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Abstract - When vehicles share their status information with other vehicles or the 
infrastructure, driving actions can be planned better, hazards can be identified sooner, and 
safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is 
underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies 
in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and 
Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety 
Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs 
describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading, 
speed, and acceleration). This study proposes a data analytic methodology to extract 
critical information from raw BSM data available from SPMD. A total of 968,522 
records of basic safety messages, gathered from 155 trips made by 49 vehicles, was 
analyzed. The information extracted from BSM data captured extreme driving events 
such as hard accelerations and braking. This information can be provided to drivers, 
giving them instantaneous feedback about dangers in surrounding roadway environments; 
it can also provide control assistance. While extracting critical information from BSMs, 
this study offers a fundamental understanding of instantaneous driving decisions. 
Longitudinal and lateral accelerations included in BSMs were specifically investigated. 
Varying distributions of instantaneous longitudinal and lateral accelerations are 
quantified. Based on the distributions, the study created a framework for generating 
alerts/warnings, and control assistance from extreme events, transmittable through V2V 
and V2I applications. Models were estimated to untangle the correlates of extreme events. 
The implications of the findings and applications to connected vehicles are discussed in 
this paper.    

 
Keywords: connected vehicles, basic safety messages, extreme events, longitudinal and lateral 
accelerations 
 
INTRODUCTION  

 
Connected vehicles are spawning new applications to address real-world safety problems, such 
as collisions owing to unexpected hard braking and fast lane changing. Two major applications 
for driving safety are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communications to inform drivers of roadway hazards and situations that they cannot 
immediately perceive. V2V applications enable vehicles to transmit and receive data from 
surrounding vehicles, and V2I allows vehicles to communicate with the infrastructure. They can 
receive information about traffic signal timing or incidents in real-time. These systems help 
drivers make informed decisions avoiding dangers posed by surrounding vehicles or by 
infrastructure elements (Li et al., 2011; Jin et al., 2012; Lee and Park, 2012; Goodall et al., 2013; 
Qin and Orosz, 2013; Hu et al., 2015). According to a US DOT report, V2V and V2I 
applications can substantially improve safety (Office, 2014) by reducing driver errors, which are 
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key contributors to crashes.  The errors can include recognition errors, decision errors, and 
performance or nonperformance errors (NHTSA, 2008).  
 A connected vehicle safety pilot program, Safety Pilot Model Deployment (SPMD), 
underway in Ann Arbor, Michigan intended to demonstrate V2V and V2I technologies in a real-
world environment (Henclewood, 2014). Approximately 3,000 vehicles are equipped with V2V 
communication devices, and 75 miles of roadway are instrumented with roadside equipment, 
mainly placed at signalized intersections. Data acquisition systems are installed in vehicles 
participating in the program to facilitate V2V and V2I communications. Data transmitted 
through V2V and V2I are called Basic Safety Message (BSM), sampled at a frequency of 10 Hz. 
The core contents of BSM are data elements that describe a vehicle’s position (latitude, longitude, 
and elevation) and motion (heading, speed, and acceleration) (Henclewood, 2014). BSM also 
contains data pertaining to the vehicle’s component status (lights, brakes, wipers) and vehicle 
safety information (path history, events) (Henclewood, 2014). Given the availability of advanced 
communication and sensor technologies such as dedicated short-range communications (DSRC), 
Global Positioning Systems (GPS), Radar, and Bluetooth, there is no doubt that BSMs can be 
successfully sent and received by vehicles and roadside equipment under various road conditions. 
SPMD is a demonstration of such communication technologies in a connected vehicles 
environment.  
 Using these technologies, what kind of critical information can be extracted and provided 
to drivers to alert them to present dangers or assist in vehicle control to help drivers make safe 
decisions? Driver-oriented information is supposed to be simple and informative, such as head-
on collision warnings. This study proposes an original methodology, based on data analytics, to 
extract critical information from BSMs transmitted between connected vehicles and 
infrastructure.  
 Specifically, this study aims to 1) investigate the magnitudes and directions (longitudinal 
and lateral) of instantaneous driving decisions contained in BSMs; and 2) identify critical events 
(i.e., hard accelerations or braking and quick lane changes) by establishing reasonable thresholds. 
These events are the basis for actionable messages (alerts, warnings or control assists) given to 
drivers of connected vehicles. Instantaneous driving decisions are mainly implemented by pedal 
maneuvering (brake and accelerator) and steering. Pedal maneuvering changes the speed or 
acceleration, and steering changes the direction of vehicle motion. To uncover the full range of 
instantaneous driving decisions, it is important to investigate both the magnitudes and directions 
of instantaneous driving decisions. In addition, the current thresholds used for recognizing 
critical driving behaviors are not sensitive to the vehicle speeds and different driving conditions 
faced by drivers (De Vlieger et al., 2000; Simons-Morton et al., 2011; Kim and Choi, 2013). 
Furthermore, directional differences of instantaneous driving decisions, i.e., longitudinal and 
lateral acceleration, has not been studied widely (De Vlieger et al., 2000; Kim and Choi, 2013). 
Given the available high-resolution BSM data, this study contributes by establishing reasonable 
thresholds for identifying potentially dangerous behaviors, while considering variations in 
driving behaviors under different conditions. Directional differences in instantaneous driving 
decisions are also explored.  
 
