
Tong et al. J Nanobiotechnol  (2018) 16:38 

https://doi.org/10.1186/s12951-018-0365-y

RESEARCH

Delivery of siRNA in vitro and in vivo 
using PEI-capped porous silicon nanoparticles 
to silence MRP1 and inhibit proliferation 
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Abstract 

Background: Multidrug resistance-associated protein 1 (MRP1) overexpression plays a major role in chemoresistance 

in glioblastoma multiforme (GBM) contributing to its notorious deadly nature. Although MRP1-siRNA transfection to 

GBM in vitro has been shown to sensitise the cells to drug, MRP1 silencing in vivo and the phenotypic influence on 

the tumour and normal tissues upon MRP1 down-regulation have not been established. Here, porous silicon nano-

particles (pSiNPs) that enable high-capacity loading and delivery of siRNA are applied in vitro and in vivo.

Result: We established pSiNPs with polyethyleneimine (PEI) capping that enables high-capacity loading of siRNA 

(92 µg of siRNA/mg PEI-pSiNPs), and optimised release profile (70% released between 24 and 48 h). These pSiNPs are 

biocompatible, and demonstrate cellular uptake and effective knockdown of MRP1 expression in GBM by 30%. Also, 

siRNA delivery was found to significantly reduce GBM proliferation as an associated effect. This effect is likely mediated 

by the attenuation of MRP1 transmembrane transport, followed by cell cycle arrest. MRP1 silencing in GBM tumour 

using MRP1-siRNA loaded pSiNPs was demonstrated in mice (82% reduction at the protein level 48 h post-injection), 

and it also produced antiproliferative effect in GBM by reducing the population of proliferative cells. These results 

indicate that in vitro observations are translatable in vivo. No histopathological signs of acute damage were observed 

in other MRP1-expressing organs despite collateral downregulations.

Conclusions: This study proposes the potential of efficient MRP1-siRNA delivery by using PEI-capped pSiNPs in 

achieving a dual therapeutic role of directly attenuating the growth of GBM while sensitising residual tumour cells to 

the effects of chemotherapy post-resection.
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Background
Glioblastoma multiforme (GBM) is a deadly form of 

brain cancer with only a 5% survival rate at 5  years [1] 

and the age-standardised mortality rate of brain cancer 

in 2012 remains the same as in 1982 [2]. �e mainstay of 

therapy is surgical resection. Factors that contribute to 

the deadly nature of this cancer include the invasiveness 

of GBM cells, and therefore residual disease, at the resec-

tion margins; the selective permeability of the blood–

brain barrier (BBB), and the inherent chemoresistance in 

the endothelial layer at the BBB and in the GBM cells [3, 

4]. As the drug fails to penetrate and accumulate, it leads 

to poor chemotherapy effectiveness in both consolidation 

and treatment of unresectable tumours.
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Chemoresistance results from the expression of mem-

brane-bound efflux transporters, such as the multidrug 

resistance protein (MRP) superfamily [5]. Multidrug 

resistance-associated protein 1 (MRP1), a MRP sub-

type, is a 190 kDa protein, through the hydrolysis of ATP, 

it actively removes substrates from cytoplasm [6]. It’s 

overexpression in certain tumours removes drugs from 

cancer cells compromising treatment effectiveness [7]. 

Conventional drugs for GBM treatment, such as temo-

zolomide (TMZ) and vincristine (VCR), are substrates of 

MRP1 which is overexpressed in brain tumours [8] and 

on the apical surface of endothelial cells of the BBB [9]. 

�ese drugs are transported out of the tumour and out 

of the intracranial space, contributing significantly to the 

multidrug resistant phenotype of GBM.

Inhibition of MRP1 is a strategy for chemosensitisa-

tion and this approach has been substantiated in lung 

carcinoma in vitro and in vivo [10]. Small molecules are 

discovered to target and attenuate MRP1 function in 

various carcinomas over the last decade [11–13]. In com-

parison, small interfering RNA (siRNA) are more eco-

nomical, versatile and effective in specific knockdown 

of protein [14], however its susceptibility to degradation 

and incapability in penetrating cell plasma membrane are 

the main obstacles for translation into clinical practice 

[15]. Nanoparticle delivery is a way to overcome those 

pharmacokinetic limitations, in which we demonstrated 

the use of bare porous silicon nanoparticles (pSiNPs) to 

deliver siRNA into cells [16]. In particular, pSiNPs were 

used as the delivery vehicle due to their high biocom-

patibility and degradability, and their degradation prod-

uct, silicic acid, is non-toxic and is cleared rapidly [17, 

18]. �e high porosity and surface area of pSiNPs ena-

bles high concentrations of therapeutics to be delivered 

per weight of pSiNP [19, 20]. �ese pSiNPs have been 

employed in drug delivery applications such as delivery 

of enzymes [21], small molecules [22], and nucleotides 

[23]. �e release of the drug can be easily tailored by con-

trolling the degradation rate of pSiNPs and their surface 

chemistry [24, 25]. �ermal hydrocarbonisation (THC) 

treatment is a well-established modification to improve 

the hydrolytic stability of pSiNPs [26–28]. Owing to the 

polyanionic nature of siRNA, cationic surface treatments 

are believed to be more favourable to retain siRNA inside 

pSiNP [29].

MRP1 knockdown in GBM cells in  vitro using vari-

ous polymeric vectors as transfection method has sug-

gested that such anti-chemoresistance approach is viable, 

however, the inhibition of MRP1 in GBM tumours has 

not yet been established. Moreover, the side-effect of 

MRP1 knockdown on phenotypes of GBM cells and on 

other MRP1-expressing cells has not yet been investi-

gated. Here, we studied the extend of MRP1 silencing 

and associated effects using siRNA delivered in pSiNPs 

with PEI optimised capping to control its release, and 

also report the effect and mechanism of this on the inhi-

bition of proliferation of GBM cells in vitro and in vivo. 

At the same time, we also evaluated the side effects of 

MRP1 silencing in the organs that the nanoparticles may 

accumulate in. We anticipate that the results will provide 

insights into the potential of MRP1 gene therapy in GBM 

treatment, and unlock the door to eradication of this fatal 

disease.

Methods
Porous silicon nanoparticle (pSiNP) fabrication

pSiNPs were fabricated according to the previously 

reported procedure [23, 27] from p+ type (0.01–

0.02  Ω  cm) silicon wafers (Siegert Consulting Co., 

Aachen, Germany) by periodically etching at 50 (2.2  s 

period) and 200 (0.35 s period) mA/cm2 in a solution of 

1:1 hydrofluoric acid (38%):ethanol (EtOH) for 20  min. 

Afterwards, the porous silicon (pSi) films were detached 

from the substrate by abruptly increasing the current 

density to electropolishing conditions (250  mA/cm2, 

3 s period). �e detached multilayer pSi films were then 

thermally hydrocarbonised under  N2/acetylene (1:1, vol.) 

flow at 500 °C for 15 min, and cooled down to room tem-

perature under a stream  N2 gas. Subsequently, pSiNPs 

were produced by wet ball-milling  (ZrO2 grinding jar, 

Pulverisette 7, Fritsch GmbH, Idar-Oberstein, Germany) 

of the thermally hydrocarbonised pSi films in 1-decene. 

