
Delivering Semantic Web Services �

Massimo Paolucci
The Robotics Institute,

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA. USA

paolucci@cs.cmu.edu

Katia Sycara
The Robotics Institute,

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA. USA

katia@cs.cmu.edu

Takahiro Kawamura
Research & Development
Center, TOSHIBA Corp

Tokyo, Japan

takahiro@isl.rdc.toshiba.co.jp

ABSTRACT
The growing infrastructure for Web Services assumes a ”program-
mer in the loop” that hardcodes the connections between Web Ser-
vices and directly programs Web Service composition. Emerg-
ing technology based on DAML-S and the Semantic Web allows
Web Services to connect and transact automatically with minimal
or no intervention from programmers. In this paper we discuss the
problems related with autonomous Web Services, and how DAML-
S provides the information to solve them. Furthermore, we de-
scribe the implementation of two demonstration systems that use
such technology: the first system is a B2B application in which
a business that assembles computers automatically finds partners
providing parts and automatically transacts with them; the second
describes an e-commerce application that helps a user to organize a
trip to a meeting automatically interacting with different Web Ser-
vices and the calendar of the user stored in MS Outlook. The results
of these experiments show how Web Services can be deployed on
the Web to interact and provide information dynamically; second,
how the transaction can be carried on automatically with no pro-
grammer intervention.

Keywords
Web Services, Semantic Web, Semantic Capability Matching

1. INTRODUCTION
Web services are defining a new paradigm for the Web in which

a network of computer programs become the consumers of infor-
mation. The growing infrastructure for Web Services is based on
SOAP [20] and WSDL [2] assumes XML [19] as unifying language
to guarantee Web Services interoperability. XML guarantees syn-
tactic interoperability by providing a standard for a common syn-
tax that is shared across the Web, with the result that Web Ser-
vices can parse each other message, verify whether they adhere to
the expected formats, and locate each piece of information within
the message. Unfortunately, the two Web Services do not have
any means to extract the meaning of the messages exchanged. The
two Web Services are in the awkward position of understanding the
structure of each other message, but not understanding the content
of those messages. The limitation requires programmers to hard-
code Web Services with information about their interaction part-
ners, the messages that they exchange and the interpretation of the

�(Produces the WWW2003-specific release, location and copyright
information). For use with www2003-submission.cls V1.0. Sup-
ported by ACM.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ISBN 963-311-355-5.

messages that they receive. The result is a set of rigid Web Services
that cannot reconfigure dynamically to adapt to changes without di-
rect human intervention.

Ideally, we would like Web Services to act autonomously, to re-
quire the minimal human intervention as possible. Web Services
should be able to register autonomously with infrastructure Reg-
istries such as UDDI [17], in addition they should use the infras-
tructure Registries to locate providers of services that they need,
and finally, they should be able to transact with these Web Services
sending them information formatted in a way that they can under-
stand, and be able to interpret the information that they receive as
a response. Autonomous Web Services not only minimize the hu-
man intervention by automating interaction with other Web Ser-
vices, allowing programmers to concentrate on application devel-
opment, but also they should be able to recover from failures more
efficiently by automatically reconfiguring their interaction patterns.
For example, if one of their partners is failing or it is becoming un-
reliable, they may be able to find other more reliable partners, sim-
ilarly, if a new and cheaper, or anyway better, provider comes on
line, Web Services should be able to switch to work with the new
provider.

Autonomous Web Services need to be able to find partner Web
Services, in order to do that they need to be able to describe and
register their own capabilities with public registries, as well as lo-
cate other Web Services with specified capabilities. Capability in-
formation is crucial for Web Services to locate each other on the
bases of the services that they provide rather than on the bases of
their name or of the name of the company that deploys the Web Ser-
vice. In addition, a Web Service should have information on how
to interact with the provider, which means that it should know the
interaction protocol of the provider, and binding information. Most
crucially, this information should allow the requesting Web Ser-
vices as well as the provider to decode the information exchanged,
so it should specify not only the format of the messages to exchange
or the remote procedures to call, but also the semantic type of the
information to exchange. This view is embraced by DAML-S [16]
which defines a DAML [4] ontology for the description of Web
Services that attempts to bridge the gap between an infrastructure
of Web Services based essentially on WSDL [2] and SOAP [20],
and the Semantic Web [1]. In other words, DAML-S bridges the
gap between the specification of the format of the information to
be exchanged and the specification of its meaning.

