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ABSTRACT

Aim To provide a mechanistic and probabilistic framework for defining the
species pool based on species-specific probabilities of dispersal, environmental
suitability and biotic interactions within a specific temporal extent, and to show
how probabilistic species pools can help disentangle the geographical structure of
different community assembly processes.

Innovation Probabilistic species pools provide an improved species pool defini-
tion based on probabilities in conjunction with the associated species list, which
explicitly recognize the indeterminate nature of species pool membership for a
given focal unit of interest and better capture real-world complexity. Probabilistic
species pools provide a quantitative assessment of how dispersal, environmental or
biotic factors influence estimates of species pool composition and size for a given
temporal extent.

Conclusions Based on one simulated and two empirical examples we demon-
strate that probabilistic species pools allow us to disentangle the geographical
variation in dispersal, environmental and biotic assembly processes for species
assemblages in focal units. We also show that probabilistic species pools are fully
compatible with traditional definitions of species pools and are applicable over a
wide range of spatial and temporal extents. Additionally they are robust to missing
data and provide a quantified and transparent approach to estimating the size and
composition of species pools in a mechanistic way, providing a valuable tool for
studies from community ecology to macroecology.
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INTRODUCTION

The concept of a species pool is commonly used in theoretical

and applied studies in ecology, biogeography and conservation

biology (Ricklefs, 1987; Cornell & Harrison, 2014). A species

pool is the set of species that could potentially colonize and

establish within a community (hereafter focal unit) (Zobel,

1997; Zobel et al., 1998; Pärtel et al., 2011; Lessard et al., 2012a).

bs_bs_banner

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016)

© 2016 The Authors. Global Ecology and Biogeography
published by John Wiley & Sons Ltd

DOI: 10.1111/geb.12422
http://wileyonlinelibrary.com/journal/geb 1



Species pools have proven especially useful for testing whether

the composition of communities differs from random expecta-

tion (Connor & Simberloff, 1978), estimating the influence of

regional richness on local species richness (Ricklefs, 1987),

testing for species saturation (Srivastava, 1999; Shurin &

Srivastava, 2005) and understanding how different factors and

processes of community assembly are linked to one another

(Harrison & Cornell, 2008; Myers & Harms, 2009; Chase &

Myers, 2011; Götzenberger et al., 2012). More recently, ecologi-

cally explicit definitions of species pools have been suggested as

a promising way to quantify the influence of evolutionary and

historical processes on local community assembly (Algar et al.,

2011; Lessard et al., 2012a; Carstensen et al., 2013).

The term ‘species pool’ was first introduced in island bioge-

ography, where it was defined as those species that can disperse

to an island irrespective of whether they all survive (MacArthur

& Wilson, 1967). Thereafter, it found application in non-island-

like settings (Ricklefs, 1987; Cornell & Lawton, 1992; Ricklefs &

Schluter, 1994; Zobel, 1997; Zobel et al., 1998). Since its intro-

duction, the species pool concept has been used and defined in

several ways – from the somewhat simplistic use of regional

richness as a species pool (Herben, 2005; Kluge et al., 2006;

Knop et al., 2008) to the use of overlapping geographical ranges

(dispersion fields; Graves & Rahbek, 2005; Borregaard &

Rahbek, 2010; Lessard et al., 2012b; Carstensen et al., 2013). The

latter definition proved a major step forward and allowed ecolo-

gists to weigh the probability that a species would be included in

a community’s species pool and to estimate its geographical

extent (Graves & Rahbek, 2005; Lessard et al., 2016). Since then,

temporal extent has been recognized as an important factor

(dispersal or survival over time) that can lead to changes in

species pool size (Munguia, 2004; Starzomski et al., 2008;

Canning-Clode et al., 2009; White & Hurlbert, 2010; Cornell &

Harrison, 2014) but has remained notoriously difficult to inte-

grate into species pools definitions.

SPECIES POOLS FROM A PROBABILISTIC
VIEWPOINT

Species pools have nearly always been acted upon by hierarchical

‘filters’ that restrict membership in the focal community (Zobel,

1997; Zobel et al., 1998). Traditionally, these filters have been

conceptualized to act in a binary fashion, determining if species

are part of the species pool [1] or not [0] (Pärtel et al., 1996;

Algar et al., 2011; González-Caro et al., 2012; Belmaker & Jetz,

2013; Ronk et al., 2015). There is, however, no simple way to

decide on the level of constraint or the threshold used to define

species pools (Lessard et al., 2016), with the additional problem

that binary thresholds or constraints can severely bias the result-

ing assemblage structure and are therefore generally undesirable

(Cavender-Bares et al., 2006; Kraft et al., 2007; Kissling et al.,

2012; Eiserhardt et al., 2013; Lessard et al., 2016). To avoid this

problem, an approach which enables the examination of several

species pool definitions over the entire range of possible levels of

constraint or thresholds has recently been proposed (Lessard

et al., 2016).

