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Developing high-performance software is a difficult task that requires the use of low-level, architecture-
specific programming models (e.g., OpenMP for CMPs, CUDA for GPUs, MPI for clusters). It is typically
not possible to write a single application that can run efficiently in different environments, leading to
multiple versions and increased complexity. Domain-Specific Languages (DSLs) are a promising avenue
to enable programmers to use high-level abstractions and still achieve good performance on a variety of
hardware. This is possible because DSLs have higher-level semantics and restrictions than general-purpose
languages, so DSL compilers can perform higher-level optimization and translation. However, the cost of
developing performance-oriented DSLs is a substantial roadblock to their development and adoption. In this
article, we present an overview of the Delite compiler framework and the DSLs that have been developed
with it. Delite simplifies the process of DSL development by providing common components, like parallel
patterns, optimizations, and code generators, that can be reused in DSL implementations. Delite DSLs
are embedded in Scala, a general-purpose programming language, but use metaprogramming to construct
an Intermediate Representation (IR) of user programs and compile to multiple languages (including C++,
CUDA, and OpenCL). DSL programs are automatically parallelized and different parts of the application can
run simultaneously on CPUs and GPUs. We present Delite DSLs for machine learning, data querying, graph
analysis, and scientific computing and show that they all achieve performance competitive to or exceeding
C++ code.
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1. INTRODUCTION

The software industry is facing a difficult dilemma. Programming languages are ad-
vancing towards higher-level abstractions, enabling complex programs to be written
more productively. At the same time, hardware architectures are advancing towards
more heterogeneous parallel processing elements (multiple CPUs, GPUs, and domain-
specific accelerators). As the abstraction gap between applications and hardware in-
creases, compilers are becoming increasingly ineffective at automatically exploiting
hardware resources to achieve the best performance. The primary culprit is that high-
level general-purpose languages lack the semantic information required to efficiently
translate coarse-grained execution blocks to low-level hardware. If performance is re-
quired, programmers are forced to instead use low-level, architecture-specific program-
ming models (e.g., Pthreads, CUDA, MPI).

Unfortunately, using these disparate programming models to optimize programs for
performance typically incurs a great loss in productivity. Programmers often begin by
writing a prototype in a high-level language that is concise and expressive and then
translate their program to low-level, high-performance code in a time-consuming pro-
cess. In order to get the best performance, programmers must have hardware expertise
and develop a different version of the code for each target device that may be required.
The resulting code is tied to architectural details (e.g., cacheline size, number of pro-
cessor cores) and is harder to read, debug, maintain, or port to future platforms. Worse,
there are now multiple versions of the original application: one that is too high level
to obtain good performance, and several that are too low level to easily understand.
Keeping the different versions in sync as new features are added or bugs are fixed
quickly becomes untenable.

Domain-Specific Languages (DSLs) have been proposed as a solution that can pro-
vide productivity, performance, and portability for high-level programs in a specific
domaizn [Chafi et al. 2011]. DSLs provide high-level abstractions directly to the user,
typically leaving implementation details unspecified in order to free the DSL compiler
to translate the application in different ways to low-level programming models. For ex-
ample, a domain-specific compiler for linear algebra can reason about the program at
the level of vector and matrix arithmetic, as opposed to loops, instructions, and scalars.
A DSL compiler can also enforce domain-specific restrictions; while general-purpose
languages usually perform sophisticated analyses to determine when it is safe to apply
optimizations and must be conservative, DSLs can often apply optimizations that are
correct by construction.

Despite the benefits of performance-oriented DSLs, the cost of developing a DSL
compiler is immense and requires expertise in multiple areas, from language design
to computer architecture. In addition to the initial cost, DSL compiler developers must
also continously invest new effort to target new or updated hardware. As a result, few
DSLs are developed, even in domains that could potentially benefit from an optimizing
DSL. Furthermore, the wide range in quality, tooling, and performance of DSLs is a
substantial obstacle for DSL adoption.

In this article, we synthesize the existing work and present a comprehensive overview
of Delite, an open-source DSL compiler framework [Brown et al. 2011; Rompf et al.
2011]. Delite substantially reduces the burden of developing high-performance DSLs
by providing common reusable components that enable DSLs to quickly and efficiently

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 134, Publication date: March 2014.



Delite: A Compiler Architecture for Performance-Oriented Embedded DSLs 134:3

target heterogeneous hardware [Sujeeth et al. 2013b]. We present existing Delite DSLs
for machine learning (OptiML), data querying (OptiQL), graph analysis (OptiGraph),
and mesh computation (OptiMesh). Utilizing a few common principles, we show that
this diverse set of DSLs can be implemented using a small number of components and
that there is extensive sharing of components across DSLs. In particular, we identify
the important computations in each domain and show that they can be expressed with
Delite parallel patterns (the four DSLs use a combined 9 parallel ops). This reuse en-
ables each new DSL to be implemented with either small incremental changes to the
framework or no changes at all. We show that each DSL provides both performance
and productivity by summarizing previous results that demonstrate performance com-
parable to C++ with a much higher-level interface. We conclude with a discussion of
the key insights from this approach and the challenges ahead.

The source code for the new DSLs we have developed is open source and freely
available at: http:/github.com/stanford-ppl/Delite/.

2. A DOMAIN-SPECIFIC APPROACH TO HETEROGENEOUS PARALLELISM

As a programming model, DSLs sacrifice generality in order to achieve both productiv-
ity and performance. Productivity subjectively captures how easy it is to use a program-
ming language to accomplish some task, typically in terms of the provided abstractions,
the readability and maintainability of the code, and the extent to which rapid prototyp-
ing and debugging is possible. DSLs have traditionally been leveraged for productivity;
since the language is specific to a particular problem domain, the syntax and the ab-
stractions of a well-designed DSL are a close match to the applications that users want
to write. These high-level abstractions enable users to focus on ideas and algorithms
rather than implementation details. In contrast, an optimized C++ implementation
will often play numerous tricks with memory layout (e.g., byte padding), memory reuse
(e.g., blocking or manual loop fusion), and control flow (e.g., loop unrolling), even be-
fore adding threading or vectorization which obfuscate the implementation even more.
While it is difficult for general-purpose compilers to perform these optimizations au-
tomatically, DSL compilers can exploit restricted semantics and high-level structure
to make these automatic transformations tractable. Therefore, DSLs provide an at-
tractive vehicle not just for raising the productivity level of programmers, but also for
enabling them to write high-performance applications on modern hardware, which is
parallel, heterogeneous, and distributed.

Besides DSLs, there are two major high-level programming models that have had
some success in parallel and heterogeneous computing. The first is to use a restricted
general-purpose programming model, such as MapReduce [Dean and Ghemawat 2004;
Apache 2014; Zaharia et al. 2011], Pregel [Malewicz et al. 2010], OpenCL [The Khronos
Group 2014], or Intel Cilk Plus [Intel 2014]. These systems have the advantage of be-
ing suitable for many different applications within a single language, but often force
programmers to express their algorithms in a model that is unnatural to the problem,
thereby sacrificing some productivity. They are also usually unable to achieve the best
performance across different hardware devices, because the languages are still too low
level for a single version of the source code to be optimal for different hardware. For
example, it is not uncommon to have to rewrite an OpenCL kernel in slightly different
ways in order to get the best performance on either a CPU or a GPU. A second approach
is to simply compose applications out of libraries of high-performance primitives, such
as Intel MKL [Intel 2013] or hand-written, hand-parallelized C++ code. While this
approach has the benefit of being the easiest to integrate of any of the alternatives,
composing an application out of library calls that are individually high performance
does not necessarily result in a high-performance application. The main issue is that
each library call is a black box to an optimizing compiler; critical optimizations that
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improve memory locality and reuse, such as loop fusion, cannot be applied across differ-
ent library calls. Therefore, a pipeline of library calls will often create far more interme-
diate data, or perform more traversals, than a hand-optimized version that did not use
a library would. DSLs are an alternative point in this trade-off space; they are initially
more unfamiliar to users, but are still high level and admit important optimizations.