DAML-S assumes a view of Web Services that is wildly shared
in the community. It assumes that a transaction between Web Ser-
vices involves at least three parties: a provider of the service, a
requester of the service, and some infrastructure component such
as UDDI that facilitates the location of the provider and possibly
facilitates the transaction between provider and requester. Further-



more, DAML-S allows for a flexible assignment of roles in which
a Web Service can be both a the provider in a transaction and a
requester in another, and also it allows for a role switch within the
same transaction. DAML-S is constructed in three modules that
provide a description of different aspects of Web Services. The first
one, called Profile, is an abstract description of the Web Service and
of the transformation it implements described as a transformation
from the inputs the Web Service requires to the outputs it gener-
ates. The second module is the Process Model that characterizes
the Web Service, specifically, it describes the interaction flow with
the Web Service, what function is produced by each step. The third
module, called Grounding, specifies how the input/outputs of each
step are mapped on WSDL specifications of messages that the two
Web Services exchange.

DAML-S provides all the information Web Services need to in-
teract on the Web. DAML-S supports discovery by allowing Web
Services to describe their capabilities in the Service Profile so that
they can be matched with requests of capabilities. DAML-S ca-
pability description and the capability matching1 [12], extends the
UDDI registry[11] allowing Web Services to register their own ca-
pabilities and to locate providers of the functionality they seek.
Once the provider is located, the requesting agent can use the Pro-
cess Model and the Grounding to interact with the provider. The
Process Model describes the interaction workflow of the provider
so the requester can derive what information the provider needs at
any given time. Through the Grounding the requester compiles the
messages to exchange with the provider.

We tested DAML-S in two applications that stress different as-
pects of DAML-S. The first system is a B2B application in which
a hypothetical computer manufacturer looks for providers of com-
puter parts. The goal of the computer manufacturer is to locate
providers of parts of a computer, and negotiate prices of parts and
a schedule of delivery. The second application is a variant of travel
management application that is often used as use case of applica-
tion of Web Services. In this latter application the goal of the re-
quester is to locate a travel agent Web Service and book a flight to
a meeting while synchronizing the schedule of the flight with the
schedule of the user stored in MS Outlook.

In the remaining of the paper we will discuss in detail the archi-
tecture of the applications. Specifically, in section 2 we discuss the
challenges of automatic composition of Web Services; in section 3
we discuss how DAML-S meets those challenges; in section 4 we
discuss the architecture of the Web Service; in section 5 we dis-
cuss the computational requirements on a DAML-S Web service;
in section 6 we discuss details of the implementation; and finally in
section 7 we conclude.

2. COMPOSITION CYCLE
A transaction between Web Services typically involves three or

more parties: a requester. one or more providers and a registry, such
as UDDI, that supports the Web Services during the transaction and
possibly mediates between the requester and the provider. Roughly
speaking, the requester corresponds to the client, and the provider
corresponds to the server, with the cavia that we expect Web Ser-
vices to be able to play both roles, for instance a Web Service may
be a client in one transaction while a server in another transaction.
Furthermore, even within the same transaction the client server re-
lation may switch when the server asks the client to decide between
alternatives, or to provide additional information.

Web Services composition follows the cycle described in fig-
ure 1 and it can be segmented in two phases phases: the location

1A matchmaker is available at www.damlsmm.ri.cmu.edu

advertise

store
has problem

compile request

request

match

Provider Requester

report matches

compile message

select provider

Registry

send

reply

interpret response

problem solved

Selection
Provider

Interaction

Figure 1: The composition cycle.

of the provider, and the interaction between the requester and the
provider. Consistently with registries like UDDI, we assume that
whenever a provider comes on line, it advertises with the Registry
to make itself known and available to requesters. Strictly speaking,
the advertisement of a provider is not a part of a transaction, since
the same registration is used in multiple transactions, nevertheless
it is an essential precondition for the transaction to take place.

2.1 Location of Providers
The process of locating a provider is composed of three stages,

first the requester has to compile a request for a provider and send it
to the Registry. Second, the Registry has to match the request with
advertisements it stored of Web Services available on the Web, third
the requester selects the provider that more closely fits its needs.

The requester at this point knows that problem it expects the
provider to solve, but has no idea of what providers are available to
solve that problem. In order to find a provider it needs to be able
to inquire the registry to locate Web Services with a given capa-
bility. The automatic compilation of a request requires an abstrac-
tion from the problem the requester faces to the capabilities the
requester expects the provider to have in order to solve the prob-
lem. Crucially, the solution of the problem also requires an ad-
vertisement and query language that supports the representation of
capabilities of Web services, so that the Registry receives capability
information and processes it.

