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Abstract Delineation of flood risk hotspots can be con-

sidered as one of the first steps in an integrated method-

ology for urban flood risk management and mitigation.

This paper presents a step-by-step methodology in a GIS-

based framework for identifying flooding risk hotspots for

residential buildings. This is done by overlaying a map of

potentially flood-prone areas [estimated through the topo-

graphic wetness index (TWI)], a map of residential areas

[extracted from a city-wide assessment of urban morphol-

ogy types (UMT)], and a geo-spatial census dataset. The

novelty of this paper consists in the fact that the flood-

prone areas (the TWI thresholds) are identified through a

maximum likelihood method (MLE) based both on inun-

dation profiles calculated for a specific return period (TR),

and on information about the extent of historical flooding

in the area of interest. Furthermore, Bayesian parameter

updating is employed in order to estimate the TWI

threshold by employing the historical extent as prior

information and the inundation map for calculating the

likelihood function. For different statistics of the TWI

threshold, the map of potentially flood-prone areas is

overlaid with the map of residential urban morphology

units in order to delineate the residential flooding risk

urban hotspots. Overlaying the delineated urban hotspots

with geo-spatial census datasets, the number of people

affected by flooding is estimated. These kind of screening

procedures are particularly useful for locations where there

is a lack of detailed data or where it is difficult to perform

accurate flood risk assessment. In fact, an application of the

proposed procedure is demonstrated for the identification

of urban flooding risk hotspots in the city of Ouagadougou,

capital of Burkina Faso, a city for which the observed

spatial extent of a major flood event in 2009 and a calcu-

lated inundation map for a return period of 300 years are

both available.

Keywords Africa � Flood-prone areas � Topographic

wetness index � Urban morphology types � Exposure �
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1 Introduction

Around half of the world’s population lives in urban areas,

therefore identifying flooding risk hotspots is arguably a

fundamental preliminary step in urban planning and risk

management. The flooding risk hotspots are defined as

zones that are relatively likely to be exposed to flooding; in

other words, the flooding risk hotspots can be seen as areas

in which high probability of occurrence of flooding (high

hazard) coincides with an area of high exposure (Jalayer

et al. 2014). It is important to underline that delineation of

hotspots cannot replace a comprehensive evaluation of

flooding risk based on accurate hazard and vulnerability
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assessment. In other words, the delineation of hotspots is

an effective screening tool for identifying the zones for

which a detailed and comprehensive risk assessment is

required [as proposed for example in De Risi et al. (2013)].

The procedure applied in this paper delineates the flooding

risk hotspots by overlaying zones of high flooding sus-

ceptibility (as a proxy for zones with high flooding hazard)

and zones of high exposure to flooding risk. The flooding

susceptibility has been assessed through the Topographic

Wetness Index (TWI) (Kirkby 1975; Qin et al. 2011). The

TWI is an index that has a purely topographic interpreta-

tion (it basically measures the capability of the land surface

to accumulate water based on slope and elevation) and is

quite straightforward to calculate in a GIS environment for

very large areal extents. This index allows for the delin-

eation of a portion of hydrographic basin potentially

exposed to flood inundation, by identifying all the areas

characterized by a TWI that exceeds a given threshold; this

threshold is strictly dependent on the geomorphology of the

hydrographic basin. The threshold value can be calibrated

based on results of detailed delineation of the inundation

profile for selected zones (Motevalli and Vafakhah 2016;

Jalayer et al. 2014; Degiorgis et al. 2012; Manfreda et al.

2008, 2014, 2015). High exposure areas are identified by

using a map of urban morphology types (UMTs), from

which residential UMTs are extracted, and a geo-spatial

census dataset for demographic information (e.g. popula-

tion density).

A UMT map is a special form of land-use map which

combines aspects of urban form (e.g. the general structure

and composition of the built environment, green areas, etc.)

with aspects of urban function (e.g. residential/commercial

uses or community services for the built environment,

agriculture or recreation for the green areas, etc.) (Cavan

et al. 2012; Gill et al. 2008; Pauleit and Duhme 2000).

UMTs have characteristic physical features (like land

cover) and are distinguished based on the human activities

they accommodate (i.e. land uses). Since mapped UMTs

take account of both physical properties and human

activities as the key factors for characterizing urban areas

(e.g. residential areas, transportation areas, bare ground,

etc.), they can be helpful for representing environmental

phenomena and related exposures. For example, they have

already been used to estimate land surface temperature

patterns in African urban areas (Cavan et al. 2014). The

UMTs and associated mapped units provide a meso-scale

perspective (i.e. between the city level and that of indi-

vidual land parcels) making a suitable basis for the spatial

analysis of cities.

The overlay of land cover and flood-prone area maps has

been done in various research efforts [see for example

Meyer and Messner (2005) or Gwilliam et al. (2006)]. In a

traditional approach towards delineating the urban flooding

hotspots, zones of high exposure to flooding are overlaid

with areas that are known to be susceptible to flooding or

flood-prone areas. These areas are usually identified based

on available historical flooding data or by defining a buffer

zone around the rivers [see Gall et al. (2007), Apel et al.

