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Abstract 

Individual tree crowns can be delineated from dense airborne laser scanning (ALS) data and their 
species can be classified from the spatial distribution and other variables derived from the ALS data 
within each tree crown. This study reports a new clustering approach to delineate tree crowns in 
three dimensions (3-D) based on ellipsoidal tree crown models (i.e., ellipsoidal clustering). An im-
portant feature of this approach is the aim to derive information also about the understory vegeta-
tion. The tree crowns are delineated from echoes derived from full-waveform (fwf) ALS data as 
well as discrete return ALS data with first and last returns. The ellipsoidal clustering led to an im-
provement in the identification of tree crowns. Fwf ALS data offer the possibility to derive also the 
echo width and the amplitude in addition to the 3-D coordinates of each echo. In this study, tree 
species are classified from variables describing the fwf (i.e., the mean and standard deviation of the 
echo amplitude, echo width, and total number of echoes per pulse) and the spatial distribution of 
the clusters for pine, spruce, birch, oak, alder, and other species. Supervised classification is done 
for 68 field plots with leave-one-out cross-validation for one field plot at a time. The total accuracy 
was 71% when using both fwf and spatial variables, 60% when using only spatial variables, and 
53% when using discrete return data. The improvement was greatest for discriminating pine and 
spruce as well as pine and birch. 

Keywords: Canopy layers, individual trees, light detection and ranging (lidar), single tree detection, 
three-dimensional (3-D) model  

 
Introduction 

Airborne laser scanning (ALS) data are measurements 
of reflected laser pulses from the ground and other 
objects, among them vegetation elements. The most 
common type of ALS data is discrete return data. Dis-
crete return systems generally use a constant fraction 
discriminator to trigger on peaks that rise above a set 
threshold to record three or four peaks, often including 
the first and last returns, and generally include the 
amplitudes (i.e., intensities) of each return. Discrete 
return systems have a dead time between returns that is 
related to the length of the laser pulse. If the dead time 
is large, it degrades the range resolution [1]. Some 
ALS systems provide full-waveform (fwf) data. Fwf 
systems use a digitizer that samples the returned wave-
form (or forms, if there are multiple signals separated 
by periods below the threshold) and records the ampli-
tude of the reflected laser pulse at set intervals. Fwf 
data can be processed with more advanced methods 
than the discrete return detection to derive echoes (i.e., 
returns) for which also the echo amplitude and the 
echo width can be determined [2]. 