LITERATURE REVIEW 

 
The literature reflects substantial increase in research activity with regards to connected vehicles, 
covering a wide range of topics from how connected vehicles will be adopted and used, to their 
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applications and implications for safety, energy, and the environment (Koulakezian and Leon-
Garcia, 2011; Zeng et al., 2012; Olia et al., 2014; Zhang et al., 2014; Fagnant and Kockelman, 2015). A 
report by Hill et al. discusses connected vehicle infrastructure deployment approaches and 
strategies, including the time horizon, key issues related to drivers and vehicles, operations, 
benefits for state and local agencies, and early connected vehicle adopters (Hill and Garrett, 
2011). Substantial work has been done to establish connected vehicle networks, such as 
Vehicular Ad-hoc Networks (Li et al., 2011; Zhang and Orosz, 2013). Both the public and 
private sectors are interested in applications and implications of connected vehicles. Applications 
include intersection signals (Lee and Park, 2012; Christofa et al., 2013; Guler et al., 2014; Hu et 
al., 2014; Wu et al., 2014; Bagheri et al., 2015; Feng et al., 2015), pavement assessments 
(Bridgelall, 2013), traffic queue estimation (Li et al., 2013), vehicle routing and travel time 
estimation (Kianfar and Edara, 2013; Tian et al., 2013; Genders and Razavi, 2015; Moylan and 
Skabardonis, 2015), driving behavior monitoring and warnings (Sengupta et al., 2007; Goodall et 
al., 2014; Chrysler et al., 2015; Doecke et al., 2015; Du and Dao, 2015; Osman et al., 2015), and 
fuel efficiency (Kishore Kamalanathsharma and Rakha, 2014; Liu et al., 2016).  
 The key to the success of connected vehicles lies in how well connectivity of vehicles 
and infrastructure works in real life. Recent innovations that enable connectivity include 
applications of V2V and V2I. supported by wireless communication technologies such as DSRC 
(Cheng et al., 2007; Chan, 2011), Wi-Fi (Goel et al., 2004; Chou et al., 2009), Bluetooth (Nusser 
and Pelz, 2000; Sugiura and Dermawan, 2005), and cellular networks (Mosyagin, 2010; Abid et 
al., 2012).  
 SPMD uses Basic Safety Messages (BSMs) to describe a vehicle’s position, motion, its 
component status, and other relevant travel information (Henclewood, 2014). However, the 
BSMs are not informative to drivers when they need to make decisions based on information 
received through V2V or V2I applications. Most BSMs describe normal driver behaviors. 
However, abnormal and extreme driver behaviors determine the safety of driving the short-term. 
Thus, it is critical to identify abnormal or extreme behaviors from BSMs, and warn drivers 
through the V2V, V2I, or other connected vehicle applications.  
 A number of studies have focused on investigating driving behaviors. Vehicle motion 
(speed and acceleration) has been regarded as the core information describing driving behaviors. 
Fast driving is normally characterized as an aggressive, reckless or risky driving style, and speed 
limits are usually the threshold that determines a driver’s performance (Lajunen et al., 1997a; 
Hoedemaeker and Brookhuis, 1998; Lajunen et al., 1998; NHTSA, 2000). However, speed 
choice depends mainly on the conditions of speed limits (or road conditions) and the traffic. A 
driver is supposed to comply speed limits, but he or she is also affected by the traffic (Åberg et 
al., 1997; Haglund and Åberg, 2000). Researchers give several acceleration cut-off points as 
thresholds to identify abnormal, extreme, and aggressive driving behaviors. Kim and Choi report 
thresholds for aggressive and extremely aggressive accelerations in urban driving environments 
(Kim and Choi, 2013), while De Vlieger et al. did similar work for calm driving, normal driving, 
and aggressive driving (De Vlieger et al., 2000). Simons-Morton et al. advanced the 
characterization of risky driving by observing the elevated gravitational force (G-force) events 
that are captured when longitudinal or lateral accelerations exceed certain thresholds (Simons-
Morton et al., 2011; Simons-Morton et al., 2012; Simons-Morton et al., 2013). Risky driving 
behaviors have been found to be positively correlated with the likelihood of crashes or near-
crash events (Paleti et al., 2010; Guo and Fang, 2013).  
 Driving occurs in various conditions, and driver behaviors may vary in different contexts. 
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To account for the variation of driving behaviors under different conditions, Liu et al. and Wang 
et al. introduced a varying acceleration threshold to identify extreme driving behaviors (Liu et 
al., 2014; Liu, 2015; Liu et al., 2015; Wang et al., 2015). Most previous studies investigating 
driver behaviors overlook the directions (longitudinal and lateral) of driving decisions. Driving 
decisions in two directions (longitudinal and lateral accelerations) are under-explored. This 
study proposes an innovative way to identify extreme driving behaviors embedded in BSMs that 
may provide warning messages to drivers through V2V and V2I applications. 
 While previous studies propose ideas for warnings or alerts to drivers using the 
connected vehicle applications (Goodall et al., 2014; Chrysler et al., 2015; Doecke et al., 2015; 
Du and Dao, 2015; Osman et al., 2015), they have not fully assimilated the value of information 
transmitted between connected vehicles. For example, Noble et al., (2014) used only naturalistic 
driving data collected through the Strategic Highway Research Program 2 (but not BSMs) for 
analysis, and Osman et al., (2015) used driving simulator based data. This study fully mines the 
geo-referenced data transmitted between vehicles and infrastructure in a real-life connected 
vehicle deployment. Specifically, it extracts useful information about extreme events from new 
data sources made possible by communication between connected vehicles.  
  
METHODOLOGY 

 
Recently, NHTSA and Society of Automotive Engineers (SAE) have come out with levels of 
automation that range from no automation to full automation (SAE, 2014). Figure 1 shows the 
how drivers can transition from controlling all aspects of the dynamic driving task to 
relinquishing control of these tasks. Based on the taxonomy, this study focuses on Level 0 in the 
SAE taxonomy. Within Level 0, the study transitions from driving without alerts, warnings, or 
intervention systems to using these for enhanced driving safety. Increasingly, vehicles are 
incorporating driver decision support systems, while drivers retain control of steering and 
braking controls, except in crash imminent situations. Alerts, warnings, and control assists can be 
divided into two broad categories: 
 1) Internal to the functioning and performance of the driver or vehicle. Examples of these 
include warnings about hard accelerations or braking, or frequent lane changes, sharp turns, or 
functioning of wipers, head- and tail-lights, turn signals, etc. 
 2) External to the vehicle. These are warnings that relate to proximity of other vehicles, 
objects, infrastructure, and the environment, and include forward collision warning or lane 
departure warning.  
 This paper considers both types of alerts, warnings, and control assists, which are still 
part of Level “0.” Such warnings are based on BSM data, and can eventually lead to higher 
levels of automation.  
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Figure 2 presents the spatial distribution of sampled data. Distributions of variables seemed 
reasonable in terms of magnitude and spatial characteristics.   
 

TABLE 2 Variable Descriptions from Safety Pilot Model Deployment, Ann Arbor, Michigan 
Variable Description 

Position 

Altitude 
A GPS-based estimate of height above sea level (height above the 
reference ellipsoid that approximates mean sea level) 

Latitude Current degree of latitude at which the vehicle is located 

Longitude Current degree of longitude at which the vehicle is located 

Motion 

Speed (host vehicle) 
Current vehicle speed, as determined from the vehicle’s 
transmission 

Longitudinal 
Acceleration 

Longitudinal acceleration measured by an Inertial Measurement 
Unit (IMU) 

Lateral Acceleration Lateral acceleration measured by an IMU 

Vehicle 

Maneuvering 

Accelerator Pedal 
Reflects the amount the accelerator pedal is displaced with respect 
to its neutral position 

Brake Pedal Indicates whether the brake light is on or off 

Cruise Control Indicates whether cruise control is active/engaged 

Turn Signal 
Provides information regarding the state of the vehicle turn 
signals 

Driving 

Context 

Number of objects 
Number of identified objects, as determined by the Mobileye 
sensor 

Distance to the closest 
object 

Position of the closest object, relative to a reference point on the 
host vehicle, according to the Mobileye sensor 

Relative speed of the 
closest object 

Longitudinal velocity of the closest object, relative to the host 
vehicle according to the Mobileye sensor 

Source: SPMD Data Handbook (Henclewood, 2014). 
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instantaneous accelerations), Figure 4 also shows the variance of longitudinal and lateral 
accelerations within one second, calculated by Equations (1) and (2) below.  
௜௅௢௡௚௜௧௨ௗ௜௡௔௟ܴܣܸ  ൌ 1݊ ෍ ቌ ௝ܽ௅௢௡௚௜௧௨ௗ௜௡௔௟ െ 1݊ ෍ ௝ܽ௅௢௡௚௜௧௨ௗ௜௡௔௟௜ାଽ

