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Abstract: We analyse the eigenvectors of the adjacency matrix of a critical Erdős–
Rényi graph G(N , d/N ), where d is of order log N . We show that its spectrum splits
into two phases: a delocalized phase in the middle of the spectrum, where the eigen-
vectors are completely delocalized, and a semilocalized phase near the edges of the
spectrum, where the eigenvectors are essentially localized on a small number of ver-
tices. In the semilocalized phase the mass of an eigenvector is concentrated in a small
number of disjoint balls centred around resonant vertices, in each of which it is a ra-
dial exponentially decaying function. The transition between the phases is sharp and is
manifested in a discontinuity in the localization exponent γ (w) of an eigenvector w, de-
fined through ‖w‖∞/‖w‖2 = N−γ (w). Our results remain valid throughout the optimal
regime

√
log N ≪ d � O(log N ).

1. Introduction

1.1. Overview. Let A be the adjacency matrix of a graph with vertex set [N ]={1, . . . , N }.
We are interested in the geometric structure of the eigenvectors of A, in particular their
spatial localization. An ℓ2-normalized eigenvector w = (wx )x∈[N ] gives rise to a prob-

ability measure
∑

x∈[N ]w
2
xδx on the set of vertices. Informally, w is delocalized if its

mass is approximately uniformly distributed throughout [N ], and localized if its mass
is essentially concentrated in a small number of vertices.

There are several ways of quantifying spatial localization. One is the notion of con-
centration of mass, sometimes referred to as scarring [49], stating that there is some set
B ⊂ [N ] of small cardinality and a small ε > 0 such that

∑
x∈B w

2
x = 1 − ε. In this

case, it is also of interest to characterize the geometric structure of the vertex set B and
of the eigenvector w restricted to B. Another convenient quantifier of spatial localization
is the ℓp-norm ‖w‖p for 2 � p � ∞. It has the following interpretation: if the mass of

w is uniformly distributed over some set B ⊂ [N ] then ‖w‖2
p = |B|−1+2/p. Focusing on
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the ℓ∞-norm for definiteness, we define the localization exponent γ (w) through

‖w‖2
∞ =.. N−γ (w) . (1.1)

Thus, 0 � γ (w) � 1, and γ (w) = 0 corresponds to localization at a single vertex while
γ (w) = 1 to complete delocalization.

In this paper we address the question of spatial localization for the random Erdős–
Rényi graph G(N , d/N ). We consider the limit N → ∞ with d ≡ dN . It is well known
that G(N , d/N ) undergoes a dramatic change in behaviour at the critical scale d ≍
log N , which is the scale at and below which the vertex degrees do not concentrate. Thus,
for d ≫ log N , with high probability all degrees are approximately equal and the graph
is homogeneous. On the other hand, for d � log N , the degrees do not concentrate and
the graph becomes highly inhomogeneous: it contains for instance hubs of exceptionally
large degree, leaves, and isolated vertices. As long as d > 1, the graph has with high
probability a unique giant component, and we shall always restrict our attention to it.

Here we propose the Erdős–Rényi graph at criticality as a simple and natural model on
which to address the question of spatial localization of eigenvectors. It has the following
attributes.

(i) Its graph structure provides an intrinsic and nontrivial notion of distance.
(ii) Its spectrum splits into a delocalized phase and a semilocalized phase. The transition

between the phases is sharp, in the sense of a discontinuity in the localization
exponent.

(iii) Both phases are amenable to rigorous analysis.

Our results are summarized in the phase diagram of Fig. 1, which is expressed in terms
of the parameter b parametrizing d = b log N on the critical scale and the eigenvalue

λ of A/
√

d associated with the eigenvector w. To the best of our knowledge, the phase
coexistence for the critical Erdős–Rényi graph established in this paper had previously
not been analysed even in the physics literature.

Throughout the following, we always exclude the largest eigenvalue of A, its Perron–
Frobenius eigenvalue, which is an outlier separated from the rest of the spectrum. The
delocalized phase is characterized by a localization exponent asymptotically equal to 1.
It exists for all fixed b > 0 and consists asymptotically of energies in (−2, 0) ∪ (0, 2).
The semilocalized phase is characterized by a localization exponent asymptotically less
than 1. It exists only when b < b∗, where

b∗ ..=
1

2 log 2 − 1
≈ 2.59 . (1.2)

It consists asymptotically of energies in (−λmax(b),−2)∪(2, λmax(b)), whereλmax(b) >

2 is an explicit function of b (see (1.14) below). The density of states at energy λ ∈ R

is equal to Nρb(λ)+o(1), where ρb is an explicit exponent defined in (1.14) below and
illustrated in Fig. 2. It has a discontinuity at 2 (and similarly at −2), jumping from
ρb(2

−) = 1 to ρb(2
+) = 1 − b/b∗. The localization exponent γ (w) from (1.1) of an

eigenvector w with associated eigenvalue λ satisfies with high probability

γ (w) = 1 + o(1) if |λ| < 2 , γ (w) � ρb(λ) + o(1) if |λ| > 2 .

This establishes a discontinuity, in the limit N → ∞, in the localization exponent
γ (w) as a function of λ at the energies ±2. See Fig. 2 for an illustration; we also
refer to Appendix A.1 for a simulation depicting the behaviour of ‖w‖∞ throughout
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Fig. 1. The phase diagram of the adjacency matrix A/
√

d of the Erdős–Rényi graph G(N , d/N ) at criticality,
where d = b log N with b fixed. The horizontal axis records the location in the spectrum and the vertical axis
the sparseness parameter b. The spectrum is confined to the coloured region. In the red region the eigenvectors
are delocalized while in the blue region they are semilocalized. The grey regions have width o(1) and are not
analysed in this paper. For b > b∗ the spectrum is asymptotically contained in [−2, 2] and the semilocalized
phase does not exist. For b < b∗ a semilocalized phase emerges in the region (−λmax(b),−2)∪ (2, λmax(b))

for some explicit λmax(b) > 2

the spectrum. Moreover, in the semilocalized phase scarring occurs in the sense that
a fraction 1 − o(1) of the mass of the eigenvectors is supported in a set of at most
Nρb(λ)+o(1) vertices.

The eigenvalues in the semilocalized phase were analysed in [10], where it was
proved that they arise precisely from vertices x of abnormally large degree, Dx � 2d.
More precisely, it was proved in [10] that each vertex x with Dx � 2d gives rise to two

eigenvalues of A/
√

d near ±�(Dx/d), where �(α) ..= α√
α−1

. The same result for the

O(1) largest degree vertices was independently proved in [54] by a different method.
We refer also to [14,15] for an analysis in the supercritical and subcritical phases.

In the current paper, we prove that the eigenvector w associated with an eigenvalue
λ in the semilocalized phase is highly concentrated around resonant vertices at energy
λ, which are defined as the vertices x such that �(Dx/d) is close to λ. For this reason,
we also call the resonant vertices localization centres. With high probability, and after
a small pruning of the graph, all balls Br (x) of a certain radius r ≫ 1 around the
resonant vertices are disjoint, and within any such ball Br (x) the eigenvector w is an
approximately radial exponentially decaying function. The number of resonant vertices
at energy λ is comparable to the density of states, Nρb(λ)+o(1), which is much less than
N . See Fig. 3 for a schematic illustration of the mass distribution of w.
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Fig. 2. The behaviour of the exponents ρb and γ as a function of the energy λ. The dark blue curve is the

exponent ρb(λ) characterizing the density of states Nρb(λ)+o(1) of the matrix A/
√

d at energy λ. The entire
blue region (light and dark blue) is the asymptotically allowed region of the localization exponent γ (w) of

an eigenvector of A/
√

d as a function of the associated eigenvalue λ. Here d = b log N with b = 1 and
λmax(b) ≈ 2.0737. We only plot a neighbourhood of the threshold energy 2. The discontinuity at 2 of ρb is
from ρb(2

−) = 1 to ρb(2
+) = 1 − b/b∗ = 2 − 2 log 2

Fig. 3. A schematic representation of the geometric structure of a typical eigenvector in the semilocalized
phase. The giant component of the graph is depicted in pale blue. The eigenvector’s mass (depicted in dark
blue) is concentrated in a small number of disjoint balls centred around resonant vertices (drawn in white), and
within each ball the mass decays exponentially in the radius. The mass outside the balls is an asymptotically
vanishing proportion of the total mass

The behaviour of the critical Erdős–Rényi graph described above has some similar-
ities but also differences to that of the Anderson model [11]. The Anderson model on
Z

n with n � 3 is conjectured to exhibit a metal-insulator, or delocalization-localization,
transition: for weak enough disorder, the spectrum splits into a delocalized phase in the
middle of the spectrum and a localized phase near the spectral edges. See e.g. [8, Figure
1.2] for a phase diagram of its conjectured behaviour. So far, only the localized phase
of the Anderson model has been understood rigorously, in the landmark works [4,39],
as well as contributions of many subsequent developments. The phase diagram for the
Anderson model bears some similarity to that of Fig. 1, in which one can interpret 1/b
as the disorder strength, since smaller values of b lead to stronger inhomogeneities in
the graph.

As is apparent from the proofs in [4,39], in the localized phase the local structure
of an eigenvector of the Anderson model is similar to that of the critical Erdős–Rényi
graph described above: exponentially decaying around well-separated localization cen-
tres associated with resonances near the energy λ of the eigenvector. The localization
centres arise from exceptionally large local averages of the potential. The phenomenon
of localization can be heuristically understood using the following well-known rule of
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thumb: one expects localization around a single localization centre if the level spacing

is much larger than the tunnelling amplitude between localization centres. It arises from
perturbation theory around the block diagonal model where the complement of balls
Br (x) around localization centres is set to zero. On a very elementary level, this rule
is illustrated by the matrix H(t) =

(
0 t
t 1

)
, whose eigenvectors are localized for t = 0,

remain essentially localized for t ≪ 1, where perturbation theory around H(0) is valid,
and become delocalized for t � 1, where perturbation theory around H(0) fails.