There are many implementation choices for DSLs and DSL compilers. External
DSLs are stand-alone languages with custom compilers. These DSLs have the most
flexibility, since their syntax, semantics, and execution environments can be com-
pletely domain specific. However, they require considerable effort and compiler ex-
pertise to construct. Compiler frameworks such as LLVM [Lattner and Adve 2004]
can reduce some of the burden by providing built-in optimizations and code gener-
ators, but DSL authors must still define how to map from the high-level DSL con-
structs to the low-level Intermediate Representation (IR). On the other hand, inter-
nal DSLs are embedded in a host language. The most common implementation is
pure or shallow embedding, where DSLs are implemented as “just a library” in a
flexible host language. Purely embedded DSLs often use advanced host language fea-
tures (e.g., function currying) to emulate domain-specific syntax, but are legal pro-
grams in the host language and share the host language’s semantics. As a result,
they are simple to construct and DSL users can reuse the host language’s tool-chain
(e.g., IDE). However, they are constrained to the performance and back-end targets of
the host language. In Delite, we attempt to strike a balance between these two ap-
proaches; Delite DSLs are embedded DSLs that can still be compiled to heterogeneous
hardware.

3. EMBEDDING COMPILERS WITH STAGING

In order to reduce the programming effort required to construct a new DSL, Delite DSLs
are implemented as embedded DSLs inside Scala, a high-level hybrid object-oriented
functional language that runs on the Java Virtual Machine (JVM) and interoperates
with Java. We use Scala because its combination of features makes it well suited for
embedding DSLs [Chafi et al. 2010]. Most importantly, its strong static type system
and mix-in composition! make DSLs easier to implement, while higher-order functions,
function currying, and operator overloading enable the DSLs to have a flexible syntax
despite being embedded. The choice of Scala as our embedding language is a convenient
one, but is not fundamental to the approach.

The key difference between Delite DSLs and traditional purely embedded DSLs is
that Delite DSLs construct an Intermediate Representation (IR) in order to perform
optimizing compilation and target heterogeneous devices. Instead of running Scala
application code that executes DSL operations, we will run Scala application code that
generates code that will execute DSL operations. Thus, Scala is both the language we
use to implement our DSL compilers as well as the language that serves as the front-
end for the DSLs. At runtime, on the other hand, the code being executed can be Scala,
C++, CUDA, or anything else. One way of viewing this approach is as a method of
bringing optimizing compilation to domain-specific libraries.

We use a technique called lightweight modular staging, a form of staged metapro-
gramming, to generate an IR from Scala application code [Rompf and Odersky 2010].
Consider the following small snippet of code in a simple Vector DSL.

Vector.rand (1000)
Vector.rand (1000)

val vl
val v2

IMix-in composition is a restricted form of multiple inheritance. There is a well-defined linearization order
to determine how virtual method calls get dispatched within mixed-in classes. This allows functionality to
be layered and overridden in a modular way.
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val a = vi+v2
println(a)

The key idea is that all DSL types (e.g., Vector) are wrapped in an abstract type con-
structor, Rep [T]. Rep stands for representation; a Rep [Vector [T]] is a representation
of a Vector [T] that is not tied to a particular concrete implementation. Type inference
is used to hide this wrapped type from application code, as given before. Instead of im-
mediate evaluation, DSL operations on Rep [T] construct an IR node representing the
operation. For example, the Vector.rand statement is implemented inside the DSL to
construct an IR node, VectorRand, and return a symbol of type Rep [Vector [Double]].
Inside the compiler, Rep [T] is defined concretely to be Exp[T], representing an ex-
pression. This avoids exposing internal compiler types to user programs. The process
of constructing IR nodes from application operations is called lifting. To ensure that
all host language operations can be intercepted and lifted, we use a modified version of
the Scala compiler, Scala-virtualized [Moors et al. 2012], that enables overloading even
built-in Scala constructs such as IfThenElse. Delite also provides lifted versions of
many Scala library operations (e.g., string methods); these can be inherited by DSLs for
free.

IR nodes implicitly encode dependencies as inputs. For example, the VectorPlus
node constructed from the vi+v2 statement would have two inputs, v1 and v2, that
each refer to a different VectorRand node. Therefore, we can obtain the graph of the IR
for any result by following dependencies backwards. We can then perform optimizations
on the graph and generate target code for each IR node. Finally, the generated code is
compiled and executed in a separate step to compute the program result. In summary,
Delite DSLs typically undergo three separate stages of compilation.

(1) The DSL application (Scala code) is compiled using scalac to generate Java byte-
code.

(2) The Java bytecode is executed (staged) to run the DSL compiler in order to build
the IR, perform optimizations, and generate code.

(3) The resulting generated code is compiled for each target (e.g., C++, CUDA).

In return for more compilation, we have two primary benefits: Delite DSL compilers
are simpler to build than stand-alone DSL compilers, and DSL programs can retain
high-level abstractions without suffering a runtime penalty, since the generated code
is low level and first order.

4. THE DELITE FRAMEWORK

All Delite DSLs share the same architecture for building an intermediate representa-
tion, traversing it, and generating code. The Delite framework was first discussed in
detail by Brown et al. [2011]; it has since been enhanced to support data structures and
transformations using the techniques outlined by Rompf et al. [2013]. Here we briefly
describe the key principles of the Delite framework. We then present the semantics for
the parallel patterns that Delite currently supports. Finally, we describe the heteroge-
neous runtime service that consumes the generated code from the DSL compilers and
executes it on multiple hardware resources.

4.1. Principles

Several requirements led to design choices that make the Delite compiler architecture
different from traditional compilers. These include the need to support a large number
of IR node types for domain operations, to specify optimizations in a modular way, and
to generate code for a variety of different targets. Delite’s architecture meets these
requirements by organizing DSLs around common design principles. These principles
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Fig. 1. Components of the Delite framework. An application is written in a DSL, which is composed of data
structures and structured computations represented as a multiview IR. The IR is transformed by iterating
over a set of traversals for both Generic (Gen) and Domain-Specific (DS) optimizations. Once the IR is
optimized, heterogeneous code generators emit specialized data structures and ops for each target along
with the Delite Execution Graph (DEG) that encodes dependencies between computations.

are implemented with a set of reusable components: common IR nodes, data struc-
tures, parallel operators, built-in optimizations, traversals, transformers, and code
generators (Figure 1). DSLs are developed by extending these reusable components
with domain-specific semantics. Furthermore, Delite is modular; any service it pro-
vides can be overridden by a particular DSL with a more customized implementation.
The remainder of this section discusses Delite’s principles and the components that
implement them.

Common IR. The Delite IR is a sea of nodes representation [Paleczny et al. 2001],
rather than a traditional Control-Flow Graph (CFG); nodes explicitly encode their
data and control dependencies as inputs, but are otherwise free to “float”. This
representation is well suited for parallelism, since it does not maintain any extra
constraints on program order (e.g., syntactic) than are necessary for correctness. The
IR is traversed by taking the symbolic result of a block and following dependencies
backwards; the result is a program schedule that can either be optimized or passed to
the code generation phase. One important characteristic of Delite is that IR nodes are
simultaneously viewed in multiple ways: a generic layer, called Def [T] (representing a
definition), a parallel layer, called Delite ops, and a domain-specific layer, which is the
actual operation, for example, VectorPlus. The IR can be optimized by viewing nodes
at any layer, enabling both generic and domain-specific optimizations to be expressed
on the same IR.