௝ୀ௜ ቍଶ௜ାଽ
௝ୀ௜  Equation (1)

௜௅௔௧௘௥௔௟ܴܣܸ ൌ 1݊ ෍ ቌ ௝ܽ௅௔௧௘௥௔௟ െ 1݊ ෍ ௝ܽ௅௔௧௘௥௔௟௜ାଽ
௝ୀ௜ ቍଶ௜ାଽ

௝ୀ௜  Equation (2)

 
Where, 
VAR = variance of accelerations within one second; 
i = time stamp in 0.1 second, i = 1.0, 1.1, 1.2, …; 
j = the index of summation, j = i, i+1, i+2, ..,, i+9; ௝ܽ௅௢௡௚௜௧௨ௗ௜௡௔௟ = the jth record of instantaneous longitudinal acceleration in 10 Hz; ௝ܽ௅௔௧௘௥௔௟ = the jth record of instantaneous lateral acceleration in 10 Hz; 
 
 Note that this study uses longitudinal and lateral acceleration as key measures to capture 
instantaneous driving decisions, i.e., how a vehicle is maneuvered instantaneously. Driving 
behaviors can also be captured by other measures, such as steering angles and the position of the 
accelerator or brake in a vehicle. Given that longitudinal and lateral accelerations are the 
outcomes of maneuvering by drivers, the authors prefer to use them for analysis.  
 As expected, driving on local roads is more volatile, in terms of variance of accelerations, 
than driving on freeways because conditions on local roads are more complex owing to greater 
variation in roadways and surrounding environment, e.g., presence of different traffic signs and 
signals at intersections and distractions from pedestrians, bicyclists as well as changes in land 
use (commercial, residential or industrial). For this reason, critical information extraction from 
BSMs should consider the difference of driving performance or behavior under different driving 
contexts. An easy way to distinguish the driving context would be travel speed, by assuming no 
congestions on the road. The travel speed on freeways would often be higher than on local roads, 
as indicated by speed limits. Figure 4 presents the instantaneous driving decisions visualized on 
road, showing that higher speeds are associated with smaller variations of acceleration in two 
directions. Ahn et al. (Ahn et al., 2002) report that higher accelerations are associated with lower 
speeds. Consequently, driving volatility might also be associated with speeds.  
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Extreme events of acceleration in different directions potentially correspond to different warning 
and control assist messages. For example, if an extreme event is longitudinal acceleration, then a 
warning might be given to the vehicle ahead. If extreme lateral acceleration to the right is 
observed, then vehicles on the right hand side, i.e., in the right lane might be warned through 
V2V applications.  
 Unlike previous studies that give cut-off values as thresholds regardless of driving 
situations, this study proposes thresholds that change with speeds. Such changes can account for 
different driving situations encountered by drivers. In addition, the directional variation of 
acceleration distributions was considered when defining the thresholds. This study used 95th 
percentile values in each bin as the thresholds. The thresholds can be customized according to 
the acceptable levels of driving volatility. Since the thresholds were generated based on possible 
values in a specific bin, they vary with different speeds and in different directions. Figure 8 
presents: (i) an aggregated threshold surface that is enclosed like a cylinder with varying radii at 
different speeds and directions; (ii) identified extreme acceleration events (i.e., gray dots out of 
the surface); and (iii) an enlarged image of figure (ii). Note that the threshold surface was fitted 
using the 95th percentile magnitudes of longitudinal and lateral accelerations within the one 
speed×sector bin. The radii of the enclosed surface were greater for lower speeds and narrower 
for high speeds, as shown in Figure 7 (iii) and (iv). Accelerations parallel or perpendicular to the 
heading directions had greater radii than did those diagonal to heading directions, as shown in 
Figure 7 (ii).  
 The warnings and control assists were generated based on the 95th percentile thresholds 
introduced above, and if more than five successive BSMs (> 0.5 seconds) beyond the 95th 
percentile thresholds were identified together one warning or control assist can be generated as 
shown in Figure 9. Figure 10 presents a sample trip with identified extreme events (see 
“Warnings”) and their locations on a map. 
 Extreme events seemed to be located at critical driving conditions, such as sharp turns 
and complex intersections. A zoomed-in view of the suggested warning and control assist 
locations shows that this is a six-way intersection consisting of three two-way roads with 
pedestrian sidewalks, as shown in Figure 10(ii). Three locations generated three separate 
warnings and control assists. Warning and control assist 1 indicated the potential for poor sight 
distance caused by roadside plantings on East Madison Street. Warning and control assist 2 
pointed out driver behaviors influenced by the intersecting traffic from Packard Street. Warning 
and control assist 3 was possibly associated with the pedestrians crossing South Division Street. 
The methodology proposed in this study identifies extreme events and locates them accurately in 
space.   
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distance to closest objects. Modeling provides clarity on what factors are associated with higher 
frequency of extreme events, and helps anticipate the number of extreme events given a set of 
driving-related factors. Further, driving safety strategies may be developed to avoid certain 
driving conditions that are associated with more extreme events.  
 Negative binomial (NB) models were estimated (also called extra-Poisson or Poisson-
gamma model) to explore correlates of extreme event frequency. The model assumes that the 
observed frequency of extreme events identified from BSMs during one trip follows a NB 
distribution (Lord and Mannering, 2010; Guo and Fang, 2013):  
 
 ௜ܻ~ ܰܤ ሺܧ௜ߣ௜ ,   ሻߙ
 
Where, ߣ௜ = expected the rate of extreme events (i.e., frequency of extreme events over the 
duration or length of one trip); ܧ௜ = trip length (in miles) or duration (in minutes); and ߙ = NB 
over-dispersion parameter. A larger value of ߙ implies greater over-dispersion in data. If 0 = ߙ, 
then the data follows a Poisson distribution (where mean = variance). In such a situation, the 
Poisson and Negative Binomial model provide identical estimates. If ߙ is significantly greater 
than 0, a NB model is preferred. Formally, ߣ௜ can be viewed as a log link function of a set of 
independent variables:   
ሻ݅ߣሺ ݃݋ܮ  ൌ ௜ܺߚ Equation (6)
 
 Where, ௜ܺ = the matrix of independent variables; ߚ = the vector of estimated associations 
between independent variables and the dependent variable (i.e., frequency of extreme events 
during one trip).  
 Table 4 shows the descriptive statistics of variables for a trip. On average, there are 7.23 
extreme acceleration events per trip. The trip with the greatest number had 39 extreme events 
while 35 (out of 155) trips had no extreme events. Note that a zero-inflated NB model may be 
estimated for future studies (Anastasopoulos et al., 2010), if the sample size is expanded and 
excessive number of trips have zero extreme events. The longest extreme event lasted 19.1 
seconds, as shown in Table 4. Noticeably, there were some extremely short trips (less than 1 
minute) because drivers did not always initiate data collection at the beginning of their trips. For 
those trips, the data relates to one segment of a trip. Distributions of other variables seemed 
reasonable, based on error checking.  
 
