

Open access • Journal Article • DOI:10.1097/CCM.0B013E31822E9FC9

Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. — Source link [2]

Mark van den Boogaard, Lisette Schoonhoven, Andrea W M Evers, Johannes G. van der Hoeven ...+2 more authors

Institutions: Radboud University Nijmegen Medical Centre

Published on: 01 Jan 2012 - Critical Care Medicine (Crit Care Med)

Topics: Intensive care, Delirium, Intensive care unit and Quality of life (healthcare)

Related papers:

- · Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit
- · Delirium as a predictor of long-term cognitive impairment in survivors of critical illness
- Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU).
- Long-Term Cognitive Impairment after Critical Illness
- Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/110811

Please be advised that this information was generated on 2022-05-30 and may be subject to change.

Delirium in critically ill patients: impact on long-term health related quality of life and cognitive functioning

Mark van den Boogaard, RN, MSc¹, Lisette Schoonhoven, RN, PhD², Andrea W.M. Evers PhD³, Johannes G. van der Hoeven MD, PhD^{1,4}, Theo van Achterberg, RN, PhD², Peter Pickkers MD, PhD^{1,4}.

¹ Department of Intensive Care Medicine

² Scientific Institute for Quality of Healthcare

³ Department of Medical Psychology

⁴ Nijmegen Institute for Infection, Inflammation and Immunity (N4i)

Radboud University Nijmegen Medical Centre

The Netherlands

Corresponding author:

Mark van den Boogaard Radboud University Nijmegen Medical Centre Department of Intensive Care P.O. box 9101, internal post 685 6500HB Nijmegen The Netherlands

e-mail address: m.vandenboogaard@ic.umcn.nl

Grants:	None
Running head:	Long-term quality of life and cognitive effects in critically ill patients
	with delirium
Electronic word count:	2781 (exclusive abstract (282 words), legend, figure and table).
Keywords:	Delirium, cognition, health related quality of life, critical care,
	intensive care

Abstract

Objective: To examine the impact of delirium during their ICU stay on long-term health related quality of life (HRQoL) and cognitive function (CF) in ICU survivors.

Design: Prospective 18 month follow-up study.

Setting: Four ICU-units of a university hospital.

Patients: A median of 18 months after ICU discharge, questionnaires were sent to 1292 ICU survivors with (n=272) and without (n=1020) delirium during their ICU stay.

Measurements and Main Results: The short form-36v1 (SF-36), checklist individual strength (CIS-)fatigue and cognitive failure questionnaire (CFQ) were used. Covariance analysis was performed to adjust for relevant covariates. Of the 915 responders, 171 patients were delirious during their ICU stay (median age 65 [IQR 58-85], APACHE-II score 17 [IQR 14-20]), and 745 patients were not (median age 65 [IQR 57-72], APACHE-II score 13 [IQR 10-16]). After adjusting for covariates, no differences were found between delirium and non-delirium survivors on the SF-36 and CIS-fatigue. However, survivors who had suffered from delirium reported that they made significantly more social blunders and their total CFQ score was significantly higher compared to survivors who had not been delirious. Survivors of a hypoactive delirium subtype performed significantly better on the domain mental health than mixed and hyperactive delirium patients. Duration of delirium was significantly correlated to problems with memory and names.

Conclusions

ICU survivors with delirium during their ICU stay had a similar adjusted health related quality of life evaluation, but significantly more cognitive problems than those who did not suffer from delirium, even after adjusting for relevant covariates. In addition, the duration of delirium is related to long-term cognitive problems.

Introduction

Delirium is a disorder that frequently occurs in ICU patients (1-3) and is recognized as acute brain dysfunction with changes in consciousness and cognition which fluctuate during the day (4). This disorder is associated with serious health problems and long-term cognitive impairment (5;6). Generally, without distinguishing between delirium and non-delirium patients, 25 to 78% of ICU patients experience cognitive impairments after discharge from the ICU (7) emphasizing the need for more attention in the period following critical illness. There is a growing interest in Health Related Quality of Life (HRQoL) after ICU discharge (8-13). HRQoL questionnaires are usually subdivided into dimensions relating to physical, mental and social functioning. It is recognized that the value of measurements of cognitive functioning with a general HRQoL questionnaire is limited in this setting and specific surveys measuring patients cognitive functioning, such as the validated self-reporting cognitive failure questionnaire (CFQ) (14), have been developed.