�e completion of THC surface treatment was confirmed 

by FTIR analysis via the disappearance of Si-Hx species 

(2200  cm−1) and strong signal corresponding to C–H 

(3000  cm−1) and Si–C (770  cm−1) species (Additional 

file  1: Figure S1). pSiNPs were harvested by centrifuga-

tion (1500×g, 5  min). pSiNP stock solutions were pre-

pared in EtOH at 20 mg/ml.

siRNA loading, PEI capping and release kinetics

After pSiNP fabrication and characterisation, siRNA 

was loaded and particles were coated with polyether-

imine (PEI). Both test siRNA (siRNA) and scramble 

siRNA (ctrl siRNA) were purchased from GenePharma 

Co. Ltd. (Shanghai, China). siRNA is complementary to 

mRNA sequence encoding for MRP1 (5′ GAGGCUUUG 

AUCGUCAAGUTT 3′), while ctrl siRNA sequence (5′ 

UUCUCCGAACGUGUCACGUTT 3′), lacks homol-

ogy to all other genes. �ese siRNAs were solubilised in 

molecular biology grade water to make stock solutions 

(500 µg/ml). siRNA loading was performed by our previ-

ously established protocol [23]. Briefly, siRNA (100 µl of 

500 µg/ml in water) was added to pSiNPs (250 µl of 1 mg/

ml in EtOH), mixed by sonication for 1 min, then incu-

bated overnight at 4  °C. Following the incubation, the 
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loaded pSiNPs were isolated by centrifugation at 5000 rcf 

at 4  °C then resuspended in EtOH and centrifuged two 

more times to wash off unbound siRNA. To cap the 

siRNA loaded pSiNPs with PEI, the pellet was then resus-

pended in 0.05% PEI of 25 kDa (Sigma-Aldrich, 408727) 

diluted in EtOH and incubated for 20 min. pSiNPs were 

centrifuged, and the pellet was washed with EtOH for 

three times to wash off excess PEI.

To measure the loading efficiency of siRNA into 

pSiNPs, siRNA concentration in the supernatant was 

measured at 260  nm by using a Nanodrop spectropho-

tometer (ND2000, �ermoFisher) and the amount of 

siRNA was then back calculated. �e loading efficiency 

(%) = (the siRNA amount in loading buffer − the siRNA 

amount in supernatant)/(the siRNA amount in loading 

buffer) × 100%.

�e release kinetics were determined by incubat-

ing PEI-pSiNPs/siRNA (MRP1 and ctrl) in PBS at 37  °C 

for 120  h. �e supernatant was extracted at designated 

time points, and the amount released was back calcu-

lated from the absorbance measurement at 260 nm. �e 

in  vitro and in  vivo treatment schedule was based on 

the release kinetics. �e reason for conducting release 

kinetic assay in PBS, instead of culture medium is that 

quantitating siRNA released in protein containing 

medium is problematic owing to the masking of the RNA 

absorbance at 260 nm. Quantitation in PBS is reliable and 

its physiological relevant pH and osmolality are suitable 

for demonstrating the siRNA release from PEI-capped 

pSiNP.

To compare the siRNA knockdown efficacy and to 

delineate the cell phenotypes influenced by the nano-

particle of choice, lipofectamine (Invitrogen, 11668-019) 

was used in parallel as a delivery agent. �e loading of 

siRNA to form a siRNA-lipid complex with lipofectamine 

was performed following the supplier’s protocol. Briefly, 

siRNA was first diluted in Opti-MEM (Gibco, 51985091). 

It was then mixed with lipofectamine at a 1:1 ratio to 

form siRNA-lipid complex. All siRNA loadings were car-

ried out immediately prior to cell exposure under sterile 

conditions.

Size and zeta-potential characterisation of pSiNPs

To reveal the size distribution and zeta-potential of 

pSiNPs, the particles were first washed and resuspended 

into MilliQ and sonicated for 5  min. �e particles were 

then analysed using a Zetasizer Nano ZS (Malvern, 

Worcestershire, UK). �e analysis was carried out at a 

scattering angle of 90° at a temperature of 25 °C.

TEM characterisation

Transmission electron microscopy (TEM) was done 

to visually examine the size and structure of pSiNPs 

prepared. pSiNP stock solution was first sonicated to 

homogenise particles. PEI-pSiNPs and pSiNPs without 

coating, siRNA-loaded or empty were diluted in EtOH. 

10 µl of solution was spotted onto each 300 mesh Cu grid 

(ProSciTech Co.) and air-dried. �e samples were then 

observed under a field-emission TEM (JEOL, JEM-2100F, 

Japan). �e average pore size of pSiNP was determined 

firstly by SEM imaging freshly etched pSi film before 

detachment and ball milling. TEM images was taken 

to further confirm the pore size by measuring pores of 

pSiNP. �e pore diameter is determined by measuring 

wall-to-wall distance of individual pores using ImageJ. 

�e average was taken from 50 measurements of ran-

domly selected particles.

Cell culture

In this study we used U87 cells of human origin that sta-

bly express cytoplasmic mCherry, a kind gift from Bak-

hos A. Tannous, MGH, Massachusetts, USA, and T98G 

cells of human origin  (ATCC®  CRL-1690™). Both are 

well-recognised model cell lines representing GBM, 

mCherry expressing GBM cells allow live cell imaging of 

nanoparticle uptake. It is documented that both cell lines 

demonstrate a similar cell growth rate [30]. Cell lines 

were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM, Sigma-Aldrich D6546) supplemented with 10% 

foetal bovine serum (Invitrogen), 1% antibiotic–anti-

mycotic (Invitrogen) at 37  °C and 5%  CO2 in a humidi-

fied incubator. For lipofectamine-based siRNA delivery, 

Opti-MEM reduced serum medium was used in culture. 

For tumour xenograft inoculation preparation, 10  mM 

HEPES buffer (Sigma-Aldrich, H0887) was supplemented 

in DMEM for stabilising the pH of high confluence cul-

ture. All experiments were conducted following at least 

two passages after thawing cells.

For the functional inhibition assay, MK-571, the MRP1 

inhibitor (a leukotriene receptor ligand), was used to 

determine the functional activity of MRP1 in T98G GBM 

cell line, followed by a Calcein-AM (Santa Cruz Bio-

technology, Inc., Dallas, TX, USA) accumulation assay 

[31]. Calcein AM was used to measure the multidrug 

transporter-mediated activity. It is a non-fluorescent 

probe, but when it permeates the cells, it hydrolyses to 

a fluorescent molecule. Cells were seeded at 3 × 105 

cells/well in 6 well-plates and allowed to adhere over-

night. Subsequently, a total of 25 µM MK-571 was added 

to each well and incubated for a further 72  h. �e cells 

were analysed at 24, 48, 72  h. At the 24  h time point, 

cells were incubated with 0.20 µM of Calcein AM stain-

ing solution at 37  °C. After incubation for 30  min, cell 

samples were immediately washed and analysed by 

Accuri-C6 flow cytometer (BD Accuri Cytometers Inc., 

USA) to determine cellular uptake of Calcein AM. �e 
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control experiment was performed under identical con-

ditions. 1 × 104 events were collected by flow cytometry. 

Cell viability was measured by trypan blue and Annexin 

V as described previously [32].

�e cells were seeded into 6-well plates at a density 

of 5 × 104 cells/cm2 and maintained in DMEM for 24  h 

after which the cultured cells were exposed to sterilised 

pSiNPs (bare/capped with PEI/loaded with siRNA) at a 

concentration of 0.125 mg/ml (250 µl per well of 1 mg/

ml) for 24  h. After 24  h, cells were washed with sterile 

PBS and a second dose of pSiNPs was added (0.125 mg/

ml) for another 24 h, followed by cells washed with sterile 

PBS then maintained in DMEM for another 24 h before 

harvesting for different studies.

