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Abstract.—DNA barcoding-type studies assemble single-locus data from large samples of individuals and species, and
have provided new kinds of data for evolutionary surveys of diversity. An important goal of many such studies is to
delimit evolutionarily significant species units, especially in biodiversity surveys from environmental DNA samples. The
Generalized Mixed Yule Coalescent (GMYC) method is a likelihood method for delimiting species by fitting within- and
between-species branching models to reconstructed gene trees. Although the method has been widely used, it has not
previously been described in detail or evaluated fully against simulations of alternative scenarios of true patterns of
population variation and divergence between species. Here, we present important reformulations to the GMYC method as
originally specified, and demonstrate its robustness to a range of departures from its simplifying assumptions. The main
factor affecting the accuracy of delimitation is the mean population size of species relative to divergence times between
them. Other departures from the model assumptions, such as varying population sizes among species, alternative scenarios
for speciation and extinction, and population growth or subdivision within species, have relatively smaller effects. Our
simulations demonstrate that support measures derived from the likelihood function provide a robust indication of when
the model performs well and when it leads to inaccurate delimitations. Finally, the so-called single-threshold version
of the method outperforms the multiple-threshold version of the method on simulated data: we argue that this might
represent a fundamental limit due to the nature of evidence used to delimit species in this approach. Together with other
studies comparing its performance relative to other methods, our findings support the robustness of GMYC as a tool
for delimiting species when only single-locus information is available. [Clusters; coalescent; DNA; genealogical; neutral;
speciation; species.]

A fundamental pattern of nature is that organisms
diversify into more or less discrete entities that we call
species. The term “species” is used to encompass many
facets of the pattern of diversity and its underlying
causes (Hey 2001; Coyne and Orr 2004; De Queiroz
2007; Shaffer and Thomson 2007). However, in general
evolutionary terms (e.g., as encapsulated by the general
lineage concept of species, De Queiroz 2007), species
are groups of organisms that evolve independently
from other such groups (because of barriers to the
spread of genes from one species to another), which
therefore diverge into discrete units of morphological
and genetic variation apparent from surveys of higher
clades. Increasingly, studies on the nature and origins
of species use empirical tools to delimit evolutionarily
significant taxa based on measurable quantities, for
example, reproductive isolation (Coyne and Orr 1998;
Knowles and Carstens 2007), ecological divergence
(Fontaneto et al. 2007; Leaché et al. 2009), and other
traits (Feulner et al. 2007), rather than relying on
qualitative taxonomic methods (see discussion by Sites
and Marshall 2003).

Gene trees provide a valuable source of information
for inferring the pattern and processes of diversification.
Until recently, studies of diversification were constrained
by a trade-off in numbers of loci, numbers of
individuals per species, and numbers of species that
could be sampled, leading to either data sets of
many loci in a few species or a few loci for many

species. Population genetic and phylogeographic studies
investigated population history and gene flow in
related sister species or species complexes (Templeton
2001; Avise 2009). These studies typically sampled
large numbers of individuals per species and often
multiple molecular markers (Koufopanou et al. 1997),
yet because of the level of sampling needed to infer
population processes, by necessity a given study usually
focused on few species. In contrast, phylogenetic studies
reconstructed speciation events leading to extant species
and inferred macroevolutionary processes at broad
taxonomic and geographical scales (Barraclough and
Nee 2001). However, because phylogenetic studies
require a large sample of species for a large clade,
by necessity these studies, until recently (Carstens and
Dewey 2010; Camargo et al. 2012), mostly sampled only
one exemplar per taxonomic species. Theory to analyze
population versus phylogenetic data also developed
separately.

It is now feasible to sample multiple individuals
from most species across a wider clade. For example,
DNA barcoding projects perform molecular inventories
of large samples of species and multiple individuals
within species (Hebert et al. 2003; Meyer and Paulay
2005; Monaghan et al. 2009). Similarly, environmental
samples of unculturable organisms, such as bacteria and
microbial eukaryotes, can be sequenced from marine and
terrestrial ecosystems (Acinas et al. 2004). These data
offer the potential to delimit evolutionarily significant
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units of diversity at broad taxonomic scales. However,
at present, large-scale biodiversity surveys still mostly
rely on single loci, such as cytochrome oxidase I for
animal barcodes or 16S rDNA for bacterial diversity
surveys (note that plant DNA barcoding uses multiple
loci but often multiple linked loci on the plastid genome,
which equates to a single locus in terms of genealogical
information, see CBOL Plant Working Group 2009).
Despite advances in genomic technology, it remains
difficult to sample multiple variable and orthologous
nuclear markers at equivalent taxonomic breadth and
depth (but see Brito and Edwards 2009). In addition,
for unculturable organisms, sampling multiple markers
from individuals (as opposed to pooled environmental
samples sensu Venter et al. 2004) is challenging
(Barraclough et al. 2009). Evolutionary inference from
single-locus data has limitations, including lower power
for detecting independent evolution compared with
multilocus approaches (Knowles and Carstens 2007;
Dupuis et al. 2012), the potential discordance between
gene trees and species trees (Hailer et al. 2012), and
the lack of information on adaptive divergence (Will
and Rubinoff 2004). Nonetheless, single-locus data do
provide a genetic record of evolutionary histories (Avise
2009) and, therefore, provide useful information for
surveying evolutionary patterns of diversity across
broad scales (Monaghan et al. 2009).

Several methods have been proposed that are
suitable for delimiting species from single-locus data.
The simplest approach is to define species based
on a percentage cut-off rule, such as the 1% or
3% rule used to delimit bacterial species from 16S
rDNA sequences (Schloss and Handelsman 2006) or
cytochrome oxidase I for insect species (Brower 1994).
This method suffers from a weak connection to
evolutionary theory, from variation in typical levels of
intraspecific and interspecific variation among clades,
and from substitution rate variation among lineages
(Barraclough et al. 2009). Although pairwise distance
thresholds might often work well in practise (Tang et al.
2012), evolutionary methods are needed to validate their
use. Also, an underlying evolutionary model is needed
to assign uncertainty in the resulting delimitation
and to compare alternative evolutionary hypotheses
statistically, such as whether a clade has diversified into
species or not (e.g., Fontaneto et al. 2007).

Evolutionary methods have focused on detecting
genetic signatures indicative of independent evolution,
such as evidence of fixed differences (Hey 1991; Davis
and Nixon 1992) or reciprocal monophyly (Wiens and
Penkrot 2002) between population samples. However,
these approaches require a priori hypotheses of putative
species groupings, based on traditional taxonomy,
morphospecies, or population samples, against which
criteria such as monophyly can then be assessed. This
can introduce biases into delimitation (e.g., cryptic
sympatric species would not be delimited because there
would be no independent data for judging monophyly
or fixed differences) and the additional information
required is not available in extreme cases, such as

delimiting bacterial species from a single environmental
sample solely from DNA sequence data (Acinas et al.
2004; Venter et al. 2004). In more recent studies,
Bayesian methods to delimit species using multilocus
sequence without a priori species boundaries have been
proposed (O’Meara 2010; Yang and Rannala 2010). These
approaches can handle uncertainty of delimitation and
utilize multilocus data. However, they are currently too
computationally intensive to apply to large samples.