The task of the registry is to locate an advertisement that matches



a request. The matching of the request and the advertisement should
guarantee that the selected Web Service produces the effects that
the requester expects. It is crucial to stress that the matching pro-
cess should take into account that different parties with different
perspectives may provide radically different descriptions of the same
service. The matching process therefore should not be restricted
to an exact match between the request and the provided advertise-
ments, rather it should allow for degree of matching in which Web
Services that provide a service similar to the one requested are se-
lected, while Web Services that definitely do not provide the ser-
vice are discarded. The result is a list of potential providers among
which the requester has to select a provider.

The selection of the providers requires a type of registry that is
outside the registries offered by the growing Web Services infras-
tructure, namely UDDI. UDDI stores a host of useful information
about Web Services such as information about the organization that
fielded the Web Service; binding information to allow Web Ser-
vices to interact, and an unbounded set of properties, called TMod-
els, that allow to attach any additional information to a Web Ser-
vice. The problem of UDDI is that it does not have an explicit rep-
resentation of what the Web Service does. Therefore, the search for
a Web Service with a given capability becomes very difficult. As an
example, to locate a Web Service that reports weather information
within the US, a requester may look for all the Web Services that
contain a TModel associated with a classification of services such
as NAICS [18] which are specified as weather providers, and all the
Web Services descriptions that contain a TModel that associate the
Web Service with the US, and then look in the intersection of the re-
sults of the two searches. The problem of course is that this type of
search cannot distinguish between weather services that provide in-
formation about the US, from US based weather services that may
provide information about the weather in other countries. Overall,
because UDDI misses any form of capability representation and
capability matching, it is extremely difficult to find Web Services
with a desired capability using UDDI.

2.2 Selection of Provider
The result of the matching between the request and the adver-

tisements will result in a number of matches among which the re-
quester will have to select the provider it wants to use. In general
there is no hard and fast rule for the selection of the provider, and
it soon turns out to be a domain specific decision.

The simplest thing is to select the provider with the highest score
among the Web Services reported by the Registry. A more general
approach could be based on decision theoretic reasoning, in which
the requester selects the provider that maximizes some utility func-
tion, but, in practice, it is unlikely that Web Services will make use
of an explicit utility model that they can leverage on.

Other types of information that are not contained neither in the
request nor in the advertisement such as the credit history of a
provider, or the amount of work the requester estimates to do in
order to satisfy all the inputs and preconditions expected by the
provider and in general the likelihood that the requester can gather
all the input information and achieve all the preconditions expected
by the provider.

The strategies proposed above assume that the requester will se-
lect only one provider to interact with. This decision may be ex-
tremely risky and inefficient in the world of Web Services. One nice
part of Web Services is that they run on the same time on differ-
ent machines implementing actual parallelism. As a consequence,
the requester may attempt to interact with multiple providers in the
same time; with the advantage that by delaying the selection of the
provider it reduces the risks of an early decision. Of course, the

problem of this strategy is that the requester may commit to buy
the same service from multiple providers, incurring in additional
costs at no gain [5]. Therefore, this strategy can be followed only
when the requester is aware of the place in the transaction where
it commits to buy, at which point the requester may commit on a
provider. For example, a requester interested in buying books may
try to interact with more than one book selling Web Service in the
attempt to find the cheaper one. This will be a good strategy as
long as the requester selects from which Web Service to buy before
it commits to buy the same book from all the providers.

2.3 Interaction with Provider
Once the provider has been selected the requester should initi-

ate the transaction with it. To support the interaction the provider
has to make public its own interaction protocol declaring what in-
formation it expects from the requester, in what order, the format
of such information and binding information that specify the ports
the provider and the requester will use during the transaction. Still,
the declaration of the sequence of messages is not enough for the
provider. Rather it needs also to declare the material consequences
of each step in the protocol.

Current Web Services standards address different parts of the
problem. Protocols like XLang [15], WSFL [10] and more recently
BPEL4WS [3] address the problem of describing the temporal part
of the interaction protocol by specifying workflow models that de-
scribe the sequence of messages to be exchanged. WSDL [2] maps
descriptions of abstract information to be exchanged by Web Ser-
vices into message formats and binding that specify where the mes-
sage is delivered and the transmission protocol.

The specification of the interact protocol is not really enough to
allow a successful transaction, rather the requester should derive
from the interaction protocol what the provider does with the in-
formation it receives. The discussion about commitments in the
previous section provides an argument in favor of this requirement:
in order to compute its commitments the requester should under-
stand what are the consequences of the steps in the protocol, so
the requester will avoid expensive commitments that it does not
need. Expressing the consequences of the transaction is not only a
problem for parallel interaction with multiple Web Services, rather
it is a problem even when there is a single provider and a single
requester. For example, a requester will want to make sure that
the goods will be delivered after it provides payment information,
or that the money will be refunded. These types of inferences are
impossible unless the provider specifies also what are the conse-
quences of the message exchange with the requester.