Only two studies have examined the impact of delirium on HRQoL in ICU survivors (6;13). These studies were rather small, relatively short with a maximum follow-up of 3 and 12 months, and no analyses of the delirium subtypes were performed (6;13). A significant difference between delirium and non-delirium patients in role-physical function, which mostly reflects functioning in daily activities, was reported (13), however no correction for disease severity was performed (13). This implies that these findings could be the result of an epiphenomenon. The duration of delirium during patients' ICU stay was associated with their observed impaired cognitive performance (6). Little is known about the long-term (>1 year) effects of delirium on aspects of the HRQoL in this specific group of patients. In addition, it is unknown if there are differences in HRQoL (including cognitive function) for subtypes of delirium (3) and if there is a correlation between the duration of delirium and HRQoL.

Therefore the aim of this study was to compare the health related quality of life, including selfreported cognitive functioning, in ICU survivors with delirium during their ICU stay with those that did not suffer from delirium, after a median of 18 months after ICU discharge. Furthermore, we examined the correlations between duration of delirium and HRQoL and if subtypes of delirium exerted different effects on HRQoL.

Material and Methods

Subjects

All consecutive patients admitted to the intensive care unit of the Radboud University Nijmegen Medical Centre between February 2008 and February 2009 were screened for delirium three times a day with the confusion assessment method (CAM)-ICU (1;15) by well trained ICU nurses (16). In February 2010, after a median duration of 18 months after ICU discharge, we evaluated the health related quality of life of the surviving patients. The regional Medical Ethical Committee approved the study (study number 2010/008) and waived the need for informed consent, since the objective of this study was to evaluate regular patient care.

Procedures

All ICU patients were included in this study except those: admitted for less than 1 day; suffering from sustained coma on the ICU; with serious auditory or visual disorders; who were unable to understand Dutch; who were severely mentally disabled; suffering from a serious receptive aphasia or whose delirium screening was not complete during their ICU stay. Patients were diagnosed with delirium when they had at least one positive CAM-ICU screening during their complete ICU stay, as previously described (17;18). To secure the quality of the delirium diagnosis medical and nursing files of all patients were also screened daily for signs of delirium (19). When the files contained signs of delirium without a positive CAM-ICU screening or conversely, patients were additionally screened by a delirium expert according to the DSM-IV criteria (20) to rule out false negatives and positives. In total 17 patients (1.1%) were additionally screened this way by a delirium expert. Patients with delirium were divided in three subtypes (3): hyperactive delirium subtype with symptoms of hyper alertness and agitation (RASS +1/+4), hypoactive subtype in which the patient is hypo alert, lethargic (RASS 0/-3), and the alternating or mixed subtype (RASS +4/-3). This last subtype of delirium is characterised by alternating symptoms of hyperactive and hypo active delirium.

Demographic variables as well as data of severity of illness, delirium duration and delirium subtype of these patients were collected.

At median 18 months after ICU discharge, an HRQoL survey was sent out to the cohort of ICU survivors. Four weeks after this a reminder letter was sent to the non-responders. We used three different validated instruments to measure the HRQoL. We will refer to these three tests as the HRQoL. Although there is no specific HRQoL instrument for ICU-patients, recommended instruments for ICU patients are the short form-36 (SF-36) and the EuroQoL-5D (21). We used the validated Dutch version of the short form-36 (SF-36) version 1 (22) containing 8 multi-item dimensions: physical functioning (PF), role-physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role-emotional (RE) and mental health (MH). Aggregated summary scores were calculated for physical and mental functioning expressed in physical component score (PCS) and mental component score (MCS), respectively. To calculate the PCS and MCS we used the standardized Dutch population scores (23). In line with the SF-36 Health Survey Manual (24) missing values were imputed, data were recoded and subsequently scored (range 0 to 100). A higher score indicates a higher level of functioning. Additionally, the shortlist of the Dutch validated checklist individual strength-fatigue (CIS-fatigue), consisting of 8 questions scoring on a 7 point Likert scale (25), was used. The range of the CIS-fatigue is 8-56, a higher score indicating more pronounced fatigue. The third instrument was the validated Dutch translation (26) of the cognitive failure questionnaire (CFQ) which is a self-reported cognitive functioning questionnaire. This questionnaire consists of 25 questions (14). The selfreported CFQ measures consists of four dimensions (27) of cognition: memory, distractibility, social blunders and names. Each question of the CFQ was scored on a 5-point Likert scale. The total score on the CFQ ranges from 0-100, a higher score indicates more self-reported cognitive dysfunctioning. Thus, our self-reported HRQoL survey consisted of a total of 69 questions which took an estimated 45-60 minutes to answer.