(2009), Manfreda et al. (2014) or De Risi et al. (2015) for a

comprehensive discussion on identification of flooding risk

hotspots]. The novelty in the approach proposed herein lies

in the use of Bayesian parameter estimation for the char-

acterization of uncertainties in delineating the potentially

flood-prone areas. More specifically, in two previous works

(De Risi et al. 2014; Jalayer et al. 2014) the authors

demonstrate how the potentially flood-prone areas can be

delineated through a Maximum Likelihood Estimation

(MLE) procedure applied to a spatial window in micro-

scale based on historical and calculated flooding extents,

respectively. In this work, these two approaches are com-

pared and integrated in a Bayesian framework. Both the

calculated inundation map for a specific return period and

the historical flooding extent have been used to calibrate

the TWI threshold. Bayesian parameter updating is

employed in order to estimate the TWI threshold consid-

ering the historical extent as prior and the information

provided by the inundation map used as likelihood. In other

words, information from the hydraulic calculations are

integrated with the results obtained based on only the

historical extent. For different statistics (i.e., maximum

likelihood estimate, the lower and upper bounds for the

maximum likelihood estimate, different percentiles) of the

TWI threshold, the map of potentially flood-prone areas

(i.e. areas highly exposed to flooding) is overlaid with the

map of residential urban morphology units (i.e. areas of

high exposure) to delineate the residential flooding risk

hotspots. Overlaying the resulting hotspots with a geo-

spatial census dataset, it is possible to estimate the number

of people potentially affected by flooding. This type of

screening approach may be particularly valuable in data

poor locations (Samela et al. 2015, 2017) or places where

conducting detailed flood risk assessments might be diffi-

cult for other reasons, such as due to rapid urban growth.

This research effort is conducted within the European

EP7 project entitled Climate Change and Urban Vulnera-

bility (CLUVA) in Africa. The application presented in the

paper reports the identification of urban flooding risk hot-

spots in the city of Ouagadougou (Burkina Faso), a city for

which the observed spatial extent of a major flood event in

2009 (De Risi et al. 2014) and a calculated inundation map

for a return period of 300 years, are both available. The

flooding hotspots are identified by overlaying the map of

potentially flood-prone areas (TWI based) with the UMT

map developed in the context of CLUVA project for

Ouagadougou (Lindley et al. 2015).
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2 Procedure

The outlined procedure is composed of three parts: (a) de-

lineation of flood-prone areas using the topographic wet-

ness index (TWI), based on both inundation maps

calculated for a specific return period and also information

about the extent of historical flooding in the area of interest

to calibrate the TWI threshold; (b) delineation of geo-

graphical functional units using the urban morphology

types (UMT); (c) identification of urban hotspots by

overlaying the TWI, UMT and census population density

dataset. Below a detailed description of the procedure

employed to define the flood-prone areas is presented.

2.1 Delineation of flood-prone areas using the TWI

The topographic wetness index, initially introduced by

Kirkby (1975), has been shown to be strongly correlated to

the area exposed to flood inundation (Manfreda et al.

2007, 2008, 2011). The TWI for a given point O within the

hydrographic basin is calculated as following:

TWI ¼ log
AS

tan b

� �

ð1Þ

where As is the specific catchment area expressed in meters

and calculated as the local up-slope area draining through

point O per unit contour length (A/L); b is the local slope at

the point in question expressed in degrees.

The TWI allows for the delineation of a portion of a

hydrographic basin potentially exposed to flood inundation

(referred to herein as flood-prone or more briefly as FP) by

identifying all the areas characterized by a topographic

index that exceeds a given threshold. Therefore, the

delineation of flood-prone areas is strictly dependent on the

TWI threshold, if the urban territory can be characterized

by a single threshold value. The following sections

describe how the likelihood function for the TWI threshold

is calculated based on the historical spatial extent for a

selected zone of interest within the basin.

2.2 Maximum likelihood estimation of TWI

threshold

The maximum likelihood procedure employed for cali-

brating the TWI threshold is described in detail in Jalayer

et al. (2014) and De Risi et al. (2014).

Let W represent the spatial window of a zone of interest

(within the basin) containing historical flooding extent

information. Moreover, let FP represent the flood-prone

areas identified as TWI[ s (where s is the TWI threshold)

and IN represent the inundated areas based on calculated

inundation profile or historical information. Figure 1a

illustrates in a schematic manner W and the portions

identified as FP and IN.

The probability of the correct delineation of flood-prone

areas or the likelihood function for the TWI threshold s

denoted as L(s|W) for various values of s can be calculated

as following:

L sjWð Þ ¼PðFP; INjs;WÞþP IN;FPjs;W
� �

¼P FPjs;Wð Þ �P INjFP;s;Wð ÞþP FPjs;W
� �

�P INjFP;s;W
� �

ð2Þ

where P(FP, IN|s,W) denotes the probability that a given

point within zone W is identified both as flood-prone FP

(using the TWI method) and inundated IN (based on

additional information such as the historical flooding spa-

tial extent or calculated inundation maps), and conditioned

on (the | sign) a given value of s of the TWI threshold. The

area FP and IN is indicated by yellow color in Fig. 1b.

Similarly, P(FP; INjs;W) denotes the probability that a

given point within the zone of interest is neither identified

as FP nor as IN conditioned on a given value of s of the

TWI threshold. The area not FP and not IN is indicated by

green color in Fig. 1b. In Eq. (2), the terms P(FP; INjs;W)

and P(FP; INjs;W) are further expanded using the proba-

bility theory product rule (Jaynes 2003).