Cellular uptake of pSiNPs

To visualise the uptake of pSiNPs in U87 cells, nano-

particles fabricated as described above, were fluores-

cently labelled with fluorescein-5-thiosemicarbazide. 

pSiNPs were first hydrosilylated to obtain an acti-

vated carboxyl group on the surface by incubating with 

neat undecylenic acid (UA) for 16 h at 120  °C [33]. �e 

pSiNPs were extracted from UA via centrifugation 

after the reaction and washed with EtOH five times to 

ensure complete removal of excess UA. Next, the car-

boxy-functional pSiNP surface was covalently modified 

with fluorescein-5-thiosemicarbazide dye by means of 

ethyl(dimethylaminopropyl)carbodiimide (EDC)/N-

hydroxysuccinimide (NHS) coupling reaction. EtOH was 

removed from UA-functionalised pSiNPs by centrifuga-

tion and the particles were rinsed with DMF twice. An 

8 mM solution of EDC in anhydrous DMF was prepared 

and 0.2 equivalents of triethylamine were added to the 

solution. In the meantime, 8  mM solution of NHS was 

prepared in anhydrous DMF. 500 µl of each solution was 

removed, mixed well and added to the UA-functionalised 

pSiNPs, followed by addition of 1 ml of fluorescein-5-thi-

osemicarbazide solution (4  mM). �e entire reaction 

mixture was allowed to react for 24 h at RT in the dark 

with stirring. Excess cross linking agent, dye and DMF 

were removed by centrifugation and the nanoparticles 

were copiously washed with cold water, followed by an 

EtOH wash and stored in EtOH. An alternative of track-

ing the subcellular delivery of siRNA is by loading pSiNP 

with FAM-labelled siRNA. However, this is not reported 

here since the change of physical/chemical properties 

of siRNA and the resulting changes in release profile is 

unknown.

After fluorescence labelling, pSiNPs were either 

coated with PEI as described above, or left uncoated. 

�e zeta-potential, hydrodynamic size and release pro-

file of fluorescence labelled pSiNPs/PEI capped pSiNP 

were unaltered. U87 cells were then exposed to these 

particles for 3  h, then washed three times with warm 

PBS to remove excess pSiNPs. Cells were cultured for 

another 24  h before fixation, counterstained, mounted 

and imaged under a confocal microscope (ELYRA super-

resolution microscope, Zeiss Elyra PS.1).

Trypan Blue viability assay

A Trypan Blue exclusion assay was performed to study 

the effect of PEI-pSiNP delivery on the viability of cells. 

Briefly, U87 cells exposed to PEI capped or bare pSiNPs 

were washed, trypsinised, diluted, and mixed 1:1 with 

sterile filtered 0.4% Trypan Blue solution (T8154, Sigma). 

After 5  min incubation, cells were counted using a 

haemocytometer under a bright field microscope. �e 

proportion of the viable cells to total cells are reported.

EdU assay of cells

�e proliferation rate of U87 cells receiving siRNA 

delivery by lipofectamine or PEI-pSiNPs, and respec-

tive controls were assessed through pulse labelling of 

cells using the Click-iT EdU Imaging Kit (Invitrogen, 

C10337). Briefly, cells were seeded on the poly--lysine 

coated coverslips at a density of 5 × 104 cells/cm2. At 24 h 

post exposure, cells were incubated with 10 mM of EdU 

(5-ethynyl-2-deoxyuridine) in DMEM for 1 h. Cells were 

then washed and fixed in 4% PFA and permeabilised in 

0.5% Triton X-100 in PBS. S-phase cells, which are EdU 

positive, were visualised following the protocol specified 

by the manufacturer. All cells were counter-stained  by 

Hoechst 33342, and mounted on a glass slide with fluo-

rescence mounting medium (Dako, S3023). Images were 

taken under widefield Olympus IX83 fluorescence micro-

scope using a 10× objective. Image analysis was done 

using Fiji ImageJ v.2.0.0. to automatically count nuclei 

with positive staining. �e averaged ratio of EdU positive 

nuclei to the total number of cells is reported as “EdU 

positive nuclei proportion (%)”. �is directly reflects the 

proliferation rate of cells.

Immuno�uorescence

�e cells were seeded onto poly--lysine coated glass 

coverslips, in a 6-well plate, at the cell density described, 

and were exposed to PEI-pSiNPs with or without siRNA, 

or lipofectamine carrying siRNA, or left untreated. After 

24  h, cells were fixed for 10  min with 4% freshly pre-

pared PFA at room temperature, quenched with 100 mM 

glycine in PBS for 15  min and washed twice with PBS 

before permeabilisation in 0.05% Triton X-100 in PBS 

for 5  min at room temperature. After permeabilisation, 

the cells were washed twice with PBS and blocked with 

3% bovine serum albumin (BSA) in PBS for 30  min at 

room temperature. �e cells were then incubated with 

primary antibodies overnight, washed, and incubated 
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with fluorochrome-conjugated secondary antibodies 

for 60  min. �e slides were washed in PBS then coun-

terstained for 15  min. �e primary antibody used was 

mouse anti-ki67 (Abcam, ab8191). �e secondary anti-

body used was Alexa 488 goat anti-mouse (Invitrogen, 

A11001). Rhodamine-phalloidin (Invitrogen, R415) and 

Hoechst (Sigma-Aldrich, B2261) were used to counter 

label the actin filaments and nuclei, respectively. After 

washing, cells on coverslips were mounted on a glass 

slide. �ese samples were then imaged at high magnifi-

cation using a confocal microscope (ELYRA Superresolu-

tion Microscope, Zeiss Elyra PS.1).

For statistical analysis, images were taken under a 

widefield Olympus IX83 fluorescence microscope, and 

counted using the image analysis technique described 

above. �e averaged ratio of ki67 positive nuclei to the 

total number of nuclei was calculated, directly indicating 

the progression of the cell cycle.

Western blotting

To study the relative protein expression of MRP1 and cell 

cycle checkpoints, protein lysates were analysed by West-

ern blotting. �e cells that were exposed to PEI-pSiNPs 

with MRP1 siRNA or control siRNA, or siRNA delivered 

in lipofectamine, or left untreated were washed in warm 

PBS and directly lysed in a sodium dodecyl sulphate (SDS) 

lysis buffer (2% SDS, 50 mM Tris pH 6.8) supplemented 

with protease inhibitor cocktail (Sigma, P8340). Tissue 

samples were thawed and homogenised using Navy Bead 

Lysis Kits using a tissue homogeniser (Bullet Blender, 

BB24-AU). �e protein concentration was quantified by 

an EZQ protein quantitation kit (Invitrogen, R3320). �e 

proteins were then mixed with Laemmli loading buffer 

(BioRad, 161-0747) with β-mercaptoethanol, and boiled 

at 95 °C for 10 min. To analyse MRP1, proteins were elec-

trophoresed in 10% bis-acrylamide gels, and transferred 

onto nitrocellulose membranes overnight. For pCdk2 and 

pHistone H3 analysis, electrophoresis was performed 

with 14% bis-acrylamide gel. Membranes were blocked 

with 5% (w/v) non-fat milk powder (Devondale) in PBST 

(0.05% Tween-20 in PBS) for 60 min, followed by wash-

ing with PBST and incubation with a primary antibody 

in blocking buffer overnight with rocking at 4  °C. �e 

primary antibodies used were mouse anti-MRP1, rabbit 

anti-Cdk2 pTyr15, and rabbit anti-Histone H3 pSer10 

(Abcam, ab24102 and ab136810, respectively). �e sec-

ondary antibodies used were horseradish peroxidase con-

jugated Immun-Star goat anti-mouse immunoglobulin G 

(BioRad, 1705047) and goat anti-rabbit immunoglobulin 

G (Agrisera, AS09602). �e membranes were washed 

and incubated with the secondary antibodies for 60 min. 