Structured data. Delite DSLs present domain-specific types to end-users (e.g.,
Vector) and methods on instances of those types get lifted into the IR. However,
DSL back-end data structures are restricted to Delite Structs, C-like structs with a
limited set of field types (primitives). The fields currently allowed in a Delite Struct
are: numerics (e.g., Int), Boolean, String, Array, and Map. By restricting the content
of data structures, Delite is able to perform optimizations such as Array-of-Struct (AoS)
to Struct-of-Array (SoA) conversion and dead field elimination automatically [Rompf
et al. 2013]. Furthermore, since the set of primitives is fixed, Delite can implement
these primitives on each target platform (e.g., C++, CUDA) and automatically generate
code for DSL structs. Delite also supports user-defined structs by lifting the new
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keyword defining an anonymous class [Moors et al. 2012]. An application developer
can write code like the following.

val foo = new Record {
val x = "bar"
val y = 42

}

Record is a built-in type provided by Delite that serves as a tag for the Scala-
virtualized compiler. The Scala-virtualized compiler forwards any invocation of new
with a Record type to Delite, which will then construct a corresponding Struct. Field
accesses on the record are type-checked by the Scala-virtualized compiler and then
forwarded to Delite as well.

Structured computation. Delite ops represent reusable parallel patterns such as
Reduce. Delite ops have op-specific semantic restrictions (such as requiring disjoint ac-
cess) that must be upheld by the DSL author. The ops operate on DeliteCollections,
an interface implemented by DSL data structures to provide access to the underlying
elements. DSL authors are responsible for mapping domain operations to Delite ops
(e.g., a domain operation VectorPlus to the Delite op ZipWith); Delite provides code
generators from Delite ops to multiple platforms. This division allows domain experts
to focus on identifying parallel patterns within the domain (domain decomposition)
and concurrency experts to focus on implementing the parallel patterns as efficiently
as possible on each platform.

Explicit DSL semantics. DSL authors communicate DSL semantics to Delite via
a set of simple APIs. Effectful operations are marked using the reflectEffect or
reflectWrite methods when constructing an IR node. Delite uses this information to
honor read-after-write, write-after-read, and write-after-write dependencies when con-
structing the program schedule. DSL authors can also optionally specify additional se-
mantic information about particular IR nodes that enables Delite to be more aggressive
with optimizations. For example, a DSL author can specify whether an input symbol is
likely to be accessed more or less often during an operation using the freqSyms method,
which allows the code motion algorithm to better determine whether to hoist a com-
putation out, or push a computation into, a candidate block. Similarly, the aliasSyms
method allows DSL authors to declare if an operation constructs an alias to one of its
inputs (e.g., by storing a reference to it), which can enable Delite to be less conservative
when performing optimizations. The key idea behind all of these mechanisms is that
by communicating a minimal amount of domain-specific information, we can often effi-
ciently parallelize and optimize DSL programs without complicated generic analyses.

Generic optimizations. Delite performs several optimizations for all DSLs (these op-
timizations can be programmatically disabled by a DSL if desired). At the generic IR
layer, Delite performs Common Subexpression Elimination (CSE), Dead Code Elim-
ination (DCE), and code motion. Although these are traditional optimizations, it is
important to note that in the Delite framework they occur on symbols that repre-
sent coarse-grained domain-specific operations (such as MatrixMultiply), rather than
generic language statements as in a typical general-purpose compiler. Therefore, the
potential impact of these optimizations in a program is substantially greater. At the
Delite op layer, Delite implements op fusion [Rompf et al. 2013]; data-parallel ops that
have a producer-consumer or sibling relationship are fused together, eliminating tem-
porary allocations and extra memory accesses. Finally, as mentioned previously, Delite
performs AoS— SoA conversion and dead field elimination for data structures, which
is essential to increasing the number and performance of ops that can be run on wide,
column-oriented devices such as GPUs.
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Domain-specific optimizations. Domain-specific optimizations can be implemented
as rewrite rules using pattern matching on IR nodes; we can layer these rewritings
in a modular way by putting them in separate traits?. Consider the following simple
pattern.

override def vector_plus(x: Exp[Vector[Int]], y: Exp[Vector[Int]]) =
(x,y) match {
case (a, Def(VectorZeros(len))) => a
case _ => super.vector_plus(x,y)

}

This rewrite rule fires during IR construction and checks for the case of a vector
being added to zeros and eliminates the addition; if the match fails, it falls back to the
original implementation of vector_plus which constructs an IR node.

More sophisticated analyses or optimizations are possible by implementing
Traversals and Transformers. Traversals schedule the IR and visit each node in
order, allowing the DSL author to define an arbitrary operation (such as collecting
statistics for an analysis) at each node. Transformers combine traversals with rewrite
rules, and can be run as phases in a predetermined order. Transformers are ideal for
performing lowering optimizations, that is, translating a domain-specific operation to a
different, lower-level representation that can be optimized further. One example is per-
forming device-specific optimizations: we can define a transformer that will transform
nested parallel loops into a flattened parallel loop for highly multithreaded devices.
Transformers are also useful for performing domain-specific rewrites on the IR that
require the entire IR to be constructed first.

Code generation. The final stage of a Delite DSL is code generation. A Delite code
generator is simply a traversal that performs code generation, that is, emits code for
a particular platform. Delite provides code generators for a range of targets, which
currently includes Scala, C++, CUDA, and OpenCL. The result of code generation for
a Delite DSL is two major artifacts: the Delite Execution Graph (DEG), a dataflow
representation of the operations in the program; and kernels, code that implements
particular ops for different platforms. The DEG describes an op’s inputs, outputs, and
what platforms it can be executed on. This representation enables Delite to also exploit
task parallelism in an application by running independent ops in parallel. Finally,
the Delite runtime schedules and executes the kernels on the available hardware
resources.

4.2. Parallel Patterns

Delite currently supports Sequential, Map, Reduce, ZipWith, Foreach, Filter,
GroupBy, Sort, ForeachReduce, and FlatMap ops. The semantics of the ops are as
follows?.

—Sequential. The input to Sequential is an arbitrary function, func: => R.
Sequential executes the function as a single task on a general-purpose CPU core.
It is the primary facility by which DSL authors can control the granularity of task
parallelism of sequential DSL operations, since all Sequential ops are guaranteed
not to be split across multiple resources. The result of Sequential is simply the
result R returned by the function.

2A trait is a type of Scala class that supports mix-in composition.
30ps that return collections also require an alloc function to instantiate a new DeliteCollection of the
appropriate type.
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—DMap. The inputs to Map are a collection DeliteCollection[A] and a mapping func-
tion map: A => R. Map processes the input collection in parallel, applying the map
function to every element to produce the output collection, a DeliteCollection[R].

—Reduce. The inputs to Reduce are a collection DeliteCollection[A], a reduction
function reduce: (A,A) => A, and a zero element A. The reduce function must
be associative. Reduce performs a parallel tree reduction on the input collection,
optimized for each device. The result of Reduce is a single element A.

—ZipWith. The inputs to ZipWith are two collections, DeliteCollection[A] and
DeliteCollection[B], and a mapping function zip: (A,B) => R. ZipWith pro-
cesses both collections in parallel, applying the zip function to pairwise elements to
produce the output collection, a DeliteCollection [R].

—Foreach. The inputs to Foreach are a collection DeliteCollection[A] and a side-
effectful function func: A => Unit. Foreach is implemented by processing the col-
lection in parallel and invoking func on each element. The DSL author must exercise
caution when using Foreach; the supplied func should be safe to execute in any order
and in parallel (e.g., disjoint writes to an output collection). Foreach has no output.

—Filter. The inputs to Filter are a collection DeliteCollection[A], a predicate
function pred: A => Boolean, and a mapping function map: A => R. Filter is
implemented as a parallel scan. The input collection is processed in parallel, and
map is applied to each element for which pred returns true. The result of the map
is appended to a thread-local buffer. Finally, the output size and starting offset of
each thread are computed and each thread then writes its portion of the result to
the output collection in parallel. The result of a Filter is a DeliteCollection [R]
of size <= the original DeliteCollection[A].

—GroupBy. The inputs to GroupBy are a collection DeliteCollection[A] and two
functions keyFunc: A => K and valFunc: A => R. An optional third input is a
function reduce: (R,R) => R. GroupBy processes the input collection in parallel,
applying keyFunc to each element of the input to determine a bucket index and
valFunc to determine the value appended to the bucket. GroupBy can either collect
or reduce elements; the result of a collect is a Map [K,DeliteCollection[R]]. The
result of a reduce is a Map [K,R] obtained from applying reduce to all the elements
in a bucket.