2.3 Using Bayesian parameter estimation

to calibrate s based on more than one source

of information

In this section, the maximum likelihood calibration of the

TWI threshold is extended into a more general framework.

Suppose that some background information (e.g., historical

flooding extent, inundation map for another spatial win-

dow, etc.) I1 is available on the value of the TWI threshold

s. In such cases, the TWI threshold can be calibrated by

employing a Bayesian parameter estimation procedure,

where the available background information I1 is repre-

sented by a prior probability distribution. If no specific

background information is available (beyond that provided

by the specific data), a ‘‘non-informative’’ prior can be

adopted (e.g., the uniform distribution). Although a sensi-

tivity analysis is quite useful for determining the role of the

prior, the choice of prior herein is made based on available

background information. Moreover, the use of non-para-

metric distributions precluded the use of sensitivity anal-

ysis for optimal choice of the prior among several feasible

options (i.e., probability models).

Now suppose that the information (spatial extents from

past flooding events, inundation maps, etc.) coming from

the spatial window under consideration is represented by I2
(I1 and I2 are both statements that describe the available

information. Note that this is a simple and effective way of
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representing hybrid information sources). The posterior

probability distribution for s given the information pro-

vided by I1 and I2 can be estimated as:

pðsjI1; I2Þ ¼
LðsjI2ÞpðsjI1Þ

P

8s

LðsjI2ÞpðsjI1Þ
ð3Þ

where p(s|I1, I2) denotes the posterior probability distribu-

tion for s; L(s|I2) is the likelihood function for s (calculated

as per Eq. 2, strictly speaking the term is conditioned also on

I1; this depedence is not considered herein) and p(s|I1) is the

prior probability distribution for s. Note that p(s|I1) is the

posterior distribution resulting from the previous application

of the procedure; that is, before having the additional

information I2. It is important to underline that the approach

presented in this work is based only on one parameter (i.e. s)

and the posterior distribution for the TWI threshold (Eq. 3)

can be obtained with a reasonable computational time.

Therefore, the application of advanced simulation schemes

such Markov Chain Monte Carlo (MCMC) is not necessary

herein. Moreover, to keep the procedure more tractable and

easy-to-implement, exclusively non-parametric or ‘‘empir-

ical’’ distributions are employed herein (except for the non-

informative uniform prior distribution adopted when no

specific background information was available).

Note that Eq. (3) is particularly useful for calculating the

threshold s having (when available) historical flooding spa-

tial extents formore than one spatial windowwithin the basin

(note that they could also correspond to different flooding

events). The formulation presented in Eq. (3) can also be

extended to cases where information from more than two

spatial windows are available. Another specific case is when

both the calculated inundation maps and historical flood

extents are available. In this case, the posterior probability

calculated based on for example the historical extent (I1) can

be used as prior probability distribution to calculate the

posterior distribution, using the calculated inundation map

(I2) to compute the new likelihood function. The advantage

of using the Bayesian framework herein lies in its versatility

in integrating different types of information available for

different spatial windows within the zone of interest.

2.4 Quantitative measure of the error in TWI

method

To quantitatively evaluate the accuracy of the TWI method

(with respect to more precise methods or data) in identi-

fying the potentially flood-prone areas, two alternative

indicators are defined: the false negative indicator Fneg, and

the false positive indicator Fpos. These two indicators are

used substantially to quantify the potential of the procedure

for issuing ‘‘false alarm’’. That is, they provide quantified

estimates of the probability that the procedure indicates a

given areal window as flood-prone or not flood-prone

erroneously; referred respectively to as the false positive

and false negative alarm.

The index measuring the false negative error in the

identification of flood-prone areas Fneg represents the

probability that a given zone is identified as inundated or

IN according to the hydraulic model/historical inundation

extent given that it is identified as not flood-prone (FP)

according to the approximate TWI method:

Fig. 1 A schematic representation of the spatial window of reference (W): a flood-prone (FP) and inundated (IN) areas, b FP and IN (yellow),

and not FP and not IN (green)
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Fneg ¼ PðINjFPÞ ¼
AWðIN;FPÞ

AWðFPÞ
ð4Þ

Note that this term measures the probability that the TWI

method ‘‘misses’’ an inundated area and is particularly

important in the current procedure. The closer the Fneg ratio

is to zero, the smaller is the error due to false negative

identification of the flood-prone contour.

The second index Fpos represents the probability that a

given zone is identified as not inundated according to the

hydraulic model/historical flooding extent (IN) given that it

is identified as flood-prone according to the approximate

TWI method (FP).

Fpos ¼ PðINjFPÞ ¼
AWðIN; FPÞ

AWðFPÞ
ð5Þ

This term quantifies the degree of conservatism in the TWI

method measured by the areal extent of the zones that are

not inundated but they are indicated as flood-prone by the

TWI method. The closer the Fpos ratio is to zero, the

smaller is the error due to false positive identification of the

flood-prone areas.

3 Case study: Ouagadougou

Ouagadougou (12�210N 1�320W) is the capital city of

Burkina Faso, located within the watershed of the Massili

river (a tributary of the Nakambé river) in the West African

Sahel region (John et al. 2012). The hydrological charac-

teristics of the city include four backwaters channels

feeding four major reservoirs which provide rainwater

drainage, storage and water supply functions. On Septem-

ber 1, 2009, an extreme rainfall event hit the city and

resulted in wide-spread damage (destruction of buildings

and infrastructure) and displacement of population

(Reliefweb 2009). More than 25 cm of rain fell in 12 h

turning the streets of Ouagadougou into fast-flowing rivers.