   



Liu & Khattak   20 

TABLE 4 Descriptive Statistics of Variables at Trip-Level (N=155) 
Variable Mean Std. Dev. Min  Max 

Warning 

Number of extreme acceleration events 7.23 8.22 0.00 39.00 
Total extreme acceleration event duration (second) 7.96 10.14 0.00 58.00 

Average duration per extreme events (second) 0.80 0.62 0.00 3.35 

Longest extreme acceleration events duration (second) 2.11 2.67 0.00 19.10 

Trip Attribute 

Average speed (mph) 33.55 15.01 2.74 71.22 

Speed variance  228.96 158.60 0.06 728.58
Trip length (mile) * 6.68 9.46 0.03 72.14 

Trip duration (minute) * 10.41 10.92 0.07 60.78 

Vehicle Maneuvering 

Average accelerator pedal displace (%) 13.97% 11.79% 0.00% 64.30%

Brake pedal (engaged) (%) 23.08% 16.39% 0.00% 86.02%

Cruise control (engaged) (%) 30.16% 37.78% 0.00% 100.00%

Turn signal (left) (%) 4.71% 10.82% 0.00% 97.54%

Turn signal (right) (%) 2.38% 5.70% 0.00% 60.03%

Number of total turns 3.06 3.99 0.00 21.00 

Driving Context 
Average number of objects 1.61 0.95 0.00 3.91 

Average distance to the closest object (ft) 163.76 149.98 21.33 839.69
Average relative speed of the closest object (mph) -4.38 10.80 -80.86 12.03 

*: There are some extreme short trips because drivers did not always initiate the data collection at the beginning of 
the trips. For those trips, the data refer to one segment of a trip.   

 
 Multicollinearity may exist between independent variables (e.g., trip length and trip 
duration), which may lead the regression model estimates to become unstable (Farrar and 
Glauber, 1967). In this study, the variance inflation factors (VIFs) were calculated to examine 
the multicollinearity of independent variables (Chatterjee and Hadi, 1986). The VIF for 
independent variable ݔ௝ can be calculated by 
௝൯ݔ൫ ܨܫܸ  ൌ   11 െ ෠ܴ௝ଶ Equation (7) 

 
 Where   ෠ܴ௝ଶ is the square of the multiple correlation coefficients that are from the 

regression when ݔ௝ is regressed with intercept against all the other independent variables. A 
variable whose VIF value is greater than 10 is possibly redundant in a regression model, since 
this variable may be a function of other independent variables. Based on VIF calculations, the 
variable of trip length had the greatest VIF value (= 9.80). A reasonable explanation is that the 
trip length and trip duration and average speed are highly correlated, noting that speed = trip 
distance/trip duration. It was decided to remove trip length from the model, and as a result all 
variables had a VIF value smaller than 5. This is an indication that multicollinearity between the 
remaining variables is not problematic.   
 Although some variables may not be correlated with other independent variables (i.e., 
VIF is significantly less than 10), they can be statistically insignificant. That is they may not be 
correlated significantly with the dependent variable (i.e., the frequency of extreme events) and 
explaining little variation in data. To deal with such situations, a backward stepwise variable 
elimination procedure was conducted to eliminate the variables whose estimates that were not 
significant at 90% confidence level (StataCorp, 2013). Variables that were kept in the final 
model specification have an estimate that was at least marginally significant at 90% confidence 
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level. The variables that were included in the final NB model include speed variance, trip 
duration, percent of driving time when the brake pedal was engaged, number of turns, average 
distance to the closest object, and average relative speed of the closest object.  
 Sometimes the NB model has an exposure or offset variable such as trip length or trip 
duration. When using an exposure variable, modelers typically assume that the likelihood of the 
events is changing proportionately over the duration of exposure while controlling for other 
variables. However, trip length or trip duration are not simply measures of exposure that are 
linearly related to extreme events. If a trip is very short, then the trip is likely to be undertaken on 
local roads and if the trip is very long, then the trip is likely to include freeway travel. Local 
driving may be associated with proportionately more extreme events compared with freeway 
driving. Therefore, to explore non-linear relationships, this study treated trip length and duration 
as independent variables instead of using them as exposure variables.  
 Variables such as the speed variance and the brake engagement may be endogenous to 
the dependent variable, i.e., frequency of extreme events. A Durbin–Wu–Hausman test was 
conducted to test for endogeneity (Davidson and MacKinnon, 1993). Results showed that these 
variables were not endogenous at 95% confidence level. 
 Table 5 shows the model specification process, i.e., variable selection and removal 
procedures, and the final NB modeling results. Overall, the modeling results were reasonable, 
providing insights about the correlates of extreme events embedded in BSMs. The overall 
goodness-of-fit was rather weak, since the phenomena are complex, the model is limited to a 
relatively small sample size (N=155), and a small number of variables. The estimated 
coefficients and goodness of fit will likely change as more data become available.  
 A likelihood ratio test showed that the over-dispersion parameter ߙ is significantly 
greater than zero (࣑2 = 528.44, p-value = 0.000), which validates the appropriateness of NB 
regression instead of Poisson regression. As expected, the greater variation of speeds was 
correlated with the more extreme events, since the identification of extreme events was based on 
accelerations which are the change rates of speeds. For vehicle maneuvering, more time spent on 
braking was associated with more extreme acceleration events. Variables that are positively 
correlated with more warnings include: 1) if a trip had many turns (10% level), pointing to the 
potential for making extreme maneuvers such as sharp turns at such locations; 2) the distance to 
the closest object because proximity to objects may induce greater volatility; 3) higher relative 
speed of the closest object; 4) longer trip duration; and 5) more brake pedal engagement. Among 
all factors examined, the brake pedal engagement had the greatest association with the frequency 
of extreme events. One percent increase in time spent on braking during a trip is associated with 
a 272.5% increased chances of extreme events. 
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TABLE 5 Negative Binomial Models for Frequency of Extreme Events  
(Y=number of extreme events or suggested warnings/control assists during one trip) 

  VIF Calculation
Stepwise 

Elimination 
Final NB model 

Variable 
1st  

Round 
2nd 

Round
P- 

value
Elimination 

order 
β 

P- 
value

Incidence 
Rate Ratio

Average speed (mph) 4.87 3.70 0.363 4   
Speed variance  1.60 1.57     0.001 ** 0.044 1.001 

Trip length (miles) 9.80       
Trip duration (minutes) 9.47 2.06     0.046 *** 0.000 1.047 

Average accelerator pedal displacement (%) 1.70 1.70 0.539 3   
Brake pedal (engaged) (%) 4.14 4.08     1.315 ** 0.044 3.725 

Cruise control (engaged) (%) 1.72 1.72 0.346 5   
Turn signal (left) (%) 1.37 1.36 0.847 1   

Turn signal (right) (%) 1.11 1.11 0.742 2   
Number of turns 1.94 1.91     0.049 * 0.074 1.051 

Average number of objects 1.36 1.36 0.156 6   
Average distance to the closest object (ft) 1.50 1.50     0.002 ** 0.019 1.002 

Average relative speed of the closest object (mph) 1.49 1.48     0.026 * 0.055 1.026 
Constant          0.319   0.230  

SUMMARY STATISTICS                1.005        ߙ #    
Number of Observations       155    

Log Likelihood at zero, LL(Constant only)       -465.491    
Log Likelihood at convergence, LL(Model)       -437.339    

AIC     890.678   
Log Likelihood Chi-square       56.3    

Prob > ࣑2       0.000    
Pseudo McFadden's R2       0.061      

Note: ***= significant at a 99% confidence level; ** = significant at a 95% confidence level; * = marginally 
significant at a 90% confidence level; #the probability of the dispersion parameter 0 = ߙ is virtually zero, indicating 
NB model performs better than Poisson model. Pseudo McFadden's R2 = 1 – LL(Model)/LL(Constant only).  