Forest inventory and vegetation analyses are important 
applications of ALS. This study presents a new method 
to delineate tree crowns in three dimensions (3-D) 
from ALS data to derive information about trees and 
larger shrubs, especially below the topmost canopy 
layer. Additionally, information derived from fwf ALS 
data is used for tree species classification of each deli-
neated tree crown. Finally, the benefit of fwf ALS data 
is investigated in comparison to discrete return ALS 
data with first and last returns for tree crown delinea-
tion and species classification. 
One common way to delineate individual trees is creat-
ing a surface model, most often a canopy height model 
(CHM; i.e., a raster where the cell values are the 
heights above the ground obtained from the highest 
echoes within each raster cell), identifying local max-
ima in the surface model and delineating the areas 
around the local maxima with, e.g., region growing [3] 
or watershed segmentation [4]. The delineation can be 
improved by using prior knowledge about the shapes 
and proportions of tree crowns. For example, the pro-
portions of the delineated segments may be restricted 
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from the relative proportions of tree crowns [3]. Tree 
delineation based on surface models using prior know-
ledge has performed well in comparison with other 
delineation methods [5]. 
Delineation based on surface models identifies most of 
the trees in the topmost canopy layer in coniferous-
dominated forests. However, lower trees and shrubs 
below the topmost canopy layer are often not identified 
due to occlusion from taller trees [4, 6]. In contrast, 
individual trees may also be delineated from ALS data 
with 3-D methods, e.g., k-means clustering of the ALS 
echoes with initial positions of the cluster centers set 
from local maxima in a surface model [7, 8]. Other 3-D 
approaches are to delineate tree crowns based on the 
mean shift algorithm [9] and to first determine an 
approximate number of tree stems clustering of the 
ALS data below the topmost canopy layer and then use 
the estimated stem number to delineate tree crowns 
with a normalized cut algorithm [10]. Although k-
means clustering may include prior knowledge about 
the proportions of the tree crowns, 3-D methods in-
cluding prior knowledge about the shape of the tree 
crowns have rarely been used [11]. 
Tree species classification of individual trees can be 
based on the height and amplitude distribution of the 
ALS data, the fit of a parabolic surface to the top of 
each delineated tree crown [12], or alpha shape metrics 
[13]. Even more accurate tree species classification can 
be achieved when including variables derived from fwf 
ALS data such as the echo width, the backscatter cross- 
section (i.e., the backscattering characteristics of a 
target depending on size, reflectivity, and the directio-
nality of scattering), and the total number of echoes 
within the tree crowns [14-16]. Tree species classifica-
tion has also been done for individual tree crowns 
delineated in 3-D based on amplitude and echo width 
from fwf ALS data [15]. 
In this study, individual tree crowns are delineated in 
3-D from fwf ALS data and discrete returns based on 
an initial segmentation of a surface model and using 
prior knowledge about the shapes and proportions of 
the tree crowns, so-called ellipsoidal tree model clus-
tering. A similar approach has been presented earlier 
[11]. However, the method in this study is an im-
provement of the former method and uses more infor-
mation derived from the segmentation of the surface 
model by defining the clusters in the topmost canopy 
layer directly from the echoes assigned to each seg-
ment instead of using conditional distances as in the 
previous method. Additionally, the method in this 
study has fewer parameters, which makes it more 
transparent regarding interacting parameters and means 
that there are fewer parameters to calibrate for different 
forest types. The tree crowns are delineated both from 
fwf echoes (i.e., echoes derived from fwf ALS data by 
post-processing) and discrete returns detected by the 

ALS system. Finally, the variables derived from the 
fwf echoes and discrete returns within each cluster are 
used for tree species classification. 

Materials 

Study Area 

The study area is located in hemi-boreal forest in the 
southwest of Sweden (Lat. 58°30’ N, Long. 13°40’ E). 
The main tree species are Norway spruce [Picea abies 
(L.)], Scots pine [Pinus sylvestris (L.)], and birch [Be-

tula pendula (L.) and Betula pubescens (L.)]. Other 
tree species are oak [Quercus robur (L.)], alder [Alnus 

glutinosa (L.)], maple [Acer platanoides (L.)], aspen 
[Populus tremula (L.)], rowan [Sorbus aucuparia (L.)], 
and other broadleaved trees. 

 
Fig. 1.  Study area in Sweden (58°30’ N, 13°40’ E) and 
positions of the field plots on a black and white aerial image. 

Field Data 

Data from the same field inventory have also been 
used in a previous study for estimation of 3-D vegeta-
tion structure from ALS data [17]. Sixty-eight circular 
field plots with 12 m radius were allocated during July 
and August 2009 (Fig. 1). The field inventory included 
only field plots where no forest management activities 
or other major changes of the vegetation had taken 
place during the last year. The field plot centers were 
measured using a survey grade differential GPS, which 
has provided a root-mean-square error of 0.27 m after 
post-processing in a separate validation. 

Within the field plots, the diameter at breast height 
(DBH) of all trees and shrubs with DBH ≥ 40 mm was 
measured using a caliper and the species was recorded. 
The positions of the trees and shrubs were measured 
relative to the plot center using an ultrasound instru-
ment with measurement accuracy of approximately 0.3 
m [18]. For a randomly selected sub-sample of trees, 
the height was also measured using a hypsometer. The 
heights of all trees were then estimated from DBH 
using a regression model (1) based on the sub-sample 
where tree height was measured. 
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ℎ𝑖 = 𝛼0 + 𝛼1 ln(𝐷𝐵𝐻𝑖) + 𝜖𝑖  (1) 

where hi is the height of tree i, DBHi is the DBH of 
tree i, and εi is the error term of the regression model. 
Separate models were used for spruce, pine, birch, and 
oak. Other deciduous tree species were included in the 
birch model. For the trees where the height was meas-
ured in the field, the field-measured values were used. 

