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Abstract

Image-to-image translation, which transfers an im-
age from a source domain to a target one, has at-
tracted much attention in both academia and indus-
try. The major approach is to adopt an encoder-
decoder based framework, where the encoder ex-
tracts features from the input image and then the
decoder decodes the features and generates an im-
age in the target domain as the output. In this pa-
per, we go beyond this learning framework by con-
sidering an additional polishing step on the out-
put image. Polishing an image is very common
in human’s daily life, such as editing and beauti-
fying a photo in Photoshop after taking/generating
it by a digital camera. Such a deliberation process
is shown to be very helpful and important in prac-
tice and thus we believe it will also be helpful for
image translation. Inspired by the success of de-
liberation network in natural language processing,
we extend deliberation process to the field of image
translation. We verify our proposed method on four
two-domain translation tasks and one multi-domain
translation task. Both the qualitative and quanti-
tative results demonstrate the effectiveness of our
method.

1 Introduction

Unsupervised image-to-image translation is an important ap-
plication task in computer vision [Zhu et al., 2017; Choi et
al., 2018]. The encoder-decoder framework is widely used to
achieve such translation, where the encoder maps the image
to a latent representation and the decoder translates it to the
target domain.

Considering labeled data is costly to obtain, unsupervised
image-to-image translation is widely adopted, which tries to
uncover the mapping without paired images in two domains.
CycleGAN [Zhu et al., 2017] is one of the most cited model
that can achieve unsupervised translation between two do-
mains. Denote Xs and Xt as two image domains of interests,
and no labeled image pair in Xs×Xt is available. As the name

∗Equal contribution.
†Corresponding author.

Figure 1: Examples of Winter→Summer translation (top row) and
Summer→Winter translation (bottom row), where the three columns
are the input, output of standard CycleGAN and output after delib-
eration.

suggests, the two ingredients to make CycleGAN success-
ful are: (1) Minimizing the reconstruction loss between two
models Xs → Xt → Xs and Xt → Xs → Xt; such a loss can
ensure the main content of an image is kept; (2) the adversar-
ial network [Goodfellow et al., 2014], that can verify whether
an output image belongs to specific domain. DualGAN [Yi et
al., 2017] and DiscoGAN [Kim et al., 2017] also adopt sim-
ilar ideas. Another important model StarGAN [Choi et al.,
2018] is designed for multi-domain image-to-image transla-
tion with one encoder and one decoder. The motivation of
StarGAN is to reduce parameters by using a single model to
achieve multi-domain translation instead of using multiple in-
dependent models.

Although the aforementioned techniques achieved great
success, they lack an obvious step compared with human be-
haviors: deliberation, which means reviewing and keeping
polishing the output. For example, to draw a paint, the artist
first sketches the outline to get an overall impression of the
image, and then gradually enrich more details and textures.
Such a behavior broadly exists in human’s behavior, but still
lacks in unsupervised image-to-image translation literature.
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Deliberation is important for image translation as illustrated
in Figure 1. For the Winter→Summer translation (first row),
there are still some snow in the direct output of the decoder
(middle). Similarly, for Summer→Winter translation (second
row), we can still find green trees in the output (middle). This
shows the necessity of deliberation in image translation. To
leverage such an important property, we propose deliberation
learning for image-to-image translation, that can further pol-
ish and improve the output of a standard model. Take the
translation from Xs to Xt as an example. Our deliberation
learning framework consists of an encoder, a decoder and a
post-editor: The encoder and decoder are the same as those
in CycleGAN or StarGAN, serving for encoding the image
as a hidden vector and decoding the image conditioned on
the hidden vector. They work together to translate x ∈ Xs

to a ŷ ∈ Xt. The post-editor will eventually output an-
other y∗ ∈ Xt, with both x and ŷ as inputs. Compared with
the standard encoder-decoder framework, the post-editor can
have an overall impression of ŷ, which is the mapping of x
in the target domain, and then keep refining on it, while the
standard one cannot. As shown in Figure 1, after using post-
editor, the snow are erased for Winter→Summer translation
and the green parts are enveloped with white frost.