Incidence Rate Ratio = eβ.  
 

 Given the potential concerns: 1) the excessive zeros in observations (35 trips, out of 155, 
had no extreme events), and 2) significant unobserved heterogeneity in correlates across 
observations, zero inflated models and random parameter models were estimated. Table 6 
presents the zero-inflated model and the random-parameter models. Previous studies have 
provided good explanations and justifications for estimating zero-inflated models 
(Anastasopoulos et al., 2010) and random-parameter models (Milton et al., 2008; 
Anastasopoulos and Mannering, 2009, 2011; Russo et al., 2014). Compared with the NB model, 
zero-inflated model seems to be better, given the statistically significant (at 95% confidence level) 
Vuong statistic (Anastasopoulos et al., 2010). However, most estimates are not statistically 
significant in the model (5% level). Also, in terms of the estimated Incident Rate Ratios, zero-
inflated model parameters are similar to the simple NB model. In addition, the random-parameter 
model showed that three variables (brake pedal engagement, number of turns and average 
relative speed) should be estimated using random-parameters. However, the random-parameter 
estimates for these variables are not statistically significant (5% level). Further, the fixed-
parameters in this model are very similar to the estimates from simple NB model, implying that 
there may not be substantial heterogeneity in the correlates of extreme events. The correlates 
estimated in the simple NB model are constant across observations. This study did not 
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demonstrate substantial value added due to zero inflated or random-parameter models. However, 
this is not to say that such models should not be explored in other studies. Additional data, when 
available, may be able to better demonstrate the value of such models.  
 

TABLE 6 Zero-Inflated and Random-Parameter Models for Frequency of Extreme Events  
(Y=number of extreme events or suggested warnings/control assists during one trip) 

  Zero-Inflated NB Model Random-Parameter Model 

Variables β P-value 
Incidence 
Rate Ratio 

β P-value
Incidence 
Rate Ratio

  Count State Fixed-Parameter 
Speed variance  0.001 0.180 1.001 0.001 * 0.086 1.001 

Trip duration (minutes) 0.039*** 0.000 1.039 0.046 *** 0.001 1.047 
Brake pedal (engaged) (%) 0.778 0.219 2.176 1.315 * 0.088 3.725 

Number of turns 0.036 0.151 1.036 0.049 0.127 1.050 
Average distance to the closest object (ft) 0.001 0.113 1.001 0.002 ** 0.050 1.002 

Average relative speed of the closest object (mph) 0.010 0.533 1.010 0.026 0.106 1.026 
Constant  0.844*** 0.002 0.319 0.257 

  Zero State Random-Parametera 
Speed variance  -0.013 0.307 NRPb 

Trip duration (minutes) -2.261** 0.044 NRP 
Brake pedal (engaged) (%) -2.866 0.318 2.02E-02 0.953 

Number of turns 1.003 0.144 3.79E-04 0.986 
Average distance to the closest object (ft) -0.014* 0.086 NRP 

Average relative speed of the closest object (mph) -0.244* 0.073 1.91E-05 0.966 
Constant  5.592** 0.025 

SUMMARY STATISTICS                  0.791# ߙ  0.995 #   
Vuong statistic 2.790*** 0.003    

Number of observations 155  155   
Log Likelihood at zero, LL(Constant only) -441.457  -465.491   
Log Likelihood at convergence, LL(Model) -422.782  -437.338   

Prob > ࣑2 0.000  0.000   
Pseudo McFadden's R2 0.042       0.060       

Note: ***= significant at a 99% confidence level; ** = significant at a 95% confidence level; * = marginally 
significant at a 90% confidence level; #the probability of the dispersion parameter 0 = ߙ is virtually zero, indicating 
NB model performs better than Passion model; a = Standard deviations of random-parameter; b= No estimable 
random parameter. Pseudo McFadden's R2 = 1 – LL(Model)/LL(Constant only).  Incidence Rate Ratio = eβ.  
 
 

LIMITATIONS  

 
Data used in this study were BSMs sent and received by connected vehicles through V2V and 
V2I applications. Participating vehicles equipped with Data Acquisition Systems collected the 
BSMs. Thus, the extent of measurement errors in the data was unknown, although the results 
from data visualization and modeling were reasonable. In addition, the Data Acquisition Systems 
captured information explored in this study does not represent a complete set of driving contexts 
or operating environments. Additional information about roadway features and traffic 
signals/signs may need to be integrated with information from Data Acquisition Systems when 
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warnings or control assistances are about to be given. The warnings or control assists are 
suggested merely based on vehicle motion information, i.e., extreme acceleration or braking 
events. Such extreme events can benefit from validation and verification, e.g., by analyzing other 
information, such as videos for the driver’s gestures or hand positions on steering wheels, eye 
tracking for distraction and fatigue, and sensor data of how a driver moves the accelerator and 
brake pedals.  
 A threat to the validity of this study is the limited sample size. Only one-day sample data 
from the SPMD is publicly available in Research Data Exchange (RDE, https://www.its-
rde.net/home). Consequently, this study can be regarded as an exploration of BSMs transmitted 
by real-world connected vehicle technologies. As more data become available, the methodology 
of this study can be applied directly for a broader exploration, and the results of this study can be 
validated by expanded sample data.  
 