The city’s infrastructure was severely affected as the floods

cut off electricity, fresh water and fuel supplies. The city is

used to heavy seasonal rainfall (700 mm of rain between

May and September) but this was the worst flooding in

50 years. An estimated 109,000 people were affected

(Giugni et al. 2012). In the Bayesian framework described

in this paper, the areal extent of this flood event is used, to

delineate the flooding risk hotspots for Ouagadougou.

3.1 Delineation of flood-prone areas

for Ouagadougou using the topographic wetness

index (TWI)

The TWI map is constructed in a GIS environment based

on the DEM of the city (Fig. 2a, resolution: 3 m).

Figure 2b illustrates the resulting TWI map for Oua-

gadougou. It can be observed that the TWI values vary

between about 8 and 25; largest TWI values can be found

around the natural water channels.

3.2 The inundation spatial extents

The TWI threshold for Ouagadougou has been calibrated

based on two different datasets. The first dataset consists in

the inundated area of 2009 flooding event (Fig. 3a). This

spatial extent has been obtained based on the information

available at the internet site (http://www.mapaction.org/

map-catalogue/mapdetail/1719.html). As depicted in

Fig. 3a, two inundated areas have been identified.

In this paper, the areal extent of A1 has been employed.

The second dataset consists of the calculated inundation

map for a return period of 300 years (Fig. 3b). The inun-

dation profile has been calculated by two-dimensional

simulation of flood volume propagation using the software

FLO-2D (FLO-2D 2004; O’Brien et al. 1993) based on

historical rainfall records and by employing the Curve

Number Method (SCS 1972) to calculate the hydrograph.

A detailed step-by-step description of the hydrologic-hy-

draulic routine carried out can be found in De Risi (2013)

and De Risi et al. (2013).

The DEM has been used to identify the catchment area

(drainage area 453.4 km2, length of main channel 8.9 km,

average slope 3.4%, average elevation 313.5 m). The

catchment area is characterized by a curve number equal to

75.5 based on the SCS (1972) classification. The analyses

use a simulation time of 60 h. The calculations are per-

formed for a return period of 300 years. It seems that the

spatial extent of inundated areas is not significantly affec-

ted by the return period and depends instead on the geo-

morphology of the area (Jalayer et al. 2014); therefore, the

maximum return period that is used in the practical

application is adopted herein. On the other hand, the flood

depth values are quite sensitive to the return period. The

inundation map is reported in terms of the maximum flood

depth (hmax), as is shown in Fig. 3b.

3.3 Maximum likelihood estimation of the TWI

threshold

This section demonstrates how the procedure described

above can be applied to calculate the likelihood of a correct

identification of the flood-prone areas as a function of the

TWI threshold.

A maximum likelihood parameter estimation is carried

out based on two different data sources (using non-infor-

mative uniform prior distributions in both cases): (1) his-

torical flooding spatial extent and (2) calculated inundation

profile. These are subsequently referred to as Case 1 and
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Case 2, respectively. Both Case 1 and Case 2 are calculated

for the same spatial window. In the next step, a Bayesian

parameter estimation is adopted to integrate the informa-

tion about historical flooding spatial extent (as a non-

parametric prior information) with the calculated inunda-

tion maps (Case 3). Note that in the special case treated

herein both sources of information correspond to the same

spatial window. Nevertheless, the adopted Bayesian pro-

cedure is applicable also to the more general case where

the alternative sources of information belong to various

spatial windows. The spatial window W that contains the

inundated area has an extent of about 156 km2. The total

area of the Ouagadougou administrative area is equal to

around Aurban = 3046 km2 which is taken as the spatial

extent of the city for the purposes of this analysis.

3.4 First stage: maximum likelihood estimation

for two data sets separately

The results for Case 1 and for Case 2 are reported in

Figs. 4 and 5, respectively. In these cases and in the

absence of prior information, the TWI is calibrated based

on the maximum likelihood method described earlier. In

other words, the Bayesian procedure introduced in Eq. (3)

0 10 205
Kilometers

TWI

24.97

8.46

0 10 205
Kilometers

DEM

394 m

223 m

(b)(a)

Fig. 2 a The DEM of Ouagadougu, b the TWI map and the stream links

0 10 205
Kilometers

2009 Inundated areas

Case study area

A1

A2

(b)(a)

Flood depth
TR = 300 Years

11.08 m

0.01 m

0 42
Kilometers

Catchment

205
Kilometers

0 10

W

Fig. 3 a Inundated areas after the 2009 events, A1 (the larger area used in this study) and A2 (the smaller area), b the inundation map in terms of

hmax in meters for a return period of 300 years (also the catchment area is shown in the figure)
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for a given spatial window W with a uniform prior dis-

tribution for s, reduces to a maximum likelihood estima-

tion procedure (Eq. 2). For all the possible values of s, the

probability that a given zone is flood- prone, denoted by

P(FP|W,s), is estimated as the ratio of the flood-prone

areal extent within the city delineated by the threshold s

to the total area of the city administrative boundary and is

plotted as red lines in Figs. 4a and 5a.1 Moreover, the

probability P(IN|W,FP,s) that a given point is IN given

that it is already indicated as FP for a given value of s, is

estimated in window W as the ratio of areal extent marked

as both IN and FP and the areal extent marked as FP.

