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Abstract - When vehicles share their status information with other vehicles or the
infrastructure, driving actions can be planned better, hazards can be identified sooner, and
safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is
underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies
in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and
Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety
Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs
describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading,
speed, and acceleration). This study proposes a data analytic methodology to extract
critical information from raw BSM data available from SPMD. A total of 968,522
records of basic safety messages, gathered from 155 trips made by 49 vehicles, was
analyzed. The information extracted from BSM data captured extreme driving events
such as hard accelerations and braking. This information can be provided to drivers,
giving them instantaneous feedback about dangers in surrounding roadway environments;
it can also provide control assistance. While extracting critical information from BSMs,
this study offers a fundamental understanding of instantaneous driving decisions.
Longitudinal and lateral accelerations included in BSMs were specifically investigated.
Varying distributions of instantaneous longitudinal and lateral accelerations are
quantified. Based on the distributions, the study created a framework for generating
alerts/warnings, and control assistance from extreme events, transmittable through V2V
and V2I applications. Models were estimated to untangle the correlates of extreme events.
The implications of the findings and applications to connected vehicles are discussed in
this paper.

Keywords: connected vehicles, basic safety messages, extreme events, longitudinal and lateral
accelerations

INTRODUCTION

Connected vehicles are spawning new applications to address real-world safety problems, such
as collisions owing to unexpected hard braking and fast lane changing. Two major applications
for driving safety are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications to inform drivers of roadway hazards and situations that they cannot
immediately perceive. V2V applications enable vehicles to transmit and receive data from
surrounding vehicles, and V2I allows vehicles to communicate with the infrastructure. They can
receive information about traffic signal timing or incidents in real-time. These systems help
drivers make informed decisions avoiding dangers posed by surrounding vehicles or by
infrastructure elements (Li et al., 2011; Jin et al., 2012; Lee and Park, 2012; Goodall et al., 2013;
Qin and Orosz, 2013; Hu et al., 2015). According to a US DOT report, V2V and V2I
applications can substantially improve safety (Office, 2014) by reducing driver errors, which are
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key contributors to crashes. The errors can include recognition errors, decision errors, and
performance or nonperformance errors (NHTSA, 2008).

A connected vehicle safety pilot program, Safety Pilot Model Deployment (SPMD),
underway in Ann Arbor, Michigan intended to demonstrate V2V and V2I technologies in a real-
world environment (Henclewood, 2014). Approximately 3,000 vehicles are equipped with V2V
communication devices, and 75 miles of roadway are instrumented with roadside equipment,
mainly placed at signalized intersections. Data acquisition systems are installed in vehicles
participating in the program to facilitate V2V and V2I communications. Data transmitted
through V2V and V2I are called Basic Safety Message (BSM), sampled at a frequency of 10 Hz.
The core contents of BSM are data elements that describe a vehicle’s position (latitude, longitude,
and elevation) and motion (heading, speed, and acceleration) (Henclewood, 2014). BSM also
contains data pertaining to the vehicle’s component status (lights, brakes, wipers) and vehicle
safety information (path history, events) (Henclewood, 2014). Given the availability of advanced
communication and sensor technologies such as dedicated short-range communications (DSRC),
Global Positioning Systems (GPS), Radar, and Bluetooth, there is no doubt that BSMs can be
successfully sent and received by vehicles and roadside equipment under various road conditions.
SPMD is a demonstration of such communication technologies in a connected vehicles
environment.

Using these technologies, what kind of critical information can be extracted and provided
to drivers to alert them to present dangers or assist in vehicle control to help drivers make safe
decisions? Driver-oriented information is supposed to be simple and informative, such as head-
on collision warnings. This study proposes an original methodology, based on data analytics, to
extract critical information from BSMs transmitted between connected vehicles and
infrastructure.

Specifically, this study aims to 1) investigate the magnitudes and directions (longitudinal
and lateral) of instantaneous driving decisions contained in BSMs; and 2) identify critical events
(i.e., hard accelerations or braking and quick lane changes) by establishing reasonable thresholds.
These events are the basis for actionable messages (alerts, warnings or control assists) given to
drivers of connected vehicles. Instantaneous driving decisions are mainly implemented by pedal
maneuvering (brake and accelerator) and steering. Pedal maneuvering changes the speed or
acceleration, and steering changes the direction of vehicle motion. To uncover the full range of
instantaneous driving decisions, it is important to investigate both the magnitudes and directions
of instantaneous driving decisions. In addition, the current thresholds used for recognizing
critical driving behaviors are not sensitive to the vehicle speeds and different driving conditions
faced by drivers (De Vlieger et al., 2000; Simons-Morton et al., 2011; Kim and Choi, 2013).
Furthermore, directional differences of instantaneous driving decisions, i.e., longitudinal and
lateral acceleration, has not been studied widely (De Vlieger et al., 2000; Kim and Choi, 2013).
Given the available high-resolution BSM data, this study contributes by establishing reasonable
thresholds for identifying potentially dangerous behaviors, while considering variations in
driving behaviors under different conditions. Directional differences in instantaneous driving
decisions are also explored.

LITERATURE REVIEW

The literature reflects substantial increase in research activity with regards to connected vehicles,
covering a wide range of topics from how connected vehicles will be adopted and used, to their
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applications and implications for safety, energy, and the environment (Koulakezian and Leon-
Garcia, 2011; Zeng et al., 2012; Olia et al., 2014; Zhang et al., 2014; Fagnant and Kockelman, 2015). A
report by Hill et al. discusses connected vehicle infrastructure deployment approaches and
strategies, including the time horizon, key issues related to drivers and vehicles, operations,
benefits for state and local agencies, and early connected vehicle adopters (Hill and Garrett,
2011). Substantial work has been done to establish connected vehicle networks, such as
Vehicular Ad-hoc Networks (Li et al., 2011; Zhang and Orosz, 2013). Both the public and
private sectors are interested in applications and implications of connected vehicles. Applications
include intersection signals (Lee and Park, 2012; Christofa et al., 2013; Guler et al., 2014; Hu et
al., 2014; Wu et al., 2014; Bagheri et al., 2015; Feng et al., 2015), pavement assessments
(Bridgelall, 2013), traffic queue estimation (Li et al., 2013), vehicle routing and travel time
estimation (Kianfar and Edara, 2013; Tian et al., 2013; Genders and Razavi, 2015; Moylan and
Skabardonis, 2015), driving behavior monitoring and warnings (Sengupta et al., 2007; Goodall et
al., 2014; Chrysler et al., 2015; Doecke et al., 2015; Du and Dao, 2015; Osman et al., 2015), and
fuel efficiency (Kishore Kamalanathsharma and Rakha, 2014; Liu et al., 2016).