3. IMPLEMENTING WEB SERVICES WITH
DAML-S

The analysis of the composition cycle we did above led us to
establish what we expect from a language that describes Web Ser-
vices. The first requirement is that the language supports the de-
scription of capabilities of Web Services, or in other words a de-
scription of what function the Web Service accomplishes. Fur-
thermore, there should be an algorithm for indexing descriptions
and for comparing them to infer whether they describe the same
function. The second requirement is that the language allows the
specification of the interaction protocol of the provider, but also it
should support the specification of the actual consequences of each
interaction. Lastly, it should support mapping of abstract informa-
tion about inputs expected by the provider and outputs generated to
a scheme of information transfer that allows the requester and the
provider to exchange actual messages. When these requirements



are satisfied, it should be possible to construct an infrastructure for
Web Services that is centered around a Registry that performs ca-
pability matching. Once Web Services find each other, the infras-
tructure provides sufficient information for them to interact.

DAML-S and the growing infrastructure around it attempts to
satisfy all the requirements described above. DAML-S is emerg-
ing as a Web Services description language that enriches Web Ser-
vices descriptions based on WSDL with semantic information from
DAML ontologies and the Semantic Web. DAML-S is organized
in three modules, the first one is a Profile that describes capabili-
ties of Web Services as well as additional features that help to de-
scribe the service. The second module of DAML-S describes the
Process Model of the Web Service, specifically it provides a de-
scription of the activity of the Web Service provider from which
the Web Service requester can derive the interaction protocol and
the consequences of each message exchange. The third feature of
DAML-S is the Grounding: a description of how abstract infor-
mation exchanges described in the Process Model is mapped onto
actual messages that the provider and the requester exchange.

3.1 Service Profile
The role of the DAML-S Profile is to describe the Web Service

capabilities, as well as additional features of Web Services that pro-
vides a rich description of the Web Service. DAML-S describes ca-
pabilities of Web Services as functions that produce a transforma-
tion. This transformation happens at two levels: at the information
level a set of inputs are transformed in a set of outputs; at a more
concrete level a set of conditions become true, while others become
false. For example, if we consider a travel booking Web Service, at
the information level it may require departure and arrival informa-
tion and provides and using that it generates a flight schedule and
a confirmation number; while at a more concrete level it books a
flight, generate a ticket, and charges a credit card so that the money
available on the account is reduced. Capabilities in DAML-S are
represented at both levels, at the information level they are rep-
resented by the inputs that they require and the outputs that they
generate, at the state level by the preconditions for the Web Service
to execute and the effects that the Web Service generates.

Since different Web Services with very different features may
have the same capabilities, DAML-S allows the specification of a
host of additional information about the Web Service that may help
during the selection process. These additional information consists
of the category of the Web Service as described in the classification
of the service within some classification schema, parameters that
restrict the use of the Web Service, and quality rating to specify
how good is the Web Service provided.

While DAML-S is just a Web Services representation and there-
fore does not imply any form of processing, it is relatively easy
to implement a matching algorithm to recognize which Web Ser-
vices advertisements match a given request. There is at least one
such matching engine [12] that takes advantage of the underlying
DAML logic to infer the the logic relations between the input and
outputs of the request, with the input and outputs of the advertise-
ments. While a complete description of this algorithm is outside
the scope of this paper, the main idea is that a the outputs of the
request should be subsumed by the outputs of the selected adver-
tisements, this condition guarantees that the selected Web Services
provide the expected information. Furthermore, the matching en-
gine ranks the advertisements on the bases of their input matching,
where, inputs match if inputs of the request subsume the inputs of
the advertisement. This condition selects services that the requester
has enough information to invoke.

DAML-S Profiles play a role that is very similar to the role of

UDDI entries in the UDDI registry. Both data structures provide
a description of Web Services; indeed it is possible to construct a
mapping between DAML-S records and UDDI [11] using TModels
to encode the capability information. Once the capabilities are en-
coded in UDDI, a matching engine based on the DAML-S match-
ing algorithm can be used to retrieve Web Services from UDDI on
the bases of their capabilities. An initial version of such a registry
has been implemented and it is used in the experiments described
below.