—Sort. The inputs to Sort are a collection, DeliteCollection[A] and a comparator
function comp: (A,A) => Int. The implementation of Sort is platform specific;
Delite will normally generate a library call to an optimized sort for a particular back-
end, specialized for primitive types. The output of Sort is a DeliteCollection[A].

—ForeachReduce. (foreach with global reductions) The inputs to ForeachReduce are
the same as Foreach (a collection and function block), but the ForeachReduce
function may contain instances of DeliteReduction, an interface for binary re-
duction ops (e.g., +=). DeliteReduction requires an input variable, in: Var[A], a
right-hand side expression rhs: A, and a reduction function, reduce: (A,A) => A.
ForeachReduce is implemented by examining the function body. If the body contains
reductions, we construct a composite op containing the original Foreach op without
reductions and one or more new Reduce ops. ForeachReduce executes the composite
op as a single parallel loop; reductions are stored in a buffer and written to their
corresponding input variable only after the loop completes. If there are no reductions,
we construct a normal Foreach. Like Foreach, the output of ForeachReduce is Unit
(i.e., void).
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—FlatMap. (map followed by flatten) The inputs to FlatMap are a collec-
tion DeliteCollection[A] and a function mapF: A => DeliteCollection[R].
FlatMap processes the elements of the input collection in parallel and applies mapF
to each element to create a new collection per element. The resulting collections are
then concatenated by writing their elements into the output DeliteCollection[R]
in parallel. Since the size of the output collection is not known beforehand, FlatMap
computes the output size and starting offset of each thread using a parallel scan.

Since new ops may be required for new DSLs, Delite is designed to make adding
new ops relatively easy. Most of the existing Delite ops extend a common loop-based
abstraction, MultiLoop. MultiLoop is a highly generic data-parallel loop; the loop body
consists of one or more elems. An elem can be a collect, reduce, hash, or a foreach,
corresponding to appending elements to an output collection, reducing elements into an
accumulator, grouping elements into multiple collections, or applying a side-effectful
function, respectively. Thus, MultilLoop generalizes most of the Delite ops described
before. It is the key abstraction that enables Delite’s fusion algorithm to combine
multiple ops into a single op. It also allows us to implement the code generation for most
ops once (via the code generation for MultiLoop), instead of for each op individually. To
add a new op to Delite, the key work that must be done is to either express it in terms
of existing ops, or to define the code generation of the new op for each target platform.
Once an op is added to Delite, all DSLs can take advantage of it. As more DSLs are
implemented with Delite, the coverage of ops increases and the likelihood of a new op
being necessary decreases.

4.3. Heterogeneous Runtime

The Delite runtime provides multiple services that implement the Delite execution
model across heterogeneous devices. These services include scheduling, communi-
cation, synchronization, and memory management. The runtime accepts three key
artifacts from the Delite compiler. The first is the Delite Execution Graph (DEG),
which enumerates each op of the application, the execution environments for which
the compiler was able to generate an implementation of the op (e.g., Scala, C++, CUDA,
OpenCL, etc.), and the dependencies among ops. The DEG encodes different types of
dependencies separately (e.g., read-after-write and write-after-read), which allows the
runtime to implement the synchronization and communication required by each type
of dependency as efficiently as possible.

The second artifact produced by the compiler is the generated code for each op,
which is wrapped in functions/kernels that the runtime can invoke. Most parallel
Delite ops are only partially generated by the compiler and rely on the runtime to
patch the compiler-generated code into the appropriate execution “skeleton” for the
particular hardware. For example, the skeleton for a parallel Filter could either run
the compiler-generated predicate function on every element and then use a parallel scan
to determine the location in the output to write each element that passes the predicate,
or it could append each passing element to a thread-local buffer and then concatenate
the buffers at the end. This freedom allows for parallelism experts to implement highly
specialized and unique skeletons per hardware device that are injected into the final
application code just before running, avoiding the need to completely recompile the
application per device.

The third artifact is the set of data structures required by the application. This
includes the implementation of each structural type as well as various functions which
define how to copy instances of that type between devices (e.g., between the JVM and
the GPU).

The runtime combines the DEG information with a description of the current ma-
chine (e.g., number of CPUs, number of GPUs) and then schedules the application onto
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the machine at walk time (just before running). It then creates an execution plan (ex-
ecutable) for each resource that launches each op assigned to that resource and adds
synchronization, data transfers, and memory management functions between ops as
required by the schedule and DEG dependencies. For example, satisfying a data depen-
dency between ops on two different CPU threads is achieved by acquiring a lock and
passing a pointer via the shared heap, while satisfying the same dependency when one
op is scheduled on the CPU and the other on the GPU will result in invoking a series
of CUDA runtime routines.

Finally the runtime provides dynamic memory management when required. For
ops that run on the JVM we rely on the JVM’s garbage collector to handle memory
management, but for the GPU the Delite runtime provides a simple garbage collector.
First, the runtime uses the dependency information from the DEG, combined with the
application schedule, to determine the live ranges of each input and output to a GPU
kernel. Then during execution any memory a kernel requires for its inputs and outputs
is allocated and registered along with the associated symbol. Whenever the GPU heap
becomes too full to successfully allocate the next requested block, the garbage collector
frees memory determined to be dead at the current point in execution until the new
allocation is successful.

5. BUILDING A NEW DELITE DSL

The task of constructing a Delite DSL consists mainly of defining domain-specific data
structures (e.g., Vector), domain-specific operations (e.g., VectorPlus), and domain-
specific optimizations (e.g., rewrites).

In this section, we show how one can define a very small DSL to implement the
example shown in Section 3. The first step is to define a Vector.

class Vector[T] extends Struct with DeliteCollection[T]
{ val length: Int; val data: Arrayl[T] }

Next, we need to define lifted operations for Vector.rand and +; Delite already
provides a lifted println method, so we don’t need to define that. We define our ops in
a Scala trait as follows.

import delite.BaseOps
trait MyDSLOps extends BaseOps {
/* syntax exposed to DSL programs x/
object Vector { def rand(n: Rep[Int]) = vec_rand(n) }
def infix_+[T](lhs: Rep[Vector[T]], rhs: Rep[Vector[T]])
= vec_plus(lhs, rhs)

/+ abstract methods hide implementation from DSL progs x*/
def vec_rand(n: Rep[Int]): Rep[Vector[Doublel]l]
def vec_plus[T](lhs: Rep[Vector[T]], rhs: Rep[Vector[T]]):
Rep[Vector [T]]
}

These definitions make the operations visible to the application. However, we must
still provide an implementation for these definitions that will construct the Delite IR.

import delite.BaseOpsExp
trait MyDSLOpsExp extends MyDSLOps with BaseOpsExp {
/* construct IR nodes when DSL methods are called x/
// NewAtom constructs a new symbol for the IR node
def vec_rand(n: Exp[Int]) = NewAtom(VecRand(n))
def vec_plus[T](lhs: Exp[Vector[T]], rhs: Exp[Vector[T]])
= NewAtom(VecPlus(lhs,rhs))
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/+* IR node definitions x*/

case class VecRand(n: Exp[Int]) extends DeliteOpMap {
def alloc = NewVector(n) // NewVector def elided
// thread—safe lifted Math.random func provided by Delite
def func = e => Math.random()

}

case class VecPlus[T] (inA: Exp[Vector[T]], inB: Exp[Vector[T]])
extends DeliteOpZipWith {
def alloc = NewVector(inA.length) // == inB len check elided
def func = (a,b) => a+b

}

}

This snippet shows how we construct two Delite parallel ops, DeliteOpMap and
DeliteOpZipWith, by supplying the functions that match the ops’ interface (func and
alloc). In both cases, func is required to be pure (have no side-effects). Since effects
must be explicitly annotated when constructing an IR node, this condition is easy to
check at staging time. This trait completes the definition of our small DSL, and will
enable us to run the example in Section 3. Running the program will construct these IR
nodes, which will then be scheduled and code generated automatically by Delite (since
every IR node is a Delite op). Furthermore, since the Vector.rand and + functions
are both data-parallel ops that operate on the same range, Delite will automatically
fuse all of the operations together, resulting in a single loop without any temporary
allocations to hold the Vector.rand results.