More precisely, it is a general heuristic that the tunnelling amplitude decays expo-
nentially in the distance between the localization centres [25]. Denoting by β(λ) > 1
the rate of exponential decay at energy λ, the rule of thumb hence reads

β(λ)−L ≪ ε(λ) , (1.3)

where L is the distance between the localization centres and ε(λ) the level spacing at
energy λ. For the Anderson model restricted to a finite cube of Z

n with side length N 1/n ,
the level spacing ε(λ) is of order N−1 (see [57] and [8, Chapter 4]) whereas the diameter
of the graph is of order N 1/n . Hence, the rule of thumb (1.3) becomes

β(λ)−N 1/n ≪ N−1 ,

which is satisfied and one therefore expects localization. For the critical Erdős–Rényi
graph, the level spacing ε(λ) is N−ρ(λ)+o(1) but the diameter of the giant component is

only
log N
log d

. Hence, the rule of thumb (1.3) becomes

N
− logβ(λ)

log d ≪ N−ρ(λ)+o(1) ,

which is never satisfied because
logβ(λ)

log d
→ 0 as N → ∞. Thus, the rule of thumb (1.3) is

satisfied in the localized phase of the Anderson model but not in the semilocalized phase
of the critical Erdős–Rényi graph. The underlying reason behind this difference is that the
diameter of the Anderson model is polynomial in N , while the diameter of the critical
Erdős–Rényi graph is logarithmic in N . Thus, the critical Erdős–Rényi graph is far
more connected than the Anderson model; this property tends to push it more towards
the delocalized behaviour of mean-field systems. As noted above, another important
difference between the localized phase of the Anderson model and the semilocalized
phase of the critical Erdős–Rényi graph is that the density of states is of order N in the
former and a fractional power of N in the latter.

Up to now we have focused on the Erdős–Rényi graph on the critical scale d ≍
log N . It is natural to ask whether this assumption can be relaxed without changing its
behaviour. The question of the upper bound on d is simple: as explained above, there
is no semilocalized phase for d > b∗ log N , and the delocalized phase is completely
understood up to d � N/2, thanks to Theorem 1.8 below and [35,42]. The lower bound
is more subtle. In fact, it turns out that all of our results remain valid throughout the
regime

√
log N ≪ d � O(log N ) . (1.4)

The lower bound
√

log N is optimal in the sense that below it both phases are disrupted
and the phase diagram from Fig. 1 no longer holds. Indeed, for d �

√
log N a new

family of localized states, associated with so-called tuning forks at the periphery of the
graph, appear throughout the delocalized and semilocalized phases. We refer to Sect. 1.5
below for more details.
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Previously, strong delocalization with localization exponent γ (w) = 1 + o(1) has
been established for many mean-field models, such as Wigner matrices [1,34–37], su-
percritical Erdős–Rényi graphs [35,42], and random regular graphs [12,13]. All of these
models are homogeneous and only have a delocalized phase.

Although a rigorous understanding of the metal-insulator transition for the Anderson
model is still elusive, some progress has been made for random band matrices. Ran-
dom band matrices [23,40,47,58] constitute an attractive model interpolating between
the Anderson model and mean-field Wigner matrices. They retain the n-dimensional
structure of the Anderson model but have proved somewhat more amenable to rigorous
analysis. They are conjectured [40] to have a similar phase diagram as the Anderson
model in dimensions n � 3. As for the Anderson model, dimensions n > 1 have so far
seen little progress, but for n = 1 much has been understood both in the localized [48,50]
and the delocalized [20–22,28–33,43,51,52,59] phases. A simplification of band ma-
trices is the ultrametric ensemble [41], where the Euclidean metric of Z

n is replaced
with an ultrametric arising from a tree structure. For this model, a phase transition was
rigorously established in [56].

Another modification of the n-dimensional Anderson model is the Anderson model
on the Bethe lattice, an infinite regular tree corresponding to the case n = ∞. For it, the
existence of a delocalized phase was shown in [5,38,44]. In [6,7] it was shown that for
unbounded random potentials the delocalized phase exists for arbitrarily weak disorder.
It extends beyond the spectrum of the unperturbed adjacency matrix into the so-called
Lifschitz tails, where the density of states is very small. The authors showed that, through
the mechanism of resonant delocalization, the exponentially decaying tunnelling ampli-
tudes between localization centres are counterbalanced by an exponentially large number
of possible channels through which tunnelling can occur, so that the rule of thumb (1.3)
for localization is violated. As a consequence, the eigenvectors are delocalized across
many resonant localization centres. We remark that this analysis was made possible by
the absence of cycles on the Bethe lattice. In contrast, the global geometry of the critical
Erdős–Rényi graph is fundamentally different from that of the Bethe lattice (through
the existence of a very large number of long cycles), which has a defining impact on the
nature of the delocalization-semilocalization transition summarized in Fig. 1.

Transitions in the localization behaviour of eigenvectors have also been analysed in
several mean-field type models. In [45,46] the authors considered the sum of a Wigner
matrix and a diagonal matrix with independent random entries with a large enough
variance. They showed that the eigenvectors in the bulk are delocalized while near the
edge they are partially localized at a single site. Their partially localized phase can be
understood heuristically as a rigorous (and highly nontrivial) verification of the rule of
thumb for localization, where the perturbation takes place around the diagonal matrix.
Heavy-tailed Wigner matrices, or Lévy matrices, whose entries have α-stable laws for
0 < α < 2, were proposed in [24] as a simple model that exhibits a transition in
the localization of its eigenvectors; we refer to [3] for a summary of the predictions
from [24,53]. In [18,19] it was proved that for energies in a compact interval around
the origin, eigenvectors are weakly delocalized, and for 0 < α < 2/3 for energies far
enough from the origin, eigenvectors are weakly localized. In [3], full delocalization was
proved in a compact interval around the origin, and the authors even established GOE
local eigenvalue statistics in the same spectral region. In [2], the law of the eigenvector
components of Lévy matrices was computed.
Conventions Throughout the following, every quantity that is not explicitly constant

depends on the fundamental parameter N . We almost always omit this dependence
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from our notation. We use C to denote a generic positive universal constant, and write
X = O(Y ) to mean |X | � CY . For X,Y > 0 we write X ≍ Y if X = O(Y ) and
Y = O(X). We write X ≪ Y or X = o(Y ) to mean limN→∞ X/Y = 0. A vector is
normalized if its ℓ2-norm is one.

1.2. Results—the semilocalized phase. Let G = G(N , d/N ) be the Erdős–Rényi graph
with vertex set [N ] ..= {1, . . . , N } and edge probability d/N for 0 � d � N . Let
A = (Axy)x,y∈[N ] ∈ {0, 1}N×N be the adjacency matrix of G. Thus, A = A∗, Axx = 0
for all x ∈ [N ], and (Axy

.. x < y) are independent Bernoulli(d/N ) random variables.

The entrywise nonnegative matrix A/
√

d has a trivial Perron–Frobenius eigenvalue,
which is its largest eigenvalue. In the following we only consider the other eigenvalues,
which we call nontrivial. In the regime d ≫

√
log N/ log log N , which we always

assume in this paper, the trivial eigenvalue is located at
√

d(1 + o(1)), and it is separated
from the nontrivial ones with high probability; see [14]. Moreover, without loss of
generality in this subsection we always assume that d � 3 log N , for otherwise the
semilocalized phase does not exist (see Sect. 1.1).

For x ∈ [N ] we define the normalized degree of x as

αx
..=

1

d

∑

y∈[N ]
Axy . (1.5)

In Theorem 1.7 below we show that the nontrivial eigenvalues of A/
√

d outside the
interval [−2, 2] are in two-to-one correspondence with vertices with normalized degree

greater than 2: each vertex x with αx > 2 gives rise to two eigenvalues of A/
√

d

located with high probability near ±�(αx ), where we defined the bijective function
� .. [2,∞) → [2,∞) through

�(α) ..=
α

√
α − 1

. (1.6)

Our main result in the semilocalized phase is about the eigenvectors associated with
these eigenvalues. To state it, we need the following notions.

Definition 1.1. Let λ > 2 and 0 < δ � λ− 2. We define the set of resonant vertices at

energy λ through

Wλ,δ
..=
{

x .. αx � 2, |�(αx )− λ| � δ
}
. (1.7)

We denote by Br (x) the ball around the vertex x of radius r for the graph distance in
G. Define

r⋆ =
⌊

c
√

log N
⌋

; (1.8)

all of our results will hold provided c > 0 is chosen to be a small enough universal con-
stant. The quantity r⋆ will play the role of a maximal radius for balls around localization
centres.

We introduce the basic control parameters

ξ ..=
√

log N

d
log d , ξu

..=
√

log N

d

1

u
, (1.9)

which under our assumptions will always be small (see Remark 1.5 below). We now
state our main result in the semilocalized phase.
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Theorem 1.2 (Semilocalized phase). For any ν > 0 there exists a constant C such that

the following holds. Suppose that

C
√

log N log log N � d � 3 log N . (1.10)

Let w be a normalized eigenvector of A/
√

d with nontrivial eigenvalue λ � 2 + Cξ1/2.

Let 0 < δ � (λ− 2)/2. Then for each x ∈ Wλ,δ there exists a normalized vector v(x),
supported in Br⋆(x), such that the supports of v(x) and v(y) are disjoint for x �= y, and

∑

x∈Wλ,δ

〈v(x) ,w〉2 � 1 − C

(
ξ + ξλ−2

δ

)2

with probability at least 1 − CN−ν . Moreover, v(x) decays exponentially around x in

the sense that for any r � 0 we have

∑

y /∈Br (x)

(v(x))2y �
1

(αx − 1)r+1
.

Remark 1.3. An analogous result holds for negative eigenvalues −λ � −2−Cξ1/2, with
a different vector v(x). See Theorem 3.4 and Remark 3.5 below for a precise statement.

Remark 1.4. The upper bound d � 3 log N in (1.10) is made for convenience and with-
out loss of generality, because if d > 3 log N then, as explained in Sect. 1.1, with
high probability the semilocalized phase does not exist, i.e. eigenvalues satisfying the
conditions of Theorem 1.2 do not exist.

Theorem 1.2 implies that w is almost entirely concentrated in the balls around the
resonant vertices, and in each such ball Br⋆(x), x ∈ Wλ,δ , the vector w is almost collinear
to the vector v(x). Thus, v(x) has the interpretation of the localization profile around

the localization centre x . Since it has exponential decay, we deduce immediately from
Theorem 1.2 that the radius r⋆ can be made smaller at the expense of worse error terms.
In fact, in Definition 3.2 and Theorem 3.4 below, we give an explicit definition of v(x),
which shows that it is radial in the sense that its value at a vertex y depends only on
the distance between x and y, in which it is an exponentially decaying function. To
ensure that the supports of the vectors v(x) for different x do not overlap, v(x) is in
fact defined as the restriction of a radial function around x to a subgraph of G, the
pruned graph, which differs from G by only a small number of edges and whose balls
of radius r⋆ around the vertices of Wλ,δ are disjoint (see Proposition 3.1 below). For
positive eigenvalues, the entries of v(x) are nonnegative, while for negative eigenvalues
its entries carry a sign that alternates in the distance to x . The set of resonant vertices
Wλ,δ is a small fraction of the whole vertex set [N ]; its size is analysed in Lemma A.12
below.