The mean number of trees per hectare was 736 with a 
standard deviation of 495. The mean basal area-
weighted height (hBAW; i.e., the summed product of the 
tree heights times the areas of the tree stems at 1.3 m 
above the ground divided by the sum of the areas) was 
21.1 m with a standard deviation of 3.4 m. 

ALS Data 

The ALS data were acquired on September 4, 2008 
using a TopEye MKII ALS system with a wavelength 
of 1064 nm carried by a helicopter. The flying altitude 
was 250 m above ground, the footprint size was 25 cm, 
and the measurement density was 7 emitted pulses per 
m2 in average. The returned fwf was measured with a 
sampling frequency of 2 GHz with a maximum of 4 
byte samples. The resolution of the amplitude values 
was 8 bits. Additionally to the fwf data, the first and 
last discrete returns were also stored. Laser returns 
were classified as ground or non-ground using a pro-
gressive triangular irregular network (TIN) densifica-
tion method [19]. The ground returns were used 173 to 
derive a digital terrain model (DTM) with a spatial 
resolution of 0.5 × 0.5 m2. 

Methods 

Overview 

The first step of analyzing the ALS data was 
processing of the fwf signal to derive echoes and their 
attributes (Section III-B). The delineation of the tree 
crowns was done by segmentation of a correlation 
surface (CS) model for trees in the topmost canopy 
layer (Section III-C) followed by ellipsoidal tree model 
clustering of the ALS echoes in 3-D (Section III-D), 
both for trees corresponding to the segments from the 
surface model (i.e., in the topmost canopy layer) and 
for trees and larger shrubs below (Fig. 2). The segmen-
tation and clustering were performed for fwf echoes as 
well as discrete returns detected by the ALS system. 

Field-measured trees were assigned to the segments 
and clusters, respectively. Finally, the tree species of 
the delineated tree crowns were classified with super-
vised classification based on the spatial distribution 
and variables derived from the fwf of the ALS data 
within each tree crown (Section III-E). The success of 
the delineation was assessed based on the number of 
segments and clusters with an assigned field-measured 

tree within a certain distance (i.e., linked segments or 
clusters and trees, respectively) (Section III-F), and 
confusion matrices were calculated for the tree species 
classification. 

 
Fig. 2.  Overview of the methods. 

Fwf Signal Processing 

This processing was done to derive individual echoes 
for each fwf. Each ALS fwf y was decomposed into a 
sum of Gaussian components N(µ,σ) [2] (i.e., normal 
distributions where µ is the mean and σ is the standard 
deviation) (2) 𝑦� = ∑ 𝑝𝑠𝑁(𝜇𝑠,𝜎𝑠)𝑚𝑠=1  (2) 

The parameter ps corresponds to the echo amplitude, 
µ s corresponds to the position along the line of sight, 
and σs corresponds to the echo width. The emitted 
pulse of the TopEye MKII system has been found to 
resemble a Gaussian function in an earlier study [20]. 
A range-corrected amplitude as was calculated by 
multiplying ps with the squared distance to the scanner 
for each echo. The decomposition was done using the 
expectation–maximization (EM) algorithm [21] with 
the method described by Lindberg et al. [17]. The 
maximum number of echoes per pulse was set to five 
to comply with the LAS specification version 1.1 [22]. 

Segmentation of CS 

The aim of the segmentation was to establish one 
segment for each tree crown in the topmost canopy 
layer from the laser echoes (i.e., fwf echoes and dis-
crete returns). A thorough description of the segmenta-
tion can be found in the study by Holmgren et al. [23]. 
The segmentation method was based on geometric tree 
crown models [23] and rasters with 0.25 m cells. For 
each raster cell, the height of an ellipsoid surface was 
calculated from different geometric tree crown models 
(i.e., generalized ellipsoids). Correlation coefficients 
were calculated between the height of the ellipsoid 
surfaces and the height of the ALS echoes within the 
horizontal model radius. The CS was defined as the 
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highest correlation coefficient for each raster cell. The 
CS measures how well each raster cell represents a tree 
top. The CS was smoothed and delineated with wa-
tershed segmentation [23]. The result was delineated 
segments containing the tree crowns and horizontal 
center points corresponding to tree tops. The maximum 
height value (Hseg) of the ALS echoes within each 
segment was defined as the segment height. The 
echoes were assigned to the segment within which they 
were located. 