This quantity is plotted as grey stars in Fig. 4a for Case 1,

and in Fig. 5a for Case 2. The probability P(FP,IN|W,s)

that a given point is indicated both as flood-prone FP (by

the TWI method) and inundated IN (based on the histor-

ical extent in Case 1 and inundation map in Case 2) is

calculated as the product of P(FP|W,s) and P(IN|W,FP,s)

and is plotted as blue circles in Figs. 4a and 5a for Cases

1 and 2, respectively. In a similar manner, the probability

PðFPjW ; sÞ that a given point is not indicated as flood-

prone (based on the TWI method) is calculated as the

complementary probability of being flood-prone

P(FP|W,s) and is plotted as red lines in Figs. 4b and 5b.

The probability that a given zone is not indicated as

inundated given that it is not flood-prone, for a given

value of s, is plotted as the grey stars in Figs. 4b and 5b.

Finally, the probability PðIN;FPjW ; sÞ that a given point

is not inundated and not flood-prone, for a given value of

s, is calculated as the product of PðFPjW ; sÞ and

PðINjFP;W ; sÞ and is plotted as the blue circles in

Figs. 4b and 5b.
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Fig. 4 a Probability of being FP and IN given s, b probability of being FP and IN given s (for the historical flood extent, Case 1)
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Fig. 5 a Probability of being FP and IN given s, b probability of being FP and IN given s (for the calculated inundation profile, Case 2)

1 Strictly speaking, this quantity should be calculated based on

information provided from the spatial window W. However, we chose

to estimate it based on information available on the city scale, having

in mind the subsequent up-scaling operation.
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The likelihood function for threshold s is then calculated

from Eq. (2) by summing up the probability of being flood-

prone and inundated and the probability of not being flood-

prone and not being inundated, for all possible s values

(i.e., summing up the curves illustrated by blue circles in

Fig. 4a, b for the historical extent and Fig. 5a, b for the

calculated inundation map).

Figure 6a, b illustrate the likelihood function L(s|W) for

s based on historical flooding extent information (Case 1)

and hydraulic calculated profile (Case 2), respectively.

As mentioned before, the likelihood function L(s|W) can

also be interpreted as the posterior probability distribution

function for s p(s|W) for the spatial window W based on

uniform prior distribution. Consequently, the maximum

likelihood estimate for s (i.e. the value that corresponds to

the maximum likelihood) can be identified for both cases.

Furthermore, by identifying the s values corresponding to

more than 99% of the maximum likelihood value, it is

possible to define a maximum likelihood interval that

varies between s�ML and sþML. That is, from a practical point

of view, the information used for calibrating the TWI

threshold leads to identifying a maximum likelihood

interval for s. Moreover, having the probability density

function, also the 16th and 50th percentiles are calculated

and marked on the plots for Cases 1 and 2.

3.5 Second stage: Bayesian updating

In the next step, the posterior distribution for s based on

information coming from the historical flood extent

(Fig. 6a) is used as prior distribution p(s|I1) in Eq. (3) for

calibrating the TWI threshold based on the calculated

inundation map I2 for the same spatial window. Figure 7

illustrates the posterior probability distribution p(s|I2,I1) for

s (the black squares) overlaid on the prior probability

distribution p(s|I1) (the grey squares). Also in this case, the

maximum likelihood estimation, the 99% maximum like-

lihood interval and the 16th and 50th percentiles are cal-

culated and reported on the graph.

3.6 Synthesis of the numerical and graphical results

In Table 1 are reported the results related to the different

studied cases. Recall that Case 1 represents the TWI

threshold calibration based on the historical flooding

extent; Case 2 refers to the results obtained based on the

calculated inundation maps; and Case 3 refers to the results

obtained by employing Bayesian inference and based on

both the historical spatial extent and the calculated inun-

dation maps.

It can be seen from Table 1 that the maximum likeli-

hood estimate is very similar for the three cases analyzed.

Nevertheless, as demonstrated in Table 2, the dispersion

(bs calculated as the difference between the logarithm of

50th and 16th percentiles) and the width of the 99%

maximum likelihood interval width (DsML) decreases

passing from Case 1 to Case 3. It is to be expected that the

dispersion in the estimate for TWI threshold reduces in this

way as more information sources are used in the calibration

process in Case 3. This is also a sign of the consistency and

agreement between the information provided by the his-

torical flooding extent and those provided by the hydraulic

propagation (inundation maps) as far as it regards the

estimation of the maximum likelihood TWI estimate.