Remark 1.5. Note that, by the lower bounds imposed on d and λ in Theorem 1.2, we
always have ξ, ξλ−2 � 1/C.

Using the exponential decay of the localization profiles, it is easy to deduce from The-
orem 1.2 that a positive proportion of the eigenvector mass concentrates at the resonant
vertices.
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Corollary 1.6. Under the assumptions of Theorem 1.2 we have

∑

y∈Wλ,δ

w2
y =

√
λ2 − 4

λ +
√
λ2 − 4

+ O

(
C(ξ + ξλ−2)

δ
+

Cδ

λ5/2
√
λ− 2

)

with probability at least 1 − CN−ν .

Next, we state a rigidity result on the eigenvalue locations in the semilocalized phase.
It generalizes [10, Corollary 2.3] by improving the error bound and extending it to the full
regime (1.4) of d, below which it must fail (see Sect. 1.5 below). Its proof is a byproduct
of the proof of our main result in the semilocalized phase, Theorem 1.2. We denote
the ordered eigenvalues of a Hermitian matrix M ∈ C

N×N by λ1(M) � λ2(M) �

· · · � λN (M). We only consider the nontrivial eigenvalues of A/
√

d, i.e. λi (A/
√

d)

with 2 � i � N . For the following statements we order the normalized degrees by
choosing a (random) permutation σ ∈ SN such that i �→ ασ(i) is nonincreasing.

Theorem 1.7 (Eigenvalue locations in semilocalized phase). For any ν > 0 there exists

a constant C such that the following holds. Suppose that (1.10) holds. Let

U ..= {x ∈ [N ] .. �(αx ) � 2 + ξ1/2} .

Then with probability at least 1 − CN−ν , for all 1 � i � |U | we have

|λi+1(A/
√

d)−�(ασ(i))| + |λN−i+1(A/
√

d) +�(ασ(i))| � C(ξ + ξ�(ασ(i))−2)

(1.11)

and for all |U | + 2 � i � N − |U | we have

|λi (A/
√

d)| � 2 + ξ1/2 . (1.12)

We remark that the upper bound on d from (1.10), which is necessary for the exis-
tence of a semilocalized phase, can be relaxed in Theorem 1.7 to obtain an estimate on

max2�i�N |λi (A/
√

d)| in the supercritical regime d � 3 log N , which is sharper than
the one in [10]. The proof is the same and we do not pursue this direction here.

We conclude this subsection with a discussion on the counting function of the nor-
malized degrees, which we use to give estimates on the number of resonant vertices
(1.7). For b � 0 and α � 2 define the exponent

θb(α)
..= [1 − b(α logα − α + 1)]+ . (1.13)

Define αmax(b)
..= inf{α � 2 .. θb(α) = 0}. Thus, θb is a nonincreasing function that

is nonzero on [0, αmax(b)). Moreover, θb(2) = [1 − b/b∗]+, so that αmax(b) > 2 if
and only if b < b∗. From Lemma A.9 below it is easy to deduce that if d ≫ 1 then
ασ(1) = αmax(d/ log N ) + O(ζ/d) with probability at least 1 − o(1) for any ζ ≫ 1.
Thus, αmax(d/ log N ) has the interpretation of the deterministic location of the largest
normalized degree. See Fig. 4 for a plot of θb.

In Appendix A.4 below, we obtain estimates on the density of the normalized degrees
(αx )x∈[N ] and combine it with Theorem 1.2 to deduce a lower bound on the ℓp-norm
of eigenvectors in the semilocalized phase. The precise statements are given in Lemma
A.12 and Corollary A.13, which provide quantitative error bounds throughout the regime
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Fig. 4. A plot of the exponent θb(α) as a function of α � 2 for the values b = 0.3 (blue), b = 1.3 (red), and
b = 2.3 (green). The graph hits the value 0 at αmax(b)

(1.10). Here, we summarize them, for simplicity, in simple qualitative versions in the
critical regime d ≍ log N . For b < b∗ we abbreviate

λmax(b)
..= �(αmax(b)) , ρb(λ)

..=
{
θb(�

−1(λ)) if |λ| � 2

1 if |λ| < 2 ,
(1.14)

where �−1(λ) = λ2

2
(1 +

√
1 − 4/λ2) for |λ| � 2. Let d = b log N with some constant

b < b∗, and suppose that 2 + κ � λ � λmax(b) − κ for some constant κ > 0. Then
Lemma A.12 (ii) implies (choosing 1/d ≪ δ ≪ 1)

|Wλ,δ| = Nρb(λ)+o(1) (1.15)

with probability 1−o(1). From (1.15) and Theorem 1.2 we obtain, for any 2 � p � ∞,

‖w‖2
p � N (2/p−1)ρb(λ)+o(1) (1.16)

with probability 1 − o(1) (see Corollary A.13 below). In other words, the localization
exponent γ (w) from (1.1) satisfies γ (w) � ρb(λ) + o(1). See Fig. 2 for an illustration
of the bound (1.16) for p = ∞. We remark that the exponent ρb(λ) also describes the
density of states at energy λ: under the above assumptions on b and λ, for any interval
I containing λ and satisfying ξ ≪ |I | ≪ 1, the number of eigenvalues in I is equal
to Nρb(λ)+o(1)|I | with probability 1 − o(1), as can be seen from Lemma A.12 (i) and
Theorem 1.7.

1.3. Results—the delocalized phase. Let A be the adjacency matrix of G(N , d/N ), as
in Sect. 1.2. For 0 < κ < 1/2 define the spectral region

Sκ
..= [−2 + κ,−κ] ∪ [κ, 2 − κ] . (1.17)

Theorem 1.8 (Delocalized phase). For any ν > 0 and κ > 0 there exists a constant

C > 0 such that the following holds. Suppose that

C
√

log N � d � (log N )3/2 . (1.18)
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Let w be a normalized eigenvector of A/
√

d with eigenvalue λ ∈ Sκ . Then

‖w‖2
∞ � N−1+κ (1.19)

with probability at least 1 − CN−ν .

In the delocalized phase, i.e. in Sκ , we also show that the spectral measure of A/
√

d

at any vertex x is well approximated by the spectral measure at the root of Tdαx ,d , the
infinite rooted (dαx , d)-regular tree, whose root has dαx children and all other vertices
have d children. This approximation is a local law, valid for intervals containing down
to N κ eigenvalues. See Remark 4.4 as well as Remark 4.3 and Appendix A.2 below for
details.

Remark 1.9. In [42] it is shown that (1.19) holds with probability at least 1 − CN−ν for
all eigenvectors provided that

C log N � d � N/2 . (1.20)

This shows that the upper bound in (1.18) is in fact not restrictive.

Remark 1.10 (Optimality of (1.18) and (1.20)). Both lower bounds in (1.18) and (1.20)
are optimal (up to the value of C), in the sense that delocalization fails in each case if
these lower bounds are relaxed. See Sect. 1.5 below.

We note that the domain Sκ is optimal, up to the choice of κ > 0. Indeed, as explained
in Sect. 1.5 below, delocalization fails in the neighbourhood of the origin, owing to a
proliferation highly localized tuning fork states. Similarly, we expect the delocalization
to fail in the neighbourhoods of ±2, where the masses of the eigenvectors become
concentrated on vertices x with normalized degrees αx close to 2. The neighbourhoods
of 0,±2 are also singled out as the regions where the self-consistent equation used
to prove Theorem 1.8 (see Lemma 4.16) becomes unstable. This instability is directly
related to the appearance of singularities in the spectral measure of the tree Tdαx ,d (see
(4.11) and Fig. 8 for an illustration). The singularity near 0 occurs when αx is close to
0, and the singularities near ±2 when αx is close to 2. See Fig. 10 for a simulation that
demonstrates numerically the failure of delocalization outside of Sκ .

1.4. Extension to general sparse random matrices. Our results, Theorems 1.2, 1.7, and
1.8, hold also for the following family of sparse Wigner matrices. Let A = (Axy) be the
adjacency matrix of G(N , d/N ) as above and W = (Wxy) be an independent Wigner
matrix with bounded entries. That is, W is Hermitian and its upper triangular entries
(Wxy

.. x � y) are independent complex-valued random variables with mean zero and

variance one, E|Wxy |2 = 1, and |Wxy | � K almost surely for some constant K . Then
we define the sparse Wigner matrix M = (Mxy) as the Hadamard product of A and W ,

with entries Mxy
..= Axy Wxy . Since the entries of M/

√
d are centred, it does not have

a trivial eigenvalue like A/
√

d.

Theorem 1.11. Let M = (Mxy)x,y∈[N ] be a sparse Wigner matrix. Define

αx =
1

d

∑

y∈[N ]
|Mxy |2. (1.21)
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Theorems 1.2 and 1.8 hold with (1.21) if A is replaced with M, and Theorem 1.7

holds with (1.21) if λi+1(A/
√

d), λN−i+1(A/
√

d), and λi (A/
√

d) are replaced with

λi (M/
√

d), λN−i+1(M/
√

d), and λi (M/
√

d), respectively. Here, the constants C de-

pend on K in addition to ν and κ .

The modifications to the proofs of Theorems 1.2 and 1.7 required to establish Theorem
1.11 are minor and follow along the lines of [10, Section 10]. The modification to the
proof of Theorem 1.8 is trivial, since the assumptions of the general Theorem 4.2 below
include the sparse Wigner matrix M . We also remark that, with some extra work, one
can relax the boundedness assumption on the entries of W , which we shall however not
do here.

1.5. The limits of sparseness and the scale d ≍
√

log N. We conclude this section with
a discussion on how sparse G can be for our results to remain valid. We show that all of
our results—Theorems 1.2, 1.7, and 1.8—are wrong below the regime (1.4), i.e. if d is
smaller than order

√
log N . Thus, our sparseness assumptions—the lower bounds on d

from (1.10) and (1.18)—are optimal (up to the factor log log N in (1.10) and the factor
C in (1.18)). The fundamental reason for this change of behaviour will turn out to be that
the ratio |S2(x)|/|S1(x)| concentrates if and only if d ≫

√
log N , where Si (x) denotes

the sphere in G of radius i around x . This can be easily made precise with a well-known
tuning fork construction, detailed below.