The key to the success of connected vehicles lies in how well connectivity of vehicles
and infrastructure works in real life. Recent innovations that enable connectivity include
applications of V2V and V2I. supported by wireless communication technologies such as DSRC
(Cheng et al., 2007; Chan, 2011), Wi-Fi (Goel et al., 2004; Chou et al., 2009), Bluetooth (Nusser
and Pelz, 2000; Sugiura and Dermawan, 2005), and cellular networks (Mosyagin, 2010; Abid et
al., 2012).

SPMD uses Basic Safety Messages (BSMs) to describe a vehicle’s position, motion, its
component status, and other relevant travel information (Henclewood, 2014). However, the
BSMs are not informative to drivers when they need to make decisions based on information
received through V2V or V2I applications. Most BSMs describe normal driver behaviors.
However, abnormal and extreme driver behaviors determine the safety of driving the short-term.
Thus, it is critical to identify abnormal or extreme behaviors from BSMs, and warn drivers
through the V2V, V21, or other connected vehicle applications.

A number of studies have focused on investigating driving behaviors. Vehicle motion
(speed and acceleration) has been regarded as the core information describing driving behaviors.
Fast driving is normally characterized as an aggressive, reckless or risky driving style, and speed
limits are usually the threshold that determines a driver’s performance (Lajunen et al., 1997a;
Hoedemaeker and Brookhuis, 1998; Lajunen et al., 1998; NHTSA, 2000). However, speed
choice depends mainly on the conditions of speed limits (or road conditions) and the traffic. A
driver is supposed to comply speed limits, but he or she is also affected by the traffic (Aberg et
al., 1997; Haglund and Aberg, 2000). Researchers give several acceleration cut-off points as
thresholds to identify abnormal, extreme, and aggressive driving behaviors. Kim and Choi report
thresholds for aggressive and extremely aggressive accelerations in urban driving environments
(Kim and Choi, 2013), while De Vlieger et al. did similar work for calm driving, normal driving,
and aggressive driving (De Vlieger et al., 2000). Simons-Morton et al. advanced the
characterization of risky driving by observing the elevated gravitational force (G-force) events
that are captured when longitudinal or lateral accelerations exceed certain thresholds (Simons-
Morton et al., 2011; Simons-Morton et al., 2012; Simons-Morton et al., 2013). Risky driving
behaviors have been found to be positively correlated with the likelihood of crashes or near-
crash events (Paleti et al., 2010; Guo and Fang, 2013).

Driving occurs in various conditions, and driver behaviors may vary in different contexts.
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To account for the variation of driving behaviors under different conditions, Liu et al. and Wang
et al. introduced a varying acceleration threshold to identify extreme driving behaviors (Liu et
al., 2014; Liu, 2015; Liu et al., 2015; Wang et al., 2015). Most previous studies investigating
driver behaviors overlook the directions (longitudinal and lateral) of driving decisions. Driving
decisions in two directions (longitudinal and lateral accelerations) are under-explored. This
study proposes an innovative way to identify extreme driving behaviors embedded in BSMs that
may provide warning messages to drivers through V2V and V2I applications.

While previous studies propose ideas for warnings or alerts to drivers using the
connected vehicle applications (Goodall et al., 2014; Chrysler et al., 2015; Doecke et al., 2015;
Du and Dao, 2015; Osman et al., 2015), they have not fully assimilated the value of information
transmitted between connected vehicles. For example, Noble et al., (2014) used only naturalistic
driving data collected through the Strategic Highway Research Program 2 (but not BSMs) for
analysis, and Osman et al., (2015) used driving simulator based data. This study fully mines the
geo-referenced data transmitted between vehicles and infrastructure in a real-life connected
vehicle deployment. Specifically, it extracts useful information about extreme events from new
data sources made possible by communication between connected vehicles.

METHODOLOGY

Recently, NHTSA and Society of Automotive Engineers (SAE) have come out with levels of
automation that range from no automation to full automation (SAE, 2014). Figure 1 shows the
how drivers can transition from controlling all aspects of the dynamic driving task to
relinquishing control of these tasks. Based on the taxonomy, this study focuses on Level 0 in the
SAE taxonomy. Within Level 0, the study transitions from driving without alerts, warnings, or
intervention systems to using these for enhanced driving safety. Increasingly, vehicles are
incorporating driver decision support systems, while drivers retain control of steering and
braking controls, except in crash imminent situations. Alerts, warnings, and control assists can be
divided into two broad categories:

1) Internal to the functioning and performance of the driver or vehicle. Examples of these
include warnings about hard accelerations or braking, or frequent lane changes, sharp turns, or
functioning of wipers, head- and tail-lights, turn signals, etc.

2) External to the vehicle. These are warnings that relate to proximity of other vehicles,
objects, infrastructure, and the environment, and include forward collision warning or lane
departure warning.

This paper considers both types of alerts, warnings, and control assists, which are still
part of Level “0.” Such warnings are based on BSM data, and can eventually lead to higher
levels of automation.
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Execution of Fallback System
Monitoring
SAE Steering and Performance | Capability
level Name Narrative Definition Acceleration/ E::il:;i::gnt of Dynamic (Driving
Deceleration Driving Task Modes)

Human driver monitors the driving environment

the full-time performance by the human driver of all
aspects of the dynamic driving task, even when enhanced Human driver Human driver Human driver
by warning or intervention systems

L[]
Automation

the driving mode-specific execution by a driver assistance
system of either steering or acceleration/deceleration using . 2
Human driver e Some driving
information about the driving environment and with the Human driver  Human driver
sV oA R * i and system modes
expectation that the human driver perform zll remaining
aspects of the dynamic driving task

Driver
Assistance

the driving mode-specific execution by one or more driver
assistance systems of both steering and acceleration/
Partial deceleration using information about the driving : Some driving
: D System Human driver Human driver
Automation environment and with the expectation that the human 4 = modes
driver perform all remaining aspects of the dynamic driving
task

Automated driving system (“system”) monitors the driving environment || NENGENRNENEGEGEGEGE

the driving mode-specific performance by an automated
Conditional driving system of all aspects of the dynamic driving task
Automation with the expectation that the human driver will respond
appropriately to a request to intervene

the driving mode-specific performance by an automated
High driving system of all aspects of the dynamicdriving task,
Automation even if a human driver does not respond apgropriately to a
request to intervene

Some driving

System Human driver
¥s % modes

Some driving

System System System e

the full-time performance by an automated driving system
Full of all aspects of the dynamic driving task under all roadway
Automation and environmental conditions that can be managed by a
human driver

FIGURE 1 Six levels of driving automation. Source: SAE, J3016, 2014 (SAE, 2014).