After washing, membranes were developed with Clarity™ 

Western ECL Substrate (BioRad, 1705061) and imaged by 

using a Chemi-Doc with a cool CCD camera (Syngene, 

G:BOX Chemi XRQ). Expression was measured by densi-

tometry analysis of the bands using Fiji ImageJ, deducting 

the background intensity, and normalised to the inte-

grated density of the β-actin housekeeping protein band. 

Knockdown efficiency was calculated as test group/con-

trol group x 100%.

To illustrate the distribution of the cell cycle popula-

tion upon exposure to PEI-pSiNPs with MRP1 siRNA, 

cells were analysed using flow cytometry, and a histo-

gram of DNA content plotted. Briefly, the exposed cells 

were trypsinised, PBS rinsed, and fixed dropwise in 100% 

ethanol. �e cells in single cells were rinsed and stained 

with PI (50  µg/ml), and subsequently analysed using 

ImageStream flow cytometer (Amnis). Cell populations is 

gated and measured using Amnis software.

Mice tumour model

To assess the siRNA delivery, MRP1 knockdown and 

its subsequent influence on the proliferative state, and 

the effect of knockdown on distal organs, a subcutane-

ous xenograft tumour model was established using nude 

mice. Animal procedures were performed according to a 

protocol approved by South Australian Health & Medical 

Research Institute Animal Ethics Committee (Approval 

number, SAM#98). U87 cells were trypsinised, washed 

with warm PBS and counted. 5 × 106 cells in chilled PBS 

were then mixed 1:1 with Matrigel (E1270, Sigma) to a 

total volume of 100 µl. CD-1 nude mice of mixed gender, 

between 6 and 8 weeks of age, were then subcutaneously 

inoculated with the prepared cells on both flanks. Food 

and water were provided ad  libitum, and since CD-1 

nudes are immunocompromised, they were housed in 

individually-ventilated cages (IVC). On week 4 post-

inoculation, mice bearing tumours reaching 250  mm3 

were paired into groups to receive either pSiNPs/Saline, 

pSiNPs/ctrl siRNA, or pSiNPs/siRNA (MRP1). Each 

group and time point contained at least two mice, each 

bearing (four tumours total per treatment). No statisti-

cal difference in tumour size was observed between the 

groups (data not shown). Each group of mice received 

2 intravenous doses delivered 24  h apart. Each mouse 

received 31.25  mg/kg of pSiNPs loaded with siRNA, 

or the same amount of unloaded pSiNPs, per dose. 

Mice were humanely killed at 24, 72  h post-treatment. 

Tumours, kidneys and duodenums were harvested. For 

histological analysis, tissues were immediately fixed in 

neutral buffered formalin (NBF, Sigma-Aldrich) at 4  °C 

for 2 d, followed by paraffin embedding. For protein level 

analysis, tissues were immediately cut into small cubes, 

1  mm3, immersed in SDS sample buffer, and snap-fro-

zen. For mRNA level analysis, tissues were immersed 
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into RNAlater (AM7023, �ermoFisher) and stored at 

− 20 °C.

Quantitative real time-polymerase chain reaction 

(qRT-PCR)

MRP1-mRNA silencing was studied using a BioRad CFX 

Connect QRT-PCR detection system with a SYTO9 rea-

gent to detect the level of MRP1-mRNA expression. In 

summary, tissue sections were homogenised using TRI 

 Reagent® (Sigma-Aldrich) (1  ml per 50–100  mg of tis-

sue). TissueLyser II Qiagen  (QIAGEN®, Hilden, Ger-

many) was used to disrupt and homogenise tissue. Total 

mRNA was extracted using TRI Reagent, according to 

the manufacturer’s protocol. cDNA was synthesised from 

mRNA using M-MLV H (−) reverse transcriptase (Pro-

mega Corporation, Alexandria, NSW, Australia). �e 

coincident measurement of the “housekeeping” gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

was used to control the experimental variations of RNA 

and to normalise the MRP1-mRNA expression data, 

which was calculated using the ΔΔCt method. �e prim-

ers were designed via the web tool (http://www.ncbi.nlm.

nih.gov). All primers used for QRT-PCR of MRP1-mRNA 

are shown in Table 1.

Immunohistochemistry

Histological sections were immunohistochemically 

stained to visualise the MRP1 expression and to study 

the proliferative state of the tumours. Microtome sec-

tioned tissue specimens of 5 µm were dehydrated at 50 °C 

overnight, followed by deparaffinisation and rehydration. 

Rehydrated slides were first incubated in sodium cit-

rate buffer pH 6 at 95 °C for 30 min for antigen retrieval 

and cooled down to room temperature. For ki67 stain-

ing, slides were additionally incubated with 0.1% Triton 

X-100 in PBS for 10 min to permeablise the nuclear enve-

lope. Slides were then incubated in 1%  H2O2 for 15 min 

to quench endogenous peroxidase activity, followed 

by serum blocking for 1  h. Goat anti-mouse IgG Fab 

(Abcam, ab6668) was added for 1 h to block endogenous 

IgG. After washing in PBST, slides were incubated with 

primary against ki67 (Abcam, ab8191) or primary against 

MRP1 (Santa Cruz, sc-18835) overnight in a moisture 

chamber at 4  °C. Slides were then incubated with bioti-

nylated mouse-rabbit polyvalent secondary (Abcam, 

ab64264), followed by streptavidin peroxidase (Abcam, 

ab64264) incubation. After washing, slides were devel-

oped using 3,3′-diaminobenzidine (DAB) substrate for 

15  min then counterstained with Mayer’s haematoxylin 

QS (Vector, H-3404), and eventually mounted in cover-

slips with DPX.

Hematoxylin and Eosin (H&E) staining

To study the side-effect of MRP1 knockdown in distal 

organs, kidney and duodenum were excised and sec-

tioned for histological characterisation. Deparaffinised 

and rehydrated sections were stained with Lillie-Mayer’s 

H&E (Australian Biostain P/L) following standard pro-

tocols. H&E and immunohistological stained tissue sec-

tions were imaged using a bright-field microscope.

Statistics

Experiments were conducted in triplicate unless oth-

erwise stated. Error bars presented in charts equal ± 1 

standard deviation (SD). Statistical differences were 

tested by non-parametric Kruskal–Wallis 1-way ANOVA 

test. �e hypothesis was accepted at a 95% significant 

level (p < 0.05).

Results
Characteristics of pSiNPs and siRNA release from pSiNPs

pSiNPs were fabricated as a vehicle to deliver siRNA 

for MRP1 silencing. �e cellular uptake and biodistri-

bution of the siRNA loaded pSiNP is dependent on the 

size and surface characteristics [34]. �eir size, pore 

structure and colloidal stability were characterised by 

means of TEM, dynamic light scattering (DLS), and a 

zeta-potential analyser. TEM images show that plate-

shaped pSiNPs were successfully fabricated at the desired 

size of approximately 110  nm (Fig.  1a). �ese particles 

contained pores of approximately 15  nm in size. �e 

achieved pore dimensions were suitable for loading siR-

NAs, which are approximately 7.5  nm long and 2.5  nm 

wide [35, 36]. Judging from TEM images, there was no 

observable difference in size between PEI-coated and 

non-coated pSiNPs. �e hydrodynamic diameter distri-

bution of these particles was further analysed using DLS 

in aqueous media (Fig. 1b). �is confirmed that particle 

size distribution was small, where 70% of pSiNP sized 

Table 1 Sequences of  the primers used in  qRT-PCR analy-

sis

Primer ID

MRP1_Human Forward 5′ → AAGGAATGCGCCAAGACTAG → 3′

Reverse 5′ → CCTTAAACAGAGAGGGGTTC → 3′

GAPDH_Human Forward 5′ → GTGAAGGTCGGAGTCAACGG → 3′

Reverse 5′ → TGGAGGGATCTCGCTCCTGG → 3′

MRP1_Mice Forward 5′ → TGCAGAGGCATCTCAGCAACTC → 3′

Reverse 5′ → TTCGGCTATGCTGCTGTGTT → 3′

GAPDH_Mice Forward 5′ → CGACTTCAACAGCAACTCC-
CACTCTTCC → 3′

Reverse 5′ → TGGGTGGTCCAGGGTTTCTTACTC-
CTT → 3′

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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between 186 and 198  nm (PDI: 0.12), and 70% of PEI-

pSiNP sized between 169 and 173  nm (PDI: 0.06). �e 

PEI-pSiNPs were statistically smaller than the uncoated 

pSiNPs, and this was attributed to the improved colloi-

dal stability of PEI-pSiNPs in an aqueous medium. To 

investigate this phenomenon further, we determined 

the surface zeta potential of pSiNPs. Fabricated pSiNP 

had a slightly negative zeta potential of − 7 mV (Fig. 1c). 

