom interactions between plants and microbial communities 
themselves. 

5. Future perspectives and concluding remarks 

In many countries, laws or regulations often require that any impacts 
of the release of microbial taxa on the environment, including soil and 
its microbial community, should be negligible (Scherwinski et al., 2008; 
Wu et al., 2008; Xiong et al., 2013), which is often overlooked. Our 
literature search reveals that the majority of published studies reported 
that inoculation does modify the composition of the resident soil com-
munity, with possible long-lasting effects. We thus advocate for studies 
that foster our understanding of the resistance and resilience of native 
soil microbial communities facing microbial inoculants. In particular, 
further studies are required to measure how big and long-lasting such 
impacts are, especially in an open field across seasons and years where 
conditions vary. 

Although the impact of microbial release on soil microbial commu-
nity has been assessed mostly from a compositional perspective, evalu-
ating inoculant impact and community resilience from a functional 
perspective – using a broad range of omic approaches (metagenomics, 
metatranscriptomics, metabonomiics, metaproteomics) – will help 
determining whether the invaded communities retain their functioning 
despite inoculant-induced changes in their composition. This notion is 
related to the often observed functional stability due to the presence of 
functionally redundant microbes in the soil community (Jurburg and 
Salles, 2015). Whereas high functional redundancy can allow some 
microbial species that are insensitive to inoculation to compensate for 
the decrease or loss of the function provided by more sensitive ones – 

thus leading to similar functioning despite changes in community 
composition – changes in function can still be observed if sensitive mi-
crobial species are replaced by functionally inefficient and insensitive 
ones (i.e. species with lower specific activities than those present in the 
original community). Therefore, resilience will depend not only on 
redundancy but also on the physiological constraints of the affected 
species, ecological resilience, and recovery ability. In addition, the 
evaluation on root and soil phenomics should also be evaluated as soil 
inoculation might lead to changes in the phenotypical features (physical 
and biochemical traits) of plant and soil biomes (Bargaz et al., 2018; 
Dur�an et al., 2018). 

Moreover, we need a better understanding of the mechanisms un-
derlying the changes in the soil microbiome composition and func-
tioning upon invasion, which may help us to improve the effectiveness 
of many practical microbiological applications. By enhancing our 
knowledge in this field, we could better engineer the way inoculants 
affect the abundance of beneficial taxa and those with negative prop-
erties, including those associated with inoculant survival in soil. This 
will aid us to develop inoculants with superior survival ability or in-
crease the resistance of resident communities upon invasion by 

pathogenic invaders. Furthermore, application of microbial inoculants 
as environmental probiotics could be one way to harness soil microbial 
capabilities to mitigate the negative consequences of climate change 
(Jansson and Hofmockel, 2020). Engineering inoculants that foster the 
activity of resident taxa able to improve carbon sequestration and water 
retention in soil could contribute to mitigation and adaptation measures 
in the era of climate change. In sum, the value of understanding the 
impact of microbial inoculation on resident microbial community will 
be a meaningful and integrative development of microbiological theory 
paving the way to new practical applications. 
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