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1. Structural and dynamical system analysis in engineering management 

1.1 Challenges in engineering management 

One of the major challenges in engineering management is the ability to respond quickly to new 
and/or changed requirements and constraints. To establish, ensure and improve this ability several 
measures exist for the design of products (e.g. modularization), processes (e.g. agile development) and 
organizations (e.g. task forces). Models of the products, processes and organizations are fundamental 
for their design [Lindemann et al. 2009]. 
There are two major modelling approaches for engineering systems: structure-based (e.g. design 
structure matrices – DSM) and dynamic-based (e.g. differential equations or fuzzy systems) models. 
There are also some mixed forms, e.g. Petri-nets. Dynamic-based models generally allow for very 
precise analyses and deliver very specific results. They are usually used for detailed planning and 
optimization. The major drawback of dynamic-based models is the need for a lot of data when creating 
the models. Hence, dynamic-based models usually describe only small parts or single effects of 
engineering systems [Diepold et al. 2010a]. Structure-based models allow of general analyses and 
deliver rather fundamental results. They are mostly used for early planning and system decomposition. 
Compared to dynamic-based models structure-based models require rather little data. Most structure-
based models claim to describe the engineering system completely [Browning 2001]. 
To improve the management of engineering systems the strengths of both approaches are sought to be 
combined while avoiding their drawbacks. Understanding the interconnection between structure and 
dynamic of a system is the major key to handle a system successfully [Strogatz 2001]. 

1.2 Procedure for integrated dynamical and structural analysis 

[Diepold et al. 2010a] introduce the combination of structural complexity management and hybrid 
dynamical system modelling. Structural complexity management focuses on qualitatively describing 
the system elements and their connectivity, whereas hybrid dynamical system modelling puts the 
system’s dynamic in focus. The major interface between both concepts is given by substructures of the 
system, which mainly determine its behaviour. Structural complexity management provides methods 
for identifying those substructures based on structural criteria such as cycles. They introduce a process 
to combine both methods and transform the results of structural analysis into a moderate mathematical 
model. The process is discussed in detail using a ball-pen as example system. Figure 1 shows the 
process and its major artefacts. However, they do not present any details on the models they transform 
into each other and do not present a set of substructures to identify system parts for detailed modelling. 
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Figure 1. Modelling process for multi-dynamic mapping [Diepold et al. 2010a] 

A modelling framework helping to transform a structural model into a hybrid dynamical onces is 
introduced in [Diepold et al. 2010b]. The framework consists of structural analysis, qualitative error 
estimation, dynamical modellingasformation, error estimation and data acquisition for refinement (if 
required). [Biedermann et al. 2010a] present a classification of approaches to refine both structure-
based and dynamic-based models. [Diepold et al. 2010b] also describe the transformation from 
structure-based to dynamic-based models in detail. Finally, they present a new view onto the 
modelling process by [Diepold et al. 2010a]. They emphasize the iterative character of the process.. 
However, a remaining critical questions are which structural analyses are suitable for identifying 
refinement potential and for deducing dynamical behaviour. 

1.3 Aims and research questions 

The aim of this paper is to describe the limits of structure-based analyses and to specify to which 
degree dynamic analyses can be reasonably deduced from structure-based models. We work of three 
research questions: 

1. Do structure-based models allow for deducing system behaviour? 
2. Do structure-based models allow for deducing the entire system behaviour? 
3. Do structure-based models allow for specifying the need for dynamic-based modelling? 