As expected, PEI-capped pSiNPs had an overall posi-

tive charge, with zeta-potential reaching 80 mV. Loading 

with siRNA resulted in both types of particles becoming 

more negatively charged with − 20 and 50 mV in pSiNPs 

and PEI-pSiNPs, respectively. Nanoparticles with a zeta-

potential of more than ± 30 mV are predicted to be col-

loidal stable [37, 38], which explains the higher stability 

of PEI-pSiNPs.

Based on the colloidal stability and the advantage in 

facilitating cellular uptake, we chose PEI-capped pSiNPs 

for further study. siRNA was loaded into pSiNPs and 

capped with PEI, and the loading efficiency was calcu-

lated as 70 ± 9%, effectively carrying 23 µg of siRNA per 

250  µg of PEI-pSiNPs. �is loading capacity is much 

higher than pSiNP loading documented without cati-

onic PEI capping, which was only 1.75 µg per 250 µg of 

pSiNPs [16]. �e release of siRNA in PBS was followed 

for up to 120 h (Fig. 1d). Substantial siRNA release was 

observed between 24 and 48  h, where 70% siRNA was 

released within this period. �e release plateaued from 

72 h onwards. �ese kinetics indicated a suitable release 

profile that allowed uptake and accumulation of PEI-

pSiNPs in tumours before releasing most of the siRNA 

[39].

Fig. 1 Characterisation of pSiNPs for siRNA delivery. a The structure of pSiNPs and PEI-capped pSiNPs under TEM. b Average hydrodynamic diam-

eter in MilliQ. c Zeta potential of empty pSiNPs and pSiNPs loaded with siRNA. d siRNA release kinetics of PEI-coated pSiNPs. (n = 3; mean ± standard 

deviation; *p < 0.05)
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Intracellular siRNA delivery by pSiNPs

After confirming that the surface chemistry and siRNA 

release profile of PEI-pSiNPs were suitable, pSiNPs were 

fluorescently labelled and exposed to the U87 GBM 

cell line to characterise cellular uptake. As anticipated, 

greater uptake was observed for positively charged 

PEI-capped pSiNPs as compared to uncapped pSiNPs 

(Fig.  2a). Although PEI-capping benefits the loading, 

favourable release profile, and cellular uptake, it is essen-

tial that the nanoparticle delivery by itself is biocompat-

ible to cells. �e viability of U87 cells exposed to both 

types of pSiNPs by Trypan Blue exclusion showed no 

significant difference between untreated cells and cells 

exposed to pSiNPs or PEI-pSiNPs (Fig. 2b). �is indicate 

that the cytotoxicity of PEI-capped pSiNPs is minimal 

and that these particles are fairly biocompatible.

Fig. 2 Cellular uptake of pSiNPs and subsequent phenotypic changes in U87 GBM cells. a Cellular uptake of fluorescein labelled pSiNPs. Green: 

pSiNPs; red: cytoplasmic mCherry; blue: nucleus. b The viability of U87 cells exposed to pSiNPs measured by Trypan Blue exclusion assay. c MRP1 

expression in U87 cells exposed to siRNA via lipofectamine (Lipo/siRNA) or nanoparticle (pSiNP) delivery by immunoblotting. d Phase contrast 

image of U87 cells exposed to PEI-pSiNPs carrying MRP1 siRNA and untreated at day 3 post-exposure. e The proliferation of U87 cells as measured 

by EdU labelling of cells in S-phase. Green: EdU positive nuclei; Blue: nuclei. f Quantitation of S-phase cell proportions. (*, #, ^, /p < 0.05 as compared to 

untreated, PEI-pSiNPs/ctrl siRNA, PEI-pSiNPs and Lipo/siRNA, respectively)
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In vitro MRP1 silencing

Next, we employed PEI-pSiNPs to deliver MRP1 

siRNA into U87 cells to study downregulation of 

MRP1 via immunoblotting. For comparison, we used 

lipofectamine(Lipo)-based transfection. Results illustrate 

that the MRP1 expression was downregulated in cells 

transfected with MRP1 siRNA as compared to untreated 

controls, with 51 and 30% downregulation in Lipo/siRNA 

(23  µg siRNA) and PEI-pSiNP/siRNA (23  µg siRNA) 

treated cells, respectively (Fig.  2c). In contrast, control 

siRNA delivered via PEI-pSiNPs did not knock down 

MRP1 in U87 cells, ruling out non-specific effects of the 

siRNA and of its delivery system. Additionally, the extent 

of downregulation was dependent on the concentration 

of siRNA delivered as the cells receiving less Lipo/siRNA 

(9  µg) expressed more MRP1 as compared to 23  µg 

delivered via lipofectamine and PEI-pSiNPs (Fig.  2c). 

To demonstrate the effect of MRP1 downregulation by 

PEI-pSiNPs/siRNA on drug efflux, we exposed U87 cells 

to either DOX, or PEI-pSiNPs/siRNA, or co-treatment, 

or left untreated. Result showed that MRP1 silencing 

using PEI-pSiNP/siRNA sensitised U87 cells to DOX 

(Additional file  2: Figure S2). �is indicates PEI-pSiNPs 

delivering MRP1 siRNA is a viable approach to reduce 

chemoresistance.

Prolonged culture of U87 cells transfected by PEI-

pSiNPs/siRNA for 2 more days, resulted in an observable 

reduction in total cell population as seen in a representa-

tive phase contrast image (Fig. 2d). However, such effect 

of MRP1 on cancer cell growth has not been well docu-

mented. We speculated that MRP1 knockdown attenu-

ates cell proliferation in parallel to chemosensitisation. 

To quantitatively study cell proliferation, U87 cells trans-

fected with siRNA were pulse-labelled by EdU to identify 

the population of U87 cells that entered S-phase of the 

cell cycle at a given time (Fig. 2e). Significantly less EdU 

positive nuclei were observed in Lipo/siRNA and PEI-

pSiNP/siRNA treated cells as compared to untreated or 

PEI-pSiNP/ctrl siRNA treated cells (Fig.  2f ). Although 

there was also a reduction in proliferation rate in PEI-

pSiNP and PEI-pSiNP/ctrl siRNA treated cells as com-

pared to untreated cells, this effect was not significant 

(p = 0.127). In particular, the EdU proportion of cells 

receiving siRNA delivered by PEI-pSiNPs was sig-

nificantly lower than for cells receiving siRNA in lipo-

fectamine (p = 0.034). Collectively, these results indicate 

a decrease in proliferation rate of GBM cells with MRP1 

knockdown by siRNA, which this effect was independent 

of the siRNA delivery method.