If species pools are thought of as the result of combining

species membership probabilities, however, it becomes immedi-

ately apparent that a species pool does not necessarily need to

include binary thresholds or constraints at all. Any information

that is available about the species, especially geographical

ranges, dispersal abilities and habitat preferences (Lessard et al.,

2012a, 2016), can be used to estimate probabilities of species

pool membership across the full range [0, 1]. This allows us to

move beyond the need to introduce distinct occurrence thresh-

olds. Here we formulate this framework by specifically address-

ing environmental, biotic and dispersal-related filters in a

probabilistic fashion. Each of these filters (or hereafter factors, x)

can be thought of as a set of probabilities associated with each

species (Zobel et al., 1998). If the pool is filtered by a single

process then its size is simply the sum of all probabilities for all

species:

species pool size i
s

s

S
PΨ =

=∑ 1
(1)

where Ps is the probability of species s and S is the total number

of species.

When an additional filter is applied (e.g. habitat suitability in

addition to dispersal), the species pool becomes smaller: not all

species that can disperse to a focal unit will be able to grow

under the environmental conditions that prevail there. The size

of the species pool can hence be obtained by multiplying, for

each species, the probabilities associated with each of the n

applied filters (assuming they act independently), and then

summing over the species:

species pool size i
xs

x

n

s

S
PΨ =

== ∏∑ 11
(2)

where x designates the particular factor and n is the number of

factors. Notably, equations 1 and 2 still hold under a threshold

concept, even if P values are binary rather than continuous.

Hence, a species pool can simply be defined as a function of

probabilities of a species’ occurrence in the focal unit given the

unit’s environmental and biotic conditions, geographical loca-

tion and the time frame of interest (Lessard et al., 2012a). The

resulting set of values {P1, P2, P3, . . . , PS} that quantify for each

of S species its probability, given a specific factor, can then be

taken as the probabilistic species pool (Ψ).

Adopting the concept of a probabilistic species pool gives us

the flexibility to retain information on probabilities underlying

estimates of species occurrences and partition the independent

effects of the different factors on the pool. We can estimate to

what degree species are actually relevant for different focal units,

and even provide statistical estimates of uncertainty derived

from the probabilities employed to build the delineation of the

species pool.

In the following, we provide case studies to demonstrate how:

(1) species-specific probabilities of pool membership can be

estimated, and whether they translate into actual events; (2) how

probabilistic species pools can be used to investigate the geo-

graphical distribution of community assembly processes; and

(3) how probabilistic pools compare with results of binary
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pools. We use one simulated and two empirical datasets, chosen

because of their relative completeness, data extents and repre-

sentation of different spatial and temporal scales that research-

ers might frequently encounter when delineating species pools

(Table 1).

Estimating and validating probabilities – serpentine
grasslands

Species-specific probabilities are the basic measurement unit of

probabilistic species pools. They need to be calculated based on

mechanistic assumptions about dispersal, environmental suit-

ability and biotic interactions. However, it often remains unclear

how such calculated probabilities are actually translated into real

events. To assess if probabilities based on dispersal, environmen-

tal factors and current distributions of species are able to actu-

ally predict future distributions we use a dataset that includes

local community composition recorded in two consecutive years

in serpentine grassland largely dominated by annuals in Califor-

nia, USA. We estimate species-specific probabilities in the first

year and compare these with actual changes in species compo-

sition in the following year.

The serpentine grassland data set originated from a repeated

survey of vascular plants in an 8 m × 8 m plot at the University

of California’s McLaughlin Natural Reserve in the Coast Range

of California, USA (Green et al., 2003; Smith et al., 2013). The

plot was divided into 256 cells of size 0.5 m × 0.5 m, where the

abundance of each species was recorded in 2005 and again in

2006. In any year c. 75% of species in the plot were annuals and

many perennial seedlings did not survive for more than a year,

meaning that the community could change state rapidly across

years. The plot contained c. 60,000 individuals in 2005 and c.

43,000 in 2006.

Dispersal-related P

For estimating distance-based dispersal PDD for each cell (see

Table 2 for an explanation of the abbreviations used), we

assumed that each species had a probability of reaching a cell (n)

based on its presence in a total of N occupied cells located

distance dn from each occupied cell:

P n
kd

n

N
n

DD e, = − −( )−
=∏1 1

1
(3)

Table 1 Scale and factors of the estimated species pools included in the calculation for the serpentine grasslands, Ranunculaceae and
simulated data.

Serpentine grassland Ranunculaceae Simulations

Scale:

Data extent 64 m2

All species present (S = 28)

389,220 km2

All Ranunculaceae species present (S = 52)

225 cells

400 simulated species

Focal unit grain 0.5 m × 0.5 m 10′ longitude × 6′ latitude (arc-minutes; c. 130 km2) One cell

Temporal extent 2 years 5,000 years 10,000 years (time steps)

Temporal grain 1 year 1 year 1 year (last time step)

Factors:

Dispersal (D) x x x

Environment (E) x x x

Biotic (B) – – x

Table 2 Abbreviations of different factors used to calculate the various pool probabilities (P) and related probabilistic species pools (Ψ).