CONCLUSION 

 
The connected vehicle technologies discussed in this paper are capable of transmitting high-
frequency data between vehicles and infrastructure, which has the potential to improve mobility, 
safety, energy consumption, and the environment. In this context, it is important to maximize the 
value embedded in data generated by the entire ecosystem of vehicles and infrastructure to 
support driver decision-making. SPMD provides data on basic safety messages, which are the 
core data sent and received by connected vehicles and infrastructures through V2V and V2I 
applications. The content of BSMs describe a vehicle’s position (latitude, longitude, and 
elevation) and motion (heading, speed, and acceleration) (Henclewood, 2014). BSMs also 
contains data pertaining to the vehicle’s component status (lights, brakes, wipers) and vehicle 
safety information (path history, events) (Henclewood, 2014). The raw BSMs are complex and 
not informative to drivers. This study proposes a data analytic methodology to extract critical 
information from raw BSMs. The information can be provided to drivers and inform them about 
their driving behaviors or about dangers in surrounding roadway environments. The information 
is simple and informative, and helps drivers make informed decisions. The research is timely and 
has long-term value, as connected and automated vehicles are likely to have substantial impacts 
throughout the world, and have seen substantial research activity.  
 Our previous studies have explored the critical information embedded in vehicle 
trajectory data, which were collected through GPS devices (Liu et al., 2014; Wang et al., 2015). 
This study extended the methodology of extracting critical information from BSMs transmitted 
between connected vehicles. This study established a fundamental understanding of 
instantaneous driving decisions by investigating two-dimensional instantaneous accelerations, 
i.e., longitudinal and lateral accelerations. Instantaneous driving volatility was visualized, and it 
clearly showed that driving behavior is strongly associated with driving contexts, whether 
driving on local roads or freeways. This study untangled the relationship between speeds and 
acceleration through the distribution of instantaneous accelerations at different speeds. Higher 
speeds (>50 mph) are associated with smaller acceleration magnitudes, which is consistent with 
(Ahn et al., 2002). This study further revealed a nonlinear relationship between acceleration and 
speed in real-life driving situations. The lozenge shaped joint distribution implies that 
longitudinal and lateral acceleration hardly reached a large magnitude simultaneously. In terms 
of magnitude, longitudinal and lateral accelerations seemed inversely correlated.  
 This research presents an original idea, which is to establish context-relevant alert, 
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warning, and control assist thresholds based on extreme event information embedded in BSMs. 
Most previous studies give fixed cut-off values for thresholds regardless of driving situations 
(Lajunen et al., 1997b; De Vlieger et al., 2000; Langari and Won, 2005; Kim and Choi, 2013). 
However, some of the thresholds for warnings and control assists may be flexible and can 
change with speeds to account for different driving situations and contexts. In addition, the 
directional variation of acceleration distributions is considered in establishing the thresholds. 
Information about extreme driving decisions can be used for control assists and provided as 
feedback to drivers in real time to help them shift to calmer driving, and transmitted to other 
drivers surrounding through V2V applications to warn them about potential dangers.  
 Results from rigorous statistical modeling revealed that the extreme events identified 
from BSMs are strongly associated with trip attributes, driver maneuvering, and driving contexts. 
The results provide correlates of extreme events, indicating situations where warnings and 
control assists may be provided to drivers. Such conditions include situations in which a driver 
has to step on brakes frequently (possibly due to unstable speed conditions and congested flow), 
and a trip which involves many turns at intersections. Note that the modeling results were limited 
to a relatively small sample of 155 observations and a small number of variables. The estimated 
results may change as more data and variables become available.  
 This study contributes by making sense of high-frequency geo-referenced connected 
vehicle data, and extracts critical information about extreme events from new data sources 
created by communications between connected vehicles. Connected vehicles are a relatively new 
and emerging area of research activity in intelligent transportation systems, with strong interest 
from a wide audience that includes government agencies, auto makers, practitioners and 
researchers who are interested in implementing connected vehicles.  
 The findings of this study are relevant to incorporation of alerts, warnings, and control 
assists in V2V and V2I applications of connected vehicles. Such applications can help drivers 
identify situations where surrounding drivers are volatile and they may avoid dangers by taking 
defensive actions. For example, rear-end or side-impact collision warnings can be given to 
drivers who are in close proximity of other drivers undergoing extreme longitudinal or lateral 
accelerations, respectively. Applications can also be developed for departments of transportation 
to identify locations with high density of extreme events (Abdel-Aty et al., 2007; Cheng et al., 
2015). Hazards in road networks can be identified proactively on certain road segments or at 
intersections (such as poor sight distance and higher incidence of sharp turns) that have higher 
densities of extreme events.  
 
ACKNOWLEDGEMENT 

 
The research was supported by National Science Foundation (Award number: 1538139) and 
Southeastern Transportation Center (sponsored by the United States Department of 
Transportation through grant number DTRT13-G-UTC34). The authors would also extend 
special thanks to the following entities at The University of Tennessee for their support: 
Transportation Engineering & Science Program and Initiative for Sustainable Mobility. Data 
used in this study were collected during the Safety Pilot Model Deployment (SPMD) in Ann 
Arbor, Michigan, and the data were obtained from Research Data Exchange program maintained 
by Federal Highway Administration, US DOT. Software packages R, MATLAB and Google 
Earth were used for the data processing and visualization. Statistical software STATA was used 



Liu & Khattak   26 

for modeling. The views expressed in this paper are those of the authors, who are responsible for 
the facts and accuracy of information presented herein. 
 
REFERENCES 
Abdel-Aty, M., A. Pande, C. Lee, V. Gayah, and C. D. Santos. 2007. Crash risk assessment using 

intelligent transportation systems data and real-time intervention strategies to improve safety on 
freeways. Journal of Intelligent Transportation Systems 11: 107-120. 

Åberg, L., L. Larsen, A. Glad, and L. Beilinsson. 1997. Observed vehicle speed and drivers' perceived 
speed of others. Applied Psychology 46: 287-302. 

Abid, H., T. C. Chung, S. Lee, and S. Qaisar. 2012. Performance analysis of lte smartphones-based 
vehicle-to-infrastrcuture communication. In: Ubiquitous Intelligence & Computing and 9th 
International Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th 
International Conference on. p 72-78. 

Ahn, K., H. Rakha, A. Trani, and M. Van Aerde. 2002. Estimating vehicle fuel consumption and 
emissions based on instantaneous speed and acceleration levels. Journal of Transportation 
Engineering 128: 182-190. 

Anastasopoulos, P. C., S. Labi, A. Bhargava, C. Bordat, and F. L. Mannering. 2010. Frequency of change 
orders in highway construction using alternate count-data modeling methods. Journal of 
Construction Engineering and Management 136: 886-893. 

Anastasopoulos, P. C., and F. L. Mannering. 2009. A note on modeling vehicle accident frequencies with 
random-parameters count models. Accident Analysis & Prevention 41: 153-159. 

Anastasopoulos, P. C., and F. L. Mannering. 2011. An empirical assessment of fixed and random 
parameter logit models using crash-and non-crash-specific injury data. Accident Analysis & 
Prevention 43: 1140-1147. 

Bagheri, E., B. Mehran, and B. Hellinga. 2015. Real-time Estimation Of Saturation Flow Rates For 
Dynamic Traffic Signal Control Using Connected Vehicle Data. In: Transportation Research 
Board 94th Annual Meeting 

Bridgelall, R. 2013. Connected vehicle approach for pavement roughness evaluation. Journal of 
Infrastructure Systems 20: 04013001. 

Chan, C.-Y. 2011. Connected vehicles in a connected world. In: VLSI Design, Automation and Test 
(VLSI-DAT), 2011 International Symposium on. p 1-4. 

Chatterjee, S., and A. S. Hadi. 1986. Influential observations, high leverage points, and outliers in linear 
regression. Statistical Science: 379-393. 

Cheng, L., B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige. 2007. Mobile vehicle-to-vehicle narrow-
band channel measurement and characterization of the 5.9 GHz dedicated short range 
communication (DSRC) frequency band. Selected Areas in Communications, IEEE Journal on 25: 
1501-1516. 

Cheng, Y., M. Zhang, and D. Yang. 2015. Automatic Incident Detection for Urban Expressways Based 
on Segment Traffic Flow Density. Journal of Intelligent Transportation Systems 19: 205-213. 