3.2 Process Model
The Process Model fulfills two tasks, the first one is to specify the

interaction protocol in the sense that it allows the requester to know
what information to send to the provider and what information will
be sent by the provider at a given time during the transaction. In
addition, to the extent that the provider makes public its own pro-
cesses, it allows the client to know what the provider does with the
information.

A Process Model is defined as an ordered collection of processes.
The DAML-S Process Model distinguishes between two types of
processes: composite processes and atomic processes. Atomic pro-
cesses correspond to operations that the provider can perform di-
rectly. Composite processes are used to describe collections of
processes (either atomic, or composite) organized on the basis of
some control flow structure. For example, a sequence of processes
is defined as a composite process of type sequence. Similarly, a
conditional statement (orchoiceas defined in DAML-S) is also a
composite process. The DAML-S process model allows any type
of control flow structure including loops, sequences, conditionals,
non-deterministic choice and concurrency. Because of its expres-
sivity, the DAML-S Process Model can be used to represent any
arbitrary workflow.

Processes are defined as transformations between an initial state
and a final state. The initial state is defined by the inputs of the pro-
cess and a set of preconditions for the process to run successfully.
Inputs represent the information that the Web Service needs to col-
lect to execute the process correctly; while preconditions represent
conditions that have to be true for the execution of the process to
succeed. The result of a process is described as a set of outputs,
or information that results from the execution of the process, and
a set of effects that represent physical changes that result from the
execution of the process. DAML-S distinguishes two types of input
and outputs: the first type are internal input and outputs, in such a
case the output of one process will feed into the input of a follow-
ing process. The second type are external input and outputs: they
define information that will be provided by a requester, and that
will be reported to a requester.

During the interaction with the provider, the requester analyzes
the process model to infer what process the provider is currently
executing. The requester is particularly interested in the input the
provider needs and the outputs that result from the execution of the
process, since most likely the requester will have to provide the
input information and interpret the output information.

By following the process model, and interpreting the information
received by the provider, the requester can infer what information
the provider expects at that time, or what information that provider
will send next. Implicitly, the process model of the provider speci-
fies the interaction protocol between the provider and the requester
providing details of what information the provider needs and in
what order. The message format and the binding information is
instead specified by the DAML-S Grounding.

The specification of preconditions and effects of processes al-
low the specification of the consequences of their execution. The



Figure 2: Description of DAML-S Web Service architecture

preconditions specify under what conditions a process can be exe-
cuted, while the effects specify what results from the execution of
the process. As an example, the precondition to a buy action is that
the credit card used is a valid one and that it is not overdrawn, while
the effect is that the credit card is charged. The role of precondi-
tions is to provide a way to the requester to reduce the likelihood
of failures: the requester knows that if the preconditions are not
satisfied, the provider will not be able to execute correctly the pro-
cess. The description of the effects of the process specify the con-
sequences of the execution of the process, so for instance a buying
process will have as a consequence the transferring of ownership of
some goods and the requester know that after the execution of the
process it will own the goods.

Through the specification of input, outputs, preconditions and
effects of processes, the DAML-S process model provides the in-
formation the requester needs to interact with the provider: specifi-
cally, it specifies the interaction protocol with the provider by spec-
ifying the abstract messages the the provider and the requester ex-
change, on the other side it also provides information on the re-
quirements to be satisfied by the requester to execute the Web Ser-
vice correctly, and what will result from the execution of the pro-
cesses. It will be up to the requester to make use of this information
to decide whether to use a given provider, knowing what it requires
and what are the consequences of this choice.

3.3 DAML-S Grounding
The DAML-S Grounding transforms the abstract description of

the information exchanges between the provider and the requester
into messages that can be asynchronously exchanged, or through
procedure call. Specifically, the DAML-S Grounding is defined as
a one to one mapping from atomic processes to WSDL specifica-
tions of messages. From WSDL it inherits the definition of abstract

message and binding, while the information that is used to compose
the messages is extracted by the execution of the process model.

The integration of WSDL in the DAML-S specification facili-
tates the interaction between non-DAML-S Web Services with Web
Services that rely on DAML-S to describe the workings. From a
more theoretical view point, it describes the position of DAML-S
within the growing Web Services infrastructure through the speci-
fication of the role is played by DAML-S and what role is played
by WSDL.

4. A WEB SERVICE ARCHITECTURE
The discussion above shows that DAML-S provides a promising

framework to control Web Services interaction. It provides all the
information that Web Services need to negotiate autonomously on
the Internet, minimizing interventions of programmers while main-
taining a very flexible and reliable connection with their providers.
Still, it leaves open the problem of harvesting all the information
available and make use of it in real implemented Web Services.
This is the center of our work as we are trying to develop a Web Ser-
vice architecture that can take advantage of the information avail-
able in DAML-S descriptions and to produce a DAML-S toolkit
that facilitates the implementation of DAML-S enabled Web Ser-
vices.