2 Related Work

The generative adversarial networks [Goodfellow et al.,
2014] (briefly, GAN) has enabled significant progress in
unsupervised image-to-image translation [Zhu et al., 2017;
Choi et al., 2018]. There are two essential elements in a
GAN: a generator, used to map a random noise to an image;
and a discriminator, used to verify whether the input is a nat-
ural image or a faked image produced by the generator.

Unsupervised image-to-image translation is an important
application of GAN, which means to map an image from
one domain to another and has received considerable atten-
tion recently. According to the number of domains involved
in the translation, the related work can be categorized as two-
domain translation and multi-domain translation.

2.1 Two-Domain Translation

Let Xs and Xt denote two different image domains. Our tar-
get is to learn a mapping f : Xs 7→ Xt. A common technique
adopted in two-domain translation is the conditional GAN,
who have made much progress recently [Mirza and Osindero,
2014; Isola et al., 2017]. In these frameworks, the input im-
age is compressed into a hidden vector via a series of con-
volutional layers and then converted to the target domain by
several transposed convolutional layers. The generated im-
ages will be fed into the discriminator to ensure the genera-
tion quality. Additional input like random noise [Isola et al.,
2017], text [Reed et al., 2016] can also be included.

Inspired by the success of dual learning in neural machine
translation [He et al., 2016; Wang et al., 2019], learning two
dual mappings f : Xs 7→ Xt and g : Xt 7→ Xs together are
introduced [Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017;
Lin et al., 2018; Mejjati et al., 2018] to image translation.
CycleGAN [Zhu et al., 2017] is one of the most cited work
with such an idea: Given an x ∈ Xs, it is first mapped to

ŷ by f(x) and then mapped back to x̂ by g(ŷ). The cycle-
consistent loss ‖x− x̂‖1 is equipped to minimize the distance
between x and x̂, allowing f and g to obtain feedback signal
from its counterpart. Similar idea also exists in DualGAN [Yi
et al., 2017] and DiscoGAN [Kim et al., 2017].

2.2 Multi-Domain Translation

Great performances were achieved in dual-domain transla-
tion. However, while applying in multi-domain translation,
training models for each pair of domains incurs much more
resource consumption. To alleviate this limitation of scalabil-
ity, several works extend dual-domain translation to multi-
domain translation by learning relationships among multi-
ple domains in an unsupervised fashion [Choi et al., 2018;
Liu et al., 2018; Anoosheh et al., 2018; Pumarola et al.,
2018]. Instead of employing a generator and a discrimina-
tor for each domain, StarGAN [Choi et al., 2018] learns all
mappings f with only one generator and one discriminator.

Although deliberation learning is not widely studied in im-
age generation, it has been used in many natural language
processing tasks including neural machine translation [Xia et
al., 2017], grammar check [Ge et al., 2018], review genera-
tion [Guu et al., 2018]. It is beneficial to introduce this idea
into image generation tasks.

3 Framework

In this section, we introduce the framework of deliberation
learning for image translation, including both two-domain
translation (based on CycleGAN) and multi-domain image
translation (based on StarGAN).

Figure 2: Translation module of Xs → Xt, where x ∈ Xs and
ŷ, y∗

∈ Xt. Es, Gt and G∗
t denote source domain encoder, the

decoder and post-editor in the target domain.

3.1 Two-Domain Translation

Given two image domains Xs and Xt, the architecture of our
proposed deliberation network achieving Xs to Xt translation
is shown in Figure 2. There are three components: an en-
coder Es, a decoder Gt

1, and a post-editor G∗
t . The three

1We use G· instead of D· to represent the decoder, in order to
avoid confusion with the discriminator D·.
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components work together to achieve the translation, which
is shown in Eqn. (1): for any x ∈ Xs,

hx = Es(x); ŷ = Gt(hx);

hŷ = Es(ŷ); y
∗ = G∗

t (hx + hŷ).
(1)

The y∗ is used as the output of the translation. Note that ŷ
is the output of the conventional models like CycleGAN and
DualGAN, without deliberation included. To generate y∗, the
information from both raw input x and the first-round output
ŷ are leveraged, carried by hx and hŷ , and thus leading to
better translation results.

The reason we use one encoder Es to encode both x and ŷ
is that, in standard CycleGAN, there is an identity mapping
loss ‖Gt(Es(y)) − y‖1, y ∈ Xt. That is, an encoder can
naturally encode the images from the target space. To reduce
memory cost, we reuse the encoder. We found using two en-
coders will not bring much additional gain, see Section 4.3.