The Generalized Mixed Yule Coalescent (GMYC)
method, devised by T.G.B. and first introduced in Pons
et al. (2006) and Fontaneto et al. (2007), is one method
designed to delimit independently evolving species
using single-locus data. By “independent evolution,”
we mean that new mutations arising in one species
cannot spread readily into another species (Templeton
1989; Barraclough et al. 2003; De Queiroz 2007).
The GMYC method relies on the prediction that
independent evolution leads to the appearance of
distinct genetic clusters, separated by longer internal
branches (Barraclough et al. 2003; Acinas et al. 2004).
It delimits such genetic clusters by optimizing the set
of nodes that define the transitions between inter-
and intra-specific processes. Optimization proceeds by
finding the maximum likelihood (ML) solution for a
model that combines diversification between species
(based on a Yule model, Nee et al. 1994) and genealogical
branching within species (based on a neutral coalescent,
Hudson 1990). Because it does not rely on additional
evidence to formulate hypotheses of putative species,
the method can be applied in cases lacking additional
data with which to infer putative species limits.
Other methods have been proposed based on similar
predictions to those used by GMYC, and these often
lead to similar outputs (e.g., the K/theta method of
Birky et al. 2010). An advantage of GMYC is that the
likelihood framework allows for statistical inference and
hypothesis testing across the entire sampled clade. The
relative performance of GMYC and alternative methods
is compared elsewhere (Birky et al. 2010; Tang et al. 2012).

The method has been applied to single-locus data of
many organisms (e.g., Fontaneto et al. 2007; Lahaye et al.
2008; Papadopoulou et al. 2008), and extensions of the
algorithm have been proposed (Monaghan et al. 2009;
Powell 2012). The method has not, however, previously
been fully described or had its performance evaluated
against simulated data under a wide range of conditions
(although see Papadopoulou et al. 2008 for the effects
of restricted dispersal and Esselstyn et al. 2012 for
the effects of varying effective population sizes and
speciation rates). Here, we present the algorithms used
in detail and determine the power and error rates on
data sets simulated under a wide range of conditions.
In addition, we describe the statistical properties of the
GMYC delimitation method, and make an adjustment
in its formulation. The threshold times used to specify
the location of nodes defining species are now correctly
treated as a model constraint, rather than (incorrectly)
as a parameter. This change does not affect the ML
delimitation found by the method, but it does affect the
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power to reject the null model that all individuals belong
to a single species cluster.

METHODS

Assumptions
Assume that a single locus has been sequenced for a

sample of individuals from a monophyletic clade. The
sample is sufficient that multiple individuals have been
sampled per species, should different species be present,
and that most if not all species are sampled. Different
sampling schemes will be considered below. Assume
that the true genealogy of the locus is known (i.e., there
are no reconstruction artefacts), that the locus is a neutral
marker, and that there is no geographic substructure
within each species. Departures from these assumptions
will be discussed below. The goal is to determine
whether the clade has diversified into independently
evolving groups, namely species and, if so, to delimit
those species.

The null model is that all individuals within the
sample belong to a single species or population. The
expected patterns for gene trees in a single population
are well established. Sampled genes coalesce to a single
common ancestor at a mean rate proportional to the
effective population size, Ne, in the case of a strict neutral
coalescent (Hudson 1990; Rosenberg and Nordborg
2002). Coalescence occurs because population size is
limited: the chance that each individual contributes
offspring to subsequent generations depends on the
contribution of the other individuals in the population.

Our alternative model is that the clade has diversified
into separate species, each of which is considered as a
single entity in the sense outlined for the null model.
Gene copies will tend to coalesce back to a single
common ancestor within each species. If the time to
most recent common ancestor (Tmrca) within species
is younger than the time since the species split from
their nearest sisters, this will lead to a pattern of
genetic clusters: clusters of closely related individual
separated from other such clusters by longer internal
branches (Fig. 1; Barraclough et al. 2003). Branching
rates between clusters will reflect speciation events,
as well as extinction and the degree of sampling
of species entities (Nee et al. 1994; Barraclough and
Herniou 2003). Branching within clusters will reflect the
same population processes outlined for the null model
but now occurring independently in separate species.
However, if the Tmrca within species tends to be older
than the time since each split from its nearest sister
species, then clusters may not be observed and we may be
unable to reject a null model of no species diversification.
Note that our definition is similar to the general lineage
concept of species although it differs in focusing on the
genetic signatures that we use to delimit such groups
(De Queiroz 2007).

The above scheme assumes two extreme cases: one
unstructured population versus diversification into two

x1 x3 ...x2

FIGURE 1. Schematic diagram showing how nodes are used to
define species on a hypothetical gene tree. Black diamonds indicate
the MRCA nodes that define species in a particular delimitation.
Branches in dashed and solid lines represent speciation and coalescent
branches, respectively. Bars next to the tips represent two alternative
delimitations. Solid bars indicate the delimitation defined by the
MRCA nodes shown on the tree. Dashed black bars indicate an
alternative delimitation (i.e., splitting the top species into two) that
could be assigned by the multiple-threshold method but not by the
single-threshold method. Dashed gray vertical lines show the waiting
times ×1, ×2, etc. that are used in the GMYC likelihood model.

or more populations, each of which is unstructured
but fully isolated from the others. In reality, there will
often be some degree of geographical structure within
most species as well (Avise 2009). This could lead either
to signatures intermediate between the two extreme
cases or to hierarchical clustering, with population
clusters apparent within species clusters (Lohse 2009;
Papadopoulou et al. 2009). Expressions are available for
scenarios departing from the assumptions of neutrality,
constant population size, and unstructured populations
(e.g., Charlesworth et al. 2003). For now, we ignore
this complication and address how to detect significant
signatures of diversification in the simple case. Note that
this issue does not affect application of the method to
delimit species within a single environmental sample,
where geographical subdivision within species cannot
occur.

Likelihood Model
The GMYC approach extends existing likelihood

methods for analyzing the timing of branching events
in gene trees. The raw data for comparing different
models are waiting times between successive branching
events, xi (Fig. 1). Under the null model that the entire
clade represents a single population (Hudson 1990), the
likelihood of waiting time i under a neutral coalescent
model with an effective population size of Ne and n
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lineages present is given by:

L(xi)=�e−�xi (1)

�= ni(ni −1)
2Ne

(2)

The alternative model is that the clade has diversified
into k species, each of which is treated as an independent
population with effective size, Nj,j=1 to k. The model
splits the tree into two types of branching events.
First, branching events within species are determined
by k independent neutral coalescent processes (shown
by the black branches on Fig. 1). Second, branching
among species (shown by the dashed branches on
Fig. 1), which we refer to as diversification, is treated
as a stochastic birth–death process as developed for
analyzing speciation and extinction on species-level
phylogenetic trees (Nee et al. 1994; Morlon et al. 2011;
Etienne et al. 2012). By convention, the simplest model
is a Yule model that the number of species grows
exponentially over time, with constant average birth rate,
�spec, and no extinction. The likelihood of waiting times
between successive branching events among-species is:

L(xi)=�specni,spece−�specni,specxi (3)

We modified the diversification process slightly to
permit comparison of null and alternative models.
By convention, phylogenetic branching models take a
forward perspective, starting at the root and having
M-2 speciation events, where M is the number of
tips. Coalescent approaches take a reverse perspective,
starting at the tips and having M-1 coalescent events.
Hence, if we took a forward time approach for the
diversification part of our mixed model we would have
one less event than in the null model that the sample
is drawn from a single population. To account for this,
we adopt a reverse approach for the diversification
branching process, that is, starting from the stem
branches for each species, using equation (3) as the
likelihood that the previous branching event occurred
xi time units previously (cf. Hey 1992). A further
complication is that stem branches leading to each
species have a different probability distribution than
either diversification or coalescent branches, because
(in reverse time) each stem branch starts at a common
ancestor node for an entity and ends at a diversification
event. The simplest approximation, which we adopt, is
to assume that these branches have the same probability
distribution as the diversification branching process.