The first requirement of a DAML-S enabled Web Service is to
understand the structure and the information contained in a DAML-
S description. This requirement entails the ability of compiling cor-
rect requests for service, processing the descriptions of the services
retrieved and finally, correctly following the workflow described in
the process model as well as drawing the correct inferences on the
preconditions and effects of the processes in the Process Model.

A precondition for the first requirement is that Web Services un-



Figure 3: Description of the system for scheduling a trip to the DAML PI meeting

derstand ontologies encoded in DAML. Dealing with DAML on-
tologies is fundamental because it allows the Web Service to de-
rive inferences on the different statements included in a DAML-S
description. Furthermore, it is required to extract the information
included in the messages exchanged with other Web Services, as
long as this information is compiled in DAML

Finally, the Web Service needs to include ways to use WSDL
descriptions of the Grounding to send and receive messages cor-
rectly. This last module should be responsible for the exchange of
messages with other Web Services managing not only the WSDL
description, but also managing the network protocol and the trans-
mission of information or the reception of such information.

The architecture that we adopted is displayed in figure 2. It
shows that a DAML-S Web service can be divided in two main
parts: aDAML-S Portwhich corresponds to the three modules in
the center column, which is responsible for the management of the
interaction with other Web services; and the actualService, rep-
resented by the box on the right, which determines what the Web
service does. Examples of services may include a stock report-
ing Web service, in which case the Service module would monitor
the stock market, or an airline booking Web service, the Service
module interacts with the airlines to book seats, gather information
about airplanes and so on. Ultimately, DAML-S is silent about the
application of the Web service, so we display it as a black box.

The DAML-S Port consists of three modules which are roughly
used in a sequence. TheDAML Parser is used to load DAML-
S specifications of Web services, specifically their Process Model
and Grounding, as well as loading other DAML ontologies from
the Web. The DAML Parser transforms the DAML files into lists
of predicates to be processed by the DAML-S Virtual Machine
(DAML-S VM). The DAML-S VM defines a knowledge base that
is based on the Jess Theorem [8], but it specializes with rules that

implement the DAML axiomatic semantics [9, 7] as well as the
semantics of the DAML-S Process Model and the semantics of
the Grounding. Finally, theWeb service Invocationmodule takes
responsibility for transforming abstract information to the sent to
other Web services, into concrete messages, or RPC calls, to be
exchanged2. During the interaction, Web services exchange in-
formation through the Web service invocation module, incoming
messages are translated into DAML through the Grounding Rules
and added to the Knowledge Base where the new knowledge can
interact with the rest of the knowledge of the Web service.

The DAML-S VM is the core of the architecture and it con-
trols the interaction with other Web services. The first task of the
DAML-S VM is to follow the Process Model of the Provider, this
is accomplished through the implementation of the Process Model
semantic with the Process Model Rules. These rules set contains
rules the location of the next process to execute, for the extraction
of inputs and outputs of each process and for the management of
non-deterministic choices. Similarly, the Grounding Rules spec-
ify the correspondence between atomic processes of the Process
Model and the WSDL operations, and the mapping between the in-
puts and outputs of the atomic processes in the corresponding input
and outputs of the process model.

5. REQUIREMENTS ON THE WEB SER-
VICE

As described above, DAML-S is mute about the application,
therefore any type of application could in principle take this place.
Nevertheless, the application level is responsible for many of the
2In the picture we refer to SOAP to format messages, in the imple-
mentation the message formatting depends on the WSDL specifi-
cation loaded by the Web service.



decisions that have to be made while using DAML-S. For instance,
the application level is responsible for the use of the information
extracted from the messages received from other Web Services or
to decide what information to send to other Web Services. In or-
der to take advantage of the flexibility supported by DAML-S, the
application level should support a decision system that makes non-
deterministic choices while maintaining efficiency and control on
the behavior of the Web Service.

The Service is also responsible of the non-deterministic deci-
sions that have to be made during the interaction with other Web
services. The DAML-S Process Model describes a workflow that
may contain conditionals as well as non-deterministic choices. The
DAML-S VM can find these selection points, but it is up to the
Service to decide which choices to make in those situations; since
they requires the Service to analyze which branch of a choice would
lead to the goals it wants to achieve. It is therefore essential that the
Service include a decision system that can make non-deterministic
choices while maintaining efficiency and control on the behavior of
the Web Service.