Abbreviation Description Applied to dataset:

D Dispersal factors

DD Dispersal based on geographical distances S, R, Sim

DDT Dispersal based on geographical distances weighted by species traits S, R

DR Dispersal based on resistance distances over environmentally suitable surfaces (suitable dispersal pathways) R

DRT Dispersal based on resistance distances over environmentally suitable surfaces (suitable dispersal pathways)

additionally weighted by species traits

R

E Environmental factors

ER Environmental suitability based on niche modelling (dataset-scale species distribution models) S, R, Sim

EB Environmental suitability based on Beals’ smoothing S, R

B Biotic factors Sim

×, denotes combinations of factor groups (dispersal, environmental, biotic) S, R, Sim

Dataset abbreviations: S, serpentine grasslands; R, Ranunculaceae; Sim, simulations.

Probabilistic species pools
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(Bischoff, 2005) with N being the total number of cells

occupied by the species, and k being a rate constant represent-

ing the dispersal ability of species over a given distance and

time. We assigned k on the basis of traits related to dispersal

(height and seed mass). We assumed that plant height is the

primary determinant of dispersal distance, and that, within a

height class, larger seed masses reduce dispersal (Thomson

et al., 2011). As direct measurements of plant height were not

available we classified species into four height categories (pros-

trate, subshrubs, shrubs, trees). This score was incremented by

1 if the species was an annual to take into account that annuals

have a higher probability of producing seeds at the end of their

growing season, as they depend on this for survival. We further

multiplied the score by log(seed mass), rescaled to [−0.5,0.5],

assuming that species with larger seeds do not disperse as far

as species with small seeds (Muller-Landau et al., 2008). This

acknowledges that seed mass and height do not usually explain

more than 50% of the variation in dispersal distances

(Muller-Landau et al., 2008). Additionally we assumed a sce-

nario in which dispersal traits are not known, and set all

species dispersal values to 0.45, 0.75 or 1.5 m year−1 (see

Appendix S1 in Supporting Information), which are in the

range of known dispersal values for wind-dispersed species

within 1 year (Andersen, 1993).

Environmental-related P

We used several methods to calculate probabilities related to

environmental factors (PE) (Table 2). PEB, was calculated by

Beals’ smoothing (Beals, 1984; De Cáceres & Legendre, 2008).

Beals’ smoothing is a multivariate transformation specially

designed for species presence/absence community data contain-

ing noise and/or a lot of zeros, which replaces the observed

values of the target species by predictions of occurrence on the

basis of its co-occurrences with the remaining species in the

overall dataset (De Cáceres & Legendre, 2008). The index pro-

vides the probability of occurrence of a target species at a site

given its co-occurrences with other species (Beals, 1984).

For PER, we used environmental covariates to characterize

environmental suitability for each cell and species. For the ser-

pentine grasslands data, we focused on soil characteristics since

other factors such as climate, exposure and elevation can be

seen as constant at this small scale. We used soil core volume

(an index of rockiness), pH, concentration of Ca, K, Mg, Mn,

Na and Ni, and the ratio Ca/Mg, all of which are known to be

linked to plant species occurrences (Janssens et al., 1998).

Euclidean distances between the focal cell and all other cells

were calculated in multivariate environmental space defined by

these factors. The environmental suitability of the cell was then

defined as the ranked distance of the closest cell occupied by

the species minus 1 divided by the total number of cells

(n = 256). This yielded a value in the range [0, 1] for each

species for each cell.

We validated our estimates of different values of P by using P

calculated from 2005 distributions to predict new colonization

in cells in 2006. For this test, we calculated the area under the

receiver operating characteristic curve (AUC) to evaluate the

performance of P from 2005 in predicting species occurrences in

2006 (Fig. 1). We also used these methods to evaluate the reverse

prediction, asking which cells a species will colonize, rather than

which species a cell will gain.

We assessed sensitivity against data incompleteness by ran-

domly removing cells across 100 iterations and calculating the

species pool each time (removing 16, 32, 48, . . ., 240 cells). We

then calculated the correlation between combined (PDD×EB)

probabilities between the complete data set and the rarefied set.
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Figure 1 Predicting occurrences for the 10 most abundant species of a serpentine grassland in California. Frequency indicates the
distribution (out of 256 cells) of probability values in colonized (black lines) or non-colonized (dotted lines) cells for predicting new
colonization and continued absences between the first and second year of the census. In most cases, sites in which a species occurred in the
second year (black lines) have higher probability values of presence (the curve is shifted more to the right) in the first year than sites in
which species did not occur in the second year (dotted lines). Triangles show the median probability for non-colonized (open triangles)
versus colonized probabilities (black triangles). Area under the receiver operating characteristic curve values (AUC, top right corner) are
given for each species (with those closer to one being better predictions). Comparison of AUC values indicates that the probabilistic species
pool was able to predict colonization (or lack thereof) across years, especially for species with greater discrepancies between P distributions
of colonized and uncolonized cells. These results combine dispersal and environment probabilities, using uniform dispersal abilities of
k = 0.45, exponential dispersal kernels and Beals’ smoothing (PDD×EB; see Table 2 for an explanation of the abbreviations).
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Correlations were calculated in two ways: per species across all

cells and per cell across all species.