The final step is to calculate the likelihood of observed
waiting times on the tree assuming a mixed model of
coalescence within species and diversification among
species. The combined series of events resulting from the
combination of k independent Poisson processes follows
a Poisson process with rate b equal to the sum of the rates
of the separate processes (Cox and Miller 1965, p. 154).
Hence, for a Yule diversification process and a set of k
neutral coalescent processes within a given assignment

of species, the likelihood of each waiting time is:

L
(
xi

)=be−bxi , (4)

where b=�specni,spec +
∑

j=1,k

(
�jni,j

(
ni,j −1

))
, (5)

where �spec and nspec are used to indicate the
diversification process, and ni,j is the number of lineages
in waiting interval i belonging to process j. Calculation
of the relevant number of lineages for waiting times
must take account of which lineages at any time point
are taking part in which branching process (Fig. 1).
The model is fitted by maximizing the sum of log
likelihood of waiting times for both classes of branching
events across the entire tree. Note that, in common
with previous approaches for modeling diversification
processes (Hey 1992), we do not model gene tree
topology (cf. Rannala and Yang 2003), but instead model
the distribution of waiting intervals between branching
events.

Generalized Model
The above equations make strict assumptions about

the constant rate of branching in both population
and diversification processes that seem unlikely to
hold widely. One solution would be to compare a
large array of specific population and diversification
models using the Akaike Information Criterion (AIC,
Rabosky and Lovette 2008). For example, a birth–death
branching process for diversification could be added
by substituting the equations from Nee et al. (1994).
This exercise might be useful for specific hypotheses
of prior interest, but it is unwieldy due to the vast
number of possible models, many of which might be
indistinguishable (Kubo and Iwasa 1995; Barraclough
and Nee 2001). An alternative solution is to generalize
the above equations to fit a range of qualitatively
different models, without specifying the underlying
processes. Nee et al. (1994) and Nee (2001) discussed
transformations of waiting intervals that allow derived
models to be treated as exponential processes with a
single rate parameter. These accounts imply a simple
general expression for the likelihood of waiting times
of a single branching process:

L(xi)=ni,spec
p
�spece−ni,spec

p
�specxi , (6)

where p is a scaling parameter. A value of p=1 indicates
a constant per lineage branching rate, p>1 indicates
that the apparent branching rate accelerates toward the
tips, and p<1 indicates an apparent deceleration in rate
toward the tips. For coalescent processes within entities,
ni is substituted with ni(ni −1).

The value of p is optimized during model fitting,
allowing a range of qualitatively different models.
Interpretation of p depends on which class of branching
events are considered. Barraclough and Nee (2001)
reviewed interpretations of changes in diversification
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rate on phylogenetic trees, which apply exactly to
interpretation of p. For example, p>1 indicates an
apparent increase in diversification rate toward the
present, as might be expected under a real increase
in birth rate or under a model with a constant birth
rate but adding a constant death rate (Nee et al. 1994).
p<1 represents an apparent decrease in diversification
rate toward the present, consistent with niche-filling
models, or incomplete sampling of species within the
clade (Pybus and Harvey 2000; Nee 2001; Phillimore and
Price 2008; Rabosky and Lovette 2008).

Similarly, p for a coalescent model will reflect processes
affecting the timing of coalescent events within entities.
p<1 indicates a deficit of recent coalescent events,
for example, if populations are growing in size or if
the marker has experienced a selective sweep. p>1
indicates an excess of recent coalescent events, for
example, if populations were declining in size, if there
was geographic subdivision within species or as a
result of balancing selection on the marker. (Note that
the description in Pons et al. 2006 of interpreting
the effects of selection on coalescent p was incorrect.)
Hence, by optimizing across possible values of p
for both classes of branching events, our method is
qualitatively robust to the details of the models. Note
that the power transformation might not provide a
linear approximation to particular process. However, it
does allow smooth changes in branching rate over time
to be fitted, and the fitted parameter values indicate
which detailed models might be explored as possible
explanations for the data.

Using the notation outlined earlier, the GMYC model
is specified by substituting b in equation (5) with b∗:

b∗ =�spec

(
ni,spec

)pspec +
∑

j=1,k

(
�j

(
ni,j

(
ni,j −1

))pj
)

(7)

The ML estimate of � for a given assignment of nodes
is calculated using the Moran estimator of Nee (2001),
namely the number of branching events divided by the
total length of between-species branches. The estimator
is modified to incorporate the scaling of branch lengths,
that is, the number of diversification events divided by
the sum of (ni,spec)pspecxi across all waiting intervals. The
equivalent expression but using (ni,j(ni,j −1))pj xi for the
denominator is used for the coalescent processes. The
scaling parameters are optimized using Nelder–Mead
optimization as implemented in the “optim” function
of R.

The simplest formulation is to assume that all
the sampled entities have the same branching
parameters, which we call the minimum model. In
reality, different sampled entities might have different
parameters, if their population sizes differ or they
have experienced different demographic or selective
histories. A maximum model would include separate
�j and pj for each entity. A more frugal approach is to
allow for variation in parameter values among entities
but only introducing a few additional parameters to

the minimum model. We have tried fitting separate
parameters for each cluster and results do not seem
to greatly differ (see Pons et al. 2006) although future
work could explore this further. For conciseness and
simplicity we only consider the minimum model version
here.

Single-Threshold Approach to Delimiting Species
Delimitation with the GMYC approach is based on

assigning branching events to two categories, speciation
and coalescent within species. With the simplifying
assumption that species are monophyletic, a set of
most recent common ancestor (MRCA) nodes can be
specified that determines the type of branching events
(Fig. 1). Branches descending from the MRCA nodes
are coalescent branches within the species, and clades
defined by each MRCA node are species clusters.
Because a given set of MRCA nodes specifies a form of
the likelihood function, equation (7), and represents a
unique testable hypothesis of memberships of putative
species, each set of MRCAs can be treated as a candidate
model of delimitation. The models are compared to
obtain the best set of MRCA nodes within a ML scheme.
Equations (6) and (7) are first optimized separately
for each model then the likelihood values of the
optimization results are compared. The set of MRCAs
with the highest ML is selected as the best model
of delimitation. This process is analogous to the two-
step process of phylogenetic inference with ML, which
is treated as model selection instead of parameter
optimization (Yang et al. 1995; Yang 2006).

The challenge is that, even with the simplifying
assumption of monophyly and a gene tree of modest
size, there is an enormous number of possible candidate
delimitation models (approximately 4.11×1022 models
for a balanced tree with 128 tips, online Appendix 1).
The simplest approach, proposed by Pons et al. (2006), is
to assume that there is a threshold time, T, before which
all nodes reflect diversification events and after which all
nodes reflect coalescent events. This reduces the number
of candidate models to equal the number of nodes in
the tree. It does not assume that all species have the
same Tmrca, which would be violated even in an equal
population size model due to the expected variance
in the Tmrca. Instead, it assumes that the most recent
diversification event occurred before the oldest within-
species coalescent event. If we assume for parsimony that
all species have the same effective population size, this
version of the GMYC model introduces two additional
parameters compared to the null model: a diversification
rate parameter, �spec, and scaling parameter, pspec. The
threshold time, T, which was treated as a parameter
in Pons et al. (2006), is now correctly treated as a
constraint of search space. The ML threshold, and
hence assignment of species, is found by calculating the
likelihood of the alternative model for all possible values
of T. Multimodel comparison with the AIC can be used
to assess the relative importance of alternative models
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and whether the ML alternative model is preferred over
the null model of no such shift in branching process
(Powell 2012). Note that with the reformulation of T as
a constraint rather than a parameter, then the degrees
of freedom for a log likelihood comparison of the null
model with the single-threshold model is now 2, not 3
as proposed in Pons et al. (2006). The ML solution is
unaltered with the new formulation, but the power is:
any result using the former formulation with a P-value
of 0.112 or less will be significant at 0.05 with the revised
model.