Ellipsoidal Tree Model Clustering 

The aim of the clustering was to establish one cluster 
for each tree crown in the topmost canopy layer and 
additionally one cluster for each tree crown and larger 
shrub below. The algorithm was based on k-means 
clustering [24] using ellipsoidal tree crown models. 
Each cluster was described by its 3-D center point and 
comprised the laser echoes assigned to it. The idea was 
that the cluster center should represent the 3-D mid-
point of the living crown. The clustering was done in 
two steps. In the first step, the laser echoes were as-
signed to different clusters based on the Euclidian 
distance between the laser echoes and the cluster cen-
ters. In the second step, an ellipsoid surface was fitted 
to each cluster and the laser echoes were reassigned to 
the different clusters based on a distance derived from 
the ellipsoid surface. Two categories of clusters were 
defined: 1) fixed clusters corresponding to tree tops 
already identified by segmentation of the CS; and 2) 
additional flexible clusters corresponding to trees 
below the topmost canopy layer that did not give rise 
to maxima in the CS. All constants were selected based 
on experience for the tree species and canopy condi-
tions in the study area.  

The fixed clusters were derived from the segments 
delineated from the CS. The horizontal coordinates of 
these cluster centers were set to the horizontal coordi-
nates of the segment centers (i.e., the horizontal posi-
tion of the maxima of the smoothed CS) and the vertic-
al coordinates were initially set to 2/3 × Hseg of the 
segments (i.e., the maximum height value of the ALS 
echoes within the segment), where the constant 2/3 is 
consistent with allometric relationships for spruce, 
pine, and birch [25]. Additionally, for the tree crowns 
below the topmost canopy layer, flexible cluster cen-
ters were placed at regular horizontal distances. The 
total number of cluster centers was initially set to 10 
times the number of delineated segments (i.e., the 
number of delineated segments plus nine times as 
many additional clusters). The regular distance was 
calculated to divide a circle with 40 m radius into 
quadratic grid cells corresponding to the defined num-
ber of clusters. The vertical coordinates of these cluster 
centers were initially set to half of the mean of Hseg of 
all segments within a radius of 40 m. The flexible 

cluster centers were allowed to move in 3-D, while the 
horizontal coordinates of the fixed cluster centers were 
fixed during the iterative clustering. 

Initially, laser echoes were assigned to a fixed cluster 
if they were located inside the corresponding segment 
that was delineated from the surface model and at least 
2.0 m above the DTM. For each fixed cluster, an ellip-
soid surface was fitted to the topmost laser echoes (xi, 
yi, zi) defined as the ALS echoes with no higher ALS 
echoes within a horizontal distance of 0.3 m and within 
two standard deviations from the mean height above 
the ground of the laser echoes. The ellipsoids were 
used in the subsequent clustering. The center of the 
ellipsoid was set to the cluster center (xj, yj, zj), and the 
maximum height of the ellipsoid (hEllipsoid,j) was defined 
as the difference between the topmost laser echo and 
the vertical center of the ellipsoid (3). The radius of the 
ellipsoid (rEllipsoid,j) was selected to minimize the sum of 
squared residuals εi 𝑧𝑗,𝑖 = 𝑧𝑗 + ℎ𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑,𝑗�1− (𝑥𝑖−𝑥𝑗)2+(𝑦𝑖−𝑦𝑗)2𝑟𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑,𝑗2 + 𝜖𝑖  (3) 

where zj,i is the height of the ellipsoid surface j (i.e., 
the fitted height) at the same horizontal position as 
laser echo i. 