All driving

System System System R

Data Description - Basic Safety Message

The data used in this study are from BSMs sent and received by vehicles and roadside equipment
participating the SPMD in Ann Arbor, Michigan (Henclewood, 2014). SPMD provides a rich
database for research on connected vehicles. The data are stored in a transportation data sharing
system, called Research Data Exchange (RDE, https://www.its-rde.net/home), maintained by the
Federal Highway Administration under US DOT. This study uses datasets collected from
participating vehicles equipped with Data Acquisition Systems. Datasets contain vehicles’
instantaneous driving statuses (sampled at 10 Hz) of position (altitude, latitude and longitude),
motion (speed and acceleration), the status of major components (accelerator, brakes, lights,
cruise control, and wipers), and instantaneous driving contexts (surrounding objects, and distance
to closest objects). Table 2 presents the detailed descriptions of key data variables. More variable
descriptions are available in SPMD Data Handbook (Henclewood, 2014).

One-day sample data were used in this study. Observations with errors (e.g., speeds > 200
mph and altitude > 30,000 ft) were removed from the sample. The final one-day sample contains
968,522 records of basic safety messages, from 155 trips made by 49 vehicles. The sum of trip
durations is about 26.9 hours, and the average duration per trip is about 10.4 minutes. Most of
the trips were made within the road networks of Ann Arbor, Michigan, and some long trips
reached the neighboring towns of Dexter, Chelsea, and Livonia in Michigan. Table 3 shows the
descriptive statistics of selected variables in the final datasets. Based on the error-checked
descriptive statistics and the distributions, the data seemed to be of reasonably good quality.
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Figure 2 presents the spatial distribution of sampled data. Distributions of variables seemed
reasonable in terms of magnitude and spatial characteristics.

TABLE 2 Variable Descriptions from Safety Pilot Model Deployment, Ann Arbor, Michigan

Variable Description
. A GPS-based estimate of height above sea level (height above the
Altitude . .
Positi reference ellipsoid that approximates mean sea level)
osition ; .
™ Latitude Current degree of latitude at which the vehicle is located
Longitude Current degree of longitude at which the vehicle is located
Speed (host vehicle) Currenj[ v§h1cle speed, as determined from the vehicle’s

fransmission

Motion Longitudinal Longitudinal acceleration measured by an Inertial Measurement

Acceleration Unit (IMU)
Lateral Acceleration |Lateral acceleration measured by an IMU
Accelerator Pedal Reﬂects the amoppt the accelerator pedal is displaced with respect

to its neutral position

Vehicle Brake Pedal Indicates whether the brake light is on or off

Maneuvering Cruise Control  [Indicates whether cruise control is active/engaged
. Provides information regarding the state of the vehicle turn
Turn Signal .
signals
Number of objects Number of identified objects, as determined by the Mobileye

sensor

Driving Distance to the closest [Position of the closest object, relative to a reference point on the

Context object host vehicle, according to the Mobileye sensor

Relative speed of the
closest object

Longitudinal velocity of the closest object, relative to the host
vehicle according to the Mobileye sensor

Source: SPMD Data Handbook (Henclewood, 2014).
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TABLE 3 Descriptive Statistics of Selected Variables
Variable Pelzgziltl;ge gt: Min Max

Altitude (ft) 724.603  81.076 496.388 1345.492

Position Latitude (degree) 42.307 0.135 42.044 42977
Longitude (degree) -83.745 0.291 -85.635 -83.280

Host Vehicle Speed (mph) 38.507 23.249  0.000 83.346

Motion Longitudinal Acceleration (ft/s”) -0.367 2.107 -21.818 22.420
Lateral Acceleration (ft/s®) -0.090 2.246 -22.310 22.330

Accelerator Pedal (%) 13.299% - 0.000 1.000

Brake Pedal (engaged) 20.186% - 0.000 1.000

Vehicle Cruise Control (engaged) 38.822% - 0.000 1.000

Maneuvering Turn Signal (None) 93.847% - 0.000 1.000

Turn Signal (Left) 3.927% - 0.000 1.000

Turn Signal (Right) 2.226% - 0.000 1.000

o Number of objects 1.618 1.469  0.000 9.000
CD;;Vt‘;gt Distance to the closest object (ft) 132919  116.053 0.410  839.690
Relative Speed of the closest object (mph) -3.893 21.829 -157.984 159.941

Note: Sample size = 968,522 records.

. 3 Michigan
- D <4

United States

FIGURE 2 Spatial Distribution of Trajectory Data in the Final Datasets

Conceptual Framework

The main objective of this study is to use data analytics to extract critical information embedded
in BSMs sent and received by vehicles and infrastructure. Figure 3 shows the proposed
framework to explore the BSMs and compile the raw BSMs into messages that can be
communicated to drivers. These messages can inform the host vehicle drivers (i.e., raw BSMs
are from the same vehicle) to adjust their driving behaviors, and also to give warnings and
control assistance to remote vehicle drivers (i.e., raw BSMs are from other vehicles) to avoid
potential dangers. In real-world environments, real-time BSMs are compiled into real-time
advisory or warning messages, directed to local drivers through V2V and V2I applications.
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Understanding instantaneous driving volatility was one of the most challenging aspects of
this study; this understanding can be accomplished by the BSM Compiler designed in Figure 3.
Data sampled at a high frequency, 10 Hz, yielded deeper insights into instantaneous driving
behaviors. This study used various data visualization tools to show the extent of instantaneous
driving volatility, including distributions of longitudinal and lateral acceleration, speed-based
distributions of instantaneous yaw rate, three-dimensional distributions of longitudinal
acceleration-lateral acceleration-speed, and driving volatility on different road types. This paper
provides data visualization details. Then, extreme driving events will be identified in accordance
with special rules. One of the rules this study used is speed-based thresholds (Liu et al., 2014),
since driving behaviors vary at different speeds, implying different driving contexts. These rules
are discussed along with data visualization and analysis. Further, these extreme events were
linked to instantaneous vehicle control statuses and driving contexts to understand why they
occur. Finally, advisory or warning messages and vehicle control assistance to drivers can be