MRP1 functional inhibitor MK-571

To further elucidate the role of MRP1 in GBM cell pro-

liferation, we exposed them to the functional inhibitor 

MK-571 which attenuates transmembrane transport of 

MRP-specific ligands. Unlike MRP1 siRNA, MK-571 

did not inhibit the translation of MRP1 proteins. It was 

observed that exposure of cells to 25 μM MK-571 was 

sufficient to suppress cell growth without causing cell 

death (Fig.  3a, b). �e inhibition of MRP1 transmem-

brane transport by 25 μM MK-571 was assessed by 

monitoring the export of intracellular Calcein AM, a flu-

orescent dye that is a substrate of MRP1, from GBM cells 

[40]. When MRP1 is functionally active in the cell, Cal-

cein AM is exported by MRP1 as an indicator of its trans-

porter function. We observed that the cells treated with 

MK-571 exhibited greater fluorescence signals from Cal-

cein AM than untreated cells, indicating accumulation of 

Calcein-AM as a result of MRP1 inhibition (Fig. 3c, d).

Decrease in proliferation rate and cell cycle arrest

We further studied the proliferation of U87 cells under 

MRP1 silencing by monitoring the expression of Ki67, 

which plays an important role during mitosis, and hence 

serves as a marker for cell proliferation [41]. For all treat-

ment groups, Ki67 expression in the nucleolus and chro-

mosomes was observed during interphase and mitotic 

phase, respectively (Fig. 4a). However, the ratio between 

the Ki67 positive nuclei and the total population of nuclei 

was significantly reduced in Lipo/siRNA and PEI-pSiNP/

siRNA treated U87 cells as compared to untreated con-

trols, but not in PEI-pSiNP/ctrl siRNA (p = 0.275) and 

PEI-pSiNP treated cells (p = 0.127) (Fig. 4b). �is is con-

sistent with the observed reduction of EdU labelling and 

confirms that the reduced proliferation rate of U87 cells 

can be attributed to MRP1 knockdown.

�is observation prompted us to study the effect of 

MRP1 silencing on cell cycle progression of U87 cells by 

probing the activation of cell cycle regulatory kinases. �e 

elevated abundance of phosphorylated cyclin-dependent 

kinases 2 (pCdk2) and histone H3 (pHH3) in U87 cells 

implicate cells arresting at G1/S, and G2/M, respectively 

[42, 43]. By means of Western blot, we observed that the 

abundance of pCdk2 was higher in Lipo/siRNA and PEI-

pSiNPs/siRNA treated U87 cells than for untreated cells 

by a factor of 2 and 1.8, respectively. �e abundance of 

pHH3 was similar among the groups (Fig. 4c). Treatment 

with pSiNPs/siRNA and PEI-pSiNPs/ctrl siRNA resulted 

in only a slight pCdk2 elevation as compared to untreated 

cells by a factor of 1.2. Since the inhibitory phosphoryla-

tion on Cdk2 is maximal during G1/S [42], the elevated 

abundance of pCdk2 may suggest that the observed halt 

in proliferation is related to cells arresting at G1/S. A his-

togram of DNA content generated from flow cytometry 

also illustrates an increase in G1 cell population (from 

34 to 56%), and a decrease of G2/M population (from 33 

to 15%) upon MRP1 knockdown via PEI-capped pSiNP 
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siRNA delivery (Fig.  4d). Collectively, the observed cell 

cycle arrest aligns with the results of cell cycle check-

point proteins expression, EdU and Ki67 studies, which 

indicate an obvious reduction in cell proliferation upon 

MRP1 downregulation.

MRP1 knockdown and proliferative state in tumours

�e relationship between GBM proliferation and MRP1 

downregulation was further investigated in a tumour 

bearing mouse model. CD-1 nude mice were subcutane-

ously (S.C.) inoculated with U87 cells, and the tumour 

growth kinetics were characterised (data not shown). 

Once the tumours reached a minimum size of 250 mm3, 

mice were treated with PEI-pSiNPs carrying either 

siRNA, ctrl siRNA, or saline intravenously for two con-

secutive days (2 mice and 4 tumours per group). mRNA 

extracted from tumours dissected at selected time 

points was analysed quantitatively for MRP1 expres-

sion. According to qRTPCR data, a reduction of MRP1 

mRNA was observed at 48 and 72 h post-treatment, with 

the greatest reduction being 40% at 48  h (Fig.  5a). �e 

expression began to recover between 48 and 72 h, reach-

ing approximately 90% at 72 h. Reduction of MRP1 was 

also observed by immunoblotting at the protein level, 

Fig. 3 Functional inhibition of MRP1 transmembrane transport and GBM cell proliferation. T98G was treated with 25 µM of MK-571 for 72 h and 

untreated cells were used as a control. a The cell viability was measured by the Annexin-V assay and b cells were counted using the Trypan Blue 

assay. c, d At the 24 h time point, cells were incubated in 0.20 µM of Calcein AM staining solution at 37 °C. After incubation for 30 min, cell samples 

were immediately washed and analysed by flow cytometry to determine cellular uptake of Calcein AM. (*p < 0.0329, **p < 0.0023 compared to 

untreated) (n = 4; mean ± standard deviation)
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consistent with gene expression level. �e protein expres-

sion of MRP1 in tumours observed at 48 and 72 h post-

treatment with PEI-pSiNPs/siRNA was reduced, by 82 

and 65%, respectively, compared to the levels observed 

in tumours treated with PEI-pSiNPs delivering control 

siRNA (Fig.  5b). �is demonstrates that the PEI-pSiNP 

successfully delivered siRNA to the tumour and yielded 

significant MRP1 knockdown.

To further evaluate the siRNA delivery and knockdown 

in  vivo, we histologically compared the MRP1 protein 

distribution in tumours receiving PEI-pSiNPs/siRNA 

and control treatments. Immunohistochemical images 

correspond with qRTPCR and immunoblotting results, 

demonstrating a general downregulation of MRP1 in 

PEI-pSiNP/siRNA treated mice as compared to controls 

(Fig. 5c). Downregulation of MRP1 was also observed in 

mouse epidermis and dermis above the S.C. tumour in 

mice receiving MRP1 siRNA but not in control animals 

(Fig.  5c, arrows). Within the tumours, there was vari-

ation in downregulation of MRP1. Less MRP1 expres-

sion was seen in the GBM cells adjacent to the dermis, 

where blood vessels are abundant, while downregulation 

was less effective on the side adjacent to the peritoneum 

(Fig. 5c, squares). �is gradient may reflect the penetra-

tion profile of PEI-pSiNPs into solid tumours.

�e use of an untargeted delivery by nanoparticles 

allows investigation of the collateral downregulation of 

MRP1 in distal organs. We harvested kidney and duo-

denum, which also express MRP1 at physiological levels 

[44, 45]. qRT-PCR result suggested that the reduction of 

MRP1 mRNA in the kidney reached as much as 60% at 

48 h post MRP1 siRNA treatment, and 55% (n = 2) at 72 h 

(Fig. 5d). �e reduction in the duodenum was even more 

pronounced, being 80% (n = 2) at 48 h, with no recovery 

observed after 72  h post-treatment (Fig.  5e). �erefore, 

we conclude that MRP1 siRNA delivered in non-targeted 

nanoparticles, PEI-pSiNPs in this case, induces MRP1 

knockdown in kidney and duodenum.