Multiple-Threshold Approach to Delimiting Species
The multiple-threshold approach, devised by TF

and first described in Monaghan et al. (2009), relaxes
the assumption of the single-threshold version that
speciation events are older than all coalescent events in
the gene tree. Instead, from a given starting assignment
of MRCA nodes, it searches alternative models via
an heuristic algorithm that iteratively splits and fuses
existing species clusters (see fig. 1 in Monaghan et al.
2009). The algorithm keeps exploring additional sets
until the last round of trials found no sets of MRCA
with an improved likelihood on the previous ML set.
We tried two versions of this process differing in the
how the starting set of MRCA nodes is chosen. First,
we started with arbitrary sets as described in Monaghan
et al. (2009). In this case, optimization is often attracted to
local optima, necessitating repeats with multiple starting
sets, which greatly increases the run time. Second, we
started with the set of MRCA found using the single-
threshold method. To check the performance of these
approaches we simulated 100 gene trees assuming a
constant speciation rate and a population size of 105 (as
described further below) with four species and five tips
per species; small enough to allow an exhaustive search
of all delimitation models. These simulations showed
that the multiple threshold starting from the best single-
threshold solution more frequently finds the global
optima and better solutions than the search starting
from multiple arbitrary sets (Supplementary material at
Dryad, doi: 10.5061/dryad.0hv88, Table S1, Fig. S1). We
therefore use this approach.

In Monaghan et al. (2009), we treated additional
thresholds needed to assign classes in the multiple-
threshold algorithm as additional parameters, but here
we redefine these as a constraint of search space
rather than parameters, for the reasons described
earlier. Therefore, the numbers of parameters are now
identical in both the single-threshold version and
the minimal model version of the multiple-threshold
version. The two versions can no longer be compared
by likelihood ratio tests, because they contain the same
number of parameters. Instead, alternative assignments
are considered together in a multimodel comparison
framework.

Uncertainty in Delimitation
We specify uncertainty in assignment using the AIC-

based approach for multimodel comparison described
by Powell (2012). Akaike weights and model-averaged
estimates of GMYC parameters and their standard errors
are defined in Powell (2012, equations 4–9). Also, the �%
confidence set of candidate models can be obtained by
adding the Akaike weights cumulatively starting from
the minimum AIC model with increasing order until �%
is attained (Burnham and Anderson 2002). The support
value of a species cluster, which we call GMYC support,
is given by the sum of the Akaike weights of models in
which the MRCA node appears as follows.

wMRCA =
R∑

i=1

wiI(Mi), (8)

I(Mi)=
{

1, if the MRCA belongs to the ith model
0, otherwise

where wi is the Akaike weight of ith model, Mi
and R are the number of total model considered.
Note that this represents support for the node among
the alternative models of delimitation considered
during model comparison. Although not all possible
delimitation models can be compared, comparison
of models specified by all possible single thresholds
together with additional models searched with the
multiple-threshold algorithm is a judicious approach.

Simulations
To assess the properties of the method, genealogies

were simulated under several scenarios of evolution and
sampling schemes, which were expected to affect the
performance of the method. In each following treatment
except for A, species trees were first simulated under
different diversification models, then gene genealogies
within the species trees were simulated. One hundred
replicated gene trees were simulated for each scenario.
Species trees were simulated in Phylogen (Rambaut
2002) and gene trees in ms (Hudson 2002), using
scripts in R to generate ms command files specifying
phylogenetic history among species based on the
simulated species tree. We modified ms to output branch
lengths to seven decimal places instead of three to avoid
the simulation of simultaneous coalescent events for the
large samples being studied here.

(A) Null model: The null model was simulated assum-
ing a neutral coalescent process in a single
population and a sample of 150 individuals. Branch
lengths in the resulting trees are in units of 4 Ne
generations. Because the GMYC method relies on
relative branch lengths rather than absolute branch
lengths, we scaled branch lengths in the simulated
trees to have a root age of 1.0 before running the
GMYC analyses, to maintain consistent scale across
the different simulations.
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(B) Diversification (coalescence within a species tree):
Gene trees were simulated assuming 30
independently evolving species. First, species
trees were simulated under a constant birth (Yule)
model without extinction. Species trees were
scaled so that the root node age was 10 million
generations, yielding a net per lineage speciation
rate of approximately (log(30)−log(2))/107 =0.27,
which falls within typical values (Barraclough and
Vogler 2002). Then, gene trees within species trees
were simulated assuming that five individuals
were sampled from each entity. Numbers were
chosen to match realistic yet conservative sample
sizes (e.g., Pons et al. 2006). The effects of sampling
more individuals per species versus sampling
more species are being investigated by simulation
elsewhere (Ahrens D., Krammer H.J., Fujisawa
T., Fabrizi S., Vogler A.P., unpublished data).
Population sizes for each species were assumed
to be the same, and set in repeated simulations as
104, 105, 5×105, and 106 in turn. Larger population
sizes increase the genetic variation within species
and, consequently, are expected to make the
transition from inter- to intra-specific processes
harder to detect. Population sizes used here
were chosen based on preliminary simulations
to be representative of a trend from reciprocal
monophyly of all species to the case in which
few species are monophyletic on gene trees
with population size of 5×105 better reflecting
this trend than just powers of 10. The range of
population size covers the estimated effective
population sizes of common eukaryotic species
(Charlesworth 2009). Note that the performance
of the GMYC method will depend on relative
diversification and coalescent rates, not on
absolute rates: for example, doubling population
size and halving diversification rate would not
change the shape of the resulting gene trees.

(C) Alternative diversification models: Simulation B as-
sumes constant speciation rate and no extinction.
However, this assumption is often violated in
real data sets (Phillimore and Price 2008; Morlon
et al. 2011; Etienne et al. 2012). We repeated
the simulations with alternative diversification
models. In C1, 30 species were sampled from
a tree containing 50 species generated under a
constant speciation rate. This model creates a
recent deficit of speciation events, a situation that
might arise due to incomplete species sampling
or an actual slow down in the net diversification
rate over time. Simulation C2 was simulated
with constant speciation and extinction rate, with
extinction rate 30% of the speciation rate. The
model with extinction produces a recent excess
of diversification events, the so-called “pull of
the present” (Nee et al. 1994). Repeating the
simulation with an extinction rate of 80% led

to more extreme findings in the same direction
as reported here. The GMYC model is designed
to fit these different diversification processes by
optimizing values of the scaling parameters as
described earlier (i.e., pspec <1 for C1 and pspec >1
for C2). However, delimitation is expected to be
easier in C1 than in simulation B, because terminal
species divergence times will tend to be longer,
and harder in C2, because terminal divergences
will be shorter. Coalescent trees were simulated
within species trees of both C1 and C2 with the
same population and sample sizes as simulation B.

(D) Alternative population models: growing or declin-
ing populations: Simulation B assumes that spe-
cies have had constant Ne over time. To check the
ability of the scaling parameters to fit different
population processes, we simulated two different
models. In D1, we simulated gene trees assuming
recent exponential growth within species. There
are many potential versions that could be
simulated, but we assumed that species were
affected by an instantaneous population bottleneck
Tb generations ago (arbitrarily choosing Tb to
be half the age of the penultimate diversification
event), followed by exponential growth to the
present day. The rate of growth was assigned
to generate a 10-fold increase in population size,
and the severity of bottleneck was chosen so that
the harmonic mean effective population size over
the growth period was equal to Ne, with the
simulation repeated with Ne equal to 104, 105,
5×105, and 106 for comparability with simulation
B. Effective population sizes before Tb generations
ago were assigned as constant and equal to
Ne. In D2, we followed the same approach, but
with an instantaneous growth in populations Tb
generations ago followed by exponential decline.
We predict that D1 should yield pk <1 and D2
should yield pk >1, reflecting a relative deficit and
excess of recent coalescent events within species,
respectively. We also predict that delimitation
should be more accurate in D1 than in D2, because
in D1 there will tend to be relatively shorter
branching intervals near the most recent common
ancestral node for a species. In reality, it is unlikely
that all species would show the same population
trends, but the simulations allow the broad effects
of alternative models to be compared.