2. Approach for comparing structural properties and simulation results 
This paper compares the behaviour of system components with its structural properties. The case study 
uses component models of an assembly cell [Biedermann et al. 2010b]. The behaviour is determined 
via simulation. The simulation describes the system response when changing the size of a component. 
The simulation is summarized in the following, while a detailed description of the simulation approach 
is given in [Biedermann et al. 2011]: The simulation model fulfils three major tasks. First, the required 
component changes are detected based on its current state and violated consistence conditions with 
related components. Second, deciding how a component should be finally adpted in the next time step. 
The algorithm gathers requests for changing a certain component and commands its new state value by 
taking pre-defined prioritizing policies and change options into account. Third, evaluating the 
simulation results. 
The structural model of the assembly cell is a DSM of their components’ physical contacts. The model 
comprises 110 nodes and 147 relations. The time-discrete simulation model is based on a network 
topology, where nodes represent components and edges are dependences between them, and it is 
computaionlly handled as cellular automaton [Wolfram 1983]. In order to allow a simulation, each 
component is attributed with its volume as state variable. As a separately addressing of each 
component will led to a state explosion, a discrete set (“small”, “medium”, “large”) is introduced and 
all components are matched to the set. The necessity of a change is derived by evaluating consistence 
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constraints. For instance, component A must be larger or equal to component B.The considered 
consistence relations are summarized in Table 1. 

Table 1. Consistence relations 

Relations between components Explanation 

at least, equal, at most Element A must be at least, exactly or at most as big as elemt B 

one size smaller, larger Element A must be one size smaller or larger as elemt B. 

at least, at most one size  Element A must be at least one size smaller or at most larger as elemt B. 

conflictingt The volumes of element A and B are conflicting, after a certain change  

For each component 6468 simulations were run. The runs differ in change policy (for prioritizing and 
choosing among change options), maximum number of parallel changes, initial size and locking time 
(time delay) after changes. For instance, first in first out (FIFO), last in first out (LIFO) and changing 
all at once as prioritizing policy and arithmetic mean, median and mode as change options, to name 
just a few. The change option policy decides based on the incoming change commands of a node how 
its volume finally has to be adapted. 
Each simulation is initialized by changing the size of one component to create the initial change 
situation. After that the simulation runs according to the policies and the consistence relations. For 
each simulation, the number of size changes, the number of simulated time steps and the type of the 
final result were recorded. To compare the results with structural properties, five simulation metrics 
were computed for each component (represending an set of 6468 simulations): 

 Standard deviation of the number of changed elements: During each simulation several 
components are changed according to the change policies and the consistence relations. The 
standard deviation measures the degree of variation of a component’s size. If a component has 
a low standard deviation its behaviour hardly varies and is very predictable. This research 
examines if such components can be identified by structural analysis. 

 Standard deviation of the number of timesteps: Each simulation covers several time steps 
until the states of components are not changed any more (steady-state). The standard deviation 
measures the degree of variation of the simulation time. If a component has a low standard 
deviation its behaviour hardly varies and is very predictable. This research examines if such 
components can be identified by structural analysis. 

 Number of new consistent solutions: Each simulation results in one of three final states 
(according to the introduced set). If a new consistent solution is reached no consistency 
relation is violated and the size of at least on component differs from its original state. This is 
the intended outcome when changing components. If the changes of a component mostly 
result in new consistent solutions it can be handled easily under many boundary conditions. 
Thus, such components are prime candidates for introducing changes to a system’s behaviour. 
This research examines if such components can be identified by structural analysis. 

 Number of fallbacks to the original solution: If the sizes of the components do not differ 
from the original state at the end of the simulation, the system has fallen back to its original 
solution. This is not a desired outcome of an introduced change. If the changes of a component 
mostly result in fallbacks it must be handled individually and cannot be coverd by simple 
policies. Thus, changing such components should be avoided. This research examines if such 
components can be identified by structural analysis. 

 Number of inconsistent final states: If at least one consistency relation is violated at the end 
of the simulation, but the system cannot be changed due to the selected change policies the 
simulation has reached an inconsistent final state.  This is not a desired outcome of an 
introduced change. If the changes of a component mostly result in inconsistent states it must 
be handled individually and cannot be coverd by simple policies. Thus, changing such 
components should be avoided. This research examines if such components can be identified 
by structural analysis. 

The components were structurally characterized by four metrics which were chosen based on [Cami 
and Deo 2008] and [Diepold et al. 2010]: 
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 Degree: The number of nodes to whom a node is connected to. This is one of the fundamental 
metrics describing a node and its role in the network. High values indicate hubs of a network 
which dominate the structure. 

 Clustering coefficient: The ratio between the number of relations in a node’s locality to the 
number of possible relations. High values indicate the node in embedded in a highly 
integrated, constraint environment. 