To guarantee the patient's privacy, the survey was sent out anonymously and numbered. This allowed the primary and supervising investigator to match the returned survey with the patient's registry number in a separate confidential database.

Statistical analyses

The differences between those who suffered from delirium and non-delirium ICU survivors were tested non-parametrically using the Mann-Whitney U test. Dichotomous variables were tested with the Chi-square test. Since the results of our HRQoL were non-normally distributed, log transformation of all HRQoL data was carried out successfully, and the duration of delirium was divided into quartiles resulting in normally distributed outcome measurements. The correlation between duration of delirium divided into quartiles and the log transformed HRQoL was tested using Pearson's correlation coefficient. Significant differences in demographic variables between non-delirium and delirium patients and differences between the delirium subtypes were considered as covariates and a multivariate analysis of covariance (MANCOVA) was performed. Since there was no difference in age between delirium and non-delirium responders in our population, adjusting for age was not necessary. In view of the explorative nature of this study, and to increase its sensitivity, no correction for multiple testing was performed.

Statistical significance was defined as a *P*-value < 0.05. All data were analyzed using SPSS version 16.01 (SPSS, Chicago, IL).

Results

At the median of 18 months prior to this HRQoL survey, in total of 1613 consecutive patients who fulfilled the inclusion criteria were admitted (figure 1). In this group 1202 patients had no delirium and 411 were delirious during their ICU stay. Overall 183 patients died, of whom 58 (5%) had not been delirious and 80 (19%) had. The hypoactive delirium subgroup had a similar number of survivors as compared to the mixed subgroup, while survival was significantly higher (p=0.02) in the hyperactive subgroup (figure 1), median 18 months after ICU discharge. In total 55 patients were admitted to the ICU more than once and 14 patients were lost to follow-up.

In total, there were 1292 ICU survivors (figure 1) of whom 272 patients (21%) suffered from delirium during their ICU stay and 1020 patients did not. In the delirious group 7 patients (3%) with a hyperactive subtype of delirium had one positive CAM-ICU screening and 264 patients had at least two positive CAM-ICU's during their ICU stay. Median 18 months [IQR 15-21] after ICU discharge a total of 915 out of the 1292 eligible patients (71%) returned the questionnaire. Of these responders 171 out of 272 (63%) patients suffered from delirium during their ICU stay and 744 out of 1020 (73%) did not. 788 survivors completed all questionnaires, 91% completed the SF-36, 98% completed the CIS-fatigue and 97% answered all the questions of the CFQ. The demographic data and illness-related characteristics of the responders and non-responders are illustrated in table 1. Responders with delirium during their ICU stay were significantly more likely to be admitted for urgent reasons and for sepsis, were more likely to be female than male, had a higher APACHE II score and their ICU and hospital length of stay was significantly longer compared to patients that did not develop delirium during their ICU stay (table 2).

Differences between delirium and non-delirium patients on HRQoL

Short Form-36

Eighteen months [median 18, IQR 15-21] after ICU discharge patients with delirium during their ICU stay rated their quality of life lower on all dimensions of the SF-36 and the physical and mental component scores compared to patients who did not have delirium (table 3). However,

when adjusted for the covariates APACHE-II score, sepsis, ICU length of stay, gender and urgent admission, no statistically significant differences between groups remained. The results of our ICU survivors were worse on several domains of the SF-36 compared with an age-adjusted general Dutch population (table 3) and are in line with those of others (10).

Checklist Individual Strength-fatigue

Patients who suffered from delirium experienced more problems with physical exertions expressed in a higher total CIS-score compared to the non-delirium patients (table 3). Again, after adjusting for covariates, no significant differences in the CIS scores between the two groups remained.

Cognitive Failure Questionnaire

The delirium survivors reported more pronounced cognitive failure on all measured cognitive dimensions compared to patients who did not suffer from delirium. Even after adjusting for covariates this difference between the groups persisted. Adjusted for covariates, patients who had previously had delirium tended to experience more problems with their memory (P=0.08). Overall, their total self-reported cognitive function was significantly impaired. In addition, patients with delirium reported significantly more long-term problems with memory and concentration after ICU discharge than before when compared with non-delirium patients (table 3).