(E) Diversification with different sized populations:
The above simulations assume that population
sizes are equal among species. To investigate the
effect of varying population sizes, we simulated
effective population sizes drawn from a log-
normal distribution with means equal 104, 105,
5×105, and 106 in successive simulations. We are
unaware of any comparative data on effective
population sizes among species, but species
abundances typically follow a roughly log-normal
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distribution (Green and Plotkin 2007). Population
sizes of each species of the species trees simulated
in B were assigned from a log-normal distribution
with means equal to 104, 105, 5×105, and 106 in
successive simulations. Ancestral species were
assigned the population size of the species with
the lower index in the representation in Ms format.

(F) Alternative sampling scheme: random sample acr-
oss the clades: Even if the alternative model is
true, random sampling could bias the detection
of true clusters if there is no prior knowledge of
entities. To check the effect of random sampling,
we simulated gene trees sampling 150 individuals
in total, but choosing individuals at random with
respect to species membership. Simulation F1
mirrored simulation B, with equal population sizes
among species and hence equal probability that a
sampled individual belongs to any species. In F2,
we assumed log-normally distributed population
sizes and species are sampled in proportion to
their population sizes, that is, a species with
twice the population size is likely to be sampled
twice as often. Note that this simulation addresses
the question of how the proportion of singletons
within samples affects the accuracy of delimitation
(Lim et al. 2011), since many species are sampled
only once by chance.

(G) Geographical structure within species: For this sce-
nario, we assumed that each species divided into
two populations halfway along its terminal branch
in the species tree and that two individuals were
sampled from population 1 and three individuals
from population 2. We then assigned a migration
rate, m, such that Nem has a random uniform
distribution between 0 and 1. All species in a
given species tree were assumed to have the same
migration rate, but a different migration rate was
chosen for replicate species trees to explore how
the performance of the GMYC method varied with
migration rate. For m=0, the two populations are
completely isolated and the method should detect
two separate clusters within each species. For
higher m, the method should gradually shift from
delimiting populations as clusters to delimiting the
species.

(H) Sequence simulation and reconstructed gene trees:
All simulations above assume that the true
genealogy of sampled genes is known. In reality,
however, true gene trees are unknown and
estimated from DNA sequences. The uncertainty
of tree inference may reduce the performance of
delimitation. To assess the effect of tree inference,
we conducted sequence simulations followed by
tree inference and delimitation. DNA sequences
were simulated along the branches of gene
trees in simulation B using Seq-Gen (Rambaut
and Grassly 1997), using the HKY+G model

and average mutation rate of 0.02 per million
generations (Brower 1994). Sequence lengths of
samples were taken from a uniform distribution
between 200 and 1800, which is the range of
mitochondrial protein-coding genes (Luo et al.
2011). Gene trees were inferred from the simulated
sequences using RAxML (Stamatakis 2006)
with 100 bootstrap pseudoreplicates, then made
ultrametric with the molecular clock assumption
using the Langley–Fitch method implemented
in r8s (Sanderson 2003). Identical sequences
(haplotypes) were pruned to a single copy before
implementation, because of known problems for
GMYC caused by identical sequences (Monaghan
et al. 2009): zero length terminal branches lead to
calculation of an infinite coalescent �.

Both the single-threshold and multiple-threshold
algorithms were run on the simulated gene trees. The
95% confidence set was constructed for each simulation
run first using all models defined by single thresholds
and then adding models found with the multiple-
threshold search. The size of the confidence set was
recorded, and the rate of false negatives was measured
as the rate of erroneously including the null model
in the confidence set when the alternative model was
true. When the null model was the true model, the
rate of excluding the null model from the confidence
set was calculated as the rate of false positives. The
average proportion of species correctly delimited with
an exact match was recorded as a measure of accuracy.
Support values described above were calculated for
each run of the simulations and their means were
used to summarize the uncertainty of delimitation. ML
estimates of numbers of clusters and scaling parameters
for both speciation and coalescent part were also
recorded. For simulation H, the GMYC results were
compared with clusters inferred using a 2% distance
threshold on a neighbor-joining tree of the simulated
sequences.

To explore the effect of tree shape on delimitation,
separately from the major differences among
simulations, several tree-shape indices for both
simulated species and gene trees were calculated. Mean
branching times (Mean Tspec) and � statistics (Pybus
and Harvey 2000) of the species trees were recorded
to summarize the pattern of speciation events. The
�-statistic describes a tree’s departure from the constant
speciation model: �<0 indicates an apparent decrease
of speciation rates, and �>0 indicates an apparent
increase in speciation rate toward the tips. Note that
the scaling parameters p correspond with � as both
indicate departure from constant speciation (e.g., when
�<0, p<1 is expected). Colless’s index (Icolless, Agapow
and Purvis 2002) was calculated for each species tree
to check the effect of tree imbalance on delimitation.
Mean Tmrca (Mean Tmrca) across species on gene trees
was used as a measure of variation within populations.
Multiple regression analysis was then performed with
the number of exact matches as the response variable
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and the gene-tree indices and effective population
size as explanatory variables. The importance of each
index in predicting performance was expressed as
its Akaike weight across models including it. For
simulation G, the effect of the degree of population
structure on delimitation success was also assessed with
a regression analysis. All data processing and analyses
were performed in R (R Development Core Team
2010) using the splits package (Ezard et al. 2009) with
custom scripts, and the APE and apTreeshape packages
(Paradis et al. 2004; Bortolussi et al. 2006). The latest
version of GMYC in the splits package with the new
formulation of parameters (version ≥1.0–15) is available
at http://r-forge.r-project.org/projects/splits and in
the Supplementary material deposited in Dryad. Note
that R-forge only maintains versions compatible with
the latest version of R. Previously available versions
of GMYC used the previous formulation of threshold
times.

Case Studies: Tiger Beetles
Single-threshold versions of GMYC were applied

to the data of Pons et al. (2006) and Pons et al.
(2011). Solutions were compared to those obtained with
the previous versions. Pons et al. (2006) sampled 468
individuals of tiger beetles of the genus Rivacindela from
across 65 sites in Australia. The Rivacindela group was
largely undescribed and, therefore, the samples were
chosen from 108 local sets of individuals to represent
their morphological and geographical diversity. Up
to five individuals were sampled per morphospecies
per site. Pons et al. (2006) sampled 161 individuals
of the genus Neocicindela across New Zealand from
13 known taxa. Multiple individuals were sampled
per site together with additional representatives of
described species to cover their known range. Gene trees
were inferred from three mitochondrial gene regions
(cytochrome oxidase subunit 1, cytochrome b and 16S
rRNA plus adjacent regions) in both studies. We used
the dated gene trees from the source paper in both cases.

RESULTS

Error Rates
The rates of false positives (rejecting the null

hypothesis at a 95% level when it is true) were �=
0.02 and �=0.07 for the single- and multiple-threshold
methods, respectively. The multiple-threshold method
is, therefore, marginally less conservative than the
single-threshold method. The rate of false negatives
(accepting the null hypothesis when the alternative
hypothesis is true) was zero or near zero in all
simulations with low Ne (104 and 105, Fig. 2). Both
methods, therefore, perform with similarly high power
when effective population sizes are low relative to
branching times between species. The rate of false

negatives rose steeply, however, for high Ne (5×105 and
106, Fig. 2). The multiple-threshold model had greater
power in all cases, for example, rejecting the null model
in 1.1–2.4 times more cases than the single threshold
when Ne =106.