The first step of clustering was k-means clustering 
with restricted cluster center positions. For each itera-
tion, laser echoes were assigned to the cluster center 
with minimum Euclidian distance dEuclidean (4), with the 
restriction that laser echoes assigned to one segment 
were not allowed to be assigned to a fixed cluster 
corresponding to a different segment 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛2 = �𝑥𝑖 − 𝑥𝑗�2 + �𝑦𝑖 − 𝑦𝑗�2 + �𝑧𝑖 − 𝑧𝑗�2(4) 

The center of each flexible cluster center was up-
dated to the mean of the laser echoes assigned to the 
cluster center if the new position was outside all ellip-
soids fitted for the fixed clusters. The vertical center of 
each fixed cluster center was updated to the of the laser 
echoes if the mean was ≥ 2/3 × Hseg.  

After completing the first step, ellipsoid surfaces 
were fitted to the topmost laser echoes assigned to all 
flexible clusters using (3) (i.e., hEllipsoid and rEllipsoid were 
estimated for each cluster). The second step of cluster-
ing used an ellipsoidal distance dEllipsoid based on the 
ellipsoid surface fitted for each cluster. For each itera-
tion, laser echoes were assigned to the cluster center 
with a minimum ellipsoidal distance dEllipsoid (5) 𝑑𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑2 =

�𝑥𝑖−𝑥𝑗�2+�𝑦𝑖−𝑦𝑗�2𝑟𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑2 +
�𝑧𝑖−𝑧𝑗�2ℎ𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑2  (5) 

The center of each cluster center was updated with 
the same restrictions as in the first step, and ellipsoid 
surfaces were refitted to the topmost laser echoes as-
signed to all flexible clusters. 

Finally, flexible clusters were merged pair-wise if the 
new cluster resulted in a smaller sum of squared resi-
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duals εi of the fitted ellipsoid surface in (3). For each 
cluster, the candidate for merging was the closest flex-
ible cluster and the merging started from the tallest 
cluster and proceeded downwards. An example of ALS 
data in a 2-m wide and 60-m long transect is shown in 
Fig. 3 together with the clusters to which the data were 
assigned. 

 
Fig. 3.  An example of ALS data in a 2 m wide and 60 m long 
transect with data assigned to clusters inside rings. Echoes 
close to the ground are excluded. Clusters that are in front of 
each other in the viewing direction appear as overlapping. 
Data shown as crosses are assigned to clusters outside of the 
transect. 

Tree Species Classification 

For each cluster delineated from fwf echoes, va-
riables (i.e., summary values for each cluster) were 
derived from the assigned fwf echoes to describe the 
spatial and fwf properties. The spatial variables were 
as follows.  

1) The height of the ellipsoid surface (hEllipsoid).  
2) The mean normalized height (i.e., height above 

DTM; hmean).  
3) The 10th, 20th, . . . , and 90th percentile of the nor-

malized height (h10, h20, . . . , and h90).  
4) The total spatial variance (XYZvar).  
5) The height and radius of a parabolic surface fitted 

to the topmost laser echoes (hPar and rPar).  
6) The ratio between the number of laser echoes as-

signed to the cluster relative to the total number of 
laser echoes within a cylinder with radius equal to the 
root mean square of the horizontal distance to the 
cluster center (pEllipsoid).  

7) The ratio between the number of laser echoes on 
the surface of a convex hull around the cluster relative 
to the total number of laser echoes assigned to the 
cluster (pConvex).  

8) The number of echoes (ntot).  
The variables with length unit (i.e., the heights and 

widths) were divided by hEllipsoid. The fwf variables 
were the mean and standard deviation of the range-
corrected amplitude of the first echoes (amean and astd), 

echo width (σmean and σstd), and number of echoes per 
pulse (mmean and mstd).  

The clusters linked to field-measured trees were used 
for tree species classification with linear discriminant 
analysis (LDA). The classified species were pine (P), 
spruce (S), birch (B), oak, alder (A), and other species 
(O). Two different models were used. The first model 
included only spatial variables and the second model 
included both spatial and fwf variables. A logarithmic 
transformation was applied for variables that were not 
normally distributed to fulfill the conditions of the 
LDA. Only variables with correlation 0.9% to each 
other were included in the models. 