Following the common practice in image translation, we
apply the cycle consistency loss between the translation of
two domains as well as the adversarial loss. To achieve Xt →
Xs translation, another groups of encoder EB , decoder GA

and post-editor G∗
A are needed, which work as follows: for

any y ∈ Xt,

hy = Et(y); x̂ = Gs(hy);

hx̂ = Et(x̂); x
∗ = G∗

s(hy + hx̂).
(2)

For ease of reference, let f∗ denote Xs → Xt translation with
Eqn. (1) and g∗ denote Xt → Xs translation using Eqn. (2).
Note that Gt ◦Es and Gs ◦Et can also achieve the above two
translations, we ◦ denotes the cascade of functions. Denote
Gt ◦ Es as f and denote Gs ◦ Et as g respectively.

To stabilize the training, the Es, Et, Gs and Gt are
pre-trained following standard CycleGAN until convergence.
Only G∗

s and G∗
t are updated. An empirical study is shown

in Section 4.3. With a little bit confusion, in the next context,
Xs and Xt also refer to the training datasets of images in the
source and target domains.

Cycle consistency loss. Following the common practice in
image translation, the cycle consistency loss is defined as

ℓcyc =
1

|Xs|

∑

x∈Xs

‖g∗(f∗(x))− x‖1

+
1

|Xt|

∑

y∈Xt

‖f∗(g∗(y))− y‖1,

(3)

where |Xs| refers to the number of images in Xs, and so does
|Xt|. Both f∗ and g∗ jointly work to minimize the reconstruc-
tion loss, which is exactly what is used standard CycleGAN.

Adversarial loss. To force the generated images belonging
to the corresponding domains, we need to use the adversarial
loss. Define Ds and Dt as two discriminators of domain Xs

and domain Xt, which can map an input image to [0, 1], indi-
cating the probability that the input is a natural image in the
corresponding domain. The adversarial loss is

ℓadv =
1

2|Xs|

∑

x∈Xs

(logDs(x) + log(1−Dt(f
∗(x))))

+
1

2|Xt|

∑

y∈Xt

(logDt(y) + log(1−Ds(g
∗(y)))).

(4)

Therefore, the training objective functions for f∗ and g∗ is to
minimize

ℓtotal = ℓcyc + λℓadv, (5)

while the Ds and Dt will work on maximize ℓadv. In experi-
ments, we fix λ as 10 following [Zhu et al., 2017].

3.2 Multi-Domain Translation

Several works target at image translation among multiple do-
mains [Choi et al., 2018; Liu et al., 2018]. Our proposed
deliberation learning framework also works for this setting.

Let X1, X2, · · · , XN be N domain of interests (N ≥ 2).
Our target is to achieve N(N − 1) mappings among the N
image domains. It is impractical to learn so many mappings,
especially when N is large. An light-weight way is to use a
StarGAN like structure, where there is only one encoder, one
decoder and one discriminator. Adapted to the deliberation
learning framework, there are one encoder E, one decoder G,
one post-editor G∗ and a discrimiator D. Each image domain
has a learnable embedding ti i ∈ [N ], representing the do-
main characteristic. The E can map images from any domain
to hidden representations conditioned on the embedding; G
and G∗ can map the hidden representation guided by the do-
main embedding to the target space. Take the mapping from
Xi to Xj as an example (i 6= j): for an x ∈ Xi,

hi→j = E(concat[x; tj ]); ŷ = G(hi→j);

hj = E(concat[ŷ; tj ]); y
∗ = G∗(hj + hi→j),

(6)

where concat represents padding the second input to the
first one along the last dimension. y∗ is eventually used as
the output of x in Xj . In this case, for ease of reference,
denote the translation from Xi to Xj following Eqn. (6) as
f∗
i,j . Correspondingly, the generation function based on G◦E

is denoted as fi,j . For multi-domain translation, E and G are
pre-trained and then fixed too.