Error rates also varied with the generating processes
used in the simulations. As predicted, the rate of
false negatives was always lower in C1 (decreasing
apparent diversification rate= longer divergence times
between closely related species) and higher in simulation
C2 (increasing apparent diversification rate=shorter
relative divergence times between closely related
species) than in simulation B (constant diversification
rate). Contrary to predictions, the rate of false negatives
was lower in D2 (recently declining populations) than in
either D1 (recently growing populations) or B. With log-
normally distributed Ne (E), the rate of false negatives
was much lower than the equivalent simulations with
equal population sizes across species. Random sampling
by clade rather than by species led to marginally reduced
false negative rates when species had the same Ne (F1
vs. B, Fig. 2), but to increased false negative rates when
species had different Ne (F2 vs. E, Fig. 2). Varying the
degree of migration between two subpopulations within
each species did not greatly affect the false negative rate
(G, Fig. 2). The error rates of the reconstructed gene trees
were comparable with the ones of the true gene trees
except for Ne =104 (H, Fig. 2), in which case they were
marginally higher.

Accuracy of Delimitation
The mean percentage of species that were delimited

correctly with exact match, which we refer to as accuracy,
fell from over 90% with Ne =104 to below 20% with
Ne =106 (Fig. 3). The accuracy of delimitation decreased
marginally with the multiple-threshold method in
all cases (0.6–0.9 times less accurate than the single
threshold). Among the different simulations, accuracy
was higher in C1 (decreasing apparent diversification
rate) than C2 (increasing apparent diversification rate)
and in D1 (recently growing populations) than D2
(recently declining populations) at all Ne, as predicted.
The apparent discrepancy between results for error
rates and accuracy in the relative performance of the
methods in D1 and D2 is explained because the excess
of recent coalescent events in D2 created artefactual
clusters within species: the null model was more easily
rejected, but only because of incorrect delimitation of
clusters. Similarly, although simulation E (lognormal
Ne) displayed much lower false negative rates than
simulation B, the accuracy did not differ greatly and
indeed for higher Ne was lower than in simulation B
(Fig. 3).

The accuracy of reconstruction was not greatly
affected by random sampling across the clade rather
than by species (B vs. F1 and F2, Fig. 3), indeed being
marginally higher at low Ne even though a relatively
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FIGURE 2. The mean false negative rate for each type of simulation and each effective population size from a sample of 100 simulated trees for
each simulation type and population size combination. Simulation types are described in the ‘Methods’ section: B is the constant speciation rate
scenario; C1 is the incomplete sampling of species scenario; C2 is the constant background extinction rate scenario; D1 is growing populations;
D2 is declining populations; E is variable population sizes among species; F1 is random sampling across the clade, equal population sizes; F2
is random sampling across the clade, unequal population sizes; G is with geographical structure within species; H is from inferred trees from
simulated sequence data.
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FIGURE 3. The mean accuracy of delimitation, expressed as the proportion of species correctly delimited, across the simulation types (B to
H, see legend to Fig. 2) and across the four effective population sizes. Each point summarizes accuracy across 100 simulated trees.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/62/5/707/1684890 by guest on 20 August 2022



[09:56 27/7/2013 Sysbio-syt033.tex] Page: 717 707–724

2013 FUJISAWA AND BARRACLOUGH—DELIMITING SPECIES USING GMYC 717

high proportion of species were represented only by one
or two individuals (simulation F1: number of samples
per species ranged from 1 to 18, with 3.3% and 8.7% of
species represented by 1 and 2 sequences, respectively;
simulation F2 number of samples per species ranged
from 1 to 67, with 18.2% and 15.3% of species represented
by 1 and 2 sequences, respectively). Similarly, varying
the degree of migration between two subpopulations
within each species did not greatly affect the accuracy
compared to the equivalent simulation assuming no
structure within species (G vs. B, Fig. 3).

In simulation H, many sequences had to be pruned as
identical haplotypes due to low variation. When Ne was
104, 67% of sequences were removed and 49% of species
were represented only by single sequences (singletons):
this had the lowest accuracy of all simulation types but
accuracy was still above 80% with the single-threshold
method. The proportion of identical sequences and
singletons decreased as Ne increased (singleton=5%
and identical=33% for Ne =105. Singleton �0.01% and
identical=7% for Ne =106) and in those simulations
accuracy was unaffected compared to analyses of
the true genealogy (H vs. B, Fig. 3). Accuracy was,
therefore, unaffected by inferring the genealogy
from DNA sequences except when intraspecific
variation was low enough to yield numerous identical
sequences.

Uncertainty
The size of the 95% confidence set of models increased

as Ne increased (Fig. S2). Trends among different
simulations mirrored those for accuracy: simulations
that displayed a higher accuracy retained a smaller
confidence set. The distribution of GMYC support
values also shifted similarly among simulations. For
example, in simulation B with the single-threshold
method, the mean support value across nodes was
0.96 for Ne =104, 0.63 for Ne =105, 0.35 for Ne =5×
105, and 0.30 for Ne =106. This demonstrates that the
method of judging uncertainty adequately reflects the
reduced performance of the model when the shift in
branching patterns within versus between species is less
distinct.

Parameter Estimation
The estimated number of clusters, that is, inferred

species, matched well with real number of species
for Ne =104 across all simulations (Fig. 4). Estimates
declined and their range increased with increasing
population size and the differences among the
simulation types matched those reported for accuracy
above. The discrepancy was largest in simulation
D2 because of the spurious clusters within species
discussed above. The multiple-threshold method tended
to overestimate the number of clusters marginally
compared to the single-threshold method, even when

Ne was small. Variation among the simulation types
mirrored those reported for accuracy above, with higher
accuracy associated with better estimates of the number
of clusters. The tree inference did not affect the number
of estimated clusters even with the amounts of singletons
for Ne =104 (Fig. 4, H).

Estimated scaling parameters correctly inferred the
different diversification processes in simulations C1
and C2 when Ne was low (Fig. 5a). In C1, estimated
values were smaller than 1 (median=0.77, V =377,
P�0.001 for Ne =104 Wilcoxon test), which matches
a recent deficit of diversification events. The estimates
for C2 were larger than 1 (median=1.12, V =3404,
P=0.003 for Ne =104 Wilcoxon test), which matches
a recent excess of diversification. For higher Ne, the
estimates deviated from the expected patterns and no
longer reflect the patterns of diversification process
(median=1.16, V =3509, P<0.001 for C1, median=
1.47, V =3900, P�0.001 for C2, Ne =106 Wilcoxon test):
for example, in simulation C, incorrectly assigning
recent speciation events as coalescence events (shown
by the underestimate of number of clusters in C2
and Ne =106, Fig. 4) meant that the model no longer
optimized a relative excess of recent diversification
events. The estimates of scaling parameters for the
coalescent process also matched with the simulated
population processes, being smaller than 1 in D1 and
larger than 1 in D2 (Fig. 5b, median=0.53, V =0,
P�0.001 for D1 and median=1.16, V =4579, P�0.01
for D2, Ne =104 Wilcoxon test). These estimates were
also affected by increased Ne and resulted in values
lower than 1 for all simulations at the highest Ne
(median=0.77, V =0, P�0.001 for D1 and median=
0.82, V =782, P�0.001 for D2, Ne =106 Wilcoxon
test).

Population Structure
Varying the degree of migration between two

subpopulations within each species did not greatly
affect the accuracy of delimitation or any other metrics
of the performance of the methods when averaged
across all simulations (G, Figs. 2–5). Although marginal
declines of accuracy were observed in intermediate Ne
values (Fig. 6, 105 and 5×105), there were no significant
effects of migration and its interaction with Ne on the
accuracy (z=1.16, P=0.24 for Nem and z=0.27, P=0.79
for the interaction of Ne and Nem, GLM with binomial
error).