Duration of delirium and HRQoL

The median duration of delirium was two days [IQR 1-7, range 1-69 days]. The delirium duration was significantly correlated with the dimensions 'memory' (r 0.21; P=0.01) and 'names' (r 0.18; P=0.04) of the CFQ. This indicates that a longer duration of delirium is related to more pronounced problems in memory and remembering names. No other statistically significant correlations between duration of delirium and the dimensions of the SF-36 and CIS-fatigue were found.

Differences in HRQoL between subtypes of delirium

There were no differences between the subgroups of delirium concerning age, APACHE-II score, gender and sepsis. However, there were significant differences between the delirium subtypes on admission type admission to the ICU for urgent reasons, ICU- and in-hospital length of stay (table 4). These variables were considered as covariates. In the unadjusted database, survivors of a hypoactive delirium subtype evaluated their HRQoL on several dimensions higher compared with hyperactive and mixed delirium survivors. After adjusting for the covariates patients who had a hypoactive delirium evaluated their mental health significantly better than those who suffered from a mixed or hyperactive delirium subtype (P=0.01 and P=0.04, respectively).

We found no other significant differences in the SF-36, CIS-fatigue and CFQ tests between the subtypes of delirium. Taken together, the three subgroups of delirium suffered more extensive cognitive impairment compared to the patients without delirium during their ICU stay.

Discussion and conclusion

We demonstrated that median 18 months after ICU discharge there was no difference between patients with delirium and non-delirium patients on all domains of the SF-36 and the CIS-fatigue, adjusted for relevant covariates. However, patients who suffered from delirium during their ICU stay experienced significantly more cognitive problems than those who did not, even after adjusting for covariates. Moreover, delirium duration was significantly correlated to problems with memory and names. Interestingly, after adjusting for relevant covariates survivors with a hyperactive or mixed subtype of delirium qualified their mental health on the SF-36 as significantly worse than the hypoactive delirium patients.

Delirium is recognized as a frequent disorder with serious short-term health related problems and is associated with longer hospital length of stay and increased mortality rates (5;28-31). Furthermore, in long-term studies it is recognized that hospitalized, non-ICU, patients with delirium suffer from persistent cognitive impairment (32;33). Also, ICU patients suffer from persistent cognitive impairment (32;33), Also, ICU patients suffer from persistent cognitive impairment follow-up (7;34;35), but in these studies no distinction between delirious and non-delirious patients was made. A long-term ICU study that distinguished between delirious and non-delirious patients showed that, in addition to role functioning, there was no statistically significant difference between either group (13) while in another long-term study it was observed that duration of delirium was independently associated with more pronounced cognitive impairment (6). Definite conclusions cannot be drawn from these relatively small studies, because they used a more restricted HRQoL survey (13), their maximum follow-up duration was 12 months (6;13), they mainly focused upon cognitive impairment (6) and made no adjustments for relevant covariates (13). This last point is of particular concern as more severely ill patients have a higher incidence of delirium and long-term impairments which may not be related to each other (28).

The strength of the present study is that we used a set of validated questionnaires, such as the SF-36, which is the preferred choice for the post ICU setting (21). In addition, because of the large sample size we were able to correct for covariates and the longer follow-up emphasizes the clinical relevance of the observations.

Overall and consistently, each group of delirium subtype evaluated their cognitive functioning lower than the patients who did not suffer from delirium during their ICU stay. In our study we found that patients who suffered from a hypoactive delirium evaluated their HRQoL on several domains of the SF-36 as less affected than the hyperactive or mixed subtype delirium patients. After adjusting for relevant covariates the domain mental health remained significantly better in hypoactive delirium survivors. The hypoactive subtype is associated with a higher mortality rate (36;37), a finding that we confirmed in our study and this may have biased the results to some extent.