We could take this example a step further by implementing a Vector . zeros method
in a similar fashion to Vector.rand, and then implement the rewrite rule shown
in Section 4.1 that optimizes additions with zero vectors. If we change the example
from Section 3 to make v2 a call to Vector.zeros, the rewrite rule will automatically
optimize the addition away.

In this example, we demonstrated how to directly construct an embedded DSL
using the Delite APIs. In recent work, however, we have also explored simplifying
this process by using a higher-level meta-DSL called Forge [Sujeeth et al. 2013al.
Forge provides a high-level, declarative API for specifying DSL data structures and
operations in a manner similar to an annotated high-level library. DSL developers
targeting Forge instead of Delite directly can reduce the total lines of code in their
implementation by 3-6x due to the reduction in boilerplate and low-level embedding
implementation details, at the cost of some flexibility. Forge can also shield DSL
developers from changes in Delite or allow DSLs to be retargeted to other back-ends
(like a pure Scala implementation) transparently.

6. DSLS

In this section, we present existing Delite DSLs for machine learning (OptiML), data
querying (OptiQL), graph analysis (OptiGraph), and mesh computation (OptiMesh).
Sujeeth et al. first presented these DSLs [Sujeeth et al. 2011, 2013b]; we expand
on this discussion by highlighting Delite components that were reused in the im-
plementation of the DSLs and identifying new features that had to be added to the
framework to support a particular DSL. We also show how Delite supports imple-
menting nontrivial domain-specific analyses and transformations for OptiMesh. This
section outlines the productivity benefits of using the DSLs, which contain high-
level domain-specific abstractions. Section 7 shows that the DSLs are all able to
achieve high performance through the Delite framework across this diverse set of
domains.
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// ts: TrainingSet[Double]
// returns a vector (phi_yl) of numTokens length,
// corresponding to each return value
val phi_yl = (0::numTokens) { j =>
val spamWordCount =
sumIf(0, numTrainDocs) { ts.labels(_) ==1} { i = ts.t(j,1) }
val spamTotalWords =
sumIf(0, numTrainDocs) { ts.labels(_) == 1 } { i => wordsPerEmail(i) }
(spamWordCount + 1) / (spamTotalWords + numTokens)

}
Listing 1. Naive Bayes snippet in OptiML.

6.1. OptiML

OptiML is a DSL for machine learning designed for statistical inference problems
expressed with vectors, matrices, and graphs [Sujeeth et al. 2011]. In particular, Op-
tiML adds flexible collection operators and machine learning abstractions on top of
core linear algebra operations, such as matrix-vector calculations. The language pro-
motes a functional style by restricting when side-effects may be used. For example, an
object must be cloned using the .mutable method before it can be mutated. Sim-
ilarly, OptiML language constructs (e.g., sum) do not allow side-effects to be used
within their anonymous function arguments. These restrictions prevent many com-
mon parallel programming pitfalls by construction and enable OptiML to inherit key
optimizations from Delite. The most important of these optimizations is op fusion;
since machine learning algorithms often contain sequences of fine-grained linear al-
gebra operations, OptiML uses op fusing at the vector-matrix granularity to enable
concise programs without unnecessary temporary object allocations. OptiML also per-
forms domain-specific optimizations such as applying linear algebra simplifications via
rewritings. Listing 1 shows an example snippet of OptiML code from the naive Bayes
algorithm. The (n::m){i => ...} statement constructs a vector by mapping an index
i to a corresponding result value. This snippet computes the frequency of spam words
in a corpus of emails.

Reuse. OptiML uses Delite ops to implement bulk collection operators on vectors
and matrices (e.g., map, reduce, filter) as well as arithmetic operators (e.g., +,*). As
the first Delite DSL, many of the original ops and optimizations were designed with
OptiML applications as use cases. OptiML relies heavily on Delite’s op fusion and uses
Delite’s CUDA code generation support to target GPUs.

6.2. OptiQL

OptiQL is a DSL for data querying of in-memory collections, and is heavily inspired by
LINQ [Meijer et al. 2006], specifically LINQ to Objects. OptiQL is a pure language that
consists of a set of implicitly parallel query operators, such as Select, Average, and
GroupBy, that operate on OptiQLs core data structure, the Table, which contains a
user-defined schema. Listing 2 shows an example snippet of OptiQL code that expresses
a query similar to Q1 in the TPC-H benchmark. The query first excludes any line item
with a ship date that occurs after the specified date. It then groups each line item by
its status. Finally, it summarizes each group by aggregating the group’s line items and
constructs a final result per group.

Since OptiQL is SQL like, it is concise and has a small learning curve for many
developers. However, unoptimized performance is poor. Operations always semantically
produce a new result, and since the in-memory collections are typically very large, cache
locality is poor and allocations are expensive. OptiQL uses compilation to aggressively
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// lineItems: Table[LineItem]
val q = lineItems Where(_.l_shipdate <= Date(‘‘1998-12-01"’)).
GroupBy(_.]l_linestatus) Select(g => new Record {
val lineStatus = g.key
val sumQty = g.Sum(_.]l_quantity)
val sumDiscountedPrice = g.Sum(l => 1.1_extendedprice=(1.0-1.1_discount))
val avgPrice = g.Average(_.l_extendedprice)
val countOrder = g.Count
}) OrderBy(_.lineStatus)

Listing 2. OptiQL: TPC-H Query 1 benchmark.

optimize queries. Operations are fused into a single loop over the dataset wherever
possible, eliminating temporary allocations, and datasets are internally allocated in
a column-oriented manner, allowing OptiQL to avoid allocating columns that are not
used in a given query. Although not implemented yet, OptiQL's eventual goal is to use
Delite’s pattern rewriting and transformation facilities to implement other traditional
(domain-specific), cost-based query optimizations.

Reuse. The major operations in OptiQL are all data parallel and map to the Delite
framework as follows: Where — Filter; GroupBy — GroupBy; Select — Map; Sum —
Reduce; Average — Reduce; Count — Reduce; OrderBy — Sort; Join — GroupBy;
FlatMap. Since the OptiQL operations map to Delite ops, Delite automatically handles
parallel code generation. Furthermore, since OptiQL applications consist mainly of se-
quences of pure data-parallel operations (with potentially large intermediate results,
e.g., a Select followed by a Where), OptiQL benefits substantially from op fusion and
inherits this optimization from Delite. OptiQLs Table and user-defined schemas are
implemented as Delite Structs; Delite’s array-of-struct to struct-of-array transforma-
tion allows OptiQL to provide a row-store abstraction while actually implementing a
back-end column store. Delite Structs also automatically provide dead field elimina-
tion (the elimination of struct fields that are not used in the query) for free.

New Delite features required. We implemented the user-defined data structure sup-
port discussed in Section 4 to support lifting user-defined schemas in OptiQL. The
GroupBy op and corresponding hashmap semantics were added to support GroupBy.
FlatMap was added to support Join and Sort was added for OrderBy.

6.3. OptiGraph

OptiGraph is a DSL for static graph analysis based on the Green-Marl DSL [Hong et al.
2012]. OptiGraph enables users to express graph analysis algorithms using graph-
specific abstractions and automatically obtain efficient parallel execution. OptiGraph
defines types for directed and undirected graphs, nodes, and edges. It allows data
to be associated with graph nodes and edges via node and edge property types and
provides three types of collections for node and edge storage (namely, Set, Sequence,
and Order). Furthermore, OptiGraph defines constructs for BFS and DFS order graph
traversal, sequential and explicitly parallel iteration, and implicitly parallel in-place
reductions and group assignments. Another important feature of OptiGraph is its
built-in support for bulk synchronous consistency via deferred assignments.