Table 3 reports the indices Fneg and Fpos that measure

the false-negative and false-positive errors of the TWI

method in the identification of potentially flood-prone

areas, respectively. These indices are reported for the three
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cases and for all the alternative estimates of the TWI

threshold; namely, sML, s16, s50, s
�
ML and sþML. In general,

the indices related to false-negative detection error term are

smaller than that of the false positive detection. This is

partly due to the fact that the flood-prone areal extent (the

denominator for Fpos term) is systematically (at least in this

case-study) smaller than the non-flood-prone areal extent

(the denominator for Fneg term). These two terms, apart

from offering a quantitative measure of the TWI method’s

error in delineation of the flood-prone areas, also provide

indication on the most suitable estimate for the TWI

threshold. It can be observed from the table that sML and

sML
? are associated with smallest errors. Moreover, it can be

observed that the TWI method is more precise when cali-

brated based on the (calculated) inundation maps with

respect to the historically flooded areal extent. This seems

reasonable as the extent of the historically inundated area

might have been obtained with some reasonable degree of

conservatism. This also explains why Cases 2 (calibrating

based on the inundation map) and 3 (calibrating based on

both inundation map and historical extent of the inundated

areas) are associated with smallest errors. For example, sþML

is associated with around 5% false negative error and

around 9.5% false positive error in case 3. Herein, it has

been chosen to adopt sML as the optimal TWI threshold

estimate. It is associated with a false-negative error of

around 3% and a false-positive error of around 19% in

Case 3. It is worth mentioning that for the purpose of

delineating the flooding risk hotspots, some conservatism

in delineating the flood-prone areas was desirable (i.e., the

rather large false-positive error term).

Finally, if one decides to use the 16th percentile estimate

of the TWI threshold, the false negative error term reported

in Table 3 is almost negligible; this is while the false

positive error term is very large. This observation is con-

sistent with the fact that using a 16th percentile estimate for

the TWI threshold, one is making a very conservative

estimate of the extent of the flood-prone areas. A visual

check of the accuracy of the results can be performed by

overlaying the inundated zones (delineated based on the

past flooding event and the inundation map) and the TWI

map for threshold larger than the maximum likelihood

estimate (sML) equal to 20 (i.e. TWI[ sML) for both Cases

1 and 2.

Figure 8 illustrates the results of overlaying the 2009

flooding extent, the inundation map corresponding to

TR = 300 years and the TWI map with a threshold equal to

20. It can be observed that the obtained FP map matches

the IN map obtained by employing the hydraulic routine

quite well and has a reasonable agreement with the 2009

flooding extent. This agrees with the calculated values for

Fneg and Fpos (listed in Table 3) which are quantitative

measures of the error in the TWI method.

3.7 UMT units for Ouagadougou city

The urban morphology types (UMT) for Ouagadougou are

classified and delineated based on aerial photos acquired

between 2009 and 2010. In Fig. 9, the high level UMT map
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3). The black squares are the posterior distribution p(s|I2,I1) (based on

both the historical flooding extent and the calculated inundation map)

and the grey squares are the prior distribution p(s|I1) (based on only

the historical flooding extent)

Table 1 The statistics for the TWI threshold distribution for the

different cases

sML s16 s50 s�ML sþML

Case 1 20.0 14.6 18.9 19.2 21.3

Case 2 20.0 15.3 19.1 19.4 20.9

Case 3 19.9 16.9 19.8 19.5 20.7

Table 2 The dispersion and

maximum likelihood interval

width

bs DsML

Case 1 0.26 2.10

Case 2 0.22 1.50

Case 3 0.16 1.20

Table 3 The errors in FP delineation using TWI for the different

cases

DsML (%) s16 (%) s50 (%) s�ML (%) sþML (%)

Case 1 Fneg 9.0 2.5 6.7 7.4 12.0

Fpos 35.0 75.0 42.0 40.0 29.0

Case 2 Fneg 2.9 &0 1.4 1.9 5.5

Fpos 17.0 73.0 29.0 25.0 8.0

Case 3 Fneg 2.7 &0 2.5 2.0 4.9

Fpos 18.6 58.5 20.0 23.7 9.4
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for Ouagadougou, constructed within the CLUVA project

(Lindley and Gill 2013), is shown.

Around 65% of the city is covered by areas classified as

agriculture or vegetation and residential areas make up a

further 23%. Focusing on the latter UMT category

(Fig. 10a), five categories of dwellings can be distin-

guished, along with the percentage of Ouagadougou that

they represent: (a) high class (1.7%) (b) medium class

(3.8%), (c) low class (3.8%), (d) very low class (1.3%) and

(e) scattered settlements (12.1%). As would be expected,

the agricultural areas are associated with many scattered

settlements. In fact, scattered settlements make up the

single largest residential land category in the Ouagadougou

area, around 52% of the total residential area. Rural set-

tlements are generally associated with traditional adobe

dwellings; although some settlements outside of the main

urban core can belong to a mix of dwelling types (John

et al. 2012).

It is particularly noticeable that the periphery of the

main urban core is surrounded by zones generally associ-

ated with what has been termed as very low class dwell-

ings. These areas, representing about 6% of the total

residential area, are comprised mainly of adobe construc-

tion with no formal infrastructure. Formally planned areas

of high class dwellings tend to be located towards the

centre of the city. The largest zone of this dwelling type is

situated between the airport and a large recreational area in

the south of the city centre. The large area of housing

construction in the south of the recreational area is asso-

ciated with high class housing and administrative/com-

mercial functions. The high class dwellings area

corresponds to about the 8% of the residential area. Med-

ium and low class dwellings each make up around 17% of

the total residential area. It is important to highlight that

taking the entire Ouagadougou administrative area of 12

districts results in a rather low overall population density

(around 62.2 people/km2 in 2006). Population densities in

the main urban core are much higher, i.e. in the 5 districts

of the central Commune of Ouagadougou. The boundaries

of these districts are subject to change but are reported to

occupy around 520 km2 (John et al. 2012). Boundary

changes are affected by very high rates of urban and

population growth fueled by strong rural–urban migration.