The final selections of variables were as follows. 
Spatial variables only: 
hEllipsoid, hmean, h30, h60, h90, XYZVar, hPar, rPar, pEllipsoid, 

pConvex, ntot,mmean, and mstd 
Spatial and fwf variables: 
hEllipsoid, hmean, h30, h60, h90, XYZVar, hPar, rPar, pEllipsoid, 

pConvex, ntot, amean, astd, σmean, σstd, mmean, and mstd 
As a comparison, the tree species classification was 

also performed for spatial variables of the clusters 
delineated from discrete returns. 

Validation 

The field plot center positions and the orientation of 
the trees relative to the plot centers might contain 
errors. Due to this, correction was applied to the tree 
positions in the field data based on the segments [26].  

After the correction, the clusters i were linked to the 
field measured trees j based on the distance dij (6) 𝑑𝑖,𝑗 = �𝑟𝑥𝑦2 + �𝑟𝑧3�2 (6) 

where rxy is the horizontal distance and rz is the ver-
tical distance between the maximum cluster height and 
the tree top. 

The vertical distance was down-weighted due to less 
accurate field measurement of the tree height than the 
horizontal tree position. This also accounted for addi-
tional tree height errors, due to that almost one growth 
season separated the field inventory and the ALS data 
acquisition. A cluster and a field-measured tree were 
linked only if dij was less than 1.5 m + 2 × DBH to 
allow for positioning and height errors. The pairs were 
linked in order of increasing dij and only one field-
measured tree or cluster was linked to each cluster or 
tree (i.e., one-to-one linking). 

The number of linked clusters and field-measured 
trees was counted. Only clusters inside a field plot and 
at least 2 m from the boundary (i.e., inside a buffer 
zone within the field plot) were included. The proce-
dure for the segments was similar as described for the 
clusters. The tree species classification was done with 
leave-one-out cross-validation for one field plot at a 
time: 1) one field plot was excluded from the dataset; 
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2) the models were estimated based on the clusters and 
field-measured trees in the remaining field plots; and 
3) the resulting model was used to classify the clusters 
in the excluded field plot. 

Results 

The ellipsoidal tree model clustering resulted in the 
greatest number of linked field-measured trees both for 
fwf echoes and first and last discrete returns (Table 1). 
However, it also resulted in a greater number of deli-
neated tree crowns that could not be linked to any 
field-measured tree (i.e., commission errors). Slightly, 
more small field-measured trees (i.e., with a DBH < 20 
cm) could be linked to clusters from the ellipsoidal 
clustering than to segments delineated from the CS 
(Fig. 4). More field-measured trees could be linked to 
clusters and segments delineated from fwf echoes than 
from first and last discrete returns, but the number of 
clusters and segment to which no field-measured trees 
could linked was also greater. The total number of 
field-measured trees in the field plots was 2263.  

 

TABLE 1 THE NUMBER OF LINKED TREES, CLUSTERS 

AND SEGMENTS; WAVEFORM ECHOES AND DISCRETE 

RETURNS. 

Method 

Linked trees 
in field plots 

Linked 
clusters/ 
segments in 
buffer zones 

Clusters/ 
segments in 
buffer zones 

Ellipsoidal clustering 
waveform echoes 

   

1193 
(52.7%) 

788 (49.9%) 1579 

Segmentation wave-
form echoes 

   

1143 
(50.5%) 

770 (53.0%) 1454 

Ellipsoidal clustering 
discrete returns 

   

1121 
(49.5%) 

748 (54.7%) 1368 

Segmentation discrete 
returns 

1102 
(48.7%) 

738 (54.3%) 1360 

 

 
Fig. 4.  The DBH distributions (log values) for waveform 
echoes and results from segmentation of the CS and ellipsoid 
clustering. 

The distributions of variables derived from the fwf 
echoes (Section III-E) were generated for the different 
tree species (Fig. 5). The least overlap was found be-
tween pine and deciduous tree species, in particular for 
the standard deviation of the echo amplitude and the 
mean and standard deviation of the total number of 
echoes per pulse.  
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Fig. 5.  Tree species differences in the probability distribution 
of selected fwf variables. 