Listing 3 shows the parallel loop of the PageRank algorithm [Page et al. 1999] writ-
ten in OptiGraph. PageRank is a well-known algorithm that estimates the relative
importance of each node in a graph (originally of Web pages and hyperlinks) based on
the number and PageRank of the nodes associated with its incoming edges (InNbrs).
In the snippet, PR is a node property associating a page-rank value with every node
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val PR = NodeProperty[Double] (G)

for(t <- G.Nodes) {
val rank = (1 - d) / N + d * Sum(t.InNbrs){w => PR(w) / w.OutDegree}
diff += abs(rank - PR(t))
PR <= (t,rank)

}

Listing 3. OptiGraph: core of the PageRank algorithm.

in the graph. The <= statement is a deferred assignment of the new page-rank value,
rank, for node t; deferred writes to PR are made visible after the for loop completes via
an explicit assignment statement (not shown). Similarly, += is a scalar reduction that
implicitly writes to diff only after the loop completes. In contrast, Sum is an in-place
reduction over the parents of node t. This example shows that OptiGraph can concisely
express useful graph algorithms in a naturally parallelizable way; the ForeachReduce
op implicitly injects the necessary synchronization into the for loop.

Reuse. OptiGraph uses Delite’s ForeachReduce, Filter, Map and Reduce ops to im-
plement its parallel operators. DFS is implemented sequentially. BFS is implemented as
a sequence of ForeachReduce and Map,Reduce ops in a while loop; the ForeachReduce
op processes the current level and the Map,Reduce ops compute the nodes to be pro-
cessed in the next level. OptiGraph inherits conditionals, while loops, and arithmetic
operations from Delite and benefits from generic optimizations including code motion,
DCE, and CSE.

New Delite features required. We added ForeachReduce to support OptiGraph’s
scalar reductions inside parallel foreaches. Furthermore, this feature is a generic op-
eration supported by other parallel programming models (e.g., OpenMP) and can be
reused by other DSLs (e.g., OptiMesh).

6.4. OptiMesh

OptiMesh is an implementation of Liszt on Delite. Liszt is a DSL for mesh-based Partial
Differential Equation (PDE) solvers [DeVito et al. 2011]. Liszt code allows users to per-
form iterative computation over mesh elements (e.g., cells, faces). Data associated with
mesh elements are stored in external fields that are indexed by the elements. Listing 4
shows a simple OptiMesh program that computes the flux through edges in the mesh.
The for statement in OptiMesh is implicitly parallel and can only be used to iterate
over mesh elements. head and tail are built-in accessors used to navigate the mesh
in a structured way. In this snippet, the Flux field stores the flux value associated
with a particular vertex. As the snippet demonstrates, a key challenge with Opti-
Mesh is to detect write conflicts within for comprehensions given a particular mesh
input.

Reuse. The major parallel operation in OptiMesh is the for statement. OptiMesh also
allows scalar reductions inside a for comprehension, so it uses the ForeachReduce op
that was added for OptiGraph. Map, Reduce and ZipWith are also used for vector and
matrix arithmetic. OptiMesh reuses the same generic optimizations as OptiGraph and
inherits variables, conditionals, and math functions (including trigonometric functions)
from Delite.

New Delite features required. OptiMesh’s only previously unsupported requirement
was the ForeachReduce op, which was added for OptiGraph. Therefore, OptiMesh
required no additional features; this is an example of how the incremental cost of new
DSLs decreases as the existing base of reusable components increases.
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for (edge <- edges(mesh)) {
val flux = flux_calc(edge)
val vO0 = head(edge)
val vl = tail(edge)
Flux(v0) += flux // possible write conflicts!
Flux(vl) -= flux

Listing 4. OptiMesh: simple flux computation.

/% This trait is part of the IR and constructs new nodes */
trait ColoringTransformerExp extends OptiMeshExp { self =>
// result is a symbol representing multiple Foreach ops

def colorFor(f: Foreach[_], colors: Array[Array[Int]]) = {
// colors contains indices of each new foreach
var i = 0
// while loop is immediately unrolled (not lifted)
while (i < colors.length) {
// DeliteArray lifts the ’for’ stm to a Foreach op
for (c <- DeliteArray(colors(i))) {
f.func(c)
h
i+=1
}
3

/+* This trait is a Transformer that traverses the IR =/
trait ColoringTransformer extends ForwardTransformer {
val IR: ColoringTransformerExp; import IR._
// colorMap constructed using stencil (impl elided)
val colorMap: Map[Foreach[_],Array[Array[Int]]]
override def transformStm(stm: Stm): Exp[Any] = stm match {
case TP(s,l:Loop[_]) =
1.body match {
// transform a Foreach symbol into a new symbol
// representing multiple colored Foreaches
case f:Foreach[_] => colorFor(f,colorMap(f))
case _ => super.transformStm(stm)
}
case _ => super.transformStm(stm)

I

Listing 5. Loop coloring transformation for OptiMesh.

Domain-specific transformations. OptiMesh implements the same analyses and
transformations as the stand-alone Liszt language. First, we perform stencil detec-
tion [DeVito et al. 2011]. The idea is to symbolically evaluate an OptiMesh program
with a real mesh input and record fields that are read and written in a single iteration
of a parallel foreach. Using the stencil, we build an interference graph and run a color-
ing algorithm to find disjoint sets of the original foreach that are safe to run in parallel.
We implement stencil detection in Delite before code generation by constructing a new
traversal, StencilCollector. StencilCollector visits each node in program order
and looks for a Foreach op; when it finds one, it records that it is inside a Foreach
and begins to record subsequent ops to an in-memory data structure representing
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Delite Ops ‘ Generic Opts. ‘ Domain-Specific Opts.
OptiML Map, ZipWith, CSE, DCE, linear algebra
Reduce, Filter, code motion, | simplifications
Sort, FlatMap, fusion, SoA
GroupBy
OptiQL Map, Reduce, CSE, DCE,
Filter, Sort, code motion,
GroupBy, fusion, SoA,
FlatMap DFE
OptiGraph ForeachReduce, | CSE, DCE,
Map, Reduce, code motion
Filter
OptiMesh ForeachReduce | CSE, DCE, stencil collection &
code motion | coloring transformation

Fig. 2. Sharing of DSL operations and optimizations.

the stencil. After the StencilCollector traversal is finished, OptiMesh has the
stencil.

The next step is to use the stencil to perform the actual transformations. We ac-
complish this by implementing a new transformer, ColoringTransformer, shown in
Listing 5. ColoringTransformer replaces each Foreach in the original IR with one
or more new Foreaches, each corresponding to a different colored set (essentially loop
fission). After the transformation completes, control is passed back to Delite and code
generation proceeds as normal. This example demonstrates that Delite transformations
are concise and expressive (the transformed version is written as normal source code,
and then restaged to an IR). It also shows that unstaged code and staged code can be
mixed within a transformation; this flexibility is important when using analysis results
(static expressions) within transformations (lifted expressions), as OptiMesh does.

6.5. Reuse Summary

Figure 2 summarizes the characteristics and reuse of the DSLs introduced in this
section. The DSLs inherit most of their functionality from Delite, in the form of a small
set of reused parallel patterns and generic optimizations. The DSLs use just nine Delite
ops total; seven ops (77.7%) were used in at least two DSLs; three (33.3%) were used
in at least three DSLs. At the same time the DSLs are not constrained to built-in
functionality, as demonstrated by OptiMesh’s domain-specific optimizations.

7. EVALUATION

In this section, we analyze the performance of the Delite DSLs. We compare applications
written in each DSL to sequential C++ implementations. For OptiML we also compare
against MATLAB [MathWorks 2014] since machine learning researchers often use
MATLAB to implement their algorithms. Each Delite DSL generated Scala code for
the CPU and CUDA code for the GPU.