In the critical and subcritical regime 1 ≪ d = O(log N ), the graph G is in general not
connected, but with probability 1 − o(1) it has a unique giant component Ggiant with at

least N (1−e−d/4) vertices (see Corollary A.15 below). Moreover, the spectrum of A/
√

d

restricted to the complement of the giant component is contained in the O
(√

log N
d

)
-

neighbourhood of the origin (see Corollary A.16 below). Since we always assume d �
C
√

log N and we only consider eigenvalues in R \ [−κ, κ], we conclude that all of
our results listed above only pertain to the eigenvalues and eigenvectors of the giant
component.

For D = 0, 1, 2, . . . we introduce a star1 tuning fork of degree D rooted in Ggiant,
or D-tuning fork for short, which is obtained by taking two stars with central degree D

and connecting their hubs to a common base vertex in Ggiant. We refer to Fig. 5 for an
illustration and Definition A.17 below for a precise definition.

It is not hard to see that every D-tuning fork gives rise to two eigenvalues ±
√

D/d

of A/
√

d restricted to Ggiant, whose associated eigenvectors are supported on the stars

(see Lemma A.18 below). We denote by � ..= {
√

D/d .. a D-tuning fork exists} the

spectrum of A/
√

d restricted to Ggiant generated by the tuning forks. Any eigenvector

associated with an eigenvalue
√

D/d ∈ � is localized on precisely 2D + 2 vertices.
Thus, D-tuning forks provide a simple way of constructing localized states. Note that
this is a very basic form of concentration of mass, supported at the periphery of the graph
on special graph structures, and is unrelated to the much more subtle concentration in
the semilocalized phase described in Sect. 1.2.

For d > 0 and D ∈ N we now estimate the number of D-tuning forks in G(N , d/N ),
which we denote by F(d, D). The following result is proved in Appendix A.6.

Lemma 1.12 (Number of D-tuning forks). Suppose that 1 ≪ d = b log N = O(log N )

and 0 � D ≪ log N/ log log N. Then F(d, D) = N 1−2b−2bD+o(1) with probability

1 − o(1).

1 For simplicity we only consider stars, but the same argument can be applied to arbitrary trees.
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Fig. 5. A star tuning fork of degree 12 rooted in a graph. The tuning fork is highlighted in blue. Its base is
filled with red and its two hubs are filled with blue

Defining D∗ ..= log N
2d

− 1, we immediately deduce the following result.

Corollary 1.13. For any constant ε > 0 with probability 1 − o(1) the following holds.

If D∗ � −ε then � = ∅. If D∗ � ε then � = {±
√

D/d .. D ∈ N, D � D∗(1 + o(1))}.
We deduce that if d � (1/2 − ε) log N then � �= ∅ and hence the delocalization for

all eigenvectors from Remark 1.9 fails. Hence, the lower bound (1.20) is optimal up to
the value of C.

Similarly, for d ≫
√

log N the set � is in general nonempty, but we always have
� ⊂ [−κ, κ] for any fixed κ > 0, so that eigenvalues from � do not interfere with
the statements of Theorems 1.2, 1.7, and 1.8. On the other hand, if d =

√
log N/t for

constant t , we find that � is asymptotically dense in the interval [−t/
√

2, t/
√

2]. Since
the conclusions of Theorems 1.2, 1.7, and 1.8 are obviously wrong for any eigenvalue
from �, they must all be wrong for large enough t . This shows that the lower bounds d

from (1.10) and (1.18) are optimal (up to the factor log log N in (1.10) and the factor C

in (1.18)).
In fact, the emergence of the tuning fork eigenvalues of order one and the failure

of all of our proofs has the same underlying root cause, which singles out the scale
d ≍

√
log N as the scale below which the concentration of the ratio

|S2(x)|/|S1(x)| = d(1 + o(1)) (1.22)

fails for vertices x satisfying Dx ≍ d. Clearly, to have a D-tuning fork with D ≍ d,
(1.22) has to fail at the hubs of the stars. Moreover, (1.22) enters our proofs of both the
semilocalized and the delocalized phase in a crucial way. For the former, it is linked to
the validity of the local approximation by the (Dx , d)-regular tree from Appendix A.2,
which underlies also the construction of the localization profile vectors (see e.g. (3.35)
below). For the latter, in the language of Definition 4.6 below, it is linked to the property
that most neighbours of any vertex are typical (see Proposition 4.8 (ii) below).

2. Basic Definitions and Overview of Proofs

In this preliminary section we introduce some basic notations and definitions that are used
throughout the paper, and give an overview of the proofs of Theorems 1.2 (semilocalized
phase) and 1.8 (delocalized phase). These proofs are unrelated and, thus, explained
separately. For simplicity, in this overview we only consider qualitative error terms of
the form o(1), although all of our estimates are in fact quantitative.
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2.1. Basic definitions. We write N = {0, 1, 2, . . . }. We set [n] ..= {1, . . . , n} for any
n ∈ N

∗ and [0] ..= ∅. We write |X | for the cardinality of a finite set X . We use 1� as
symbol for the indicator function of the event �.

Vectors in R
N are denoted by boldface lowercase Latin letters like u, v and w. We

use the notation v = (vx )x∈[N ] ∈ R
N for the entries of a vector. We denote by supp v ..=

{x ∈ [N ] .. vx �= 0} the support of a vector v. We denote by 〈v ,w〉 =
∑

x∈[N ] vxwx the

Euclidean scalar product on R
N and by ‖v‖ =

√
〈v , v〉 the induced Euclidean norm. For

a matrix M ∈ R
N×N , ‖M‖ is its operator norm induced by the Euclidean norm on R

N .
For any x ∈ [N ], we define the standard basis vector 1x

..= (δxy)y∈[N ] ∈ R
N . To any

subset S ⊂ [N ] we assign the vector 1S ∈ R
N given by 1S

..=
∑

x∈S 1x . In particular,
1{x} = 1x .

We use blackboard bold letters to denote graphs. Let H = (V (H), E(H)) be a (simple,
undirected) graph on the vertex set V (H) = [N ]. We often identify a graph H with its
set of edges E(H). We denote by AH ∈ {0, 1}N×N the adjacency matrix of H. For r ∈ N

and x ∈ [N ], we denote by BH
r (x) the closed ball of radius r around x in the graph H,

i.e. the set of vertices at distance (with respect to H) at most r from the vertex x . We
denote the sphere of radius r around the vertex x by SH

r (x)
..= BH

r (x) \ BH

r−1(x). We

denote by DH
x the degree of the vertex x in the graph H. For any subset V ⊂ [N ], we

denote by H|V the subgraph induced by H on V . If H is a subgraph of G then we denote
by G \ H the graph on [N ] with edge set E(G) \ E(H). In the above definitions, if the
graph H is the Erdős–Rényi graph G, we systematically omit the superscript G.

The following notion of very high probability is a convenient shorthand used through-
out the paper. It simplifies considerably the probabilistic statements of the kind that
appear in Theorems 1.2, 1.7, and 1.8. It also introduces two special symbols, ν and C,
which appear throughout the rest of the paper.

Definition 2.1. Let � ≡ �N ,ν be a family of events parametrized by N ∈ N and ν > 0.
We say that � holds with very high probability if for every ν > 0 there exists C ≡ Cν
such that

P(�N ,ν) � 1 − CνN−ν

for all N ∈ N.

Convention 2.2. In statements that hold with very high probability, we use the special
symbol C ≡ Cν to denote a generic positive constant depending on ν such that the
statement holds with probability at least 1−CνN−ν provided Cν is chosen large enough.
Thus, the bound |X | � CY with very high probability means that, for each ν > 0, there
is a constant Cν > 0, depending on ν, such that

P
(
|X | � CνY

)
� 1 − CνN−ν

for all N ∈ N. Here, X and Y are allowed to depend on N . We also write X = O(Y ) to
mean |X | � CY .

We remark that the notion of very high probability from Definition 2.1 survives a
union bound involving N O(1) events. We shall tacitly use this fact throughout the paper.
Moreover, throughout the paper, the constant C ≡ Cν in the assumptions (1.10) and
(1.18) is always assumed to be large enough.
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2.2. Overview of proof in semilocalized phase. The starting point of the proof of Theo-
rem 1.2 is the following simple observation. Suppose that M is a Hermitian matrix with
eigenvalue λ and associated eigenvector w. Let� be an orthogonal projection and write
� ..= I −�. If λ is not an eigenvalue of �M� then from (M − λ)w = 0 we deduce

�w = −(�M�− λ)−1�M�w . (2.1)

If � is an eigenprojection of M whose range contains the eigenspace of λ (for instance
� = ww∗ if λ is simple) then clearly both sides of (2.1) vanish. The basic idea of our

proof is to apply an approximate version of this observation to M = A/
√

d, by choosing
� appropriately, and showing that the left-hand side of (2.1) is small by estimating the
right-hand side.

In fact, we choose2

� ..=
∑

x∈Wλ,δ

v(x) v(x)∗ , (2.2)

where Wλ,δ is the set (1.7) of resonant vertices at energy λ, and v(x) is the exponentially
decaying localization profile from Theorem 1.2. The proof then consists of two main
ingredients:

(a) ‖�M�‖ = o(1);
(b) �M� has a spectral gap around λ.

Informally, (a) states that� is close to a spectral projection of M , as�M� = [M,�]�
quantifies the noncommutativity of M and� on the range of�. Similarly, (b) states that
� projects roughly onto an eigenspace of M of energies near λ. Plugging (a) and (b)
into (2.1) yields an estimate on ‖�w‖ from which Theorem 1.2 follows easily. Thus, the
main work of the proof is to establish the properties (a) and (b) for the specific choice
of � from (2.2).

The construction of the localization profile v(x) uses the pruned graph Gτ from [10],
a subgraph of G depending on a threshold τ > 1, which differs from G by only a small
number of edges and whose balls of radius r⋆ around the vertices of Vτ

..= {x .. αx � τ }
are disjoint (see Proposition 3.1 below). Now we define the vector v(x) ..= vτ+(x), where,
for σ = ± and τ > 1,

vτσ (x)
..=

r⋆∑

i=0

σ i ui (x)1S
Gτ
i (x)

/‖1
S

Gτ
i (x)

‖ , ui (x)
..=

√
αx

(αx − 1)i/2
u0 (1 � i � r⋆) .