Ki67 expression in GBM tumours was also examined 

to study the proliferation potential of GBM cells experi-

encing MRP1 knockdown. Consistent with the in  vitro 

results, Ki67 expression in the tumours of PEI-pSiNP/

siRNA treated mice was reduced compared to controls 

(Fig. 5f ). Such reduction in Ki67 was observed at both 48 

and 72 h post-treatment, indicating that the proliferation 

retardation was sustained after nascent MRP1 mRNA, 

Fig. 4 Effect of MRP1 silencing on the proliferative state of U87 cells. a Immunofluorescence of Ki67 imaged with confocal microscopy. b Quan-

titation of Ki67 positive cell proportion. (*, #, ^p < 0.05 as compared to untreated, PEI-pSiNPs loaded with ctrl siRNA, and PEI-pSiNPs, respectively) (n = 3, 

mean ± standard deviation). c Distribution of cells in G1/S and M phases as indicated by relative expression of phospho-tyr15 Cdk2 and phospho-

ser10 histone H3 revealed by immunoblotting. d Distribution of cell cycle populations as illustrated by DNA content histogram
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and protein levels started to restore. A longer time point 

analysis will be performed in future studies.

Histopathology of MRP1 expressing organs

Since there is no definite conclusion to date as to the 

function of MRP1 in organs physiologically expressing 

MRP1, we performed histopathology analysis on the kid-

ney and duodenum, in which MRP1 was shown to be col-

laterally downregulated, for signs of acute necrosis. �e 

histological sections representing 48 h up to 144 h post-

treatment were H&E stained. Histological analysis of kid-

ney was focused on signs of acute tubular necrosis, which 

have been reported for nanotoxicity [46]. �ere were no 

observable differences between kidneys receiving ctrl-

siRNA and MRP1-siRNA. All of them show no damage 

to endothelial cells, nor was an eosinophilic staining pat-

tern or pyknosis of nuclei observed around proximal and 

distal convoluted tubule (Fig. 5g, arrows), indicating the 

absence of damage to tubular cells [47]. In the duode-

num, we did not observe accumulation of lymphocytes 

in villi of both the controls and MRP1 silenced groups at 

all the time points. Neither did we observe differences in 

the population of goblet cells. �ese results indicate that 

there was no sign of acute duodenitis [48].

Discussion
MRP1 expression has been identified in a variety of 

tumours and is being comprehensively studied as a thera-

peutic target for chemosensitisation. Various modulators 

have been pursued over the last two decades [11, 12]. 

Fig. 5 Effect of MRP1 silencing in vivo. MRP1 mRNA and protein expression level in tumours of mice being treated with siRNA-loaded PEI-pSiNPs at 

48 and 72 h post-injection (intravenous) as revealed by a qRTPCR (n = 4), b immunoblotting, and c immunohistochemistry. MRP1 mRNA expression 

level in d kidney (n = 2) and e duodenum (n = 2). f Immunohistochemistry of Ki67 expression in the tumour to reveal the proliferative state of U87 

cells in mice receiving different treatments. g H&E staining of kidney and duodenum of mice treated with PEI-pSiNPs with MRP1 siRNA or ctrl siRNA, 

or none, revealing the histopathology of MRP1 downregulation in distal organs over 144 h (6 d) post-injection. (*, #p < 0.05 as compared to controls 

pSiNPs/saline and pSiNPs/ctrl siRNA, respectively)
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Combination therapy has already shown effectiveness 

in  vitro and in  vivo in lung carcinoma [10] and breast 

cancers [49]. Clinical trials exploring MRP1 knockdown 

with a small molecule modulator in patients with breast, 

lung, bowel, melanoma, renal and ovarian cancers are 

ongoing [50].

GBM remains poorly treated, therefore exploring the 

promise and effect of MRP1 downregulation using a 

nanoparticle delivery approach has merit. To date, there 

are only a handful of reports based on in vitro trials. For 

example, patient derived GBM cells were chemosensi-

tised in  vitro using an MRP1 inhibitor [13]. A study by 

Tivnan et  al. tested chemosensitisation with GBM cells 

derived from relapsed patients, demonstrating some 

effectiveness in this setting [8]. Additionally, various 

nanoparticle delivery systems, including ours, have been 

developed to deliver modulators of MRP1 in glioma cells 

[51, 52]. However, in  vivo effectiveness and effects on 

other cells remains to be investigated. Although the cor-

relation between MRP1 expression and more aggressive 

phenotype of cancer has been observed [53], phenotypic 

effects of the knockdown of MRP1 remain unknown.

In this study, we used PEI-capped pSiNPs as a siRNA 

delivery vehicle in vitro and in vivo in order to study the 

knockdown and phenotypic changes, both in tumour 

and collateral organs. �e reason for choosing the pSiNP 

delivery vehicle for MRP1 siRNA is due to a number of 

inherent desirable properties including high loading 

capacity, biodegradability and biocompatibility. Further-

more, we have previously documented the successful 

in vitro knockdown of MRP1 with siRNA delivered using 

pSiNPs [16, 23]. �e PEI-pSiNPs in this study were of an 

average size of 170 nm, smaller than the average size of 

tumour vasculature ranging from 380 to 780  nm [54]. 

Additionally, nanoparticles at 100 nm range have gener-

ally proven to be long-lasting in the circulation [34]. We 

optimised the release profile for in vivo delivery through 

optimising the pSiNP capping and washing procedure. 

�e percentage siRNA released after 24  h was found 

to be only 10%, while 80% of the siRNA was released 

between 24 and 48  h. In view of previous studies that 

have shown PEI nanoparticles, such as JetPEI, to facili-

tate distribution to the respective organs at 24 h [39], we 

believe that the release profile of the PEI-pSiNPs used 

here would prevent immature burst release, and thus 

deliver most of the siRNA into the tissues. As compared 

to other reported nanoparticles of comparable size, chi-

tosan nanoparticles showed siRNA burst release before 

24 h with only 10% siRNA being released between 24 and 

48 h [55], whilst for PLGA nanoparticles release of 50% 

of the loaded amount was reported before 24 h, and only 

10% was released between 24 and 48 h [56].

�e superior siRNA retention for the first 24  h is 

thought to be due to the electrostatic interaction between 

PEI and siRNA and the packing of the siRNA into the 

pores of the pSiNPs [57]. �e PEI capping also facili-

tated an obvious improvement of cell uptake in GBM 

cells as expected. Whilst the risk of cytotoxicity associ-

ated with branched PEI gene delivery due to the charge 

density has been a concern for clinical translation [58], 

cytotoxicity was not observed with our pSiNP delivery. 

�is is consistent with our previous study in terms of a 

lack of observable apoptotic and cytotoxic phenotypes 

[32]. Although the mechanism of such diminished toxic-

ity remains unclear, a similar observation was reported 

by Yuen Shan et al., who evaluated PMMA nanoparticles 

coated with branched 25 kDa PEI for gene delivery and 

showed efficient transfection and low cytotoxicity [59].

MRP1 protein expression was downregulated with 

MRP1 siRNA but not with the scrambled siRNA 

sequence, indicating specific MRP1 effects. While the 

knockdown efficiency of siRNA delivered with lipo-

fectamine (51%± 4%) was observed to be higher than that 

of PEI-pSiNPs (30 ± 9%) in vitro, 30% of downregulation 

was found to be sufficient to sensitise U87 cells to doxo-

rubicin and reduce the viability by 70% as compared to 

exposure to doxorubicin only. While this level of down-

regulation is comparable to our previous in  vitro study 

[16], the delivery vehicle used here did not cause cyto-

toxicity by itself, indicating that it is potentially applicable 

for systemic delivery.

�e consistent decrease in total cell counts in MRP1 

siRNA transfected U87 cells, without an increase in 

apoptotic cell death was further investigated. We dem-

onstrated that the proliferation of GBM cells was pro-

portional to MRP1 expression level by means of an EdU 

incorporation assay and Ki67 immunofluorescence, indi-

cating that U87 cells have a much slower proliferation 

rate when MRP1 is silenced. Similar studies of MRP1 

downregulation in neuroblastoma cells using antisense 

expression vectors revealed spontaneous cell death and 

a reduction in cell proliferation [60, 61]. For ovarian car-

cinoma cells, Mahdizadeh et  al. characterised the effect 

of saffron extract-crocin exposure and observed both 

MRP1 silencing, cytotoxicity, and a reduction in cell pro-

liferation [62]. However, the mechanism of the observed 

proliferation retardation in those cancer types was not 

further investigated. In contrast, we observed no glioma 

cell death upon transfection.