Our findings of prolonged cognitive impairment in ICU survivors who suffered from delirium corroborate the results of a recent meta-analysis that showed that hospitalized (non-ICU) patients with delirium have a significantly increased risk of developing dementia (38). Our results that duration of delirium correlates with prolonged cognitive problems further extends the reported effects in 77 patients 12 months after their ICU stay (6) and illustrates its clinical importance. This may indicate that interventions aimed at reducing delirium incidence and/or shortening its duration may produce long-term beneficial effects. This has not been studied yet. We wish to acknowledge several study limitations. Firstly, it is intrinsic to long-term research in this patient group that the most severely ill may not be alive 18 months after their ICU discharge. As the occurrence and duration of delirium is related to increased mortality (28;30;39) and the cognitive impairments recover in time (6) this may result in an underestimation of the effects of delirium on cognitive impairment in a long-term study such as ours. This implies that the correlation between duration of delirium and HRQoL and cognitive impairment could be underestimated in our population. Secondly, we diagnosed delirium on minimal one positive CAM-ICU screening during patients ICU stay. One could argue that it is better to use at least two consecutive positive CAM-ICU screenings to diagnose delirium. However, in all guidelines and delirium protocols we are aware of, patients are treated when they meet the criteria of delirium. This is the case following one positive CAM-ICU screening. According to our intensive care delirium protocol patients are treated with haloperidol when a patient has at least one positive CAM-ICU screening. This early treatment with haloperidol may result in negative following CAM-ICU's. Therefore to include patients with two or more positive

CAM-ICU scores may underestimate the presence of delirium in successfully treated patients (with haloperidol). To not recognize these patients as delirium patients is in our opinion not correct and not in line with daily practice. In addition, in total only 7 out of the 171 responding patients with a delirium had only one positive CAM-ICU screening and they were all treated with haloperidol following the first positive CAM-ICU. These were all patients with a hyperactive delirium subtype. The results of our study would not be influenced if these 7 patients would not be included. Thirdly, we adjusted for significant differences in demographic variables between non-delirium and delirium patients. As delirium is an independent predictor of longer ICU length of stay (28), presumably independent of severity of illness, then adjustment for ICU length of stay in the analyses relating delirium to long-term outcomes may underestimate the long-term effects of delirium. Furthermore, we measured patients' long-term evaluation on HRQoL after ICU discharge once only. This can be considered as a limitation as we do not know how patients' QoL developed during these 18 months. It appears plausible that the results would have been different when we would have also measured them in an earlier stage after discharge. Khouli et al. (40) showed that a higher proportion of older patients died within 6 months after ICU discharge and the HRQoL worsened after 6 months in the oldest group but improved in the younger group. However, taking into account the fact that cognitive impairment improved in delirium patients between 3 and 12 months after ICU discharge (6) differences between the delirium and non-delirium ICU survivors in our group was probably more pronounced earlier in the course of recovery. As the aim of our study was to examine the longterm effects of delirium, we decided not to conduct repeated measures of the HRQoL status in a smaller group of patients, instead we chose to measure one point in time, after 18 months, in a large group of patients. This allowed adjustment for relevant covariates.

In conclusion, in this large and long-term follow-up study we demonstrated that ICU survivors with delirium during their ICU stay had a similar adjusted health related quality of life evaluation, but experienced significantly more cognitive problems in comparison to those who did not suffer from delirium. Moreover, the duration of delirium is related to long-term cognitive problems.

Competing interests

All authors declare that they have no financial/commercial conflicts of interest.

Authors' contributions

MvdB carried out the study, the statistics and drafted the manuscript. LS and PP were involved in the design, supervised the study and helped to draft the manuscript. AE, JvdH, and TvA supervised the study and corrected the manuscript. All authors read and approved the final manuscript.

<u> </u>	Res (N	ponders N=915)	Non-re (N	sponders =377)	P-value
Age	65	[57-72]	60	[47-71]	<0.0001
Delirium (N=272)	171	(19%)	101	(27%)	0.001
 Hypo active (N=94) 	63	(7%)	31	(8%)	
- Hyperactive (N=32)	19	(2%)	13	(3%)	
- Mixed (N=146)	89	(10%)	57	(15%)	
Gender (M)	609	(67%)	231	(61%)	0.005
Sepsis (N)	28	(3%)	11	(3%)	0.53
Urgent admission (N)	389	(43%)	204	(54%)	<0.0001
APACHE-II score	14	[11-17]	13	[10-17]	0.06
LOS-ICU (days)	1	[1-2]	1	[1-3]	0.03
LOS-Hospital (days)	7	[5-14]	9	[6-18]	0.001
Admission type					<0.05
- Surgical	666	(73%)	225	(59%)	
- Medical	131	(14%)	74	(20%)	
- Trauma	41	(5%)	32	(9%)	
- Neurology/Neurosurgical	77	(8%)	46	(12%)	