Chou, C.-M., C.-Y. Li, W.-M. Chien, and K.-c. Lan. 2009. A feasibility study on vehicle-to-infrastructure 
communication: WiFi vs. WiMAX. In: Mobile Data Management: Systems, Services and 
Middleware, 2009. MDM'09. Tenth International Conference on. p 397-398. 

Christofa, E., J. Argote, and A. Skabardonis. 2013. Arterial queue spillback detection and signal control 
based on connected vehicle technology. Transportation Research Record: Journal of the 
Transportation Research Board: 61-70. 

Chrysler, S. T., J. M. Cooper, and D. Marshall. 2015. The Cost of Warning of Unseen Threats: 
Unintended Consequences of Connected Vehicle Alerts. In: Transportation Research Board 94th 
Annual Meeting 

Davidson, R., and J. G. MacKinnon. 1993. Estimation and inference in econometrics. OUP Catalogue. 



Liu & Khattak   27 

De Vlieger, I., D. De Keukeleere, and J. Kretzschmar. 2000. Environmental effects of driving behaviour 
and congestion related to passenger cars. Atmospheric Environment 34: 4649-4655. 

Doecke, S., A. Grant, and R. W. Anderson. 2015. The real-world safety potential of connected vehicle 
technology. Traffic injury prevention 16: S31-S35. 

Du, L., and H. Dao. 2015. Information Dissemination Delay in Vehicle-to-Vehicle Communication 
Networks in a Traffic Stream. Intelligent Transportation Systems, IEEE Transactions on 16: 66-
80. 

Fagnant, D. J., and K. Kockelman. 2015. Preparing a nation for autonomous vehicles: opportunities, 
barriers and policy recommendations. Transportation Research Part A: Policy and Practice 77: 
167-181. 

Farrar, D. E., and R. R. Glauber. 1967. Multicollinearity in regression analysis: the problem revisited. The 
Review of Economic and Statistics: 92-107. 

Feng, Y., S. Khoshmagham, M. Zamanipour, and K. L. Head. 2015. A Real-time Adaptive Signal Phase 
Allocation Algorithm in a Connected Vehicle Environment. In: Transportation Research Board 
94th Annual Meeting 

Genders, W., and S. N. Razavi. 2015. Impact of Connected Vehicle on Work Zone Network Safety 
through Dynamic Route Guidance. Journal of Computing in Civil Engineering: 04015020. 

Goel, S., T. Imielinski, and K. Ozbay. 2004. Ascertaining viability of WiFi based vehicle-to-vehicle 
network for traffic information dissemination. In: Intelligent Transportation Systems, 2004. 
Proceedings. The 7th International IEEE Conference on. p 1086-1091. 

Goodall, N. J., B. L. Smith, and B. Park. 2013. Traffic Signal Control with Connected Vehicles. 
Transportation Research Record: Journal of the Transportation Research Board 2381: 65-72. 

Goodall, N. J., B. L. Smith, and B. B. Park. 2014. Microscopic estimation of freeway vehicle positions 
from the behavior of connected vehicles. Journal of Intelligent Transportation Systems: 1-10. 

Guler, S. I., M. Menendez, and L. Meier. 2014. Using connected vehicle technology to improve the 
efficiency of intersections. Transportation Research Part C: Emerging Technologies 46: 121-131. 

Guo, F., and Y. Fang. 2013. Individual driver risk assessment using naturalistic driving data. Accident 
Analysis & Prevention 61: 3-9. 

Haglund, M., and L. Åberg. 2000. Speed choice in relation to speed limit and influences from other 
drivers. Transportation Research Part F: Traffic Psychology and Behaviour 3: 39-51. 

Henclewood, D. 2014. Safety Pilot Model Deployment – One Day Sample Data Environment  Data 
Handbook. Research and Technology Innovation Administration, US Department of 
Transportation, McLean, VA. 

Hill, C. J., and J. K. Garrett. 2011. AASHTO connected vehicle infrastructure deployment analysis. 
Hoedemaeker, M., and K. A. Brookhuis. 1998. Behavioural adaptation to driving with an adaptive cruise 

control (ACC). Transportation Research Part F: Traffic Psychology and Behaviour 1: 95-106. 
Hu, J., B. Park, and A. Parkany. 2014. Transit Signal Priority with Connected Vehicle Technology. 

Transportation Research Record: Journal of the Transportation Research Board: 20-29. 
Hu, J., B. B. Park, and Y.-J. Lee. 2015. Coordinated transit signal priority supporting transit progression 

under Connected Vehicle Technology. Transportation Research Part C: Emerging Technologies 
55: 393-408. 

Jin, Q., G. Wu, K. Boriboonsomsin, and M. Barth. 2012. Advanced intersection management for 
connected vehicles using a multi-agent systems approach. In: Intelligent Vehicles Symposium 
(IV), 2012 IEEE. p 932-937. 

Khattak, A., S. Nambisan, and S. Chakraborty. 2015. Study of Driving Volatility in Connected and 
Cooperative Vehicle Systems. National Science Foundation. 

Kianfar, J., and P. Edara. 2013. Placement of Roadside Equipment in Connected Vehicle Environment for 
Travel Time Estimation. Transportation Research Record: Journal of the Transportation Research 
Board: 20-27. 



Liu & Khattak   28 

Kim, E., and E. Choi. 2013. Estimates of Critical Values of Aggressive Acceleration from a Viewpoint of 
Fuel Consumption and Emissions. In: 2013 Transportation Research Board Annual Meeting, 
Washington DC 

Kishore Kamalanathsharma, R., and H. A. Rakha. 2014. Leveraging connected vehicle technology and 
telematics to enhance vehicle fuel efficiency in the vicinity of signalized intersections. Journal of 
Intelligent Transportation Systems: 1-12. 

Koulakezian, A., and A. Leon-Garcia. 2011. CVI: Connected vehicle infrastructure for ITS. In: Personal 
Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium 
on. p 750-755. 

Lajunen, T., A. Corry, H. Summala, and L. Hartley. 1997a. Impression management and self-deception in 
traffic behaviour inventories. Personality and individual differences 22: 341-353. 

Lajunen, T., A. Corry, H. Summala, and L. Hartley. 1998. Cross-cultural differences in drivers' self-
assessments of their perceptual-motor and safety skills: Australians and Finns. Personality and 
Individual Differences 24: 539-550. 

Lajunen, T., J. Karola, and H. Summala. 1997b. Speed and acceleration as measures of driving style in 
young male drivers. Perceptual and motor skills 85: 3-16. 

Langari, R., and J.-S. Won. 2005. Intelligent energy management agent for a parallel hybrid vehicle-part I: 
system architecture and design of the driving situation identification process. Vehicular 
Technology, IEEE Transactions on 54: 925-934. 

Lee, J., and B. Park. 2012. Development and evaluation of a cooperative vehicle intersection control 
algorithm under the connected vehicles environment. Intelligent Transportation Systems, IEEE 
Transactions on 13: 81-90. 

Li, J.-Q., K. Zhou, S. Shladover, and A. Skabardonis. 2013. Estimating Queue Length Under Connected 
Vehicle Technology: Using Probe Vehicle, Loop Detector, and Fused Data. Transportation 
Research Record: Journal of the Transportation Research Board: 17-22. 