(2.3)

The motivation behind this choice is explained in Appendix A.2: with high probability,
the r⋆-neighbourhood of x in Gτ looks roughly like that of the root of infinite regular tree
TDx ,d whose root has Dx children and all other vertices d children. The adjacency matrix

of TDx ,d has the exact eigenvalues ±
√

d�(αx ) with the corresponding eigenvectors
given by (2.3) with Gτ replaced with TDx ,d .

The central idea of our proof is the introduction of a block diagonal approximation
of the pruned graph. Define the orthogonal projections

�τ ..=
∑

x∈V2+o(1)

∑

σ=±
vτσ (x)v

τ
σ (x)

∗ , �τ ..= I −�τ .

2 This projection � is denoted by �τλ,δ in the proof of Theorem 3.4 below.
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The range of � from (2.2) is a subspace of the range of �τ , i.e. ��τ = �. The
interpretation of �τ is the orthogonal projection onto all localization profiles around
vertices x with normalized degree at least 2 + o(1), which is precisely the set of vertices
around which one can define an exponentially decaying localization profile. Now we
define the block diagonal approximation of the pruned graph as

Ĥ τ ..=
∑

x∈V2+o(1)

∑

σ=±
σ�(αx )v

τ
σ (x)v

τ
σ (x)

∗ +�τ H τ�τ ; (2.4)

here we defined the centred and scaled adjacency matrix H τ ..= AGτ /
√

d − Eτ , where

Eτ is a suitably chosen matrix that is close to EAG/
√

d and preserves the locality of
AGτ in balls around the vertices of Vτ . In the subspace spanned by the localization
profiles {vτσ (x) .. σ = ±, x ∈ V2+o(1)}, Ĥ τ is diagonal with eigenvalues σ�(αx ). In the
orthogonal complement, it is equal to H τ . The off-diagonal blocks are zero. The main
work of our proof consists in an analysis of Ĥ τ .

In terms of Ĥ τ , abbreviating H ..= (AG − EAG)/
√

d, the problem of showing (a)
and (b) reduces to showing

(c) ‖H − Ĥ τ‖ = o(1),
(d) ‖�τ H τ�τ‖ � 2 + o(1).

Indeed, ignoring minor issues pertaining to the centring EAG, we replace M = AG/
√

d

with H in (a) and (b). Then (a) follows immediately from (c), since�H� = ‖�Ĥ τ�‖+
o(1) = o(1), as�Ĥ τ� = 0 by the block structure of Ĥ τ and the relation�τ� = �. To
show (b), we note that the�τ -block of Ĥ τ ,�τ Ĥ τ�τ =

∑
x∈V2+o(1)

∑
σ=± σ�(αx )v

τ
σ (x)

vτσ (x)
∗, trivially has a spectral gap: ��τ H τ�τ� has no eigenvalues in the δ-neigh-

bourhood of λ, simply because the projection � removes the projections vτσ (x)v
τ
σ (x)

∗

with eigenvalues σ�(αx ) in the δ-neighbourhood of λ. Moreover, the �τ -block also
has such a spectral gap by (d) and λ > 2 + o(1). Hence, by (c), we deduce the desired
spectral gap (b).

Thus, what remains is the proof of (c) and (d). To prove (c), we prove ‖H − H τ‖ =
o(1) and ‖H τ − Ĥ τ‖ = o(1). The bound ‖H − H τ‖ = o(1) follows from a detailed
analysis of the graph G \ Gτ removed from G to obtain the pruned graph Gτ , which we
decompose as a union of a graph of small maximal degree and a forest, to which standard
estimates of adjacency matrices of graphs can be applied (see Lemma 3.8 below). To
prove ‖H τ − Ĥ τ‖ = o(1), we first prove that vτσ (x) is an approximate eigenvector of
H τ with approximate eigenvalue σ�(αx ) (see Proposition 3.9 below). Then we deduce
‖H τ − Ĥ τ‖ = o(1) using that the balls B2r⋆(x), x ∈ V2+o(1), are disjoint and the locality
of the operator H τ (see Lemma 3.11 below). Thus we obtain (c).

Finally, we sketch the proof of (d). The starting point is an observation going back to
[10,15]: from an estimate on the spectral radius of the nonbacktracking matrix associated
with H from [15] and an Ihara–Bass-type formula relating the spectra of H and its
nonbacktracking matrix from [15], we obtain the quadratic form inequality |H | � I +
Q + o(1) with very high probability, where Q = diag(αx

.. x ∈ [N ]), |H | is the
absolute value of the Hermitian matrix H , and o(1) is in the sense of operator norm (see
Proposition 3.13 below). Using (c), we deduce the inequality

|Ĥ τ | � I + Q + o(1) . (2.5)

To estimate ‖�τ H τ�τ‖, we take a normalized eigenvector w of�τ H τ�τ with maximal
eigenvalue λ > 0. Thus, w ⊥ vτ±(x) for all x ∈ V2+o(1). We estimate �τ H τ�τ from
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above (an analogous argument yields an estimate from below) using (2.5) to get

λ � 1 + o(1) +
∑

x

αxw
2
x � 1 + τ + o(1) + max

x
αx

∑

x∈Vτ

w2
x . (2.6)

Choosing τ = 1 + o(1), we see that (d) follows provided that we can show that

∑

x∈Vτ

w2
x = o(1/ log N ) , (2.7)

since maxx αx � C log N with very high probability.
The estimate (2.7) is a delocalization bound, in the vertex set Vτ , for any eigenvector

w of Ĥ τ that is orthogonal to vτ±(x) for all x ∈ V2+o(1) and whose associated eigenvalue
is larger than 2τ + o(1). It crucially relies on the assumption that w ⊥ vτ±(x) for all
x ∈ V2+o(1), without which it is false (see Proposition 3.14 below). The underlying
principle behind its proof is the same as that of the Combes–Thomas estimate [25]: the
Green function ((λ− Z)−1)i j of a local operator Z at a spectral parameter λ separated
from the spectrum of Z decays exponentially in the distance between i and j , at a rate
inversely proportional to the distance from λ to the spectrum of Z . We in fact use a
radial form of a Combes–Thomas estimate, where Z is the tridiagonalization of a local
restriction of Ĥ τ around a vertex x ∈ Vτ (see Appendix A.2) and i, j index radii of
concentric spheres. The key observation is that, by the orthogonality assumption on w,
the Green function ((λ− Z)−1)ir⋆ , 0 � i < r⋆, and the eigenvector components in the
radial basis ui , 0 � i < r⋆, satisfy the same linear difference equation. Thus we obtain
exponential decay for the components ui , which yields u2

0 � o(1/ log N )
∑r∗

i=0 u2
i .

Going back to the original vertex basis, this implies that w2
x � o(1/ log N )‖w|

B
Gτ
2r⋆
(x)

‖2

for all x ∈ Vτ , from which (2.7) follows since the balls B
Gτ

2r⋆
(x), x ∈ Vτ , are disjoint.

2.3. Overview of proof in delocalized phase. The delocalization result of Theorem 1.8

is an immediate consequence of a local law for the matrix A/
√

d, which controls the
entries of the Green function

G ≡ G(z) ..=
(

A/
√

d − z
)−1

in the form of high-probability estimates, for spectral scales Im z down to the optimal
scale 1/N , which is the typical eigenvalue spacing. Such a local law was first established
for d ≫ (log N )6 in [35] and extended down to d � C log N in [42]. In both of these
works, the diagonal entries of G are close to the Stieltjes transform of the semicircle law.
In contrast, in the regime (1.4) the diagonal entry Gxx is close to the Stieltjes transform
of the spectral measure at the root of an infinite (Dx , d)-regular tree. Hence, Gxx does
not concentrate around a deterministic quantity.

The basic approach of the proof is the same as for any local law: derive an approximate
self-consistent equation with very high probability, solve it using a stability analysis, and
perform a bootstrapping from large to small values of Im z . For a set T ⊂ [N ] denote
by A(T ) the adjacency matrix of the graph G where the vertices of T (and all incident

edges) have been removed, and denote by G(T ) =
(

A(T )/
√

d − z
)−1

the associated
Green function. In order to understand the emergence of the self-consistent equation,
it is instructive to consider the toy situation where, for a given vertex x , all neighbours
S1(x) are in different connected components of A(x). This is for instance the case if G is
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a tree. On the global scale, where Im z is large enough, this assumption is in fact valid
to a good approximation, since the neighbourhood of x is with high probability a tree.
Then a simple application of Schur’s complement formula and the resolvent identity
yield

1

Gxx

= −z −
1

d

∑

y∈S1(x)

G(x)
yy , G(x)

yy − G yy = (G(x)
yy )

2 1

d
Gxx . (2.8)

Thus, on the global scale, using that G is bounded, we obtain the self-consistent equation

1

Gxx

= −z −
1

d

∑

y∈S1(x)

G yy + o(1) (2.9)

with very high probability.
It is instructive to solve the self-consistent equation (2.9) in the family (Gxx )x∈[N ] on

the global scale. To that end, we introduce the notion of typical vertices, which is roughly
the set T = {x ∈ [N ] .. αx = 1 + o(1)}. (In fact, as explained below, the actual definition
for local scales has to be different; see (2.12) below.) A simple argument shows that with
very high probability most neighbours of any vertex are typical. With this definition, we
can try to solve (2.9) on the global scale as follows. From the boundedness of G we
obtain a self-consistent equation for the vector (Gxx )x∈T that reads

1

Gxx

= −z −
∑

y∈T

1

d
AxyG yy + ζx , ζx = o(1) . (2.10)

It is not hard to see that the equation (2.10) has a unique solution, which satisfies
Gxx = m + o(1) for all x ∈ T . Here m is the Stieltjes transform of the semicircle law,
which satisfies m = 1

−z−m
. Plugging this solution back into (2.9) and using that most

neighbours of any vertex are typical shows that for x /∈ T we have Gxx = mαx + o(1),

where mα
..= 1

−z−αm
. One readily finds (see Appendix A.2 below) that mαx is Stieltjes

transform of the spectral measure of the infinite (Dx , d)-regular tree at the root.
The first main difficulty of the proof is to provide a derivation of identities of the form

(2.8) (and hence a self-consistent equation of the form (2.9)) on the local scale Im z ≪ 1.
We emphasize that the above derivation of (2.8) is completely wrong on the local scale.
Unlike on the global scale, on the local scale the behaviour of the Green function is
not governed by the local geometry of the graph, and long cycles contribute to G in
an essential way. In particular, eigenvector delocalization, which follows from the local
law, is a global property of the graph and cannot be addressed using local arguments; it
is in fact wrong outside of the region Sκ , although the above derivation is insensitive to
the real part of z.