Table 1	Demographic	characteristics of	of responders	and non-res	nonders
Table I.	Demographic	characteristics c	responders	and non-res	sponders

Data are expressed as median with IQR unless other reported

TADIE Z. DEITIOUTADITIC CHALACTERISTICS OF TESDOTIOETS	Table 2.	Demographic	characteristics	of responders
--	----------	-------------	-----------------	---------------

	Non- Pa (N	delirium tients =744)	De Pa (N	lirium tients =171)	P-value
Age	65	[57-72]	65	[58-75]	0.13
Gender (M)	508	(68%)	101	(60%)	0.01
APACHE-II score	13	[10-16]	17	[14-20]	<0.0001
Urgent admission (N)	261	(35%)	128	(75%)	<0.0001
LOS-ICU (days)	1	[1-1]	5	[2-11]	<0.0001
LOS-Hospital (days)	7	[5-11]	16	[9-37]	<0.0001
Sepsis (N)	12	(2%)	16	(9%)	<0.0001
Admission type					<0.01
- Surgical	589	(79%)	77	(45%)	
- Medical	77	(10%)	54	(32%)	
- Trauma	24	(3%)	17	(10%)	
- Neurology/Neurosurgical	54	(7%)	23	(14%)	

Data are expressed as median with IQR unless other reported

	Non-deliriu (N=	im Patients 744)	Delirium (N	n Patients N=171)	P-value [†]	General population subgroup age 55-64y (22)
SF-36						
Physical Functioning	75	[50-90]	55	[25-80]	0.18	72±26
Role-Physical	50	[0-100]	25	[0-75]	0.20	67±41
Bodily Pain	78	[57-100]	78	[55-100]	0.26	71±25
General Health	60	[40-75]	55	[35-70]	0.90	62±20
Social Functioning	88	[63-100]	75	[50-88]	0.65	82±23
Vitality	60	[45-75]	55	[40-75]	0.94	68±20
Role-Emotional	100	[33-100]	100	[22-100]	0.64	81±35
Mental Health	80	[64-92]	72	[60-88]	0.26	77±18
Physical Component Score	44	[35-52]	38	31-48]	0.66	50±9
Mental Component Score	53	[43-58]	50	[38-57]	0.61	52±10
CIS						
CIS-total	28	[17-39]	32	[22-44]	0.13	
CFQ						
Memory	7.0	[4-10]	8.0	[5-12]	0.08	
Distractibility	11.0	[6-15]	11.0	[7-16]	0.19	
Social blunders	6.0	[4-9]	8.0	[4-10]	0.04*	
Names	3.0	[2-4]	3.0	[2-4]	0.22	
CFQ-total	26	[17-35]	28	[19-39]	0.03*	

Table 3. Results of Short Form-36, Checklist Individual Strength-fatigue and the Cognitive Failure Questionnaire measurements 18 months after ICU discharge adjusted for covariates

Data are expressed as median with IQR or mean with standard deviation (±) **†** adjusted for gender, urgent admission, APACHE-II score, sepsis and LOS-ICU using log transformed data (not shown)

* <0.05

	Hypoac (tive subtype N=63)	Hyper	active subtype (N=19)	Mixed subtype (N=89)
Age	68	[59-75]	64	[57-75]	64 [57-75]
Gender (M)	36	(57%)	10	(53%)	55 (62%)
APACHÈ-II score	16	[14-21]	14	[13-18]	17 [15-21]
Urgent admission (N)	43	(68%)	9	(47%)	76 (85%) ^{b-c}
LOS-ICU (days)	4	[2-7]	3	[1-6]	8 [3-16] ^{b-c}
LOS-Hospital (days)	15	[7-29]	10	[5-20]	24 [12-24] ^{b-c}
Sepsis (N)	3	(5%)	1	(5%)	12 (14%)
Admission type				· · ·	
- Surgical	29	(46%)	14	(74%) ^a	34 (38%) ^{<i>b-c</i>}
- Medical	21	(33%)	3	(16%) ^a	30 (34%) ^c
- Trauma	4	(6%)	2	(11%) ^a	11 (12%)
 Neurology/Neurosurgical 	9	(14%)	0	(0%) ^a	14 (16%) ^c
SF-36 †		· · ·			· ·
Physical Functioning	66	[35-85]	32	[15-71]	50 [30-75]
Role-Physical	50	[0-100]	38	[0-100]	25 [0-63]
Bodily Pain	78	[67-100]	57	[32-100]	78 [55-100]
General Health	56	[38-70]	48	[19-65]	50 [35-65]
Social Functioning	75	[63-100]	63	[34-90]	69 [50-88]
Vitality	58	[45-76]	50	[35-60]	55 [40-70]
Role-Emotional	100	[33-100]	83	[17-100]	100 [0-100]
Mental Health	80	[65-92] ^{a-b}	64	[56-84]	72 [52-84]
Physical Component Score	37	[22-48]	41	[33-49]	36 [29-45]
Mental Component Score	48	[33-56]	52	[41-59]	49 [37-57]
CIS †					
CIS-total	30	[16-44]	33	[26-48]	33 [23-44]
CFQ †					
Memory	9	[5-12]	8	[5-13]	8 [5-12]
Distractibility	11	[7-16]	11	[6-16]	11 [7-16]
Social blunders	8	[4-9]	5	[2-11]	8 [5-11]
Names	3	[2-4]	4	[3-5]	3 [2-4]
CFQ-total	29	[20-37]	25	[17-39]	29 [19-42]