All of our experiments were performed on a Dell Precision T7500n with two quad-
core Xeon 2.67 GHz processors, 96GB of RAM, and an NVidia Tesla C2050. The CPU-
generated Scala code was executed on the Oracle Java SE Runtime Environment 1.7.0
and the Hotspot 64-bit server VM with default options. For the GPU, Delite executed
CUDA v4.0. The C++ versions were all compiled with gcc -03. MATLAB code was run
with MATLAB 7.11 with its parallel computing toolbox and GPU execution support.
We ran each application ten times (to warm up the JIT) and report the average of the
last five runs. For each run we timed the computational portion of the application. For
each application we show normalized execution time relative to our DSL version with
the speedup listed at the top of each bar.
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Fig. 3. Performance of OptiML applications. Speedup numbers relative to Delite 1 CPU are listed at the top
of each bar.

OptiML. First, we compare the performance of six machine learning applications in
Figure 3 [Brown et al. 2011]. For C++ we used the Armadillo linear algebra library
[Sanderson 2006] and wrote hand-optimized imperative implementations. We also
made a reasonable effort to optimize the MATLAB implementations, including vec-
torizing the code where possible. All OptiML implementations show better or compa-
rable performance to the MATLAB and C++ library implementations. This is because
Delite is able to generate code that is similar to the manually optimized implementa-
tion from the high-level DSL description. The OptiML compiler eliminates overhead
by inlining a large number of small operations and uses op fusion to generate more
efficient kernels, avoiding unnecessary intermediate allocations. Restricted Boltzmann
Machine (RBM) is an application where MATLAB performs slightly better than Op-
tiML. This is because RBM is dominated by BLAS [Lawson et al. 1979] operations that
MATLAB offloads to an efficient BLAS library, and there is not much room for compiler
optimizations in the application.

The reason some C++ implementations show better performance (e.g., k.-means) is
because the C++ version aggressively reuses allocated memory across loop iterations
while the Delite version performs a new allocation each iteration. While this improves
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sequential performance, it also prevents the code from being parallelized. The OptiML
version, in contrast, scales well across multiple cores, and for 2-means achieves an even
greater 13x speedup by executing parallel ops on the GPU. Generating efficient GPU
code for k-means requires Delite to perform multiple compiler transformations. The
application as written in OptiML contains nested implicitly data-parallel operators that
allocate results. While CPU code generators can easily perform the nested allocations
locally within a thread, dynamic thread-local allocations are either not supported or not
efficient on current GPUs. Therefore the Delite compiler transforms the outer parallel
op into a sequential loop that can run on the CPU and generates the inner parallel ops
as parallel CUDA kernels.

Gaussian Discriminant Analysis (GDA) is the application that shows the most ben-
efit from efficient GPU code generation. Delite generates CUDA kernels that keep
the intermediate results in registers instead of the device memory and applies work
duplication to remove dependencies between threads, which maximizes the GPU per-
formance. RBM also shows good performance on the GPU since the application heavily
uses floating-point matrix multiplication operations, which runs efficiently on the GPU
using a large number of GPU cores. On the other hand, naive Bayes does not perform
well on the GPU because the arithmetic intensity of the application is too low to fully
utilize the compute capability of the GPU and the performance is limited by the trans-
fer cost of moving the input data from the main memory to GPU device memory. The
Support Vector Machine (SVM) application also does not perform well because it is an
iterative algorithm that has intermediate-sized data-parallel operations for each itera-
tion, which is not enough to fully utilize the GPU and requires frequent data movement
between the CPU and GPU.

As we can see from the results, each application runs best either on multicore CPU
or GPU depending on characteristics such as the arithmetic intensity or the size of
the data-parallel operations. In addition, manually optimizing the application for each
specific target device requires a great deal of effort and is not portable. Delite’s capa-
bility of targeting different devices automatically from a single source addresses this
issue, and the productivity benefit will become even more crucial as more and more
heterogeneous devices are introduced.

OptiQL: TPC-H Query 1. Next we compare the performance of the benchmark TPC-H
Query 1 implemented in OptiQL versus C++. The OptiQL implementation is very con-
cise and high level (as illustrated in Listing 2) and requires 7x fewer lines of code than
the hand-optimized C++ version. However, a library implementation of these OptiQL
operations can run orders of magnitude slower than a fully optimized implementation.
As written, the query allocates a new table (collection) for every operation and every row
of the table is a heap-allocated object. However, Delite’s loop fusion algorithm trans-
forms the Where-GroupBy-Select chain into a single operation that computes the
entire result with a single pass over the input dataset. Furthermore, Delite’s array-
of-struct to struct-of-array optimization transforms the internal layout of the tables
from a single array of pointers to objects (row oriented) to a flat array of primitives
per field (column oriented). Other key optimizations Delite performs that maximize
the performance of this application include lifting the construction of constant objects
out of the query, inlining all of the anonymous functions, and bit-packing primitive
types (e.g., a Pair [Char,Char] is encoded as an Int). As Figure 4(a) illustrates, these
optimizations allow OptiQL to achieve performance comparable to hand-optimized se-
quential C++ code. In addition the OptiQL version can be automatically parallelized to
achieve nearly 5x speedup on eight threads, while parallelizing the C++ implementa-
tion would require significant refactoring and additional programmer effort. Delite can
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Fig. 4. Performance of OptiQL, OptiGraph, OptiMesh applications.

also generate a CUDA implementation of this query and execute it on a GPU, however,
we found that the time required just to move the input data to the GPU was greater
than the time required for the CPU to compute the result.

OptiGraph: PageRank. Figure 4(b) compares the performance of the PageRank algo-
rithm [Page et al. 1999] implemented in OptiGraph to the C++ implementation on a
uniform random graph of 8M nodes and 64M edges. As shown in Listing 3 each node
calculates its PageRank value from the PageRank values of its neighbor nodes. Due to
the nature of the graph data structure, there is not much locality in the neighbors of
each node. Therefore, the application is dominated by the random memory accesses dur-
ing node neighborhood exploration. This memory access pattern also generates cache
conflicts and associated coherency traffic, which limits the scalability, especially when
the graph size is small. The C++ implementation is about 30% faster than sequential
OptiGraph because OptiGraph currently uses a back-end graph data structure that
has more abstractions than the C++ implementation. For example, OptiGraph repre-
sents the neighbor node list as a nested Array where the index i of the outer Array
contains the neighbor nodes of node i. On the other hand, C++ uses a flat Array using
a CSR representation and therefore has less access overheads. However, this is not
a fundamental limitation of OptiGraph and additional work to use a more optimized
graph representation would eventually match the C++ performance.

OptiMesh: Shallow water simulation. Figure 4(c) compares the performance of shal-
low water simulation implemented in OptiMesh to a C++ implementation. Shallow
water simulates the height and velocity of the free surface of the ocean over the
spherical earth using an unstructured mesh. The application iterates through mul-
tiple time steps, and each time step executes a series of ForeachReduce operations
on the mesh elements. Although the application for statements are not parallelizable
because of the write conflicts between mesh elements, OptiMesh performs the loop
coloring domain-specific transformation as shown in Listing 5 and generates one or
more parallel ForeachReduce loops. The GPU can execute each of these loops very
efficiently with a large number of threads, achieving nearly 28x speedup compared
to the C++ implementation. This application heavily uses compute-intensive oper-
ations such as trigonometric functions, for which the GPU’s specialized functional
units provide significant speedup. This application also requires minimal commu-
nication between the CPU and GPU. The input mesh does not change once con-
structed and therefore only has to be copied to the GPU once at the beginning of
execution.
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8. DISCUSSION

Delite is a maturing DSL platform that is being used actively by research groups at
Stanford and EPFL, and is beginning to spread to other early adopters in academia
and in the open-source community. We believe that the initial DSLs we have devel-
oped offer encouraging evidence that DSLs can be an effective way of obtaining high
performance with low effort in numerous domains. Most of the DSLs took a single
academic quarter to implement by one or two graduate students. In contrast, external
DSLs typically require compiler expertise and take much longer to implement. Delite’s
main leverage comes from dividing the critical expertise required to implement a DSL
amongst different persons depending on their area of concern. To develop a typical
high-performance external DSL, a compiler developer would need domain, language,
and hardware expertise. Instead, Delite allows framework authors to provide the com-
piler and hardware expertise, and DSL authors to focus on DSL design and identifying
the important domain abstractions (domain decomposition). Additionally, Delite DSLs
benefit transparently from improvements in the shared infrastructure; when Delite
adds support for new targets (e.g., clusters, FPGAs), all Delite DSLs can utilize these
improvements with little or no change to the DSL itself.