In addition, the Service is also responsible for Web services com-
position during the solution of a problem. Specifically, the Service
module is responsible for the decision of what goals to subcon-
tract to other Web services, and as a consequence of compiling ca-
pability descriptions of potential providers to submit to a DAML-
S/UDDI Registry; furthermore, it is responsible of the selection of
the most appropriate provider among the providers located by the
Registry. As a consequence, the neat and modular picture shown
in Figure 2 is only partially true, a Service that wants to take ad-
vantage of the DAML-S VM should also have access to its DAML
inference layer and possibly to the whole DAML-S virtual machine
to reason about the Process Model, decide how to deal with non-
deterministic decisions or how to react to unexpected decisions of
the other parties.

Ultimately, the programmer has two choices, either hardcodes
many of the decisions that the Web services has to make during its
interaction with other Web services, or it employs a computational
mechanism that supports the non-deterministic decision making
that the Web service requires. In our implementation, we followed
the second path, we employed the RETSINA planner [13] to con-
trol the application level. The RETSINA planner is based on the
HTN planning paradigm [6] which provides a reliable as well as
efficient planning scheme. The advantage of HTN planning over
other planning schemes is that HTN plans by decomposition intro-
ducing set of actions in the plan where other planners would intro-
duce only one action at a time. Furthermore, while HTN planning
has in principle the same complexity of planners from first princi-
ples, in practice it reduces the number of decisions that the planner
has to make resulting in an overarching efficiency gain.

The RETSINA planner extends HTN planning by adding inter-
leaving of planning and execution which basically allows the Web
Service to execute before a plan is completely formed. Interleaving
of planning and execution has a number of advantages over tradi-
tional planning. For one it allows the Web Service to discover what
providers are available and plan its course of actions as a function
of those features. The second advantage is that it allows to replan to
react to unexpected situations. For instance, if one of the providers
fails to respond, the requester may look for an alternative provider
to interact with.

6. EVALUATION AND IMPLEMENTATION
To test our approach to DAML-S we implemented two systems

with very different characteristics that take advantage of DAML-S
and the Web Service architecture described above. The first one is

Figure 4: Description of the system for scheduling a trip to the
DAML PI meeting

a B2B application in which a Web Service looks for business part-
ners and automatically negotiate business agreements with them.
The second application is a B2C application in the travel domain in
which a Web Service that functions as personal assistant of a user
organizes a trip to a conference by booking a trip to the confer-
ence verifying availabilities with the user schedule stored on MS
Outlook.

The first system describes a B2B application in which a Web
Service that is given the task of assembling computers looks for
providers of computer parts. The architecture of the Web Service
is described in figure 3. The Interface Agent provides an operator
with a way to interact with the planning agent and to compare op-
tions of combinations of business partners schedules costs and so
on. The Planning Agent employs the planning scheme described
above to achieve the goals proposed by the operator, in our case to
find providers of computer parts and organize a supply chain that
meets cost and time limitations. To achieve its goals the planning
agent queries the Matchmaker for potential parts suppliers, then it
uses the Toshiba and Fujitsu financial services to verify the like-
lihood that the suppliers will not bankrupt during production time
affecting the whole business. Finally, the planning agent contacts
the suppliers to negotiate schedule and costs.

The challenge of this system is to support interaction between
Web Services provided by very different organizations geographi-
cally spread which we could orchestrate only on the bases of DAML-
S information. Furthermore, it allowed us to experiment with sup-
pliers selection using information that is erogenous to DAML-S. It
is unfeasible to expect that DAML-S Profiles will contain all the
information that the requesters will ever need about the provider, in
this case the requester, i.e. the Planning Agent, uses two financial
services to gather information about its providers before contacting
them.

The Matchmaker used in the system is a DAML-S enhanced
UDDI, it uses a freely available UDDI server3 to store DAML-
S advertisements using the encoding described in [11] allowing for
capability matching in UDDI.

The organization of the second example is displayed in figure
4; the goal is to book a trip to a conference, namely the DAML

3We used initially the IBM test UDDI site, then we switched to the
Systinet UDDI server



PI meeting. We assume that the organizers of the meeting pub-
lish a Web Service which provides information about the meeting,
such as time, location, talks, participants and so on. Through the
RETSINA Calendar Agent [14], the user plans a trip to the con-
ference. The Calendar Agent verifies availability checking on the
schedule of the user stored in MS Outlook, and then uses the same
Matchmaker used in the previous system find airlines, car rental
companies and hotels. Finally, uploads the schedule of the trip in
Outlook.

This example extends the previous one by using complex process
models that we used to implement the Web Service as well as to be
loaded dynamically to control the interaction on the client side.