Results and discussion

The median AUC and percentages of sites with better-than-

random predictions were: (1) for PDD, 0.875 and 98% and for

PDDT 0.863 and 92% (for dispersal only); (2) for PER, 0.646 and

76% and for PEB, 0.681 and 96% (for environment only). For

combined dispersal and environmental probabilities: PDD×ER,

0.68 and 76%; PDD×EB, 0.876 and 99%; PDDT×ER, 0.857 and 92%;

PDDT×EB, 0.863 and 92%.

The reverse predictions (predicting the cells that are colonized

by a species) also performed well. Estimating P using just dis-

persal factors resulted in a median AUC and proportion of sites

with better-than-random predictions (AUC > 0.5) of 0.699 and

80% for PDD and 0.661 and 76% for PDDT; and using environ-

mental factors 0.601 and 80% for PEB and 0.686 and 93% for PER.

Combined dispersal and environmental factors performed well,

with values of 0.703 and 84% for PDD×EB, 0.833 and 88% for

PDD×ER, 0.654 and 84% for PDDT×EB and 0.669 and 80% for

PDDT×ER. PDD performed better when k = 0.45 m year−1, or

k = 0.75 m year−1, but the differences were only very small. For

values outside this range AUC values and percentages were lower

than PDDT (see Appendix S2). AUC values of PDD and PDDT values

might also be additionally influenced by seed dormancy (dis-

persal in time), as some occurrences in 2006 might be related to

dispersal events before 2005, though other experiments near this

site demonstrate fairly low seed bank persistence (A.B.S.,

unpublished data).

Our results confirm that calculation of P can represent the

probability that a species will colonize a particular location

(Fig. 1). The high AUC values of PDDT provide evidence that the

dispersal model performs well when using actual dispersal traits.

Although models with k = 0.45 m year−1 and k = 0.75 m year−1

performed slightly better than PDDT (only by a difference of 0.01

in AUC), these values of k are arbitrary and usually not known

a priori. Slightly different assumptions (e.g. k > 1.5 m year−1)

drastically altered the results.

The results also confirm the hierarchical structure of filters

acting on species pools (Zobel et al., 1998), with combined

factors (PDD×EB, PDD×ER, PDDT×EB, PDDT×ER) producing better pre-

dictions than dispersal alone (PDD, PDDT). Predictions using P

based on just dispersal were also higher than those based on just

environmental factors (PER, PEB), which seems reasonable given

that environmental variation is low at small spatial scales

making dispersal a key factor for community assembly.

Values of P calculated with missing data and with complete

data were fairly well correlated within species across plots, even

after discarding up to 94% of the data (Appendix S3a). Values

for cells across species were nearly insensitive to rarefaction –

abundant species maintained high values and rare species

maintained low values (Appendix S3b). This example shows

that P values are fairly insensitive to data restrictions and give

robust estimates of pool membership even when sampling is

incomplete.

Inferring geographical patterns of community
assembly processes – Ranunculaceae assemblages

Among the more recent applications of species pools are pro-

posals to disentangle the drivers of community composition

(Pärtel et al., 2011; de Bello et al., 2012; Lessard et al., 2012a;

Cornell & Harrison, 2014). Using a dataset of Ranunculaceae

assemblages in Germany, we tested different approaches for

estimating the composition and size of probabilistic species

pools on a regional spatial scale. We employed different envi-

ronmental and dispersal filters and compared them with real-

ized species richness in a focal unit. We assessed how

inferences about the strength and spatial distribution of differ-

ent factors on focal units can be drawn from probabilistic

species pools.

The German FLORKART data report presence/absence of

vascular plant species on a lattice with a spatial resolution of 10′
longitude × 6′ latitude (c. 130 km2) in Germany (Kühn et al.,

2006; Manceur & Kühn, 2014). We used the time period

1950–90 and excluded from the analysis grid cells near country

borders with an area of less than 117 km2 located within

Germany, resulting in a total of 2994 cells. We chose the family

Ranunculaceae because it has a relatively stable taxonomy, is

reasonably diverse in Germany (52 species) and has a range of

life-forms (annual, perennial, woody lianas) as well as different

dispersal and pollination syndromes. We explored a range of

possibilities to estimate the species pool (see Table 2) to assess

how different processes, parameterizations and definitions affect

species pool size and composition.

Dispersal-related P

For the Ranunculaceae, PDD was calculated using the same equa-

tion as for the serpentine grassland species, setting k to 0.002

distance units per time step (this translates into c. 20 m year−1),

as exact values of dispersal over time are unknown. We addi-

tionally calculated the probability of pool membership by resist-

ance distance over environmentally suitable surfaces PDR for

every species based on environmental niche models and the

environmental conditions in each grid cell (for detailed meth-

odologies see Pompe et al., 2008; see also McRae, 2006; McRae

et al., 2008) using the R package gdistance. This takes into

account that species can have different dispersal probabilities

based on the habitat they need to cross (Janin et al., 2009;

Eiserhardt et al., 2013; Weigelt & Kreft, 2013). We selected three

dispersal modes potentially capable of covering long distances

(wind dispersal, animal dispersal, water dispersal) based on the

Dispersal Diaspore Database (Hintze et al., 2013; http://

www.seed-dispersal.info accessed on 3 December 2013) and

ranked them relative to the overall German flora to include

dispersal traits PDRT. Whenever a species was in the upper 50th

percentile for one of the three dispersal syndromes, it was con-

sidered a long-distance disperser and received 1/k = 1.5, which

was set to 1/k = 0.5 in other cases. This approach has proved to

be valid in a similar study (Ozinga et al., 2009).