generated.
SPMD Database

i Real- BSM
l Raw Basic Safety Messages (BSM) ‘ cemme
BSM Compiler T
[Positiun ] [ Motion ] [Mancuvcring ] [D{‘iving Context ]
% g g
2 = § 5 3
- - 3 ¥ :
@ b = g g =
m | =] ~ a3
w g ] = o
§ g K 2 Z :
= o - I - El
] g : : e oy S
o 8 Instantaneous Driving Volatility |
3 O
Extreme @

Driving Event

Critical information
for drivers through
V2V and V21

FIGURE 3 Conceptual Framework

EXTENT OF INSTANTANEOUS DRIVING VOLATILITY

Driving Volatility on the Road

To observe how a vehicle moves on a road, 10-Hz motion data (speed, longitudinal, and lateral
acceleration) from BSMs were visualized on maps according to position data (longitude and
latitude). Figure 4 shows two sample trips made on different types of roads. Figure 4(i) presents
one trip going through downtown Ann Arbor and Figure 4(ii) shows a trip that includes freeway
driving. To illustrate the volatility of instantaneous driving decisions (i.e., variability of
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instantaneous accelerations), Figure 4 also shows the variance of longitudinal and lateral
accelerations within one second, calculated by Equations (1) and (2) below.

2

i+9 i+9
VARiLongitudinal — lz ajLongitudinal i lz ajLongitudinal Equation (1)
n n
j:i ]=l
1 i+9 1 i+9 2
VARiLateral — _Z ajLateral _ _Z ajLateral Equation (2)
n n

Where,

VAR = variance of accelerations within one second;

i = time stamp in 0.1 second, i = 1.0, 1.1, 1.2, .. ;

j = the index of summation, j = i, i+1, i+2, ..,, i+9;
Longitudinal _ the i™ record of instantancous longitudinal acceleration in 10 Hz;

aLateral

i = the j’h record of instantaneous lateral acceleration in 10 Hz;

Note that this study uses longitudinal and lateral acceleration as key measures to capture
instantaneous driving decisions, i.e., how a vehicle is maneuvered instantaneously. Driving
behaviors can also be captured by other measures, such as steering angles and the position of the
accelerator or brake in a vehicle. Given that longitudinal and lateral accelerations are the
outcomes of maneuvering by drivers, the authors prefer to use them for analysis.

As expected, driving on local roads is more volatile, in terms of variance of accelerations,
than driving on freeways because conditions on local roads are more complex owing to greater
variation in roadways and surrounding environment, e.g., presence of different traffic signs and
signals at intersections and distractions from pedestrians, bicyclists as well as changes in land
use (commercial, residential or industrial). For this reason, critical information extraction from
BSMs should consider the difference of driving performance or behavior under different driving
contexts. An easy way to distinguish the driving context would be travel speed, by assuming no
congestions on the road. The travel speed on freeways would often be higher than on local roads,
as indicated by speed limits. Figure 4 presents the instantaneous driving decisions visualized on
road, showing that higher speeds are associated with smaller variations of acceleration in two
directions. Ahn et al. (Ahn et al., 2002) report that higher accelerations are associated with lower
speeds. Consequently, driving volatility might also be associated with speeds.
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FIGURE 4 Instantaneous Driving Decisions Visualized on Road

Distributions of Acceleration

To clarify the relationship between speeds and acceleration, distributions of acceleration were
visualized in two directions: longitudinal and lateral. Figure 5 presents the magnitude
distribution of acceleration along speeds and the density of possible acceleration values along
speeds. It shows that generally higher speeds (>50 mph) were associated with smaller
acceleration magnitudes, which is partially consistent with Ahn et al. Vehicle engines have to do
more work in order to maintain the same acceleration at higher speeds to overcome increasing
air resistance. Therefore, the ability to accelerate or decelerate a vehicle decreases naturally at
higher speeds (Wang et al., 2015). Ahn et al. (Ahn et al., 2002) points out a linear relationship
between acceleration and speeds, and this study reveals a nonlinear relationship between
acceleration and speed in real-life driving situations. The varying distributions of instantaneous
accelerations along speeds confirm the above findings that driving behavior varies in different
driving situations, as reflected by driving speeds. In addition, Figure 5 also presents the
distribution of longitudinal vs. lateral accelerations. The lozenge shaped distribution implies that
longitudinal and lateral accelerations do not have large magnitudes simultaneously. In terms of
their magnitude, longitudinal and lateral accelerations seem to be inversely correlated
(correlation = -0.8343, p-value < 0.01).
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The distributions of longitudinal and lateral accelerations were visualized in three-

dimensional space, according to their relative magnitude and direction. The resultant

instantaneous acceleration of a vehicle is the sum of motion vectors of longitudinal and lateral

acceleration, as shown in Equation (3).

A= Arongitudinal T ALateral
The magnitude of resultant instantaneous acceleration A is

- 2 2 2
|A] = \/(aLongitudinal + aLateral )

R
The direction of resultant instantaneous acceleration A is

_ aLon itudinal
tan~?! —>g—
QArateral

I

A= 180

Equation (3)

Equation (4)

Equation (5)

12

A is the counter-clockwise angle between vehicle heading direction and the direction of

resultant instantaneous acceleration.