 Distance centrality: The dictance is the length of the shortest path between two nodes. The 
distance centrality is a measure for the average distance of a node to all others. High values 
indicate central nodes. 

 Number of cycles per node: A cycle is a closed sequence of relations connecting nodes. 
Other common terms are loop and circle. Each node can be part of several cycles. This metric 
gives the number of cycle each node is part of. Generally it is assumed that many cycles 
indicate very complex and unpredictable behaviour. 

To examine the interrelation between structural and simulation metrics scatter plots were created. 
Figure 2 and Figure 3 show the obtained 20 plots. Due to data limitations we relinquished further 
statistical analyses such as analyses of means, correlations and significance. 

3. Comparison of structural properties and simulation results 

3.1 Observations concerning the number of changed components and timesteps 

Figure 2 shows the scatter plots of the standard deviations and the structural metrics. We make seven 
major observations: 
The plots for the number of changed nodes and the number of timesteps hardly differ. This can 
be seen by row-wisely comparing the right and left column of Figure 2. Thus, all findings for the 
number of changed nodes apply for the number of timesteps and vice versa. This observation was not 
expected as the simulation allows for parallel execution of changes. We assumed that the number of 
changed nodes and the number of timesteps are almost decoupled. However, the results show that they 
are highly correlated. 
Components with high degree show small deviations (<5). This can be seen in the first row of 
Figure 2. Thus, components with high degrees show predictable, invariable behaviour. So far we did 
not analyse what behaviour these compoents exhibit in detail. We conjecture that highly connected 
nodes impose changes on their locality when changed, but are too constraint to have changes imposed 
on them when not. However, this observation is hardly generalizable at the moment as there are only 
two components with high degree (>12) in the case study at hand. 
Components with high clustering coefficients show small deviations (<5). This can be seen in the 
second row of Figure 2. Thus, components with high clustering coefficients show predictable, 
invariable behaviour. So far we did not analyse what behaviour these compoents exhibit in detail. We 
conjecture that highly embedded nodes cannot impose changes on their locality when changed and are 
too constraint to have changes imposed on them when not. We assume that his observation is 
generalizable as there are 19 components with high clustering coefficient (>0.5) in the case study. 
Components with high or low distance centrality show small deviations (<5). This can be seen in 
the third row of Figure 2. Thus, components with high or low distance centrality show predictable, 
invariable behaviour. So far we did not analyse and have no conjecture what behaviour these 
compoents exhibit. However, this observation is hardly generalizable yet as there are only one 
component with low distance centrality (<15) and only two components with high distance centrality 
(>40) in the case study at hand. 
The number of cycles does not correlate with high (>14 for number of changed nodes and >12 
for number of timesteps) or low (<5 for both cases) deviations. This can be seen in the fourth row 
of Figure 2. Thus, the number of cycles does not allow for predicting the variability of a component’s 
behaviour. This contrasts the general assumption that many cycles indicate highly variable behaviour. 
We assume that this observation is generalizable as there are several components for each value range. 
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Figure 2. Scatter plots of the standard deviations of the number of changed elements (left 

column) and of the number timesteps (right column) versus the degree (first row), the clustering 
coefficient (second row), the distance centrality (third row) and the number of cycles per node 

(fourth row) 
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Figure 3. Scatter plots of the number of new consistent solutions (left column), of fallbacks to the 

original solution (middle column) and of inconsistent final states (right column) versus the 
degree (first row), the clustering coefficient (second row), the distance centrality (third row) and 