Probabilistic species pools
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Environmental-related P

For the Ranunculaceae assemblages, we used available suitability

maps with a probability range [0, 1] based on climatic, soil and

land-use parameters on a European scale (Pompe et al., 2008).

We used the EUSOILS soil characteristics (Panagos, 2006) and

38 bioclimatic variables at a 10′ × 10′ (arcmin) resolution

(Pompe et al., 2008) and included four land-use classes at the

10′ × 10′ grid resolution from PELCOM (Mücher et al., 2001):

forest, grassland, cropland and urban landscape (Mucher et al.,

2000). We applied a principal components analysis on the

bioclimatic variables and a correspondence analysis (CA) on the

soil data to avoid multicollinearity. Six principal components

(explained variance 93%) and six CA axes (explained variance

56%) were subsequently used as environmental niche model

predictors (Pompe et al., 2008). Probability surfaces for PER were

then calculated using generalized linear models.

Calculating different Ψ

We calculated a set of probabilistic species pools as well as a

binary species pools using the entire set of focal units (here grid

cells; see Appendix S4 for example results). Further analyses for

the Ranunculaceae data, however, concentrated on a core region,

defined by being at least 100 km away from the closest grid cell

outside Germany, resulting in 1472 grid cells where we assumed

that edge effects were not important. The data extent was set to

the area of Germany, ignoring seed sources outside the study

areas, although these may be important. Given that our aim was

to compare effects of different pool estimators, we regard any

remaining artefacts as limited. For reference, a binary species

pool was delineated using a ‘moving window’ approach, with a

fixed distance threshold of 100 km around a focal unit to include

or exclude species in the species pool.

An important emergent property of the probabilistic species

pool is the ability to calculate the size of the site-specific species

pool (the species pool size index, iΨ; Box 1) from equation 2. iΨ
represents the expected number of species present in a focal unit

based on the factors used to delineate the species pool. We

calculated correlations between iΨ across grid cells estimated

using different definitions and combinations of dispersal and

environmental pool.

Results and discussion

Values based on dispersal (iΨD) were intercorrelated and were

also correlated with actual richness in a 100-km radius (all

r > 0.78; Fig. 2, Appendix S5). Values of iΨE were only moder-

ately correlated with actual richness in a 100-km radius

(r = 0.56), but were more strongly correlated with cell richness

(especially for Beals’ smoothing at r = 0.87 between iΨEB and cell

richness). iΨ values based on environmental factors thus more

closely reflect the cell richness than richness in a 100-km radius,

confirming that richness in a 100-km radius is only a rough

approximation of cell richness. Richness in a 100-km radius may

reflect dispersal processes as it is strongly correlated with iΨD

(r = 0.75 for ΨDR ∼ richness in a 100-km radius; r = 0.83 for

ΨDD ∼ richness in a 100-km radius).
iΨ values based on Beals’ smoothing were only moderately

correlated with those from niche modelling (e.g. r = 0.69

between iΨEB and iΨER), indicating again that methodological

choices have important effects. The limited number of

Ranunculaceae species in Germany poses a methodological con-

straint, as Beals’ smoothing calculates probabilities purely based

on co-occurrence of species (De Cáceres & Legendre, 2008).

Beals’ smoothing may also implicitly capture several factors that

are not environmental, i.e. biotic factors or even congruent

history-linked dispersal-generated patterns (Normand et al.,

Box 1:
Key terms and concepts

Binary species pool: a species pool delineated by including or excluding a species from the species pool. Binary species pools can

be seen as special cases of probabilistic species pools where each species’ probability of membership equals either 0 or 1.

Data extent: the geographical or taxonomic extent from which probabilistic species pools are derived. Unless complete datasets

are used, limited data extents can act as binary constraints on species pools (constraining dispersal or biotic interactions).

Focal unit: the geographical or environmental space, a habitat, or community for which one wants to know the species pool (e.g.

a grid cell in the empirical examples).

Probabilistic species pool (Ψ): a set of values {P1, P2, P3, . . . , PS} that quantify for each of S species its probability of being able

to occur in a particular focal unit. This can reflect probabilities of, for example, performance or arrival.

Probability of pool membership (P): the probability that a given species disperses to, establishes, or survives in a focal unit.

Probabilities can be estimated by using an a priori known response of a species to a given factor x. They can depend on, for

example, survival for a minimum period of time, survival up to a certain ontogenetic stage (seedling, juvenile) or the mainte-

nance of a viable population. The probability of pool membership gives the relative contribution of a species to the species pool.

Relative probabilities: used for estimates of P when data limitations do not allow estimation of absolute probabilities. If relative

probabilities are used then the pool size (iΨ) serves as an index of focal unit richness.