As shown in Figure 5, varying distributions implied variations in driving behaviors at
given speeds and motion in different directions. To show the magnitude of distribution at
various speeds and directions, this study used different colors to indicate the relative magnitudes
of accelerations by speed x sector bin in 0.5 mph x 2". An example bin is shown in Figure 6. All

magnitudes of accelerations were compared within a bin.
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Speed Axis————— St 0000000 e +Speed Axis

‘0.5 mph

FIGURE 6 Speed x Sector Bin

Figure 7 shows the three-dimensional distribution of accelerations at different speeds and
directions. The view of sectional drawings reveals the magnitude of instantaneous accelerations.
Blue implies that the magnitudes of accelerations are close to zero compared to other
accelerations within the same bin, and red indicates greater magnitudes. Same color indicates
that magnitudes of acceleration within different bins were at the same percentiles, forming
percentile bands. Magnitudes of longitudinal and lateral accelerations varied with different
speeds. Magnitudes at lower speeds were relatively larger than at higher speeds, illustrated by
the percentile bands, as shown in Figure 7(iii) and (iv). The cross orthogonal shape, shown by
the blue and yellow/green area in Figure 7 (ii), implies that magnitudes of accelerations that
were parallel or perpendicular to the heading directions were relatively greater than those
diagonal to heading directions. This confirmed that instantaneous driving decisions varied in
different directions, which is useful for identifying extreme driving events such as sudden lane
change behaviors.
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FIGURE 7 Distributions of Longitudinal and Lateral Acceleration in 3-D Space

IDENTIFICATION OF EXTREME EVENTS

Previous studies indicate that extreme driving events (e.g., hard braking or acceleration) are
associated with aggressive driving behaviors. However, aggressive driving might be one reason
for extreme events. Road situations and vehicle conditions such as obstacles on roads, poor
pavements, slippery road surface, sharp curves, and sensitive acceleration or braking systems
can also be reasons for extreme driving events. Researchers have given cut-off acceleration
values as a threshold for defining extreme (aggressive) driving and calm (normal) driving
(Lajunen et al., 1997b; De Vlieger et al., 2000; Langari and Won, 2005; Kim and Choi, 2013).
In light of the varying distributions of instantaneous accelerations with different vehicle speeds
and in various dimensions (X, y, and z), this study proposes an innovative way to identify
extreme events, which are the core information generated for drivers from BSMs and transmitted
through V2V and V2I applications. Our previous studies explored extreme acceleration events at
various driving speeds (Liu et al., 2014; Wang et al., 2015) in one dimension of vehicle motion,
i.e., longitudinal. This study uses data that contains both longitudinal and lateral accelerations.
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Extreme events of acceleration in different directions potentially correspond to different warning
and control assist messages. For example, if an extreme event is longitudinal acceleration, then a
warning might be given to the vehicle ahead. If extreme lateral acceleration to the right is
observed, then vehicles on the right hand side, i.e., in the right lane might be warned through
V2V applications.

Unlike previous studies that give cut-off values as thresholds regardless of driving
situations, this study proposes thresholds that change with speeds. Such changes can account for
different driving situations encountered by drivers. In addition, the directional variation of
acceleration distributions was considered when defining the thresholds. This study used 95th
percentile values in each bin as the thresholds. The thresholds can be customized according to
the acceptable levels of driving volatility. Since the thresholds were generated based on possible
values in a specific bin, they vary with different speeds and in different directions. Figure 8
presents: (i) an aggregated threshold surface that is enclosed like a cylinder with varying radii at
different speeds and directions; (ii) identified extreme acceleration events (i.e., gray dots out of
the surface); and (iii) an enlarged image of figure (ii). Note that the threshold surface was fitted
using the 95t percentile magnitudes of longitudinal and lateral accelerations within the one
speedxsector bin. The radii of the enclosed surface were greater for lower speeds and narrower
for high speeds, as shown in Figure 7 (ii1) and (iv). Accelerations parallel or perpendicular to the
heading directions had greater radii than did those diagonal to heading directions, as shown in
Figure 7 (i1).

The warnings and control assists were generated based on the 95™ percentile thresholds
introduced above, and if more than five successive BSMs (> 0.5 seconds) beyond the 95t
percentile thresholds were identified together one warning or control assist can be generated as
shown in Figure 9. Figure 10 presents a sample trip with identified extreme events (see
“Warnings”) and their locations on a map.

Extreme events seemed to be located at critical driving conditions, such as sharp turns
and complex intersections. A zoomed-in view of the suggested warning and control assist
locations shows that this is a six-way intersection consisting of three two-way roads with
pedestrian sidewalks, as shown in Figure 10(ii). Three locations generated three separate
warnings and control assists. Warning and control assist 1 indicated the potential for poor sight
distance caused by roadside plantings on East Madison Street. Warning and control assist 2
pointed out driver behaviors influenced by the intersecting traffic from Packard Street. Warning
and control assist 3 was possibly associated with the pedestrians crossing South Division Street.
The methodology proposed in this study identifies extreme events and locates them accurately in
space.
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FIGURE 8 Plots of Extreme Acceleration Events (hollowed in side)
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FIGURE 10 Extreme Events Identified in Space

The warnings and control assists can be further specified based on the directions of
accelerations. Figure 11 presents examples of sending warnings/control assists to Remote
Vehicles “B” and “C” that are proximate to the Host Vehicle “A”. For example, if an event of
extreme longitudinal deceleration (e.g., hard braking) occurs for the host vehicle, a rear-end
collision warning or control assist can be sent to the Vehicle “B” that is travelling behind the
host vehicle, in the same lane and within the warning range. If an event of extreme lateral
acceleration (e.g., fast turn to the right) occurs for the host vehicle, then a side-collision warning
or control assist may be given to the Vehicle “C” that is travelling on the right lane and might be
affected.
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Note that, such warnings and control assists are suggested for the drivers of surrounding
connected vehicles. For the host vehicle driver, these warnings and control assists may not be
that helpful as the extreme events have already occurred in most cases. To assist the host vehicle
driver, two strategies can be considered: 1) providing the host vehicle driver post-event or post-
trip feedback about their driving performance. For example, if the number of extreme events on a
specific trip is excessive, before the trip ends, then the driver may be alerted to the fact and
advised to drive more calmly. 2) The host vehicle driver’s behaviors can be predicted in the
short-term (a few seconds) by using algorithms, such as Markov decision chains (Khattak et al.,
2015). If this can be done successfully, then the host vehicle driver can be given alerts and
warnings in advance.