The tree species classification was more accurate 
when both fwf and spatial variables were included 
(Table 2; overall accuracy 0.71) than when only spatial 
variables were used (Table 3; overall accuracy 0.60). 
The improvement was greatest for discriminating pine 
and spruce as well as pine and birch. The biggest dif-
ference was found for pine also when using discrete 
return data (Table 4; overall accuracy 0.53). 

 
 

TABLE 2 CONFUSION MATRIX WHEN USING SPATIAL 

AND FWF VARIABLES. THE CLASSIFIED SPECIES WERE 

PINE (P), SPRUCE (S), BIRCH (B), OAK, ALDER (A) AND 

OTHER SPECIES (O). 

 
Field-measured tree species 

T
ot

 n
um

. 

U
se

r’
s 

ac
c.

 

P. S. B. Oak A. O. 

P. 186 7 19 1 5 1 219 0.85 

S. 16 235 60 3 10 6 330 0.71 

B. 8 37 120 1 16 4 186 0.65 

Oak 0 2 4 0 0 4 10 0.00 

A. 0 1 4 1 0 1 7 0.00 

O. 0 6 5 7 2 17 37 0.46 

Tot 
num. 

210 288 212 13 33 33 789  

Prod
. acc. 

0.89 0.8
2 

0.5
7 

0.0
0 

0.0
0 

0.5
2 

 0.71 

 

TABLE 3 CONFUSION MATRIX WHEN USING SPATIAL 

VARIABLES ONLY. 

 
Field-measured tree species 

T
ot

 n
um

. 

U
se

r’
s 

ac
c.

 

P. S. B. Oak A. O. 

P. 155 27 32 5 8 8 235 0.66 

S. 41 209 66 2 8 6 332 0.63 

B. 12 41 105 3 16 14 191 0.55 

Oak 1 1 1 0 0 1 4 0.00 

A. 0 0 3 0 0 0 3 0.00 

O. 1 10 5 3 1 4 24 0.17 

Tot 
num. 

210 288 212 13 33 33 789  

Prod. 
acc. 

0.74 0.73 0.50 0.00 0.00 0.12  0.60 

 

TABLE 4 CONFUSION MATRIX WHEN USING DISCRETE 

RETURNS. 

 
Field-measured tree species 

T
ot

 n
um

. 

U
se

r’
s 

ac
c.

 

P. S. B. Oak A. O. 

P. 95 33 44 1 9 6 188 0.51 

S. 46 189 46 1 4 9 295 0.64 

B. 48 38 103 6 8 10 213 0.48 

Oak 0 0 0 0 0 3 3 0.00 

A. 6 2 7 0 5 4 24 0.21 

O. 0 14 5 1 2 4 26 0.15 

Tot 
num. 

195 276 205 9 28 36 749  

Prod. 
acc. 

0.49 0.68 0.50 0.00 0.18 0.11  0.53 
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Discussion 

The tree species classification was more accurate for 
tree crowns delineated from fwf data than those from 
discrete returns. More field-measured trees could be 
linked to clusters and segments delineated from fwf 
echoes than from discrete returns. The comparison is 
limited to discrete return ALS data with first and last 
returns. Some ALS systems are able to detect more 
than two returns [e.g., 27], which results in more mea-
surements of the canopy. Such data might work as well 
as fwf data for tree crown delineation, although this 
study has not investigated this. However, ALS systems 
with first and last returns only are still common. For 
the fwf data, the maximum number of echoes per pulse 
was set to five. A test with the maximum number of 
echoes per pulse set to 10 gave no notable difference in 
the results. The fwf ALS data included in this study 
also made it possible to examine the echo amplitude 
and echo width for different tree species. The tree 
species showed a difference in the distributions of the 
amplitude, the total number of echoes per pulse, and 
the echo width, which is consistent with earlier studies 
[14, 15]. The amplitude represents the intensity of the 
reflected light, whereas the echo width represents the 
extent of the echo along the beam. Pine showed lower 
mean amplitude and lower mean echo width than deci-
duous tree species, which may be due to that pine 
reflects less light because of spectral and geometrical 
properties and has a less extended tree crown. Addi-
tionally, pine showed a smaller number of echoes for 
each tree crown than the other tree species, which may 
be due to that pine has fewer main branches than 
spruce and deciduous tree species. The results suggest 
that tree species classification is feasible with this 
approach. Pine and spruce can be partly discriminated 
from the spatial distribution of the laser echoes [12, 
13]. The variables from fwf data provided additional 
possibilities to discriminate pine from spruce and 
birch. 