Table 4. Differences between subtypes of delirium on Health Related Quality of Life scores

† adjusted for urgent, LOS-ICU and in-hospital, admission type using log transformed data (data not shown) ^a significant difference between hypoactive and hyperactive subtype ^b significant difference between hypoactive and mixed type subtype ^c significant difference between hyperactive and mixed type subtype

Reference List

- 1. Ely EW, Margolin R, Francis J, et al: Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Crit Care Med* 2001; 29:1370-1379
- 2. Ouimet S, Kavanagh BP, Gottfried SB, et al: Incidence, risk factors and consequences of ICU delirium. *Intensive Care Med* 2007; 33:66-73
- 3. Peterson JF, Pun BT, Dittus RS, et al: Delirium and its motoric subtypes: a study of 614 critically ill patients. *J Am Geriatr Soc* 2006; 54:479-484
- 4. American Psyciatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 4th Edition. Washington D.C., 1994
- 5. Ely EW, Gautam S, Margolin R, et al: The impact of delirium in the intensive care unit on hospital length of stay. *Intensive Care Med* 2001; 27:1892-1900
- 6. Girard TD, Jackson JC, Pandharipande PP, et al: Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. *Crit Care Med* 2010;
- 7. Hopkins RO, Jackson JC: Long-term neurocognitive function after critical illness. *Chest* 2006; 130:869-878
- 8. Cuthbertson BH, Rattray J, Campbell MK, et al: The PRaCTICaL study of nurse led, intensive care follow-up programmes for improving long term outcomes from critical illness: a pragmatic randomised controlled trial. *BMJ* 2009; 339:b3723
- 9. Hofhuis JG, Spronk PE, van Stel HF, et al: The impact of severe sepsis on health-related quality of life: a long-term follow-up study. *Anesth Analg* 2008; 107:1957-1964
- Hofhuis JG, Spronk PE, van Stel HF, et al: The impact of critical illness on perceived health-related quality of life during ICU treatment, hospital stay, and after hospital discharge: a long-term follow-up study. *Chest* 2008; 133:377-385
- Korosec JH, Jagodic K, Podbregar M: Long-term outcome and quality of life of patients treated in surgical intensive care: a comparison between sepsis and trauma. *Crit Care* 2006; 10:R134
- 12. Myhren H, Ekeberg O, Stokland O: Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. *Crit Care Med* 2010; 38:1554-1561
- 13. Van Rompaey B., Schuurmans MJ, Shortridge-Baggett LM, et al: Long term outcome after delirium in the intensive care unit. *J Clin Nurs* 2009; 18:3349-3357
- 14. Broadbent DE, Cooper PF, FitzGerald P, et al: The Cognitive Failures Questionnaire (CFQ) and its correlates. *Br J Clin Psychol* 1982; 21 (Pt 1):1-16
- 15. Ely EW, Inouye SK, Bernard GR, et al: Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). *JAMA* 2001; 286:2703-2710
- 16. van den Boogaard M., Pickkers P, van der Hoeven H., et al: Implementation of a delirium assessment tool in the ICU can influence haloperidol use. *Crit Care* 2009; 13:R131