One key reason that Delite is able to generate efficient code is its emphasis on
immutable, functional parallel patterns. Functional programming has long been con-
sidered well suited for parallelism, since it is easier to reason about, optimize, and
parallelize immutable data structures. Delite leverages these ideas in its parallel pat-
terns, while DSL users are still only exposed to more familiar domain-specific abstrac-
tions. Typically, immutable data structures also have substantial overhead due to the
creation of intermediate objects. By extending the compiler’s semantics with domain-
specific information, that is, by mapping domain-specific operations to IR nodes, Delite
can automatically transform these functional operators to efficient imperative code.
Starting from imperative code, on the other hand, greatly limits the compiler’s ability
to optimize and target different hardware. It is important to note that Delite is de-
signed to allow new parallel patterns to be easily added as they are encountered; we
do not believe that the current set is by any means complete, but when a new pattern
is implemented, that effort can be reused by all DSLs.

While there is good opportunity for DSLs to become a practical alternative to low-level
programming for high performance, there are also substantial challenges that remain.
The proliferation of performance-oriented DSLs creates new problems. Users must
choose between different, potentially incompatible DSLs to implement their applica-
tion. To mitigate this, we need principled ways of inter-operating between performance-
oriented DSLs. We have recently shown that Delite DSLs can be composed at different
granularities by exploiting the common back-end framework [Sujeeth et al. 2013b].
However, this composition is limited (for DSLs with restricted semantics, we allow only
pipeline composition), and does not address composing DSL front-ends (e.g., grammars
or type systems).

Delite focuses on optimizing compilation for heterogeneous and parallel processors,
but there has also been good progress in simplifying the development of the front-ends
of DSL compilers (for example, via language workbenches such as Spoofax [Kats and
Visser 2010] or extensible language frameworks such as Sugard [Erdweg et al. 2011]).
Combining these avenues of research is an exciting future direction. Many of these
frameworks have also demonstrated the ability to automatically generate high-quality
tool-chains for DSLs, such as custom IDE plugins. These tool-chains are critical for
DSL adoption. However, targeting heterogeneous hardware adds new challenges for
tool-chains, since bugs can manifest in many different layers or devices. One promis-
ing avenue for DSL tool-chains to go beyond their general-purpose counterparts is with
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domain-specific debuggers. A graph analysis DSL, for example, could provide visualiza-
tions and step-through debugging on the state of the graph as a first-class primitive.
Another open problem is heterogeneous resource scheduling and cost modeling, but
there is longstanding work in multiple fields (including databases and operating sys-
tems) to draw from. Finally, there is potential for further specialization and cooperation
throughout the stack; domain-specific compilers can be codesigned with domain-specific
hardware to provide even more performance.

9. RELATED WORK

Our embedded DSL compilers build upon numerous previously published work in
the areas of DSLs, extensible compilers, heterogeneous compilation, and parallel
programming.

There is a rich history of DSL compilation in both the embedded and stand-alone
contexts. Leijen and Meijer [1999] and Elliot et al. [2000] pioneered embedded compi-
lation and used a simple image synthesis DSL as an example. Feldspar [Axelsson et al.
2011] is an embedded DSL that combines shallow and deep embedding of domain op-
erations to generate high-performance code. For stand-alone DSL compilers, there has
been considerable progress in the development of parallel and heterogeneous DSLs.
Liszt [DeVito et al. 2011] and Green-Marl [Hong et al. 2012] are external DSLs for
mesh-based PDE solvers and static graph analysis, respectively. Both of these DSLs
target both multicore CPUs and GPUs and have been shown to outperform optimized
C++ implementations. Diderot [Chiw et al. 2012] is a parallel DSL for image analy-
sis that demonstrates good performance compared to hand-written C code using an
optimized library. Piischel et al. [2005] show that domain-specific optimizations can
yield substantial speedups when tuning code for particular Digital Signal Processors
(DSPs). Our work aggregates many of the lessons and techniques from these previous
DSL efforts and makes them easier to apply to new domains.

There has also been work on extensible compilation frameworks aimed towards
making high-performance languages easier to build. Telescoping languages [Kennedy
et al. 2005] automatically generate optimized domain-specific libraries. They share
Delite’s goal of incorporating domain-specific knowledge in compiler transformations.
Delite compilers extend optimization to DSL data structures and are explicitly designed
to generate parallel code for multiple heterogeneous back-ends. Delite also optimizes
both the DSL and the program using it in a single step. Stratego [Bravenboer et al. 2008]
is a language for program transformation using extensible rewrite rules. Stratego’s
organization also focuses on a reusable set of components, but targeted specifically
to program transformation. Delite extends these principles to a more diverse set of
components in order to target end-to-end high-performance program execution for
DSLs.

Outside the context of DSLs, there have been efforts to compile high-level general-
purpose languages to lower-level (usually device-specific) programming models.
Mainland and Morrisett [2010] use type-directed techniques to compile an embedded
array language, Nikola, from Haskell to CUDA. This approach suffers from the inabil-
ity to overload some of Haskell’s syntax (if-then-else expressions) which isn’t an issue
with our version of the Scala compiler. Nystrom et al. [2011] show a library-based ap-
proach to translating Scala programs to OpenCL code. This is largely achieved through
Java bytecode translation. A similar approach is used by Lime [Auerbach et al. 2010] to
compile high-level Java code to a hardware description language such as Verilog. Since
the starting point of these compilers is the much lower-level bytecode or Java code
(relative to DSL code), the opportunities for high-level optimizations are more limited.
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Finally, there are high-level data-parallel programming models that provide implicit
parallelization by providing the programmer with a data-parallel API that is trans-
parently mapped to the underlying hardware. Recent work in this area includes Cop-
perhead [Catanzaro et al. 2011], which automatically generates and executes CUDA
code on a GPU from a data-parallel subset of Python. Array Building Blocks [Intel
2010] manages execution of data-parallel patterns across multiple processor cores and
targets different hardware vector units from a single application source. Dryad LINQ
[Isard and Yu 2009] converts LINQ [Meijer et al. 2006] programs to execute using
Dryad [Isard et al. 2007], which provides coarse-grained data-parallel execution over
clusters. Flumedava [Chambers et al. 2010] targets Google’s MapReduce [Dean and
Ghemawat 2004] from a Java library and fuses operations in the dataflow graph in
order to generate an efficient pipeline of MapReduce operations. Our work builds on
these previous publications and also allows for domain-specific optimizations, which is
not possible with these other approaches. Furthermore, Delite DSLs provide a simpler
interface for end-users than general-purpose frameworks.

10. CONCLUSION

In this article we showed that embedded compilers that target heterogeneous paral-
lel architectures can be developed for multiple domains and provide both productivity
and performance. We presented an overview of Delite, a compiler framework for em-
bedded DSLs. Delite simplifies the process of developing DSL compilers by providing
DSL building blocks, including domain-specific, parallel and generic optimizations. We
described four DSLs (OptiML, OptiQL, OptiGraph, and OptiMesh) built using this
framework and showed that the reuse of common components significantly reduced
the amount of effort required to implement each new DSL. For the four DSLs we im-
plemented, only nine parallel operators were required and seven of those were reused
in at least two DSLs. Despite being developed within a common framework, our DSLs
produce high-performing code (at worst within 30% of optimized C++) on multicore
and GPU architectures. This work indicates that the Delite compiler framework is an
effective way to turn embedded DSL programs into high-performance execution.
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