Reconstructed Gene Trees and Comparison with the
Distance-based Method

The length of sequence did not have significant effect
on accuracy when all effective population sizes were
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a)

b)

FIGURE 4. The estimated number of species per true species as recovered by a) the single-threshold and b) multiple-threshold versions of
GMYC. Results are shown for each combination of simulation type (B to H) and effective population size. The line within each box shows the
median, the box limits show the inter-quartile range, and whiskers/points indicate extreme values.

considered in the regression modeling (z=0.75, P=
0.46, GLM with binomial error Fig. S4). Increasing
accuracy with sequence length only occurred weakly
when Ne =104, and there was no significant interaction
between Ne and sequence length. The GMYC method
generally outperformed distance-based clustering with
2% cut-off (relative accuracy of 2% method vs. GMYC:
72% vs. 84% when Ne =104, 77% vs. 75% when Ne =105,
26% vs. 34% when Ne =5×105, and 7% vs. 15% when
Ne =106). The GLM showed that the overall accuracy was
significantly lower for the 2% distance threshold method
(z=−2.22, P=0.026).

General Tree Shape Metrics and Their Effects on Accuracy
of Delimitation

The average �-statistic was −0.016±0.033 (min=
−3.05, max=3.14), whereas the average Colless
imbalance index (Icolless) was 71±0.58 (min=28,max=
143). Mean branching time (Mean Tspec) and mean
coalescent time (Mean Tcoal) ranged from 0.13 to 0.49
and from 0.0005 to 0.25 with average 0.31±0.002 and
0.06±0.007, respectively. Effective population size (Ne),
� statistics, and mean coalescent time had the greatest
effect on accuracy (Table 1). They were included in
all models within the 95% confidence set using the
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FIGURE 5. The estimated scaling parameters for a) the diversification branching process and b) the coalescence branching process across each
combination of simulation type (B to H) and effective population size, using the single-threshold method. The horizontal dashed line indicates a
value of 1, which is expected under the default model assumed in simulation B of a constant-rate diversification process and a neutral coalescent
process with no substructure and constant population sizes. The multiple-threshold results are in Fig. S3 and follow similar patterns across
simulations.

single threshold (relative importance=1.0) and the
estimates of their slopes were significantly different
from 0: for each metric, accuracy increased as its value
decreased. Mean Tcoal was not significant with the
multiple thresholds. Mean branching time had low
relative importance (0.29) and its estimate was not
significant. The tree imbalance index was of lowest
relative importance in both treatments, as would be
expected because the method relies on internode
branching intervals rather than topology.

Tiger Beetles
The two data sets of tiger beetles differed in the degree

of uncertainty in delimitation. The number of delimited
species (numbers of clusters and singletons) ranged
from 40 to 51 (ML estimate 48) with 95% confidence
in Rivacindela (Fig. S5). Note that the confidence limits
are wider than the previously reported confidence
limits (47–51) based on our former method of reporting
solutions within two log likelihood units of the ML
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FIGURE 6. The accuracy of delimitation, represented as the proportion of species that were correctly delimited, across simulations varying
in the level of migration between two subpopulations (m). Separate plots are shown for each of the four effective population sizes used in the
simulations.

TABLE 1. The relative importance (�wi) of tree shape variables in
explaining the accuracy of delimitation across simulations, and their
model averaged coefficients (�̂) plus standard errors (SE)

Method Single Multiple

�wi �̂±SE �wi �̂±SE

Na
e 1 −2.78×10−6

1 −3.09×10−6

3.15×10−7 3.09×10−7

�b 1 −0.42 1 −0.23
5.95×10−2 6.30×10−2

Ic
colless 0.26 7.63×10−4

0.21 3.36×10−4

3.16×10−3 2.50×10−3

Mean Td
spec 0.29 −1.29×10−3

0.33 5.21×10−3

1.33×10−2 1.57×10−2

Mean Te
coal 1 −8.6 0.76 −2.88

±2.33 ±2.37

aMean effective population size, variables with a coefficient
significantly different from zero are highlighted in bold.
bGamma statistics of Pybus and Harvey (2000).
cColless’s tree imbalance statistic.
dMean divergence time between species.
eMean coalescence time across species.

solution. The 95% confidence set included 12 of the 467
delimitation models evaluated and 27 of the 43 nodes
chosen to delimit species in the best model had GMYC
support values of 1.0 (mean GMYC support of nodes
included in the 95% confidence set=0.76). In contrast,
the method delimited between 17 and 55 species (ML

estimate 45) in Neocicindela at the 95% confidence level
(Fig. S6). Again, the confidence interval was broader
than previously obtained (32–51, Pons et al. 2011). The
95% confidence set included 31 of 160 models compared
and no nodes had GMYC support values of 1.0 (mean
GMYC support of nodes included in the 95% confidence
set=0.33). The reasons for the differences in the strength
of clustering in the two clades have been discussed
elsewhere, but could include either the lower sample of
individuals in Neocicindela or the stronger geographical
structuring of Rivacindela species on fragmented salt
lakes (Pons et al. 2011).

DISCUSSION

The GMYC method for delimiting clusters from single-
locus gene trees has been widely used to delimit
putative species from DNA barcode-type data, yet its
performance has not previously been tested extensively
on simulated data (but see Papadopoulou et al. 2008;
Lohse 2009; Esselstyn et al. 2012 for simulations of
particular features). Our analyses show that both the
single- and multiple-threshold versions are close enough
to the target error of 0.05 to be suitably conservative
when applied to samples that might indeed derive from
a single, unstructured species cluster. For applications
that require a test of this null hypothesis, we recommend
either simulating trees under the null model to calculate
an exact P-value or a chi-square test comparing the
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single-threshold GMYC model to the null model for a
conservative P-value.

Our simulations also confirm previous intuition
about the key parameters determining the power and
accuracy of GMYC. When effective population sizes
were low relative to species divergence times, then
species were monophyletic and the method delimited
clusters accurately, irrespective of detailed assumptions
concerning the diversification and population processes.
As the mean or variance in effective population size
increased, then the accuracy of delimitation declined.
In the extreme case, species were no longer reciprocally
monophyletic and therefore could not be accurately
delimited by the method (which assumes reciprocal
monophyly). These results match with the findings of
Esselstyn et al. (2012) who compared species richness
estimates for trees simulated with different ratios of Ne
to speciation rate.

Accuracy varied among the different simulations
mostly in accordance with predicted patterns based
on the effects of particular processes. The scaling
parameters did accurately represent the diversification
and coalescent processes in the simulations when
population sizes were low. Nonetheless, incorporating
more realistic macroevolutionary models might improve
the performance with real data. For example, empirical
studies have reported that the background extinction
rate can be around 90% of speciation rate (Ricklefs
2007; Etienne et al. 2012). This will tend to blur the
sharpness of transition from interspecific to intraspecific
branching, and therefore to reduce the accuracy of
the GMYC method. Although the scaling parameter
was able to fit this trend in apparent diversification
rate, more accurate delimitation might be obtained by
incorporating extinction explicitly in the model. A final
assumption concerning the diversification part of the
model is that diversification rates are uniform across all
clades. Again, models allowing for this departure could
be implemented (Morlon et al. 2011).