7. CONCLUSIONS
In this paper we outlined the different challenges faced by au-

tonomous Web Services. Furthermore, we showed how DAML-S
tackles these challenges by providing the information that allows
Web Services to connect and interact autonomously with little in-
tervention from the programmers. Finally, we propose a Web Ser-
vice architecture that takes advantage of DAML-S information to
support automatic discovery and interaction between Web Services.

In our presentation and implementations we concentrated on the
feasibility of using DAML-S for the interaction with Web services.
While we showed that indeed it is possible to use DAML-S to con-
trol such interaction, we also show that to take full advantage of the
power of DAML-S the Web service needs to incorporate a com-
putational model that supports non-deterministic reasoning such as
the HITAP planner. It is still an open question what compromises
we need to make to lower the computational requirements and pro-
ceed with a simpler computational model.

In the demonstrations we presented, we naïvely assumed that
Web services will negotiate agreements and strike deals. Ultimately,
we assumed a world of perfectly honest Web services that deliver
every time they receive an order, and that pay every time they re-
ceive goods. Such an ideal world does not correspond to reality.
Ultimately, we will need to introduce notions like commitments
and contracts to back the transaction with legal guarantees. Pre-
conditions and effects of processes can be used to express contracts
and commitments, for instance a precondition to the execution of a
process is that may be that the receiver signs a contract, while the
effect is a commitment to deliver goods by an established date. We
are currently investigating these problems.

8. ACKNOWLEDGMENTS
We thank Anupriya Ankolekar, Takuya Nishimura, Terry Payne,

Rahul Sing and Naveen Srinivasan for the useful discussions and
inputs during the planning and implementation of this work. The
research was funded by the Defense Advanced Research Projects
Agency as part of the DARPA Agent Markup Language (DAML)
program under Air Force Research Laboratory contract F30601-
00-2-0592 to Carnegie Mellon University.

9. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web.Scientific American, 284(5):34–43, 2001.
[2] E. Christensen, F. Curbera, G. Meredith, and

S. Weerawarana. Web Services Description Language
(WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[3] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. BPEL4WS White Paper.

http://www-3.ibm.com/software/solutions/ webservices,
2002.

[4] DAML Joint Committee. DAML+OIL (March 2001)
Language.
http://www.daml.org/2001/03/daml+oil-index.html, 2001.

[5] G. Economou, M. Paolucci, M. Tsvetovat, and K. Sycara.
Interaction without commitments: An initial approach. In
Agents 2001, 2001.

[6] K. Erol, J. Hendler, and D. S. Nau. Htn planning:
Complexity and expressivity. InAAAI94, Seattle, 1994.

[7] R. Fikes and D. L. McGuinness. An axiomatic semantics for
rdf, rdf schema, and daml+oil. Technical Report KSL
Technical Report KSL-01-01, Knowledge Systems
Laboratory Stanford University, 2001.

[8] E. Friedman-Hill. Jess: Java Expert System Shell.
[9] J. Kopena and W. C. Regli. DAMLJessKB: A Tool for

Reasoning with the Semantic Web.
[10] F. Leymann. WSFL White Paper.

http://www-3.ibm.com/software/solutions/ webservices,
2001.

[11] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Importing the semantic web in uddi. InProceedings of
E-Services and the Semantic Web Workshop, 2002.

[12] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic matching of web services capabilities. In
ISWC2002, 2002.

[13] M. Paolucci, O. Shehory, and K. Sycara. Execution in a
multiagent team planning environment.Electronic
Transactions of Artificial Intelligence. forthcoming.

[14] T. R. Payne, R. Singh, and K. Sycara. Calendar agents on the
semantic web.IEEE Intelligent Systems, 17(3):84–86, 2002.

[15] S. Thatte. XLANG White Paper.
http://www.gotdotnet.com/team/xmlwsspecs/xlang-
c/default.htm,
2001.

[16] The DAML Services Coalition. DAML-S: Web Service
Description for the Semantic Web. InISWC2002, 2002.

[17] UDDI. The UDDI Technical White Paper.
http://www.uddi.org/, 2000.

[18] US Census Bureau. North American Industry Classification
System (NAICS).
http://www.census.gov/epcd/www/naics.html, 1997.

[19] W3C. Extensible Markup Language (XML) 1.0 (Second
Edition). http://www.w3.org/TR/2000/REC-xml-20001006,
2000.

[20] W3C. SOAP Version 1.2, W3C Working Draft 17 December
2001.
http://www.w3.org/TR/2001/WD-soap12-part0-20011217/,
2001.