In addition to assisting driver behaviors, the idea of identifying extreme events is also
potentially helpful for proactive traffic management. Hazards can be identified on road segments
or intersections (such as poor sight distance and a large number of sharp turns) if many extreme
events are frequently observed at the same location.
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(i) Rear-end collision warning (ii) Side-collision warning

Figure 11: Examples of generating warnings that are dedicated to target vehicles
UNDERSTANDING FREQUENCY OF EXTREME EVENTS

One question to be answered after the identification of extreme acceleration events was whether
these extreme events made sense in terms of vehicle maneuvering and driving conditions. To
understand the correlates of extreme events, a simple regression model was estimated. The
correlates included vehicle maneuvering decisions (e.g., position of accelerator, brakes, and
cruise control during trip), and the instantaneous driving contexts, e.g., surrounding objects and
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distance to closest objects. Modeling provides clarity on what factors are associated with higher
frequency of extreme events, and helps anticipate the number of extreme events given a set of
driving-related factors. Further, driving safety strategies may be developed to avoid certain
driving conditions that are associated with more extreme events.

Negative binomial (NB) models were estimated (also called extra-Poisson or Poisson-
gamma model) to explore correlates of extreme event frequency. The model assumes that the
observed frequency of extreme events identified from BSMs during one trip follows a NB
distribution (Lord and Mannering, 2010; Guo and Fang, 2013):

Yi~ NB (E;d; )

Where, A; = expected the rate of extreme events (i.e., frequency of extreme events over the
duration or length of one trip); E; = trip length (in miles) or duration (in minutes); and ¢ = NB
over-dispersion parameter. A larger value of a implies greater over-dispersion in data. If « =0,
then the data follows a Poisson distribution (where mean = variance). In such a situation, the
Poisson and Negative Binomial model provide identical estimates. If « is significantly greater
than 0, a NB model is preferred. Formally, A; can be viewed as a log link function of a set of
independent variables:

Log (1) = X;B Equation (6)

Where, X; = the matrix of independent variables; § = the vector of estimated associations
between independent variables and the dependent variable (i.e., frequency of extreme events
during one trip).

Table 4 shows the descriptive statistics of variables for a trip. On average, there are 7.23
extreme acceleration events per trip. The trip with the greatest number had 39 extreme events
while 35 (out of 155) trips had no extreme events. Note that a zero-inflated NB model may be
estimated for future studies (Anastasopoulos et al., 2010), if the sample size is expanded and
excessive number of trips have zero extreme events. The longest extreme event lasted 19.1
seconds, as shown in Table 4. Noticeably, there were some extremely short trips (less than 1
minute) because drivers did not always initiate data collection at the beginning of their trips. For
those trips, the data relates to one segment of a trip. Distributions of other variables seemed
reasonable, based on error checking.
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TABLE 4 Descriptive Statistics of Variables at Trip-Level (N=155)

Variable Mean Std. Dev. Min  Max
Number of extreme acceleration events 723 822 0.00 39.00
Warning Total extreme acceleration event duration (second) 7.96 10.14 0.00 58.00
Average duration per extreme events (second) 0.80 0.62 0.00 3.35
Longest extreme acceleration events duration (second) | 2.11 2.67 0.00 19.10
Average speed (mph) 33.55 15.01 274 71.22
Trip Attribute Speed variance 228.96 158.60 0.06 728.58
Trip length (mile) * 6.68 946 0.03 72.14
Trip duration (minute) * 1041 10.92 0.07 60.78
Average accelerator pedal displace (%) 13.97% 11.79% 0.00% 64.30%
Brake pedal (engaged) (%) 23.08% 16.39% 0.00% 86.02%
) . Cruise control (engaged) (%) 30.16% 37.78% 0.00% 100.00%
Vehicle Maneuvering Turn signal (left) (%) 471% 10.82% 0.00% 97.54%
Turn signal (right) (%) 2.38% 5.70% 0.00% 60.03%
Number of total turns 306 399 0.00 21.00
Average number of objects 1.1 095 0.00 391
Driving Context Average distance to the closest object (ft) 163.76 149.98 21.33 839.69
Average relative speed of the closest object (mph) -438 10.80 -80.86 12.03

20

*: There are some extreme short trips because drivers did not always initiate the data collection at the beginning of

the trips. For those trips, the data refer to one segment of a trip.

Multicollinearity may exist between independent variables (e.g., trip length and trip
duration), which may lead the regression model estimates to become unstable (Farrar and
Glauber, 1967). In this study, the variance inflation factors (VIFs) were calculated to examine
the multicollinearity of independent variables (Chatterjee and Hadi, 1986). The VIF for
independent variable x; can be calculated by

1
R2

VIF (xj) = -

Equation (7)
j

Where ﬁf is the square of the multiple correlation coefficients that are from the
regression when x; is regressed with intercept against all the other independent variables. A
variable whose VIF value is greater than 10 is possibly redundant in a regression model, since
this variable may be a function of other independent variables. Based on VIF calculations, the
variable of trip length had the greatest VIF value (= 9.80). A reasonable explanation is that the
trip length and trip duration and average speed are highly correlated, noting that speed = trip
distance/trip duration. It was decided to remove trip length from the model, and as a result all

variables had a VIF value smaller than 5. This is an indication that multicollinearity between the

remaining variables is not problematic.

Although some variables may not be correlated with other independent variables (i.e.,
VIF is significantly less than 10), they can be statistically insignificant. That is they may not be
correlated significantly with the dependent variable (i.e., the frequency of extreme events) and
explaining little variation in data. To deal with such situations, a backward stepwise variable
elimination procedure was conducted to eliminate the variables whose estimates that were not
significant at 90% confidence level (StataCorp, 2013). Variables that were kept in the final
model specification have an estimate that was at least marginally significant at 90% confidence
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level. The variables that were included in the final NB model include speed variance, trip
duration, percent of driving time when the brake pedal was engaged, number of turns, average
distance to the closest object, and average relative speed of the closest object.

Sometimes the NB model has an exposure or offset variable such as trip length or trip
duration. When using an exposure variable, modelers typically assume that the likelihood of the
events is changing proportionately over the duration of exposure while controlling for other
variables. However, trip length or trip duration are not simply measures of exposure that are
linearly related to extreme events. If a trip is very short, then the trip is likely to be undertaken on
local roads and if the trip is very long, then the trip is likely to include freeway travel. Local
driving may be associated with proportionately more extreme events compared with freeway
driving. Therefore, to explore non-linear relationships, this study treated trip length and duration
as independent variables instead of using them as exposure variables.

Variables such as the speed variance and the brake engagement may be endogenous to
the dependent variable, i.e., frequency of extreme events. A Durbin—Wu—Hausman test was
conducted to test for endogeneity (Davidson and MacKinnon, 1993). Results showed that these
variables were not endogenous at 95% confidence level.