Similar to two-domain translation, the training loss of
multi-domain translation consists of two parts too: the cycle
consistency loss and adversarial loss. The training process of
multi-domain deliberation is shown as follows:

1. Randomly choose two different domains Xi and Xj ,
where i 6= j; randomly sample two batches of data
Bi ⊂ Xi and Bj ⊂ Xj ;

2. Formulate the cycle consistency loss as follows:

ℓcyc =
1

|Bi|

∑

x∈Bi

‖f∗
j,i(f

∗
i,j(x))− x‖1

+
1

|Bj |

∑

y∈Bj

‖f∗
i,j(f

∗
j,i(y))− y‖1;

(7)

3. The discriminator slightly differs from those in two-
domain translation. It consists of two parts: Dsrc, which
is used to justify whether the input is a natural image;
Dcls, which is used to verify which domain the image
belongs to. Dsrc and Dcls share the basic architecture
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expect for the last few layers. The adversarial loss is

ℓadv =
1

2|Bi|

∑

x∈Bi

(logDsrc(x) + log(1−Dsrc(f
∗
i,j(x)))

+
1

2|Bj |

∑

y∈Bj

(logDsrc(y) + log(1−Dsrc(f
∗
j,i(y)))

+
1

2|Bi|

∑

x∈Bi

(logDcls(i|x) + logD−

cls(j|f
∗
i,j(x))

+
1

2|Bj |

∑

y∈Bj

(logDcls(j|y) + logD−

cls(i|f
∗
j,i(y)).

(8)
f∗
·,· will work on minimizing ℓadv while the Dadv and Dcls

will try to enlarge it. When optimizing the discrimina-
tors, the D−

cls is fixed.

4. Minimize ℓcyc + λℓadv on Bi and Bj , where λ = 10.
Repeat step (1) to (4) until convergence.

Compared with two-domain deliberation learning, each
component of our model in multi-domain setting has to
deal with images from different domains, while that in two-
domain setting only works for two-domain.

3.3 Discussion

The idea of deliberation learning also exists in super res-
olution (briefly, SR), whose task is to convert a low-
resolution image to a high-resolution one. A bicubic interpo-
lation [Dong et al., 2014] is first applied to the low-resolution
image, then followed by a neural network to reconstruct the
high-resolution one. Indeed, the task of SR itself and our
framework share the high-level idea, but there are still sev-
eral differences: (1) Image translation covers at least two
domains with different semantics, while SR works on one
domain only; (2) When making deliberation, our framework
takes the information from two domains as input and further
deliberates them by a post-editor. In comparison, SR con-
ducts one-pass operation, where the interpolated image is di-
rectly used in the subsequent module.

Another work leveraging deliberation learning is [Xu et al.,
2018], which attacks the text-to-image problem: the images
are generated from low-resolution to high-resolution, with
multi-modal loss as constraints. Different from our work,
our model is optimized in an fully unsupervised manner, and
what we focused is to polish a generated image (with canon-
ical output resolution) to a better one.

4 Application to Two-Domain Translation

For two-domain translation, we work on four datasets to ver-
ify the effectiveness of our algorithm.

4.1 Settings

Tasks. We select four tasks evaluated in CycleGAN [Zhu et
al., 2017]: semantic Label↔Photo translation on Cityscapes
dataset [Cordts et al., 2016], Apple↔Orange translation,
Winter↔Summer translation, and Photo↔Paint translation.

Figure 3: From top to bottom are results of Label↔Photo transla-
tion, Apple↔Orange translation, Paint→Photo translation.

Model architecture. For the encoder, decoder and the dis-
criminator, we adopt the same architectures as those in Cy-
cleGAN for consistency. In addition, we need two post-
editors G∗

s and G∗
t . We split the generator of CycleGAN into

two components: The first one serves as the encoder in our
scheme, which contains two stride-2 convolutional layers and
four residual blocks. The remaining part serves as a decoder,
which contains five residual blocks and two 1

2
-strided con-

volutional layers. Therefore, the total number of layers are
consistent with CycleGAN. The architecture of post-editor is
the same as the decoder in CycleGAN as we introduced be-
fore. For the discriminator, we directly follows CycleGAN.

Implementation details. We follow the offical CycleGAN2

to implement our scheme in PyTorch. To stabilize the train-
ing, We first pre-train the Es, Gt, Et and Gs using standard
CycleGAN code until convergence. After that, we start to
train G∗

s and G∗
t . We use Adam with initial learning rate

2×10−4 to train the models for the first 100 epochs. Then we
linearly decay the learning rate to 0 in the next 100 epochs.