Species pool size (iΨ): ∑ ∏= =s
S

x
n

xsP1 1 where s is species, S is the number of species, x is the factor affecting pool membership, n is

the number of factors and P is probability of pool membership. A measure of the expected number of species present in a focal

unit (if true probabilities are used, this can be interpreted as number of species, with relative probabilities only as an index

thereof).
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2011). If Beals’ smoothing is used to calculate probabilistic

species pools, the similarities to and differences from environ-

mental niche modelling should be kept in mind.

To compare how different approaches estimate the composi-

tion of Ψ and the respective P we used pair-wise Euclidean

distances of P for each species within the respective species pool

of the Ranunculaceae data. Distance matrices of P were com-

pared for all combinations of the applied dispersal and environ-

mental pool definitions using pair-wise Mantel correlations. To

investigate the spatial distribution of how well P was delineated

in different ways in congruence with realized communities, we

calculated the AUC for each grid cell separately.

Mantel correlations among matrices of species pool compo-

sition based on P were on average weaker than correlations

among iΨ values (Appendix S5). Species pool delineations

accounting for both dispersal and environment were only mod-

erately correlated with a simple pool corresponding to richness

in a 100-km radius (all r ≤ 0.6), highlighting the discrepancy

between the classical binary species pool and the probabilistic

species pool Ψ. It should be noted, however, that the latter was

derived by summing relative probabilities. Hence, comparison

between iΨ (an index) should therefore be considered with

caution. Correlations, however, are not affected by the error in

absolute values, and show that the probabilistic species pool

differs from actual diversity in any given reference area. They

also show that considering dispersal, environmental suitability

or the combined effects of both has an important effect on the

composition of the pool.

By taking a specific grid cell as a focal unit (cell 4425,

Göttingen, Germany, located in the middle of Germany where

no edge effects are expected), we estimated the difference in iΨ
for a dispersal-based species pool (ΨDD) and an environment-

based species pool (ΨER). iΨ values were higher for ΨDD than for

ΨER, indicating that environmental filtering imposes a stronger

constraint than dispersal filtering in this case (Fig. 3). Again, as

continuous variables (P) are compared to binary (presence–

absence of species in a focal unit) ones, AUC is an appropriate

measure of how well Ψ corresponds to realized communities.

ΨER predicted species occurrences in the focal unit better than

ΨDD, again indicating stronger environmental filtering within

the focal unit (Fig. 3).

One of the advantages of the concept of probabilistic species

pools is that it provides quantitative confidence in our species

pool estimates. To quantify the degree of confidence in iΨ, we

calculated the probability mass function (PMF) for iΨ which

gives the probability of each value of iΨ. Additionally we calcu-

lated the cumulative density function (CDF) for iΨ, which pro-

vides the probability of the minimum certain number of species

present in the focal unit. Based on these specific probability

distributions (Fig. 3), it is apparent that possible values for iΨ
are between about 11 and 18 species, with the highest probabil-

ity of 14 species and a probability of about 1 that fewer than 19

species are part of the species pool.

Spatial variation in the relative values of AUC can be used as

an indicator of how the importance of different assembly

mechanisms varies geographically (Fig. 2). We found, for

example, that environmental filters (ΨEB) were stronger in the

northern part of Germany, while the combination of dispersal

and environmental filters (ΨDD×EB) was stronger in the northern

and southern parts of the country, but somewhat weaker in the

middle. In contrast, resistance-based dispersal (ΨDRT) was much

less influential relative to other assembly processes. This

example demonstrates the utility of comparing observed com-

munities with Ψ in a geographical context.
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Figure 2 Inferring geographical patterns of community assembly processes. Upper row: Observed species richness at the resolution of
single grid cells and within a moving window with a radius of 100 km around a focal cell for Ranunculaceae in Germany compared with
species pool size index values (iΨ) calculated using different dispersal and environmental factors. Lower row: area under the receiver
operator curve (AUC) values showing the spatial distribution of predictive power of species pools for presence or absence (p/a) of species
compared with their probability of pool membership (P). Comparing the spatial distribution of AUC across pool definitions allows
inferences about the geographically varying nature of assembly processes. iΨ and AUC were calculated separately for each 10′ longitude × 6′
latitude grid cell. Only the cells enclosed by the black line were used as focal cells in correlative analyses to avoid effects of truncated data
availability near the country borders. Ψ subscripts: DD, dispersal based on geographical distances; DRT, suitable dispersal pathways; ER,
environmental suitability based on niche modelling; EB, environmental suitability based on Beals’ smoothing; × denotes combinations of
factor groups. Correlations among all possible combinations of species pool delineations are shown in Appendix S6.
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Comparing probabilistic and binary species pools –
simulations

The novel aspect of the probabilistic species pool is the use of

species-specific probabilities versus binary thresholds, which

impose profound constraints on the inferences in a given analy-

sis (Cavender-Bares et al., 2006; Kraft et al., 2007; Kissling et al.,

2012; Eiserhardt et al., 2013; Lessard et al., 2016). In a simula-

tion framework we compared binary species pools with proba-

bilistic species pools to highlight how a probabilistic approach

has a profound impact on estimates of the size and composition

of species pools. The use of artificial data allowed us to consider

all major components affecting species distributions (see

Appendix S6), and we can hence apply dispersal and environ-

mental as well as biotic filters to test if a combination of all

relevant factors closely reassembles realized communities.