We address this difficulty by replacing the identities (2.8) with the following argu-
ment, which ultimately provides an a posteriori justification of approximate versions of
(2.8) with very high probability, provided we are in the region Sκ . We make an a priori
assumption that the entries of G are bounded with very high probability; we propagate
this assumption from large to small scales using a standard bootstrapping argument and
the uniform boundedness of the density of the spectral measure associated with mα . It is
precisely this uniform boundedness requirement that imposes the restriction to Sκ in our
local law (as explained in Remark 1.10, this restriction is necessary). The key tool that
replaces the simpleminded approximation (2.8) is a series of large deviation estimates
for sparse random vectors proved in [42], which, as it turns out, are effective for the full
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optimal regime (1.4). Thus, under the bootstrapping assumption that the entries of G are
bounded, we obtain (2.8) (and hence also (2.9)), with some additional error terms, with
very high probability.

The second main difficulty of the proof is that, on the local scale and for sparse graphs,
the self-consistent equation (2.10), which can be derived from (2.9) as explained above,
is not stable enough to be solved in (Gxx )x∈T . This problem stems from the sparseness
of the graphs that we are considering, and does not appear in random matrix theory for
denser (or even heavy-tailed) matrices. Indeed, the stability estimates of (2.10) carry
a logarithmic factor, which is usually of no concern in random matrix theory but is
deadly for the sparse regime of this paper. This is a major obstacle and in fact ultimately
dooms the self-consistent equation (2.10). To explain the issue, write the sum in (2.10)
as
∑

y SxyG yy , where S is the T × T matrix Sxy = 1
d

Axy . Writing Gxx = m + εx ,
plugging it into (2.10), and expanding to first order in εx , we obtain, using the definition
of m, that εx = −m2((I −m2S)−1ζ )x . Thus, in order to deduce smallness of εx from the
smallness of ζx , we need an estimate on the norm3 ‖(I − m2S)−1‖∞→∞. In Appendix
A.10 below we show that for typical S, Re z ∈ Sκ , and small enough Im z,we have

log N

C(log log N )2
� ‖(I − m2S)−1‖∞→∞ � Cκ log N (2.11)

for some universal constant C and some constant Cκ depending on κ . In our context,
where ζx is small but much larger than the reciprocal of the lower bound of (2.11), such
a logarithmic factor is not affordable.

To address this difficulty, we avoid passing by the form (2.10) altogether, as it is
doomed by (2.11). The underlying cause for the instability of (2.10) is the inhomoge-
neous local structure of the matrix S, which is a multiple of the adjacency matrix of a
sparse graph. Thus, the solution is to derive a self-consistent equation of the form (2.10)
but with an unstructured S, which has constant entries. The basic intuition is to replace

the local average 1
d

∑
y∈S1(x)

G
(x)
yy in the first identity of (2.8) with the global average

1
N

∑
y �=x G

(x)
yy . Of course, in general these two are not close, but we can include their

closeness into the definition of a typical vertex. Thus, we define the set of typical vertices
as

T ..=
{

x ∈ [N ] .. αx = 1 + o(1) ,
1

d

∑

y∈S1(x)

G(x)
yy =

1

N

∑

y �=x

G(x)
yy + o(1)

}
. (2.12)

The main work of the proof is then to prove the following facts with very high probability.

(a) Most vertices are typical.
(b) Most neighbours of any vertex are typical.

With (a) and (b) at hand, we explain how to conclude the proof. Using (a) and the
approximate version of (2.8) established above, we deduce the self-consistent equation
for typical vertices,

1

Gxx

= −z −
1

|T |
∑

y∈T

G yy + o(1) , x ∈ T ,

3 We write ‖·‖p→p for the operator norm on ℓp .
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which, unlike (2.10), is stable (see Lemma 4.19 below) and can be easily solved to show
that Gxx = m + o(1) = mαx + o(1) for all x ∈ T . Moreover, if x /∈ T then we obtain
from (2.8) and (b) that

1

Gxx

= −z −
1

d

∑

y∈S1(x)∩T

G(x)
yy + o(1) = −z − αx m + o(1) ,

where we used that G yy = m + o(1) for y ∈ T . This shows that Gxx = mαx + o(1) for
all x ∈ [N ] with very high probability, and hence concludes the proof.

What remains, therefore, is the proof of (a) and (b); see Proposition 4.8 below for a
precise statement. Using the bootstrapping assumption of boundedness of the entries of
G, it is not hard to estimate the probability P(x ∈ T ), which we prove to be 1 − o(1),
although {x ∈ T } does not hold with very high probability (this characterizes the critical
and subcritical regimes). Now if the events {x ∈ T }, x ∈ [N ], were all independent, it
would then be a simple matter to deduce (a) and (b).

The most troublesome source of dependence among the events {x ∈ T }, x ∈ [N ], is

the Green function G
(x)
yy in the definition of T . Thus, the main difficulty of the proof is a

decoupling argument that allows us to obtain good decay for the probability P(T ⊂ T )

in the size of T . This decay can only work up to a threshold in the size of T , beyond
which the correlations among the different events kick in. In fact, we essentially prove
that

P(T ⊂ T ) � e−o(1)d|T | + CN−ν for |T | = o(d) ; (2.13)

see Lemma 4.12. Choosing the largest possible T , T = o(d), we find that the first term
on the right-hand side of (2.13) is bounded by N−ν provided that o(1)d2 � ν log N ,
which corresponds precisely to the optimal lower bound in (1.18). Using (2.13), we may
deduce (a) and (b).

To prove (2.13), we need to decouple the events {x ∈ T }, x ∈ T . We do so by
replacing the Green functions G(x) in the definition of T by G(T ), after which the
corresponding events are essentially independent. The error that we incur depends on

the difference G
(T )
yy − G yy , which we have to show is small with very high probability

under the bootstrapping assumption that the entries of G are bounded. For T of fixed
size, this follows easily from standard resolvent identities. However, for our purposes
it is crucial that T can have size up to o(d), which requires a more careful quantitative

analysis. As it turns out, G
(T )
yy − G yy is small only up to |T | = o(d), which is precisely

what we need to reach the optimal scale d ≫
√

log N from (1.4).

3. The Semilocalized Phase

In this section we prove the results of Sect. 1.2–Theorems 1.2 and 1.7.

3.1. The pruned graph and proof of Theorem 1.2. The balls (Br (x))x∈Wλ,δ
in Theorem

1.2 are in general not disjoint. For its proof, and in order to give a precise definition of
the vector v(x) in Theorem 1.2, we need to make these balls disjoint by pruning the
graph G. This is an important ingredient of the proof, and will also allow us to state a
more precise version of Theorem 1.2, which is Theorem 3.4 below. This pruning was
previously introduced in [10]; it is performed by cutting edges from G in such a way
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that the balls (Br (x))x∈Wλ,δ
are disjoint for appropriate radii, r = 2r⋆, by carefully

cutting in the right places, thus reducing the number of cut edges. This ensures that the
pruned graph is close to the original graph in an appropriate sense. The pruned graph,
Gτ , depends on a parameter τ > 1, and its construction is the subject of the following
proposition.

To state it, we introduce the following notations. For a subgraph Gτ of G we abbre-
viate

Bτi (x)
..= B

Gτ

i (x) , Sτi (x)
..= S

Gτ

i (x) .

Moreover, we define the set of vertices with large degrees

Vτ
..= {x ∈ [N ] .. αx � τ } .

Proposition 3.1 (Existence of pruned graph). Let 1 + ξ1/2 � τ � 2 and d � 3 log N.

There exists a subgraph Gτ of G with the following properties.

(i) Any path in Gτ connecting two different vertices in Vτ has length at least 4r⋆ + 1.

In particular, the balls (Bτ2r⋆
(x))x∈Vτ are disjoint.

(ii) The induced subgraph Gτ |Bτ2r⋆
(x) is a tree for each x ∈ Vτ .

(iii) For each edge in G \ Gτ , there is at least one vertex in Vτ incident to it.

(iv) For each x ∈ Vτ and each i ∈ N satisfying 1 � i � 2r⋆ we have Sτi (x) ⊂ Si (x).

(v) The degrees induced on [N ] by G \ Gτ are bounded according to

max
x∈[N ]

D
G\Gτ
x � C

log N

(τ − 1)2d
(3.1)

with very high probability.

(vi) Suppose that
√

log N � d. For each x ∈ Vτ and all 2 � i � 2r⋆, the bound

|Si (x) \ Sτi (x)| � C
log N

(τ − 1)2
d i−2 (3.2)

holds with very high probability.

The proof of Proposition 3.1 is postponed to the end of this section, in Sect. 3.5 below.
It is essentially [10, Lemma 7.2], the main difference being that (vi) is considerably
sharper than its counterpart, [10, Lemma 7.2 (vii)]; this stronger bound is essential to
cover the full optimal regime (1.4) (see Sect. 1.5). As a guide for the reader’s intuition,
we recall the main idea of the pruning. First, for every x ∈ Vτ , we make the 2r⋆-
neighbourhood of x a tree by removing appropriate edges incident to x . Second, we take
all paths of length less than 4r⋆ + 1 connecting different vertices in Vτ , and remove all of
their edges incident to any vertex in Vτ . Note that only edges incident to vertices in Vτ
are removed. This informal description already explains properties (i)–(iv). Properties
(v) and (vi) are probabilistic in nature, and express that with very high probability the
pruning has a small impact on the graph. See also Lemma 3.8 below for a statement in
terms of operator norms of the adjacency matrices. For the detailed algorithm, we refer
to the proof of [10, Lemma 7.2].

Using the pruned graph Gτ , we can give a more precise formulation of Theorem 1.2,
where the localization profile vector v(x) from Theorem 1.2 is explicit. For its statement,
we introduce the set of vertices

V ..= V2+ξ1/4 (3.3)

around which a localization profile can be defined.
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Definition 3.2 (Localization profile). Let 1 + ξ1/2 � τ � 2 and Gτ be the pruned graph
from Proposition 3.1. For x ∈ V we introduce positive weights u0(x), u1(x), . . . , ur⋆(x)

as follows. Set u0(x) > 0 and define, for i = 1, . . . , r⋆ − 1,

ui (x)
..=

√
αx

(αx − 1)i/2
u0(x) , ur⋆(x)

..=
1

(αx − 1)(r⋆−1)/2
u0(x) . (3.4)

For σ = ± we define the radial vector

vτσ (x)
..=

r⋆∑

i=0

σ i ui (x)
1Sτi (x)

‖1Sτi (x)
‖
, (3.5)

and choose u0(x) > 0 such that vτσ (x) is normalized.