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Task CycleGAN Ours

Apple→Orange 147.31 130.17
Orange→Apple 146.96 132.70

Photo→Label 68.66 45.62
Label→Photo 95.23 69.34

Winter→Summer 85.48 76.89
Summer→Winter 82.20 77.64

Cezanne→Photo 186.16 158.75
Photo→Cezanne 192.25 175.78

Monet→Photo 134.01 123.96
Photo→Monet 139.37 123.45

Ukiyo-e→Photo 197.46 162.53
Photo→Ukiyo-e 152.86 127.18

Van Gogh→Photo 93.04 77.34
Photo→Van Gogh 96.37 87.93

Table 1: FID scores of CycleGAN and our algorithm.

Metrics. Fréchet Inception Distance (briefly, FID) is first
proposed by [Heusel et al., 2017], recently becomes a com-
monly adopted approach to evaluate generative models [Lu-
cic et al., 2018; Brock et al., 2019]. For FID measurement,
the generated samples and the real ones are first mapped
into feature space by an Inception-v3 model [Szegedy et al.,
2016]. Then Fréchet distance between these two distributions
is calculated to obtain FID score. The authors demonstrated
that FID score has a reasonable correlation with human judg-
ment [Heusel et al., 2017]. Smaller FID scores indicate bet-
ter translation qualities. In addition, we follow [Zhu et al.,
2017] and provide FCN score [Isola et al., 2017]3 in our
framework analysis for fair comparison, including per-pixel
accuracy (Pixel Acc.), per-class accuracy (Class Acc.) and
mean class Intersection-Over-Union (Class IOU). Higher ac-
curacies indicate better translation qualities.

4.2 Results

Qualitative evaluation. Figure 3 shows three groups of
translation results on Label↔Photo (the first two rows),
Apple↔Orange (the second two rows) and Paint↔Photo (the
last two rows). In general, deliberation learning can: (1) Gen-
erate images with rich details. (2) Correct many failure cases
(e.g.missing items, flawed translation, etc.) generated by Cy-
cleGAN. (3) Make the generated images more realistic.

Quantitative evaluation. FID scores of four datasets are
shown in Table 1. We can see that deliberation learning sig-
nificantly surpasses the baseline across all datasets.

4.3 Framework Analysis

We carry out detailed analysis of our proposed framework.
We implement another six settings on Label→Photo transla-
tion and the scores are listed in Table 2.

(1) To verify whether different ways to combine the fea-
tures from the encoder and decoder will influence delibera-
tion quality, we concatenate the two features hx and hŷ in
Eqn. (1) instead of adding them. (Ours-1)

3We directly use the code and pre-trained FCN model in https:
//github.com/phillipi/pix2pix/tree/master/scripts/eval cityscapes.

Setting Pixel Acc. Class Acc. Class IOU FID

CoGAN 0.40 0.10 0.06 −

BiGAN 0.19 0.06 0.02 −

CycleGAN 0.52 0.17 0.11 95.23
pix2pix 0.71 0.25 0.18 −

Ours 0.62 0.20 0.15 69.34

Ours-1 0.61 0.20 0.15 67.63
Ours-2 0.57 0.19 0.14 81.59
Ours-3 0.57 0.20 0.15 80.83
Ours-4 0.57 0.20 0.15 77.58
Ours-5 0.52 0.13 0.10 106.28
Ours-6 0.56 0.20 0.15 78.29

Table 2: FCN and FID scores of Label→Photo on Cityscapes.

(2) To verify whether better accuracies are brought by larger
models, we increase the depth of decoder as double, i.e.ten
residual blocks. (Ours-2)

(3) To verify whether we need two different encoders to en-
code two different outputs, we try to use two encoders to en-
code x and ŷ separately. (Ours-3)

(4) To verify whether we need identity loss, we remove it
from our framework. (Ours-4)

(5) To verify whether we need to fix encoder and decoder, we
update all parameters in the encoder, decoder and post-editor.
(Ours-5)

(6) To verify whether we need to fetch raw input for the post-
editor, we only feed the post-editor with hŷ . (Ours-6)

For fair comparison, we also provide the FCN scores in Ta-
ble 2. We list the existing results of CoGAN [Liu and Tuzel,
2016], BiGAN [Donahue et al., 2017; Dumoulin et al., 2017],
standard CycleGAN [Zhu et al., 2017] and pix2pix [Isola et
al., 2017]. Note that pix2pix is trained in a supervised way.