The simulated data set comes from Cabral & Kreft (2012).

The model considered different species pools consisting of a

global set of 400 species varying in their environmental niche

and traits that control their performance. Species pools were

simulated under physiological, dispersal and competition con-

straints. The spatial extent was 15 × 15 grid cells, where one grid

cell was calibrated to implicitly measure 1 km2. With the simu-

lated data, all major components affecting species distribution

are explicitly considered (see Appendix S5). To apply the proba-

bilistic species pool concept we used the last time step of only

one simulated pool.

For the dispersal factor, we overlaid Clark’s 2Dt kernels (Clark

et al., 1999) for each species over a hypothetical landscape. ΨD

was then given by the sum of all overlaid kernels. For PE, we used

a species-specific suitability for each cell scaled between 0 and 1

based on a factor that resembled temperature. For the biotic

factors, we included demographic information which was cal-

culated as the survival probability of each species under

metapopulation dynamics (explicit local dynamics and dispersal

between populations) without interactions (i.e. species were

simulated alone) for each environmental condition. The prob-

ability P was then given by number of occupied cells divided by

the number of suitable cells, considering all species simulta-

neously (community simulation). Interspecific competition in

this case was present as resource competition and facilitation

which happened when a species with overcompensatory dynam-

ics had its metapopulation stabilized by resource competition.

We calculated species pool size indices based on: (1) a proba-

bilistic, and (2) a binary classification assuming a species was

present if P > 0.001 for dispersal and P > 0 for the remaining

factors for the last time step of the simulation. These are small

values for thresholds, but using small values is conceptually no

different from assuming that the regional pool of species com-

prises the actual species pool of a focal unit (Cavender-Bares

et al., 2006; Swenson & Enquist, 2009; Kissling et al., 2012;

Eiserhardt et al., 2013).

Results and discussion

iΨ showed strikingly different values depending on the filter and

distribution used (Fig. 4). Overall, the dispersal filter resulted in

the largest number of species, particularly when a binary species

pool concept was applied. In fact, the highest values were close to

the total number of species in the dataset across all cells (400

species).
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Figure 3 Comparison of species occurrence with community structure for a probabilistic species pool of Ranunculaceae delineated by
environmental factors (ΨER) and dispersal (ΨDD) for a timeframe of 5000 years. The focal unit here is a grid cell focused on Göttingen,
Germany (130 km2). Black squares represent observed presences and absences of a species within the focal unit. Area under the receiver
operator curve (AUC) is based on the comparison between probabilities in the community structure of the species pool and species
occurrences. iΨ is the species pool index value. The probability mass function (PMF) gives the probability of each value of iΨ. The
cumulative density function (CDF) provides the probability of a certain minimum number of species present in the focal unit given a
specific factor. The observed richness in the focal unit is nine species. This is less than the mean predictions using different pools, indicating
that other processes are shaping this assemblage. Probability distributions of ΨER and ΨDD show declines in probabilities towards the full
(global) set of species, indicating that all important species have been included in the species pool.
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Using an environmental filter (iΨE) gave the lowest iΨ values

for the probabilistic species pools, but the second highest values

for binary species pools. This difference is remarkable, and

shows that differences in binary and probabilistic species pools

can be quite substantial depending on the filters involved, which

confirms the differences between species pools that emerged in

the analysis of Ranunculaceae. Additionally, the simulated

dataset revealed that including biotic filters into Ψ led to a close

resemblance of iΨ values with the realized species richness

values at the grid cell level (Fig. 4).

The simulated example also shows how the strength of binary

constraints in species pool definitions can be directly assessed by

comparing it with probabilistic species pools, without the need

to examine the entire range of possible thresholds on species

pool definitions as recently proposed (Lessard et al., 2016).

Binary and probabilistic species pools can vary greatly in iΨ
along specific environmental gradients (temperature in this

case). The inclusion of biotic filters only caused a small differ-

ence in iΨ compared with binary values, but the difference is

more pronounced for dispersal- and environmental-delineated

species pools. Obviously, inference about the strength of pro-

cesses can vary depending on the choice of a binary or proba-

bilistic species pool concept. This is especially important as

dispersal and environmental filters are the most commonly

studied ones, no doubt because data for these are more readily

available than data on biotic or demographic factors.

PROSPECTS AND LIMITATIONS OF
PROBABILISTIC SPECIES POOLS

The perception of processes that shape local community com-

position and diversity largely depends on the circumscription of

the species pool (Kraft et al., 2011; Anacker & Harrison, 2012;

Lessard et al., 2012a,b; Karger et al., 2014, 2015) and how this

relates to the spatial and temporal scale of sampling (Tuomisto

& Ruokolainen, 2012). Incorporating the probabilistic species

pool into studies on community composition and diversity can

help disentangle the strength of different processes that drive

local species assembly and their geographical distribution. The

analysis of Ranunculaceae shows how the null expectation gen-

erated using a probabilistic species pool can be compared with

the observed community composition in the focal unit (Fig. 2).