This is expected to result in a population of 4.7 million by

2025 compared to only 110,000 in 1974 (John et al. 2012).

Indeed, the bare ground UMT shown in Fig. 9 (0.8% of the

Ouagadougou area) is specifically related to dwellings

under construction in 2009/2010. The amount of housing

construction is, however, expected to be larger due to

Fig. 8 Overlay of FP and IN areas for the case study spatial window
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Fig. 9 High level UMT map

for Ouagadougou covering

3051 km2 (2009–2010)
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informal construction activities which tend to operate in a

more piecemeal fashion.

3.8 Identification of flooding urban hotspots

by overlaying the TWI, UMT

and the population density

Three datasets, namely the TWI map of flood-prone areas,

the urban morphology units classified as residential and the

2006 geospatial census dataset for Ouagadougou have been

overlaid to delineate the residential flooding risk hotspots

and to estimate the exposure to flooding, expressed as the

estimated number of affected people. Figure 10b–d illus-

trates the delineated urban hotspots, obtained by overlaying

the residential UMT (Fig. 10a), the TWI maps

corresponding to various threshold statistics (obtained for

Case 3 in Table 1) and the geo-spatial dataset on popula-

tion density obtained from the census (2006). Table 4

below demonstrates the percentage of residential areas

potentially affected by flooding (the areal extent of hot-

spots represented in Fig. 10) with respect to the entire city

area.

Table 5 reports the results in terms of the percentage of

people potentially affected by flooding who live in the

residential area (the estimated number of people affected

by flooding normalized by the total population in the res-

idential area), for different estimates of the TWI threshold.

It can be observed from Tables 4 and 5 that there exists

a decreasing monotonic relationship between the TWI

threshold and the number of people potentially affected.
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Fig. 10 a Residential UMT; Urban residential flooding risk hotspots delineated for different TWI thresholds: b 16th percentile, c maximum

likelihood, d 50th percentile
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Therefore, based on the invariance property of per-

centiles (Jaynes 2003) when the mapping function is

strictly monotonic, the 16th percentile of the TWI thresh-

old translates into 84th percentile of the number of affected

people and vice versa (based on the strong assumption that

the uncertainty in the TWI threshold is the only source of

uncertainty in estimating the exposure to flooding). Finally,

the pie chart shown in Fig. 11 illustrates the percentage

breakdown of the areal extent of the residential flood hot-

spots (corresponding to sML equal to 20) in terms of dif-

ferent residential sub-classes. The same pie chart represents

the percentage breakdown also for people affected by

flooding since a constant population density of 62.2 people/

km2 is adopted in the calculation. It can be observed that

51% of the population in the flood-prone residential areas

lives in scattered settlements. This sub UMT type is

composed mainly of adobe structures that are particularly

vulnerable to flooding.

4 Summary and conclusion

Residential flooding risk hotspots in the city of Oua-

gadougou are delineated by overlaying three GIS-based

datasets, namely, the topographic wetness index (TWI), the

urban morphology types (UMT) and a population density

dataset. The flood-prone areas based on the TWI method

are identified by delineating the areas distinguished with

TWI larger than a certain threshold. This threshold can be

calibrated based on available information, such as histori-

cal flooding extent and/or inundation maps calculated for a

certain area within the basin. A probabilistic GIS-based

method is used for calculating the maximum likelihood

estimate and the 16th and 50th percentiles for the TWI

threshold based on both calculated inundation maps and

areal extents for a previous flooding event. Bayesian

parameter estimation is used to calibrate the TWI threshold

based on both the inundation maps and the areal extent of a

previous flood event for the same area within the basin.

The flood-prone areas delineated for various TWI

threshold statistics (e.g. sML, sML?) are then overlaid with

the UMT units identified as residential to identify the

hotspots and the areal extent of the UMT units potentially

affected by flooding. Integrating the population density as a

geo-spatial dataset, leads to estimation of the number of

people affected by flooding.

The Bayesian updating incorporating both the informa-

tion from the inundation map and the historical flooding

extent seems not to significantly affect the maximum

likelihood estimate (using information from only one of the

above-mentioned sources), although it leads to smaller

99% maximum likelihood intervals and a smaller disper-

sion. In other words, the information provided by the

inundation map and the areal extension of the 2009

flooding event seem to be consistent; at least in terms of the

delineation of the inundated areas. However, this is to be

expected as the information used for calibrating the TWI

Table 4 Exposure to flooding risk in terms of the estimated per-

centage of the residential area potentially affected by flooding with

respect to the entire city

sML (%) s16 (%) s50 (%) s�ML (%) sþML (%)

Case 1 2.0 18.3 3.9 3.3 0.8

Case 2 2.0 15.7 3.5 3.0 1.1

Case 3 2.2 9.4 2.3 2.8 1.3

Table 5 Exposure to flooding risk in terms of the estimated number

of inhabitants potentially affected by flooding with respect to the

number of inhabitants in the residential area

sML (%) s16 (%) s50 (%) s�ML (%) sþML (%)

Case 1 8.9 79.5 16.8 14.3 3.5

Case 2 8.9 68.0 15.1 12.8 4.8

Case 3 9.5 40.1 10.1 12.1 5.5

51%

Scattered settlements

6%

Very low class dwellings
16%

Low class dwellings

4%

High class dwellings

23%

Medium class dwellings

Fig. 11 Breakdown of the

residential flooding risk

hotspots in terms of area and

people affected by flooding
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threshold is coming from the same spatial window within

the basin.