the number of cycles per node (fourth row) 
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There are two groups of components: one group with high deviations (>14 for number of 
changed nodes and >12 for number of timesteps) and one group with low deviations (<5 for both 
cases). This can be seen in all plots in Figure 2. Thus, there are two groups of components: one group 
with predictable, invariable behaviour and one group with unpredictable, variable behaviour. As there 
is a quite big gap in between the groups, we assume that there is a fundamental characteristic that 
differentiates the components of the groups. An efficient analysis which allows for identying the 
groups before modelling, simulating and analysing the behaviour, will greatly enhance the effiency of 
system analysis. The low variety group should be modelled using simple models, which do not require 
a lot of data. Whereas the high variety group should be modelled using complex models. 
The groups do not correlate to one of the four metrics. This can be seen in any plot in Figure 2 as 
there is no clear separation of the groups on the x-coordinate. Thus, none of the researched metrics 
allows for separating the components into groups according to the predictability of the behaviour. Yet, 
we conjecture that a separating criterion exists. It may be another structural metric or it may be based 
on the semantics of the models, e.g. the initial component size or the consistency relations. However, 
we did not perform an in depth analysis on that, yet. 

3.2 Observations concerning the resulting solutions 

Figure 3 shows the scatter plots of the solution numbers and the structural metrics. We make four 
major observations: 
Clustering coefficient and number of cycles per node show no correlations to the number of 
solutions. This can be seen in the second and fourth row of Figure 3. Thus, both metrics do not allow 
for identying nodes for particularly easy or complicated changes. We assume that this observation is 
generalizable as there are several components for each value range. 
Components with high degree show high numbers of fallbacks and slightly below average 
numbers of new solutions and inconsistent final states. This can be seen in the first row of Figure 3. 
Thus, changing components with high degree should be avoided. We conjecture that highly connected 
nodes are too constraint to be changed sustainably. However, this observation is hardly generalizable 
yet as there are only two components with high degree (>12) in the case study at hand. 
Components with low distance centrality show very high numbers of new solutions and small 
numbers of fallbacks and inconsistent final states. This can be seen in the third row of Figure 3. 
Thus, such components are prime candidates for introducing changes to a system. We have no 
conjecture to explaine the observation. However, this observation is hardly generalizable yet as there 
is only one component with low distance centrality (<15) in the case study at hand. 
Components with high distance centrality show low numbers of new solutions and high numbers 
of fallbacks and inconsistent final states. This can be seen in the third row of Figure 3. Thus, 
changing such components should be avoided. We have no conjecture to explaine the observation. 
However, this observation is hardly generalizable at the moment as there are only two components 
with high distance centrality (>40) in the case study at hand. 

4. Discussion, conclusion and future work 
The results suggest that highly-connected (indicated by the degree) and highly-embedded (indicated 
by the clustering coefficient) components have very predictable behaviour. One explanation is that 
such highly-connected components can impose changes onto their locality. Likewise highly-embedded 
components are too constraint to show highly variable behaviour. The observations concerning the 
distance centrality can be explained analogously. We suggest to use degree and clustering coefficient 
for choosing appropriate dynamic models for the components. As high values indicate predictability 
these components should be modelled rather simple. 
It is generally assumed that many cycles lead to variable and unpredictable behaviour. However, we 
cannot confirm this assumption concerning the case study at hand. We have no explanation for our 
observation. However, it might be stated that number of cycles can be seen as weighting factor (boost) 
in addition to degree and clustering coefficient when choosing appropriate dynamic models for the 
components. In other words, if a compontes, which should be modeld rather complex based on degree 
and clustering coefficient, appreas in many cycles the need for a complex model is reinforced. 
There are two groups of components: one group with high deviations and one group with low 
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deviations. This indicates that there is a hidden variable determining the variability of the behaviour 
which has to be identified in future research. 
Only the observations and conjectures concerning the clustering coefficient are generalizable. There 
are 19 components with high (> 0.5) clustering coefficients. The other observations and conjectures 
are at best hints which have to be validated and support by future research. 
Our results show that behaviour can be deduced from structural models. However, the behaviour of all 
components of a system cannot be predicted. Thus, dynamic models cannot be replaced by purely 
structural models. Based on our observations and considerations concerning generalizability, we 
suggest to use the clustering coefficient for choosing appropriate dynamic models. High values 
indicate predictable behaviour which can be described in simple models. 
Our results show that some components show highly variable behaviour. The most pressing task is to 
identify these components a priori based on structural models. In doing so, the modelling efforts for 
dynamic analysis can be reduced drastically. One secondary task is testing our conjectures in other 
systems and domains. 
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