Remark 3.3. The family (vτσ (x)
.. x ∈ V, σ = ±) is orthonormal. Indeed, if x, y ∈ V

are distinct, then by Proposition 3.1 (i) the vectors vτσ (x) and vτ
σ̃
(y) are orthogonal for

any σ, σ̃ = ± because they are supported on disjoint sets of vertices. Moreover, vτ+(x)
and vτ−(x) are orthogonal by the choice of ur⋆(x) from (3.4), as can be seen by a simple
computation.

The following result restates Theorem 1.2 by identifying v(x) there as vτ+(x) given
in (3.5). It easily implies Theorem 1.2, and the rest of this section is devoted to its proof.

Theorem 3.4. The following holds with very high probability. Suppose that d satisfies

(1.10). Let w be a normalized eigenvector of A/
√

d with nontrivial eigenvalue λ �
2 + Cξ1/2. Choose 0 < δ � (λ− 2)/2 and set τ ..= 1 + (λ− 2)/8 ∧ 1. Then

∑

x∈Wλ,δ

〈vτ+(x) ,w〉2 � 1 − C

(
ξ + ξτ−1

δ

)2

. (3.6)

Remark 3.5. An analogous result holds for negative eigenvalues −λ, where λ is as in
Theorem 3.4 and vτ+(x) in (3.6) is replaced with vτ−(x).

For the motivation behind Definition 3.2, we refer to the discussion in Sect. 2.2 and
Appendix A.2. As explained there, if Gτ is sufficiently close to the infinite tree TDx ,d

in a ball of radius r⋆ around x , and if r⋆ is large enough for ur⋆(x) to be very small, we
expect (3.5) to be an approximate eigenvector of A. This will in fact turn out to be true;
see Proposition 3.9 below. That r⋆ is in fact large enough is easy to see: the definition of
r⋆ in (1.8) and the bound ξ � 1/d imply that, for αx � 2 + C(log d)2/

√
log N , we have

(αx − 1)−(r⋆−2)/2 � ξ . (3.7)

This means that the last element of the sequence (ui (x))
r⋆
i=0 is bounded by ξ . Note that

the lower bound on αx imposed above always holds for x ∈ V , since, by (1.10),

C(log d)2
√

log N
� ξ1/4 . (3.8)

As a guide to the reader, in Fig. 6, we summarize the three main sets of vertices that
are used in the proof of Theorem 3.4. We conclude this subsection by proving Theorem
1.2 and Corollary 1.6 using Theorem 3.4.
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Fig. 6. An illustration of the three sets of vertices of increasing size that enter into the proof of Theorem 3.4.
Each vertex x is plotted as a dot at its normalized degree αx . The largest set is Vτ from Proposition 3.1, where

1 + ξ1/2 � τ � 2. It is used to define the pruned graph Gτ . The intermediate set is V ≡ V2+ξ1/4 from (3.3).

It is the set of vertices for which we can define the localization profile vector v(x) that decays exponentially

around x . The smallest set Wλ,δ = �−1([λ− δ, λ + δ]) is the set of resonant vertices at energy λ

Proof of Theorem 1.2. The first claim follows immediately from Theorem 3.4, with
v(x) = vτ+(x). To verify the claim about the exponential decay of v, we note that
the graph distance in G is bounded by the graph distance in Gτ , which implies

∑

y∈Br (x)c

(vτ+(x))
2
y �

∑

y∈Bτr (x)
c

(vτ+(x))
2
y =

r⋆∑

i=r+1

ui (x)
2 ,

from which the claim easily follows using the definition (3.4).

Proof of Corollary 1.6. We decompose w =
∑

x∈Wλ,δ
γx vτ+(x) + e, where

γx
..= 〈vτ+(x) ,w〉 and e is orthogonal to Span{vτ+(x) .. x ∈ Wλ,δ}. By Theorem 3.4

we have ‖e‖ �
C(ξ+ξτ−1)

δ
and

∑

x∈Wλ,δ

γ 2
x � 1 −

C(ξ + ξτ−1)

δ
. (3.9)

Moreover, since λ− δ � 2 � τ , we have Wλ,δ ⊂ Vτ , so that Proposition 3.1 (i) implies
(vτ+(x))y = δxyu0(x) for x, y ∈ Wλ,δ . Thus we have

∑

y∈Wλ,δ

w2
y = ‖w|Wλ,δ

‖2 =
∥∥∥∥
∑

x∈Wλ,δ

γx vτ+(x)|Wλ,δ

∥∥∥∥
2

+ O(‖e‖)

=
∑

y∈Wλ,δ

γ 2
y u0(y)

2 + O

(
ξ + ξτ−1

δ

)
. (3.10)

Since u0(y) was chosen such that vτ+(y) is normalized, we find

u0(y)
2 =

(
1 +

r⋆−1∑

i=1

αy

(αy − 1)i
+

1

(αy − 1)r⋆−1

)−1

=
αy − 2

2(αy − 1)
+ O

(
1

(αy − 1)r⋆−1

)
.

Define α ..= �−1(λ) for α � 2. Since |�(αy)− λ| � δ for y ∈ Wλ,δ , we obtain

|αy − α| � δ max
t∈[λ−δ,λ+δ]

(�−1)′(t)
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= O
(
δλ3/2(λ− 2)−1/2

)
,

where we used that λ± δ − 2 ≍ λ− 2. Since d
dα

α−2
2(α−1)

= 1
2(α−1)2

≍ λ−4, we find

u0(y)
2 =

α − 2

2(α − 1)
+ O

(
δ

λ5/2
√
λ− 2

+
1

(αy − 1)r⋆−1

)

=
α − 2

2(α − 1)
+ O

(
δ

λ5/2
√
λ− 2

+
ξ

δ

)
, (3.11)

where we used (3.7) and the upper bound on δ in the last step. By an elementary com-
putation,

α − 2

2(α − 1)
=

√
λ2 − 4

λ +
√
λ2 − 4

,

and the claim hence follows by recalling (3.7) and plugging (3.9) and (3.11) into
(3.10).

3.2. Block diagonal approximation of pruned graph and proof of Theorems 3.4 and 1.7.

We now introduce the adjacency matrix of Gτ and a suitably defined centred version.
Then we define a block diagonal approximation of this matrix, called Ĥ τ in (3.16) below,
which is the central construction of our proof.

Definition 3.6. Let Aτ be the adjacency matrix of Gτ . Let H ..= A/
√

d and H τ ..=
Aτ/

√
d , where

A ..= A − EA , Aτ ..= Aτ − χ τ (EA)χ τ (3.12)

and χ τ is the orthogonal projection onto Span{1y
.. y /∈

⋃
x∈Vτ

Bτ2r⋆
(x)}.

The definition of Aτ is chosen so that (i) Aτ is close to A provided that Aτ is close
to A, since the kernel of χ τ has a relatively low dimension, and (ii) when restricted
to vertices at distance at most 2r⋆ from Vτ , the matrix Aτ coincides with Aτ . In fact,
property (i) is made precise by the simple estimate

‖EA − χ τ (EA)χ τ‖ � 2 (3.13)

with very high probability (see [10, Eq. (8.17)] for details). Property (ii) means that Aτ

inherits the locality of the matrix A, meaning that applying Aτ to a vector localized in
space to a small enough neighbourhood of Vτ yields again a vector localized in space.
This property will play a crucial role in the proof, and it can be formalized as follows.

Remark 3.7. Let i + j � 2r⋆. Then for any x ∈ Vτ and vector v we have

supp v ⊂ Bτi (x) �⇒ supp
[
(H τ ) j v

]
⊂ Bτi+ j (x) .

The next result states that H τ is a small perturbation of H .

Lemma 3.8. Suppose that d � 3 log N. For any 1+ξ1/2 � τ � 2 we have ‖H − H τ‖ �
Cξτ−1 with very high probability.

The next result states that vτσ (x) is an approximate eigenvector of H τ .



Delocalization Transition for Critical Erdős–Rényi Graphs 531

Proposition 3.9. Let d satisfy (1.10). Let x ∈ [N ] and suppose that 1 + ξ1/2 � τ � 2.

If αx � 2 + C(log d)2/
√

log N then for σ = ± we have

‖(H τ − σ�(αx ))v
τ
σ (x)‖ � Cξ (3.14)

with very high probability.

The proofs of Lemma 3.8 and Proposition 3.9 are deferred to Sect. 3.3. The following
object is the central construction in our proof.

Definition 3.10. (Block diagonal approximation of pruned graph) Define the orthogonal
projections

�τ ..=
∑

x∈V

∑

σ=±
vτσ (x)v

τ
σ (x)

∗ , �τ ..= I −�τ , (3.15)

and the matrix

Ĥ τ ..=
∑

x∈V

∑

σ=±
σ�(αx )v

τ
σ (x)v

τ
σ (x)

∗ +�τ H τ�τ . (3.16)

That �τ and �τ are indeed orthogonal projections follows from Remark 3.3. Note
that Ĥ τ may be interpreted as a block diagonal approximation of H τ . Indeed, completing
the orthonormal family (vτσ (x))x∈V,σ=± to an orthonormal basis of R

N , which we write
as the columns of the orthogonal matrix R, we have

R∗ Ĥ τ R =
[

diag(σ�(αx ))x∈V,σ=± 0
0 [∗]

]
.

The following estimate states that Ĥ τ is a small perturbation of H τ .

Lemma 3.11. Let d satisfy (1.10). If 1 + ξ1/2 � τ � 2 then ‖H τ − Ĥ τ‖ � Cξ with very

high probability.

The proof of Lemma 3.11 is deferred to Sect. 3.3. The following result is the key
estimate of our proof; it states that on the range of �τ the matrix H τ is bounded by
2τ + o(1).

Proposition 3.12. Let d satisfy (1.10). If 1 + ξ1/2 � τ � 2 then ‖�τ H τ�τ‖ � 2τ +
C(ξ + ξτ−1) with very high probability.