Here, the cell cycle arrest at G1/S observed in GBM 

was demonstrated to be associated with MRP1 silencing 

by determining the relative abundance of phosphorylated 

Cdk2 and the increase in G1 cell population. �is obser-

vation differs from multidrug transporter P-glycoprotein 

(Pgp) knockdown, which was shown to cause cell cycle 
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arrest at G2/M in leukaemia cells with apoptosis induc-

tion [63]. Since MRP1 and Pgp transport different sub-

strates across the plasma membrane [64], we speculate 

that the effect of MRP1 knockdown on proliferation is 

mediated through the inhibition of transmembrane traf-

ficking. �e functional inhibition of MRP1 using MK-571 

also resulting in attenuation of proliferation appears to 

support such speculation.

Since PEI-pSiNP delivery of siRNA is a biocompatible 

and versatile platform, it allowed us to characterise the 

MRP1 knockdown approach and to validate the decrease 

in proliferation of GBM in  vivo. We demonstrated that 

the siRNA delivery resulted in MRP1 downregulation 

at both mRNA and protein level. �e observed siRNA-

induced knockdown indicates that the siRNA was deliv-

ered into the cytoplasm where it forms RNA-induced 

silencing complex (RISC) with the complementary 

mRNA before the translation [65]. Hence, it can be con-

cluded that the PEI-pSiNPs successfully accumulated and 

delivered the siRNA into the subcutaneous xenograft 

GBM tumour.

�e MRP1 downregulation was observed throughout 

most of the tumour under histological study, indicating 

that the size of PEI-pSiNPs (~ 170 nm) was generally able 

to penetrate the GBM tumour mass and deliver the pay-

load. �e penetration of nanoparticles into solid tumour 

depends on the size and surface chemistry of the nano-

particles, and also the architecture of the tumour [66]. 

Although S.C. tumours do not replicate the complexity of 

orthotropic GBM, such as the requirement to transverse 

the BBB, our results serve as the first step translating the 

promise of the MRP1 silencing approach reported based 

on in  vitro studies under GBM-specific in  vivo tumour 

microenvironment. For example, this approach could be 

promising for coating the resected bed of the tumour at 

the completion of surgery and to use an Omaya reservoir 

for MRP1-siRNA delivery to minimise GBM recurrence 

through its anti-proliferative and chemosensitising prop-

erties, since the BBB is not intact at glioblastoma pro-

gression, and at post-surgery [67–69].

For the effectiveness of the delivery to early stage of 

glioma, where the BBB is intact, such approach remains 

to be further optimised and evaluated in suitable ortho-

tropic models.

It has been reported that the expression of Ki67 in brain 

cancers correlates with histological malignancy grade 

in all glioma subtypes [70]. It is also clinically accepted 

that Ki67 generally reflects the cancer aggressiveness, 

as its function is closely linked to cell division [41]. �e 

diminished Ki67 positive proportion in tumours of the 

mice receiving PEI-pSiNPs/siRNA indicates that MRP1 

downregulation correlates with GBM proliferation, in 

agreement with the in vitro result. �us, we believe our 

observations highlight the potential that suppression of 

GBM proliferation associated with MRP1 silencing could 

be exploited to suppress the progression of the residual 

GBM, in parallel to chemosensitising the tumour.

Biodistribution of the cationic nanoparticle is well-

documented to indicate accumulation in the liver, spleen, 

kidney, and lung [71], and both kidney and duodenum 

tissues are known to express MRP1 as their physiological 

phenotype [44, 45]. We observed significant downregula-

tion of MRP1 in these two organs, which was even more 

long-lasting than the silencing in the S.C. GBM tumour, 

which may be due to the expected accumulation profile 

of the non-targeted PEI-pSiNPs. It is reported that the 

physiological function of MRP1 in kidney and diges-

tive system is related to protection from natural tox-

ins, cholehepatic and enterohepatic circulation of bile, 

and in the protection of the biliary tree tissues against 

toxic bile constituents [72]. However, no histopatho-

logical signs that would indicate tissue damage such as 

necrosis in these two organs was observed over 6  days 

post-treatment. Since MRP1 knockdown in tumour and 

proliferation inhibition were observed as early as 48  h 

post-injection and sustained despite nascent mRNA 

started recovering, this may indicate a possible treatment 

window. Future studies should investigate the collateral 

damage of MRP1 siRNA plus cytotoxic drug co-treat-

ments in other organs, such as heart which is susceptible 

to oxidative damage, while MRP1 knockdown would fur-

ther decrease the tolerance in normal organs to cytotoxic 

drugs [73]. In addition, targeted delivery of MRP1 siRNA 

should be explored in follow-up studies to minimise the 

undesired silencing of MRP1 in other organs. Given that 

MRP1 expression also causes radiation resistance, we 

speculate that localised delivery at the site of primary 

tumour resection may provide a means of sensitisation 

towards chemo- and radiotherapy and obviate the need 

for systemic exposure and potential toxicity from MRP1 

downregulation in other organs.

�is study highlights the relationship between MRP1 

and GBM cell proliferation, and provides insights into 

the relationship between MRP1 expression and malig-

nancy grade. In addition, we demonstrated that MRP1 

silencing by employing PEI-pSiNP delivery of siRNA 

alone would reduce the proliferation rate of GBM cells 

by attenuating the cell cycle at G1/S, without cytotoxic 

drug co-treatment, indicating the importance of MRP1 

expression in the biology of GBM. Since the effect of 

siRNA subsides over time mainly due to the dilution of 

intracellular siRNA owing to cell division [74], the pro-

liferation attenuation effect associated with MRP1 silenc-

ing may intensify the therapeutic effect of this approach. 

MRP1 knockdown of GBM was demonstrated here for 

the first time in  vivo, and the proliferation attenuation 
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was also observed in the tumour, highlighting the prom-

ise of MRP1 as a treatment to GBM.

Conclusion
Chemoresistance in GBM, partially mediated by MRP1 

overexpression in the brain, renders GBM a fatal disease 

that is notoriously difficult to eradicate. Gene therapy 

aimed at MRP1 silencing has been showing promising 

results in sensitising other drug-resistant cancers while 

its effect on brain cancers have not been thoroughly 

investigated. Here, we demonstrated that the MRP1 

silencing using pSiNP-based delivery of MRP1 siRNA 

not only drug-sensitised, but also inhibited GBM cell 

proliferation by arresting cell cycle at G1/S on its own. 

�e reduction in proliferation rate was independent of 

the siRNA delivery method. �is effect may be medi-

ated via transmembrane transporters as suggested by 

a MRP1 functional inhibition assay. �rough the use of 

PEI-capped pSiNP delivery of siRNA, we established 

MRP1 silencing in GBM tumours in mice. Consistently, 

the reduction of ki67 positive staining in GBM correlated 

with MRP1 silencing in the tumour. MRP1 siRNA deliv-

ery was not targeted to tumours and hence also showed 

silencing in MRP1-expressing organs such as kidney and 

duodenum. However, no histopathological signs were 

observed. In conclusion, this study illustrated, for the 

first time, the correlations between MRP1 expression and 

GBM proliferation. �is provides insights into residual 

GBM eradication through highlighting the potential that, 

apart from chemotherapeutics sensitising, MRP1 silenc-

ing itself may deliver therapeutic effects by attenuating 

the growth of GBM.
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