The performance of the method also depends on
sampling in several ways. Increased sampling of
individuals per species will increase performance. Here,
we only simulated a sample of five individuals per
species, to reflect the likely limited sampling within
species for broad biodiversity surveys. Increasing that
number might increase the apparent branching rate
within clusters and, hence, the ability of the method
to detect a threshold in branching rates (see Reid and
Carstens 2012). For example, in the tiger beetle studies,
the mean number of individuals per delimited species
was 9.75 (min=1,max=63, 10% and 13% of clusters
represented by 1 and 2 sequences, respectively) for
Rivacindela, in which high support values were obtained,
but only 3.58 (min=1,max=21, 51% and 9% of clusters
represented by 1 and 2 sequences, respectively) for
Neocicindela, in which GMYC support was much lower.
Conversely, increased sampling of species within a clade
(but holding the number of individuals sampled per
species constant) might reduce the ability to delimit
species included in the sample. This occurs because

random omission of species reduces the probability that
each species’ closest related species will be sampled, and
hence reduces the chance of finding nonmonophyletic
species. This result has been shown empirically for
increasing spatial scales of sampling in European water
beetles (Bergsten et al. 2012). The effects of numbers
of individuals per species versus number of species
sampled on the accuracy of the method are being
investigated by simulation elsewhere: GMYC can work
accurately with as few as 3 species, but it is more robust
with more than 10 species (Ahrens D., Krammer H.J.,
Fujisawa T., Fabrizi S., Vogler A.P., unpublished data).

Finally, although random sampling across the clade
versus random sampling within each species might
be expected to affect the method, our results showed
that the effect was small relative to the effects of Ne
(compare B and F2 in Fig. 3). The proportion of species
represented by only one or two sequences in these
simulations (12% in F1 and 33.5% in F2) reflects realistic
levels of rarity in many biodiversity surveys (Lim et al.
2011). This result means that the method is likely to
be little affected by whether samples are taken evenly
based on prior inferences on species limits (as in many
DNA barcoding studies of multicellular eukaryotes) or
without such knowledge (as in studies of unculturable
bacteria or eukaryotes from environmental samples).
Our simulation code is available in the Supplementary
material for users wishing to investigate possible effects
of their own sampling design.

We found that relaxing the constraint of the single
threshold does not lead to increased performance of
the method. The multiple-threshold version yields fairly
similar results to the single-threshold version, but
with a tendency to over-split. Where this happens,
the node recovered by the single-threshold version is
normally still included in the 95% confidence set of
MRCA nodes, but with reduced confidence. While it
is possible that future work could describe a multiple-
threshold algorithm that could improve delimitation,
for example, more exhaustive searching using Bayesian
Markov Chain Monte Carlo (Reid and Carstens 2012),
we believe instead that this might reflect a fundamental
limitation to the potential for the method. Imagine an
extreme case in which each species had a different time
to MRCA and rate of branching within clusters. In this
case, there would be no average signal across the tree
from which to reconstruct the shift in branching process.
It is only when the shifts do coincide at a particular level
in the tree that we are able to find statistical evidence for
clustering. Our results do not rule out that the multiple-
threshold version might yield improved results in some
cases (which would be signified by the exclusion of an
MRCA node detected from the single-threshold version).
We recommend therefore that the multiple-threshold
version be used, with caution, as a way to explore how
delimitation changes when the assumptions of the single
threshold are relaxed.

The GMYC model has previously been criticized for
assuming that species comprise a single, unstructured
population. Geographical structure is a common feature
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of many real species and, combined with nonrandom
sampling of species ranges, this could introduce
biases into species delimitation. Previous simulations
to investigate this problem concerned the ability of
GMYC to delimit clusters along a continuum from
a single population to a population structured into
subpopulations with no gene flow (e.g., Papadopoulou
et al. 2008, 2009; Lohse 2009). In such cases, it was
shown that GMYC could delimit partially isolated
populations as separate species, especially if linking
populations were not sampled. More pertinent for most
real applications of GMYC, however, is to consider how
geographic structure within each species affects the
ability of GMYC to delimit species across a wider clade
comprising multiple distinct species. Our simulations
here show that, as long as the conditions for accurate
delimitation of species are met (i.e., low effective
population size relative to species divergences), then
further geographic structuring within species does not
greatly affect the accuracy of the method: because of
the low variation within each species, the threshold was
optimized at the correct level of the tree.

The GMYC method requires identical sequences to
be removed beforehand because zero length terminal
branches hampers the likelihood estimation; that is,
the Moran estimator of � cannot be properly evaluated
due to zero total branch length within clusters. This
can be particularly problematic when subject gene
trees are reconstructed from slowly evolving markers,
which leads to reduced total sample size and variation
within species. However, the simulation studies showed
that the method is tolerant to moderate amount of
identical sequences and singletons, delimiting them
by correctly assigning them speciation branching. The
accuracy on reconstructed gene trees—simulated for a
rate of variability and range of marker lengths typical
of mtDNA and other single-locus studies—was also
comparable to the results using the true genealogy. In
addition, the GMYC generally performed better than
the 2% cut-off clustering, indicating the advantage of
varying the boundary of species over the fixed cut-off
value, although accuracy was equivalent when Ne =105.
The relative performance of these methods will depend
on typical levels of Ne and variation in substitution rates:
in a recent survey of animal taxa, GMYC and use of a 3%
threshold yielded similar results (Tang et al. 2012).

One clear limitation of GMYC is that it assumes
species are monophyletic. This assumption is violated for
real species when divergence time was insufficient for
entities to gain monophyly (Hudson and Coyne 2002).
The decline of the matches between true entities and
estimated clusters reflects this violation. According to
theoretical studies, the time for reciprocal monophyly of
a neutral marker to arise with 95% probability between
a pair of species is 8.7 Ne for a single nuclear marker and
2.2 Ne for mtDNA (Hudson and Coyne 2002). The range
of nonmonophyly of species in our simulation studies
were between 0% and 87% (median 20%), which covered
well the rate of 23% reported from a meta-analysis of
population genetic studies (Funk and Omland 2003). The

proportion of non-monophyletic species was strongly
correlated with the accuracy of delimitation (Fig. S7).
The predicted accuracy on 20% of non-monophyly was
around 50% of exact matches.

Signatures of recent speciation events, therefore,
cannot be detected with the method (or any other
method using monophyly of single genes), although 50%
of accuracy could be still useful in the rapid assessment
of species diversity. This limitation can be addressed
with multilocus analyses, which permit delimitation
of more recently diverged sister species (Knowles
and Carstens 2007). However, the methods currently
require prior hypotheses of species populations and
would be computationally intensive for large sample
sizes. A key challenge for multilocus approaches is
to find efficient algorithms for searching alternative
delimitations (Yang and Rannala 2010). Note that GMYC
can be used to delimit clusters from any ultrametric
trees, including those derived from concatenated
multilocus data: although it will be less powerful
than multilocus methods in sexual organisms (Knowles
and Carstens 2007), perhaps it could be used to find
starting delimitations for evaluation with multilocus
approaches.

CONCLUSIONS

The GMYC method was devised originally as a
method for delimiting species from single-locus gene
trees in the absence of any additional information. It
does so by detecting genetic clustering beyond levels
expected in a null model that all sampled individuals
belong to a single interacting population. In groups
in which effective population sizes tend to be low
and divergence times between species tend to be
high, then the method is accurate and conservative.
In many eukaryotes and prokaryotes, there are strong
patterns of genetic clustering apparent in gene trees for
clades or environmental samples, indicating that the
conditions for GMYC are often met. Wherever additional
information is available, such as the sampling locality
of individuals, quantitative or qualitative information
on phenotypic traits, or additional gene sequences,
then this information should be used to cross-check
the entities delimited by GMYC. In larger eukaryotes,
such information is usually available, and the utility
of GMYC comes from providing an objective means to
delimit genetic clusters for comparison with other data.
Efforts should be made to sample individuals across a
representative range occupied by the species and to keep
in mind potential limits of the accuracy of the method
discussed above. The task that GMYC is most well
suited to is delimiting units of diversity when only DNA
sequence data are available, such as in environmental
DNA surveys. There it provides an evolutionary
framework to complement existing pragmatic methods
based on empirically based thresholds.
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