Table 5 shows the model specification process, i.e., variable selection and removal
procedures, and the final NB modeling results. Overall, the modeling results were reasonable,
providing insights about the correlates of extreme events embedded in BSMs. The overall
goodness-of-fit was rather weak, since the phenomena are complex, the model is limited to a
relatively small sample size (N=155), and a small number of variables. The estimated
coefficients and goodness of fit will likely change as more data become available.

A likelihood ratio test showed that the over-dispersion parameter « is significantly
greater than zero (y* = 528.44, p-value = 0.000), which validates the appropriateness of NB
regression instead of Poisson regression. As expected, the greater variation of speeds was
correlated with the more extreme events, since the identification of extreme events was based on
accelerations which are the change rates of speeds. For vehicle maneuvering, more time spent on
braking was associated with more extreme acceleration events. Variables that are positively
correlated with more warnings include: 1) if a trip had many turns (10% level), pointing to the
potential for making extreme maneuvers such as sharp turns at such locations; 2) the distance to
the closest object because proximity to objects may induce greater volatility; 3) higher relative
speed of the closest object; 4) longer trip duration; and 5) more brake pedal engagement. Among
all factors examined, the brake pedal engagement had the greatest association with the frequency
of extreme events. One percent increase in time spent on braking during a trip is associated with
a 272.5% increased chances of extreme events.
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TABLE 5 Negative Binomial Models for Frequency of Extreme Events
(Y=number of extreme events or suggested warnings/control assists during one trip)

VIF Calculation Step W1se Final NB model
Elimination
Variable st 2nd P-  Elimination B P- Incidenc.e
Round Round| value order value Rate Ratio
Average speed (mph) 487 3.70 | 0.363 4
Speed variance 1.60 1.57 0.001** 0.044 1.001
Trip length (miles) 9.80
Trip duration (minutes) 947 2.06 0.046*** 0.000 1.047
Average accelerator pedal displacement (%) 1.70  1.70 | 0.539 3
Brake pedal (engaged) (%) 4.14 4.08 1.315*%% 0.044  3.725
Cruise control (engaged) (%) .72 1.72 | 0.346 5
Turn signal (left) (%) 1.37 136 | 0.847 1
Turn signal (right) (%) 1.11 1.11 | 0.742 2
Number of turns 1.94 191 0.049*  0.074 1.051
Average number of objects 1.36 136 | 0.156 6
Average distance to the closest object (ft) 1.50 1.50 0.002** 0.019 1.002
Average relative speed of the closest object (mph)] 1.49 148 0.026*  0.055 1.026
Constant 0.319 0.230
SUMMARY STATISTICS
a 1.005"
Number of Observations 155
Log Likelihood at zero, LL(Constant only) -465.491
Log Likelihood at convergence, LL(Model) -437.339
AIC 890.678
Log Likelihood Chi-square 56.3
Prob > x? 0.000
Pseudo McFadden's R? 0.061

Note: ***= significant at a 99% confidence level; ** = significant at a 95% confidence level; * = marginally
significant at a 90% confidence level; “the probability of the dispersion parameter = 0 is virtually zero, indicating
NB model performs better than Poisson model. Pseudo McFadden's R? = 1 — LL(Model)/LL(Constant only).
Incidence Rate Ratio = ¢,

Given the potential concerns: 1) the excessive zeros in observations (35 trips, out of 155,
had no extreme events), and 2) significant unobserved heterogeneity in correlates across
observations, zero inflated models and random parameter models were estimated. Table 6
presents the zero-inflated model and the random-parameter models. Previous studies have
provided good explanations and justifications for estimating zero-inflated models
(Anastasopoulos et al., 2010) and random-parameter models (Milton et al., 2008;
Anastasopoulos and Mannering, 2009, 2011; Russo et al., 2014). Compared with the NB model,
zero-inflated model seems to be better, given the statistically significant (at 95% confidence level)
Vuong statistic (Anastasopoulos et al., 2010). However, most estimates are not statistically
significant in the model (5% level). Also, in terms of the estimated Incident Rate Ratios, zero-
inflated model parameters are similar to the simple NB model. In addition, the random-parameter
model showed that three variables (brake pedal engagement, number of turns and average
relative speed) should be estimated using random-parameters. However, the random-parameter
estimates for these variables are not statistically significant (5% level). Further, the fixed-
parameters in this model are very similar to the estimates from simple NB model, implying that
there may not be substantial heterogeneity in the correlates of extreme events. The correlates
estimated in the simple NB model are constant across observations. This study did not
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demonstrate substantial value added due to zero inflated or random-parameter models. However,
this is not to say that such models should not be explored in other studies. Additional data, when
available, may be able to better demonstrate the value of such models.

TABLE 6 Zero-Inflated and Random-Parameter Models for Frequency of Extreme Events
(Y=number of extreme events or suggested warnings/control assists during one trip)

Zero-Inflated NB Model

Random-Parameter Model

Variables § P-value II{I;iédg;;Z § P-value EI{r;iédlizfiz
Count State Fixed-Parameter
Speed variance 0.001 0.180 1.001 0.001* 0.086 1.001
Trip duration (minutes) 0.039***  0.000 1.039 0.046*** 0.001 1.047
Brake pedal (engaged) (%) 0.778 0.219 2.176 1.315% 0.088 3.725
Number of turns 0.036 0.151 1.036 0.049 0.127 1.050
Average distance to the closest object (ft) 0.001 0.113 1.001 0.002**  0.050 1.002
Average relative speed of the closest object (mph)]  0.010 0.533 1.010 0.026 0.106 1.026
Constant 0.844***  (.002 0.319 0.257
Zero State Random-Parameter”
Speed variance -0.013 0.307 NRP®
Trip duration (minutes) -2.261%* 0.044 NRP
Brake pedal (engaged) (%) -2.866 0.318 2.02E-02 0.953
Number of turns 1.003 0.144 3.79E-04 0.986
Average distance to the closest object (ft) -0.014* 0.086 NRP
|Average relative speed of the closest object (mph)| -0.244* 0.073 1.91E-05 0.966
Constant 5.592%* 0.025
SUMMARY STATISTICS
a 0.791" 0.995"
Vuong statistic 2.790***  (0.003
Number of observations 155 155
Log Likelihood at zero, LL(Constant only)  |-441.457 -465.491
Log Likelihood at convergence, LL(Model)  |-422.782 -437.338
Prob > x2 0.000 0.000
Pseudo McFadden's R? 0.042 0.060

Note: ***=significant at a 99% confidence level; ** = significant at a 95% confidence level; * = marginally
significant at a 90% confidence level; “the probability of the dispersion parameter = 0 is virtually zero, indicating
NB model performs better than Passion model; * = Standard deviations of random-parameter; °= No estimable
random parameter. Pseudo McFadden's R* = 1 — LL(Model)/LL(Constant only). Incidence Rate Ratio = ¢’.