The two measures of the false-negative and false-posi-

tive error in the identification of potentially flood-prone

areas by the TWI method provide quantitative evidence of

the (acceptable) level of approximation in the TWI method

(at least in the calibration spatial window). It can be

observed that the false-negative error term associated with

the maximum likelihood estimate of the TWI threshold is

generally very low in the spatial window used for the

calibration purposes (between 3 and 9%). The false posi-

tive error term is larger than the false negative term

(especially when the historical flooding extent is used as

data) and testifies the conservatism of the procedure in

delineating the flood-prone areas. However, also the false

positive error term is reduced when the TWI threshold is

calibrated based on both historical flooding extent and the

(calculated) inundation maps (less than 20%). Studying

these error terms identifies the maximum likelihood esti-

mates sML and sML? for the TWI threshold as the most

suitable estimates to use since both error terms associated

with them are acceptably low.

Differences in exposure characteristics have been

assessed for a range of different residential types. It can be

observed that the scattered settlements constitute around

50% of the residential buildings that are located in the

flood-prone areas in Ouagadougou.

It is estimated that between around 4% (50th percentile)

to 18% (16th percentile) of the total area of Ouagadougou

may be affected by flooding. Between 10% (50th per-

centile) and 40% (16th percentile) of the people who live in

the residential areas may be affected by flooding. Hence, it

is important to emphasize that considering uncertainty in

the TWI threshold leads to considerable differences in the

estimated exposure to flooding.

The application of the TWI method (with a fixed

threshold) implicitly assumes that the entire area of interest

can be characterized by the same TWI threshold. This

hypothesis has been verified in a previous work (De Risi

et al. 2014) for the specific case study, but generally rep-

resents a limitation to further investigate.

It is important to note that TWI is calculated based only

on topographic/contributing area information extracted

from a digital elevation model, which is a limitation of the

proposed procedure. In a natural basin, the topography of

the area plays a very important role in flood routing

(Pregnolato et al. 2016). In fact, the TWI as a proxy for

delineating potentially flood-prone areas works best in a

natural basin. Clearly, in an urbanized area, the buildings,

the drainage system and the road infrastructure will also

contribute to flood water routing and will help determine

the actual flood extents observed. In such cases, the TWI

will be a less precise means of delineating flood-prone

areas, and additional variables should be considered

(Tehrany et al. 2015; Jafarzadegan and Merwade 2017).

This might entail fitting multivariate probabilistic models

and using simulation-based approaches, such as Markov-

Chain Monte Carlo Simulation or Machine Learning pro-

cedures, to carry out the Bayesian inference. Nevertheless,

considering that Ouagadougou does not have a very dense

urban core and considering that the city has a large, rela-

tively under-developed peri-urban area, using the TWI as a

proxy for delineation of potentially flood-prone areas might

still be reasonable. In general, the procedure might not be

very accurate for small return periods for which the effect

of urban sewer system is more significant. In any case, the

TWI is considered herein as a proxy for delineation of

flood-prone areas with the objective of arriving at an

approximate but efficient means of delineating the hotspots

in terms of flooding risk. Once the hotspots are established,

one can use more detailed hydraulic procedures that per-

form flood routing considering the presence of infrastruc-

ture, for limited areas and not the whole city.

In short, TWI responds to the need for fast procedures

for flood hazard zoning in urban areas where the exposed

assets are usually concentrated. It is noteworthy that the

statistical backbone of the proposed procedure is still valid

if it is used with a proxy that is more suitable for urban

areas.

Arguably, having data corresponding to more flooding

events makes the probabilistic inference more robust. In

fact, adopting the Bayesian inference provides the possi-

bility of incorporating hybrid sources of information (e.g.,

accurate hydraulic calculations made for various parts of

the zone of interest and historical flooding extents corre-

sponding to different events and different spatial windows).

Furthermore, the adoption of Bayesian inference makes it

possible to implement such information adaptively and

gradually (i.e., as they become available). As a result, also

the maps of flood-prone areas and the flooding risk hotspots

can be updated as more information becomes available. As

the applications presented in this work illustrate, the pos-

terior distribution for the TWI threshold can be updated

adaptively. In such cases, the posterior distribution

obtained in the previous application becomes the new

informative prior. Using hybrid sources of information

such as the inundation maps obtained based on detailed

hydraulic calculations and flooding extents corresponding

to different historical events ensures that one avoids over-

fitting to a specific historical flooding event. In other

words, the power of the Bayesian approach is also in its

versatility in implementing hybrid sources of information

and the fact that it can be adaptively used to update the

probability distributions as more data is available.

Although there are some limitations, the results from this

study provide a promising foundation for high level
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screening of flood risk hotspots prior to more detailed

work. The specific results of this study may assist in

planning the development of the Ouagadougou adminis-

trative zone where flood risk data are limited and where

there is a rapid pace of change. In general, the proposed

procedure is suitable for obtaining a zero-level map of

flood-prone areas and delineating the flood risk hotspots—

as the first part of a multi-level risk assessment approach—

in the urban scale.
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