5 Application to Multi-Domain Translation

In this section, we conduct our deliberation learning on multi-
domain image translation. We also give qualitative and quan-
titative analysis on the performance of our scheme.

5.1 Settings

Tasks. We used the publicly available CelebA dataset [Liu
et al., 2015] for facial attributes translation. CelebA contains
10, 177 number of identities and 202, 599 number of facial
images. The original images are cropped to 128 × 156. The
test set is randomly sampled (2, 000 images) and the remain-
ing images are used for training. For directly comparison with
StarGAN [Choi et al., 2018], we perform our experiments on
the same three attributes: hair color (black, blond and brown),
gender (male / female) and age (young / old).

Model architecture. For fair comparison, we adopt the
same architectures as StarGAN [Choi et al., 2018] for the en-
coder and decoder. We additionally need one post-editor G∗

for our method. Similar to two-domain image translation, we
split the generator of StarGAN into encoder and decoder. We
adopt the same architecture of decoder for the post-editor G∗.
Different from conventional GAN [Goodfellow et al., 2014],
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Figure 4: Qualitative results of our scheme compared with StarGAN. It is worth noting that deliberation effectively boost the performance of
StarGAN on facial attributes, making the generated images more natural and indistinguishable from the real images.

Classification Accuracies

Attributes StarGAN Ours

Hair 80.99% 84.10%
Gender 88.40% 94.19%

Age 74.48% 76.64%

Table 3: Classification accuracies of StarGAN and our algorithm.

the discriminator is enhanced with the ability of distinguish-
ing which domain the translated images belong to.

Implementation details. Our implementation based on of-
ficial code of StarGAN4. Similar to CycleGAN, we first pre-
train the Es and Gt with standard StarGAN until conver-
gence. The pre-trained parameters is loaded as initial model
to optimize G∗. We use Adam with initial learning rate
1 × 10−4 to train the models for the first 100, 000 iterations.
Then we linearly decay the learning rate to 0 in the next
100, 000 iterations. The batch size is set to 16.

Metrics. To evaluate qualities of generated images quanti-
tatively, we follow [Choi et al., 2018] to train a classification
model on three facial attributes we used (i.e.hair color, gen-
der and age). We directly adopt the model architecture of
discriminator used in StarGAN for the classifier and use the
same training set as our image translation models. Higher
classification accuracies on the translated facial attributes in-
dicates the better translation qualities.

5.2 Results

Qualitative evaluation. We provide facial attributes trans-
lation in Figure 4. Generally, deliberation learning effec-
tively boost the performance of StarGAN on facial attributes,

4https://github.com/yunjey/stargan

making the generated images more natural and indistinguish-
able from the real images. From Figure 4, we can observe
that, deliberation learning successfully generates facial im-
ages with rich details, especially on semantic regions like eye,
cheek etc. In addition, in many cases, StarGAN suffers from
color shifting, while our scheme correct this fault and pre-
serve the reality without impact on background or hair color.

Quantitative evaluation. The quantitative evaluation of
three facial attributes translation are illustrated in Table 3. All
classification accuracies are measured on translated images
with our pre-trained facial attributes classification model. In
terms of classification accuracies, our method surpasses the
StarGAN baseline by 3.11%, 5.79% and 2.16% points for
hair color, gender and age respectively.

6 Conclusion and Future Work

In this paper, we introduced the concept of deliberation learn-
ing for image translation, which shares high-level sense with
human behaviors: reviewing and keeping polishing. We im-
plemented deliberation learning on image-to-image transla-
tion. The experimental results demonstrate that our method
generates more natural images and preserves crucial details.

There are many interesting directions to explore in the fu-
ture. First, we will apply the idea of deliberation learning to
more tasks like supervised image classification and segmen-
tation. Second, deliberation learning can be iteratively used
to keep polishing an image to get a better output. Third, we
will study how to speed up the algorithm in the future.
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