- 17. Shehabi Y, Riker RR, Bokesch PM, et al: Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. *Crit Care Med* 2010; 38:2311-2318
- Thomason JW, Shintani A, Peterson JF, et al: Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. *Crit Care* 2005; 9:R375-R381
- Inouye SK, Leo-Summers L, Zhang Y, et al: A chart-based method for identification of delirium: validation compared with interviewer ratings using the confusion assessment method. J Am Geriatr Soc 2005; 53:312-318
- 20. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 4th Edition. Washington D.C., 1994
- 21. Angus DC, Carlet J: Surviving intensive care: a report from the 2002 Brussels Roundtable. *Intensive Care Med* 2003; 29:368-377
- 22. Aaronson NK, Muller M, Cohen PD, et al: Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease populations. *J Clin Epidemiol* 1998; 51:1055-1068
- 23. Ware JE, Jr., Kosinski M, Gandek B, et al: The factor structure of the SF-36 Health Survey in 10 countries: results from the IQOLA Project. International Quality of Life Assessment. *J Clin Epidemiol* 1998; 51:1159-1165
- 24. Ware JE, Kosinkski M, Gandek B. SF-36 Health Survey; Manual&Interpretation Guide. Lincoln, RI, QualityMetric Incorporated, 2005
- 25. Vermeulen RC: Translation and validation of the Dutch language version of the CDC Symptom Inventory for assessment of Chronic Fatigue Syndrome (CFS). *Popul Health Metr* 2006; 4:12
- 26. Merckelbach H, Muris P, Nijman H, et al: Self-reported cognitive failures and neurotic symptomatology. *Personal Individual Differences* 1996; 20:715-724
- 27. Wallace JC, Kass SJ, Stanny CJ: The cognitive failures questionnaire revisited: dimensions and correlates. *J Gen Psychol* 2002; 129:238-256
- 28. Ely EW, Shintani A, Truman B, et al: Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. *JAMA: Journal of the American Medical Association* 2004; 292:168-169
- 29. Inouye SK, Rushing JT, Foreman MD, et al: Does delirium contribute to poor hospital outcomes? A three-site epidemiologic study. *J Gen Intern Med* 1998; 13:234-242
- 30. Pisani MA, Kong SY, Kasl SV, et al: Days of delirium are associated with 1-year mortality in an older intensive care unit population. *Am J Respir Crit Care Med* 2009; 180:1092-1097
- 31. van den Boogaard M., Peters SA, van der Hoeven JG, et al: The impact of delirium on the prediction of in-hospital mortality in intensive care patients. *Crit Care* 2010; 14:R146
- 32. Kat MG, Vreeswijk R, de Jonghe JF, et al: Long-term cognitive outcome of delirium in elderly hip surgery patients. A prospective matched controlled study over two and a half years. *Dement Geriatr Cogn Disord* 2008; 26:1-8
- 33. Maclullich AM, Beaglehole A, Hall RJ, et al: Delirium and long-term cognitive impairment. Int Rev Psychiatry 2009; 21:30-42

- 34. Jackson JC, Hart RP, Gordon SM, et al: Six-month neuropsychological outcome of medical intensive care unit patients. *Crit Care Med* 2003; 31:1226-1234
- 35. Jackson JC, Mitchell N, Hopkins RO: Cognitive functioning, mental health, and quality of life in ICU survivors: an overview. *Crit Care Clin* 2009; 25:615-28, x
- 36. Kiely DK, Jones RN, Bergmann MA, et al: Association between psychomotor activity delirium subtypes and mortality among newly admitted post-acute facility patients. *J Gerontol A Biol Sci Med Sci* 2007; 62:174-179
- 37. Yang FM, Marcantonio ER, Inouye SK, et al: Phenomenological subtypes of delirium in older persons: patterns, prevalence, and prognosis. *Psychosomatics* 2009; 50:248-254
- Witlox J, Eurelings LS, de Jonghe JF, et al: Delirium in Elderly Patients and the Risk of Postdischarge Mortality, Institutionalization, and Dementia: A Meta-analysis. *JAMA* 2010; 304:443-451
- 39. Lin SM, Liu CY, Wang CH, et al: The impact of delirium on the survival of mechanically ventilated patients. *Crit Care Med* 2004; 32:2254-2259
- 40. Khouli H, Astua A, Ahmad F, et al: Changes in health-related quality of life and factors predicting long-term outcomes in older adults admitted to intensive care units. *Crit Care Med* 2011;