Li, Y., M. Zhao, and W. Wang. 2011. Intermittently connected vehicle-to-vehicle networks: detection and 
analysis. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. p 1-6. 

Liu, J. 2015. Driving Volatility in Instantaneous Driving Behaviors: Studies Using Large-Scale Trajectory 
Data. 

Liu, J., A. Khattak, and X. Wang. 2015. The role of alternative fuel vehicles: Using behavioral and sensor 
data to model hierarchies in travel. Transportation Research Part C: Emerging Technologies 55: 
379-392. 

Liu, J., X. Wang, and A. Khattak. 2014. Generating Real-Time Driving Volatility Information 2014 
World Congress on Intelligent Transport Systems, Detroit, MI. 

Liu, J., X. Wang, and A. Khattak. 2016. Customizing driving cycles to support vehicle purchase and use 
decisions: Fuel economy estimation for alternative fuel vehicle users. Transportation Research 
Part C: Emerging Technologies 67: 280-298. 

Lord, D., and F. Mannering. 2010. The statistical analysis of crash-frequency data: a review and 
assessment of methodological alternatives. Transportation Research Part A: Policy and Practice 
44: 291-305. 

Milton, J. C., V. N. Shankar, and F. L. Mannering. 2008. Highway accident severities and the mixed logit 
model: an exploratory empirical analysis. Accident Analysis & Prevention 40: 260-266. 

Mosyagin, J. 2010. Using 4G wireless technology in the car. In: Transparent Optical Networks (ICTON), 
2010 12th International Conference on. p 1-4. 

Moylan, E., and A. Skabardonis. 2015. Reliability-and Median-Based Identification of Toll Locations in a 
Connected Vehicle Context. In: Transportation Research Board 94th Annual Meeting 

NHTSA. 2000. Resource Guide Describes Best Practices For Aggressive Driving Enforcement 
http://www.nhtsa.gov/About+NHTSA/Traffic+Techs/current/Resource+Guide+Describes+Best+
Practices+For+Aggressive+Driving+Enforcement Accessed May 15th 2014. 

NHTSA. 2008. National Motor Vehicle Crash Causation Survey: Report to Congress. National Highway 
Traffic Safety Administration Technical Report DOT HS 811: 059. 



Liu & Khattak   29 

Noble, A. M., S. B. Mclaughlin, Z. R. Doerzaph, and T. A. Dingus. 2014. Crowd-sourced Connected-
vehicle Warning Algorithm using Naturalistic Driving Data. 

Nusser, R., and R. M. Pelz. 2000. Bluetooth-based wireless connectivity in an automotive environment. 
In: Vehicular Technology Conference, 2000. IEEE-VTS Fall VTC 2000. 52nd. p 1935-1942. 

Office, T. I. T. S. J. P. 2014. Connected Vehicle Research in the United States. 
http://www.its.dot.gov/connected_vehicle/connected_vehicle_research.htm. 

Olia, A., H. Abdelgawad, B. Abdulhai, and S. N. Razavi. 2014. Assessing the Potential Impacts of 
Connected Vehicles: Mobility, Environmental, and Safety Perspectives. In: Transportation 
Research Board 93rd Annual Meeting 

Osman, O. A., J. Codjoe, and S. Ishak. 2015. Impact of Time-to-Collision Information on Driving 
Behavior in Connected Vehicle Environments Using A Driving Simulator Test Bed. Journal of 
Traffic and Logistics Engineering Vol 3. 

Paleti, R., N. Eluru, and C. Bhat. 2010. Examining the influence of aggressive driving behavior on driver 
injury severity in traffic crashes. Accident Analysis & Prevention 42: 1839-1854. 

Qin, W. B., and G. Orosz. 2013. Digital effects and delays in connected vehicles: linear stability and 
simulations. In: ASME 2013 Dynamic Systems and Control Conference. p V002T030A001-
V002T030A001. 

Russo, B. J., P. T. Savolainen, W. H. Schneider, and P. C. Anastasopoulos. 2014. Comparison of factors 
affecting injury severity in angle collisions by fault status using a random parameters bivariate 
ordered probit model. Analytic methods in accident research 2: 21-29. 

SAE. 2014. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving 
Systems, SAE International. 

Sengupta, R., S. Rezaei, S. E. Shladover, D. Cody, S. Dickey, and H. Krishnan. 2007. Cooperative 
collision warning systems: Concept definition and experimental implementation. Journal of 
Intelligent Transportation Systems 11: 143-155. 

Simons-Morton, B. G., K. Cheon, F. Guo, and P. Albert. 2013. Trajectories of kinematic risky driving 
among novice teenagers. Accident Analysis & Prevention 51: 27-32. 

Simons-Morton, B. G., M. C. Ouimet, Z. Zhang, S. E. Klauer, S. E. Lee, J. Wang, P. S. Albert, and T. A. 
Dingus. 2011. Crash and risky driving involvement among novice adolescent drivers and their 
parents. American journal of public health 101: 2362. 

Simons-Morton, B. G., Z. Zhang, J. C. Jackson, and P. S. Albert. 2012. Do elevated gravitational-force 
events while driving predict crashes and near crashes? American journal of epidemiology 175: 
1075-1079. 

StataCorp. 2013. Stepwise Estimation. 
Sugiura, A., and C. Dermawan. 2005. In traffic jam IVC-RVC system for ITS using Bluetooth. Intelligent 

Transportation Systems, IEEE Transactions on 6: 302-313. 
Tian, D., Y. Yuan, J. Zhou, Y. Wang, G. Lu, and H. Xia. 2013. Real-time vehicle route guidance based on 

connected vehicles. In: Green Computing and Communications (GreenCom), 2013 IEEE and 
Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, 
Physical and Social Computing. p 1512-1517. 

Wang, X., A. Khattak, J. Liu, G. Masghati-Amoli, and S. Son. 2015. What is the Level of Volatility in 
Instantaneous Driving Decisions? Transportation Research Part C: Emerging Technologies. 

Wu, G., K. Boriboonsomsin, H. Xia, and M. Barth. 2014. Supplementary Benefits from Partial Vehicle 
Automation in an Ecoapproach and Departure Application at Signalized Intersections. 
Transportation Research Record: Journal of the Transportation Research Board: 66-75. 

Zeng, X., K. N. Balke, and P. Songchitruksa. 2012. Potential Connected Vehicle Applications to Enhance 
Mobility, Safety, and Environmental Security, Southwest Region University Transportation 
Center, Texas Transportation Institute, Texas A&M University System. 

Zhang, L., and G. Orosz. 2013. Designing network motifs in connected vehicle systems: delay effects and 
stability. In: ASME 2013 Dynamic Systems and Control Conference. p V003T042A006-
V003T042A006. 



Liu & Khattak   30 

Zhang, W.-B., J. A. Misener, C.-Y. Chan, K. Zhou, and J.-Q. Li. 2014. Feasibility Assessment of A Truck 
Automation Deployment Framework. In: Transportation Research Board 93rd Annual Meeting 

 