The ellipsoidal tree model clustering was based on 
the principle of using the information that can be de-
rived about the trees in the topmost canopy layer from 
segmentation of a surface model and deriving addi-
tional information about lower trees and larger shrubs 
below the topmost canopy layer with 3-D clustering 
including prior knowledge about the shapes and pro-
portions of the tree crowns. Compared to an earlier 
approach [11], the clustering used more information 
derived from the segmentation of the surface model 
and had fewer parameters (i.e., three parameters in-
stead of 10) and fewer special conditions, since ellipso-
ids were the basis of all clusters and the distances were 
no longer set depending on different conditions. The 
ellipsoidal clustering was tested in a hemi-boreal for-
est. It still remains to apply the algorithm to other 
forest types. 

More field-measured trees could be linked to clusters 
than to segments from the surface model. A higher 
measurement density or penetration rate (e.g., by using 
a greater scan angle) could increase the number of 
identified trees. However, the ellipsoidal clustering 
also resulted in a greater number of clusters to which 
no field-measured trees could be linked. Those clusters 
probably corresponded to parts of trees or small trees 
and shrubs that were not included in the field data or 
that had positioning errors greater than the limit which 
was used. Another reason for erroneous clusters might 
be that the ellipsoidal tree crown model was unsuitable 
for the laser echoes sampled from trees and shrubs 
below the topmost canopy layer. Ellipsoidal models 
have been suggested to be suitable for tree crowns, 
since they are intermediate shapes between cones and 
spheres [28] and they fulfill some common properties 
of tree crowns since they are symmetrical around a 
vertical axis and vertically elongated. Other 3-D me-
thods also typically divide the ALS data into groups 
based on a distance measure and result in tree crowns 
with certain geometrical shapes even if it is not expli-
citly defined [9, 10]. 

The ellipsoidal models have the advantage of being 
straight-forward to implement with few calculations 
(i.e., beneficial for processing time). The clusters could 
be adapted to have a more peaked or egg-shaped top, 
but this would require additional parameters. The 
ellipsoidal distance used in the clustering down-
weighted the distance to large clusters for each laser 
echo, thus allowing for larger trees to have longer 
branches. The horizontal and vertical distances were 
weighted based on the proportions of the ellipsoid 
clusters, thus adapting the distance to the proportions 
of each tree crown. The surface model delineation used 
in this study was also based on ellipsoidal tree models 
and has provided good results in comparison with other 
methods for tree crown delineation in earlier studies 
[5]. This suggests that also the ellipsoidal tree model 
clustering performs well. The use of prior knowledge 
about the tree crowns has been beneficial for segmen-
tation of surface models, and the approach in this study 
combines 3-D modeling and prior knowledge, which 
means that also trees below the topmost canopy layer 
can be delineated. 

Conclusion 

Delineation of tree crowns based on fwf ALS data 
identified more trees than when the delineation was 
based on discrete return ALS data with first and last 
returns. However, it also resulted in a greater number 
of delineated tree crowns that did not correspond to 
any field-measured tree. The ellipsoidal clustering 
identified more trees than an established surface seg-
mentation method. For discrete return data, a greater 
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number of delineated tree crowns were linked to a 
field-measured tree, but for fwf data a smaller number 
were linked. 

This study is one of the few that have compared tree 
species classification from fwf and discrete return ALS 
data this far. The classification was more accurate for 
fwf data with the biggest improvement found for pine. 
The comparison is limited to discrete return ALS data 
with first and last returns. Additionally, tree species 
classification was more accurate when including va-
riables derived from fwf than when using only va-
riables describing the spatial distribution. The im-
provement was greatest for discriminating pine and 
spruce as well as pine and birch. 
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