The geographical distribution of AUC values in this example

demonstrates that a probabilistic species pool based on dispersal

and environment (ΨDRT×EB) explains species assemblage compo-

sition well in some areas but not in others. In such locations,

other factors might be operational which are not included in the

species pool definition (e.g. biotic interactions).

The value of iΨ (equation 2) reflects the expected number of

species within a focal unit. However, the physical space of the

focal unit needs to be able to accommodate all those species (e.g.

a focal unit of 1 m2 might only hold one tree species, even if
iΨ > 1). iΨ might therefore be more appropriate for testing com-

munity saturation (Srivastava, 1999; Loreau, 2000).

Probabilistic species pools that are only based on regional

abundance and dispersal of species (excluding environmental

filters) could be used to test neutral versus deterministic theories

(Hubbell, 2001). Probabilistic species pools that also include

environmental filters can be used to estimate whether sampling

intensity is adequate, as they allow one to quantify the likelihood

of the observed number of species (see Fig. 3) within a focal unit

(see Manceur & Kühn, 2014, for single-species examples).

Limitations in employing the probabilistic species pool arise

mostly from the availability of data, especially on biotic factors

and demography but also on dispersal traits. The limited spatial

extent of data can impose a binary constraint on a probabilistic

pool and are therefore somewhat similar to arbitrary thresholds.

Limited data extents are, however, not a conceptual problem like

arbitrary thresholds, but rather an operational one. When using

a binary pool, a threshold needs to be defined to determine

Figure 4 Landscape patterns of probabilistic and binary species pools. Species pool size index values (iΨ) incorporating dispersal (iΨDD),
environment (iΨER) and additional biotic factors (iΨDD×ER×B) for simulated data are compared with binary definitions of the species pool
over a 15 cell × 5 cell landscape consisting of a single temperature gradient. iΨ was calculated separately for each cell. Colour (online only)
values/shades indicate the species richness within each cell. The top row represents a probabilistic species pool size index, the bottom row
the corresponding binary species pool (thresholds set at P > 0.0001 for ΨDD, P > 0 for the binary pool). The right-hand column shows the
simulated (observed) cell richness.
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when a species survives or dispersal is assumed to be sufficient.

Problems inherent in this approach can be circumvented by

applying a probabilistic approach. Data extents, however,

impose an operational constraint which can be overcome by

accumulating information on species outside the extent of the

original data. Small data extents might be fully sufficient for

specific temporal extents, but can lead to the exclusion of impor-

tant data in others. The data extent of serpentine grassland, for

example, seems incredibly small at first; but these species dis-

perse less than about 1 m year–1 on average, meaning that the

8 m × 8 m plot captures much of the extent of any one cell. In

general, if many species within a given data extent have about

zero probability of belonging to a pool, it can be seen as an

indicator of insufficient data (e.g. Figs 2 & S3).

The exact dispersal kernels over time for many species are,

however, still largely unknown. For the Ranunculaceae, we

simply assumed a baseline dispersal of 20 m year−1 across 5000

years (PDD), additionally adjusted by species traits (PDDT).

Although this gives a temporal reference frame for the species

pool, it remains to be verified if it actually reflects future disper-

sal events in this particular case. Such verifications are possible

using repeated sampling, as in the serpentine grassland example.

Examples like these highlight how important it is to integrate, or

for the time being accurately state, time-related variables

(dispersal/time) in species pool definitions, as they give a tem-

poral reference frame for the study (exact values are usually not

given in approaches that use regional richness or dispersion

fields). Even the most recent advances in delineating species

pools (Graves & Rahbek, 2005; Lessard et al., 2016) still fall short

in stating exact temporal extents due to the problem of

unknown dispersal distances over time. To advance the ability of

species pools to inform us of assembly processes, it is therefore

necessary to gather exact data on dispersal distances of species

and repeatedly sample communities and assemblages.

Approximating probabilities also introduces error of

unknown size that can lead to problems if we want to calculate

the expected number of species within a focal unit. These errors

could quickly increase non-additively when combining species

pools. The problem of unknown errors when assigning prob-

abilities raises the question: does replacing one arbitrary deci-

sion involved in defining a binary species pool with many

arbitrary decisions for defining other kinds of species pools

yield a qualitatively better estimate? In our view, an important

advantage of the probabilistic species pool is that it requires

decisions about pool membership to be explicit. The calculation

of probabilities makes the underlying assumptions and their

associated uncertainties visible, replicable, challengeable and

correctable. This may in itself encourage new research

approaches towards understanding species pools and their

importance in species assembly.

CONCLUSION

The probabilistic approach to species pools expands former

definitions and adds useful properties to the concept. In particu-

lar, treating species pools probabilistically allows ecologists to

better link focal units with species pools by using different sets of

parameters, thereby determining the relative roles of major

potential community assembly factors. The probabilistic

approach to species pools should therefore be a valuable tool in

macroecology, community ecology, climate change research,

invasion ecology and ecological restoration.
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