LIMITATIONS

Data used in this study were BSMs sent and received by connected vehicles through V2V and
V2I applications. Participating vehicles equipped with Data Acquisition Systems collected the
BSMs. Thus, the extent of measurement errors in the data was unknown, although the results
from data visualization and modeling were reasonable. In addition, the Data Acquisition Systems
captured information explored in this study does not represent a complete set of driving contexts
or operating environments. Additional information about roadway features and traffic
signals/signs may need to be integrated with information from Data Acquisition Systems when
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warnings or control assistances are about to be given. The warnings or control assists are
suggested merely based on vehicle motion information, i.e., extreme acceleration or braking
events. Such extreme events can benefit from validation and verification, e.g., by analyzing other
information, such as videos for the driver’s gestures or hand positions on steering wheels, eye
tracking for distraction and fatigue, and sensor data of how a driver moves the accelerator and
brake pedals.

A threat to the validity of this study is the limited sample size. Only one-day sample data
from the SPMD is publicly available in Research Data Exchange (RDE, https://www.its-
rde.net/home). Consequently, this study can be regarded as an exploration of BSMs transmitted
by real-world connected vehicle technologies. As more data become available, the methodology
of this study can be applied directly for a broader exploration, and the results of this study can be
validated by expanded sample data.

CONCLUSION

The connected vehicle technologies discussed in this paper are capable of transmitting high-
frequency data between vehicles and infrastructure, which has the potential to improve mobility,
safety, energy consumption, and the environment. In this context, it is important to maximize the
value embedded in data generated by the entire ecosystem of vehicles and infrastructure to
support driver decision-making. SPMD provides data on basic safety messages, which are the
core data sent and received by connected vehicles and infrastructures through V2V and V21
applications. The content of BSMs describe a vehicle’s position (latitude, longitude, and
elevation) and motion (heading, speed, and acceleration) (Henclewood, 2014). BSMs also
contains data pertaining to the vehicle’s component status (lights, brakes, wipers) and vehicle
safety information (path history, events) (Henclewood, 2014). The raw BSMs are complex and
not informative to drivers. This study proposes a data analytic methodology to extract critical
information from raw BSMs. The information can be provided to drivers and inform them about
their driving behaviors or about dangers in surrounding roadway environments. The information
is simple and informative, and helps drivers make informed decisions. The research is timely and
has long-term value, as connected and automated vehicles are likely to have substantial impacts
throughout the world, and have seen substantial research activity.

Our previous studies have explored the critical information embedded in vehicle
trajectory data, which were collected through GPS devices (Liu et al., 2014; Wang et al., 2015).
This study extended the methodology of extracting critical information from BSMs transmitted
between connected vehicles. This study established a fundamental understanding of
instantaneous driving decisions by investigating two-dimensional instantaneous accelerations,
i.e., longitudinal and lateral accelerations. Instantaneous driving volatility was visualized, and it
clearly showed that driving behavior is strongly associated with driving contexts, whether
driving on local roads or freeways. This study untangled the relationship between speeds and
acceleration through the distribution of instantaneous accelerations at different speeds. Higher
speeds (>50 mph) are associated with smaller acceleration magnitudes, which is consistent with
(Ahn et al., 2002). This study further revealed a nonlinear relationship between acceleration and
speed in real-life driving situations. The lozenge shaped joint distribution implies that
longitudinal and lateral acceleration hardly reached a large magnitude simultaneously. In terms
of magnitude, longitudinal and lateral accelerations seemed inversely correlated.

This research presents an original idea, which is to establish context-relevant alert,
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warning, and control assist thresholds based on extreme event information embedded in BSMs.
Most previous studies give fixed cut-off values for thresholds regardless of driving situations
(Lajunen et al., 1997b; De Vlieger et al., 2000; Langari and Won, 2005; Kim and Choi, 2013).
However, some of the thresholds for warnings and control assists may be flexible and can
change with speeds to account for different driving situations and contexts. In addition, the
directional variation of acceleration distributions is considered in establishing the thresholds.
Information about extreme driving decisions can be used for control assists and provided as
feedback to drivers in real time to help them shift to calmer driving, and transmitted to other
drivers surrounding through V2V applications to warn them about potential dangers.

Results from rigorous statistical modeling revealed that the extreme events identified
from BSMs are strongly associated with trip attributes, driver maneuvering, and driving contexts.
The results provide correlates of extreme events, indicating situations where warnings and
control assists may be provided to drivers. Such conditions include situations in which a driver
has to step on brakes frequently (possibly due to unstable speed conditions and congested flow),
and a trip which involves many turns at intersections. Note that the modeling results were limited
to a relatively small sample of 155 observations and a small number of variables. The estimated
results may change as more data and variables become available.

This study contributes by making sense of high-frequency geo-referenced connected
vehicle data, and extracts critical information about extreme events from new data sources
created by communications between connected vehicles. Connected vehicles are a relatively new
and emerging area of research activity in intelligent transportation systems, with strong interest
from a wide audience that includes government agencies, auto makers, practitioners and
researchers who are interested in implementing connected vehicles.

The findings of this study are relevant to incorporation of alerts, warnings, and control
assists in V2V and V2I applications of connected vehicles. Such applications can help drivers
identify situations where surrounding drivers are volatile and they may avoid dangers by taking
defensive actions. For example, rear-end or side-impact collision warnings can be given to
drivers who are in close proximity of other drivers undergoing extreme longitudinal or lateral
accelerations, respectively. Applications can also be developed for departments of transportation
to identify locations with high density of extreme events (Abdel-Aty et al., 2007; Cheng et al.,
2015). Hazards in road networks can be identified proactively on certain road segments or at
intersections (such as poor sight distance and higher incidence of sharp turns) that have higher
densities of extreme events.
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