The proof of Proposition 3.12 is deferred to Sect. 3.4. We now use Lemma 3.11 and
Proposition 3.12 to conclude Theorems 3.4 and 1.7.

Proof of Theorem 3.4. Define the orthogonal projections

�τλ,δ
..=

∑

x∈Wλ,δ

vτ+(x) vτ+(x)
∗ , �τλ,δ

..= I −�τλ,δ .

By definition, the orthogonal projections �τ and �τλ,δ commute. Moreover, under the
assumptions of Theorem 3.4 we have the inclusion property

�τ�τλ,δ = �τλ,δ . (3.17)

See also Fig. 6. To show (3.17), we note that the condition on δ and the lower bound on
λ in Theorem 3.4 imply λ−δ � 2+Cξ1/2. Using�(2+ x)−2 ≍ x2 ∧ x1/2 for x � 0 we
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conclude that for any α � 2 we have the implication �(α) � λ− δ ⇒ α � 2 + ξ1/4,
which implies (3.17).

Next, we abbreviate Eτ ..= χ τ (EA/
√

d)χ τ and note that �τ Eτ = 0 because
�τχ τ = 0 by construction of vτσ (x). From (3.17) we obtain �τλ,δ = �τλ,δ�

τ + �τ ,
which yields

�τλ,δ(Ĥ
τ + Eτ )�τλ,δ = �τλ,δ�

τ Ĥ τ�τ�τλ,δ +
(
�τ Ĥ τ�τ + Eτ

)
, (3.18)

where we used that the cross terms vanish because of the block diagonal structure of
Ĥ τ .

The core of our proof is the spectral gap

spec
(
�τλ,δ(Ĥ

τ + Eτ )�τλ,δ

)
⊂ R \ [λ− δ, λ + δ] . (3.19)

To establish (3.19), it suffices to establish the same spectral gap for each term on the right-
hand side of (3.18) separately, since the right-hand side of (3.18) is a block decomposition
of its left-hand side. The first term on the right-hand side of (3.18) is explicit:

�τλ,δ�
τ Ĥ τ�τ�τλ,δ =

∑

x∈V

∑

σ=±
σ�(αx )1|σ�(αx )−λ|>δ vτσ (x)v

τ
σ (x)

∗ ,

which trivially has no eigenvalues in [λ− δ, λ + δ].
In order to establish the spectral gap for the second term of (3.18), we begin by

remarking that Eτ has rank one and, by (3.13), its unique nonzero eigenvalue is
√

d +

O(1/
√

d). Hence, by rank-one interlacing and Proposition 3.12, we find

spec
(
�τ (H τ + Eτ )�τ

)
⊂
[
−2τ − C(ξ + ξτ−1) , 2τ + C(ξ + ξτ−1)

]
∪
{
μ
}

(3.20)

for some simple eigenvalue μ =
√

d + O(1). Thus, to conclude the proof of the spectral
gap for the second term of (3.18), it suffices to show that

λ− δ > 2τ + C(ξ + ξτ−1) (3.21)

λ + δ < μ . (3.22)

To prove (3.21), we suppose that λ � 2 + 8Cξ1/2 and, recalling the condition on δ and
the choice of τ in Theorem 3.4, obtain

λ− δ � 2 +
λ− 2

2
� 2τ + 2Cξ1/2 > 2τ + C(ξ + ξτ−1) , (3.23)

where in the last step we used that ξτ−1 < ξ1/2 by our choice of τ and the lower bound
on λ. This is (3.21).

For the following arguments, we compare A/
√

d with Ĥ τ + Eτ using the estimate

‖A/
√

d − (Ĥ τ + Eτ )‖ � ‖(H τ − Ĥ τ ) + (H − H τ )

+(EA/
√

d − Eτ )‖ � C(ξ + ξτ−1) (3.24)

with very high probability, which follows from Lemma 3.8, Lemma 3.11, (3.13) and
d−1/2 � Cξ .

Next, we use (3.24) to conclude the proof of (3.22). The only nonzero eigenvalue

of Eτ is
√

d(1 + O(1/d)), and from Proposition 3.12 and Remark 1.5 we have ‖Ĥ τ‖ �
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�(maxx∈V αx ) + O(1) with very high probability, so that Lemma A.7 and the assump-

tion (1.10) yield ‖Ĥ τ‖ � C

√
log N

d
with very high probability. Hence, by first order

perturbation theory (e.g. Weyl’s inequality), (1.10) and (3.24) imply that A/
√

d has one

eigenvalue bigger than
√

d − O(1) and all other eigenvalues are at most C

√
log N

d
. Since

λ is nontrivial, we conclude that λ � C

√
log N

d
. By the upper bound δ � (λ− 2)/2 and

the lower bound on d in (1.10), this concludes the proof of (3.22) and, thus, the one of
the spectral gap (3.19).

Next, from (3.19), and (3.24), we conclude the spectral gap for the full adjacency

matrix

spec
(
�τλ,δ(A/

√
d)�τλ,δ

)
⊂ R \

[
λ− δ + C(ξ + ξτ−1), λ + δ − C(ξ + ξτ−1)

]
. (3.25)

Using (3.25) we may conclude the proof. The eigenvalue-eigenvector equation (A/
√

d−
λ)w = 0 yields

�τλ,δw = −
(
�τλ,δ(A/

√
d)�τλ,δ − λ

)−1
�τλ,δ(A/

√
d)�τλ,δw . (3.26)

Assuming that δ > C(ξ + ξτ−1), from (3.25) we get

∥∥∥
(
�τλ,δ(A/

√
d)�τλ,δ − λ

)−1∥∥∥ �
1

δ − C(ξ + ξτ−1)
. (3.27)

Moreover, since �τλ,δ Ĥ τ�τλ,δ = 0 and Eτ�τλ,δ = 0, we deduce from (3.24) that

‖�τλ,δ(A/
√

d)�τλ,δ‖ � C(ξ + ξτ−1) . (3.28)

Plugging (3.27) and (3.28) into (3.26) yields

‖�τλ,δw‖ �
C(ξ + ξτ−1)

δ − C(ξ + ξτ−1)
∧ 1 �

2C(ξ + ξτ−1)

δ
,

since w is normalized. This concludes the proof if δ > C(ξ + ξτ−1) (after a renaming of
the constant C), and otherwise the claim is trivial.

Proposition 3.12 is also the main tool to prove Theorem 1.7.

Proof of Theorem 1.7. The proof uses Proposition 3.12, Lemma 3.8, and Lemma 3.11
for τ ∈ [1 + ξ1/2/3, 2]. Note that the lower bound 1 + ξ1/2/3 is smaller than the lower
bound 1+ξ1/2 imposed in these results, but their proofs hold verbatim also in this regime
of τ .

We set Eτ ..= χ τ (EA/
√

d)χ τ with χ τ from Definition 3.6. We now compare A/
√

d

and Ĥ τ + Eτ , as in the proof of Theorem 3.4, and use some estimates from its proof.
For any τ ∈ [1 + ξ1/2/3, 2], we have

spec(Ĥ τ + Eτ ) = {±�(αx )
.. x ∈ U} ∪ spec

(
�τ (H τ + Eτ )�τ

)
, (3.29)

since �τχ τ = 0. By first order perturbation theory and the choice τ = 2, we get from

(3.29), (3.20) and (3.24) that λ1(A/
√

d) = μ + O(ξ) =
√

d + O(1) and λ1(A/
√

d)

is well separated from the other eigenvalues of A/
√

d (see the proof of Theorem 3.4).
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Combining (3.29), (3.20), and (3.24), choosing τ = 1 + ξ1/2/3 as well as using C(ξ +
ξτ−1) � ξ1/2/3 for this choice of τ imply (1.12).

Moreover, we apply first order perturbation theory to (3.29) using (3.20) and (3.24),
and obtain

|λi+1(A/
√

d)−�(ασ(i))| + |λN−i+1(A/
√

d) +�(ασ(i))| � C(ξ + ξτ−1) (3.30)

with very high probability for all τ ∈ [1 + ξ1/2/3, 2] and all i ∈ [|U |] satisfying

2(τ − 1) + C(ξ + ξτ−1) < �(ασ(i))− 2. (3.31)

What remains is choosing τ ≡ τi , depending on i ∈ [|U |], such that the condition
(3.31) is satisfied and the error estimate from (3.30) transforms into the form of (1.11).
Both are achieved by setting

τ = 1 +
1

3

[
(�(ασ(i))− 2) ∧ 3

]
. (3.32)

Note that τ ∈ [1 + ξ1/2/3, 2] as σ(i) ∈ U . From�(ασ(i))− 2 � 3(τ − 1) due to (3.32)

and �(ασ(i))− 2 � ξ1/2 by the definition of U , we conclude that

�(ασ(i))− 2 �
5

2
(τ − 1) +

1

6
ξ1/2 � 2(τ − 1) + C(ξτ−1 + ξ),

where we used τ − 1 � 3ξτ−1 log d as τ − 1 � ξ1/2/3. This proves (3.31) and, thus,
(3.30) for any σ(i) ∈ U with the choice of τ from (3.32).

In order to show that the right-hand side of (3.30) is controlled by the one in (1.11),
we now distinguish the two cases, �(ασ(i)) − 2 � 3 and �(ασ(i)) − 2 > 3. In the
latter case, τ = 2 by (3.32) and (1.11) follows immediately from (3.30) as ξ1 � ξ . If
�(ασ(i))−2 � 3 then τ −1 = (�(ασ(i))−2)/3 and, thus, ξτ−1 = 3ξ�(ασ(i))−2. Hence,
(3.30) implies (1.11). This concludes the proof of Theorem 1.7.

3.3. Proof of Lemma 3.8, Proposition 3.9, and Lemma 3.11.

Proof of Lemma 3.8. To begin with, we reduce the problem to the adjacency matrices
by using the estimate (3.13). Hence, with very high probability,

√
d‖H − H τ‖ � ‖EA − χ τ (EA)χ τ‖ + ‖A − Aτ‖ � 2 + ‖ADτ ‖ ,

where ADτ is the adjacency matrix of the graph Dτ
..= G \ Gτ . Hence, since d−1/2 �

Cξτ−1 by d � 3 log N and the definition (1.9), it suffices to show that ‖ADτ ‖ �

Cξτ−1

√
d.

We know from Proposition 3.1 (iii) and (v) that with very high probability Dτ consists

of (possibly overlapping) stars4 around vertices x ∈ Vτ of central degree D
Dτ
x � Cdξ2

τ−1.
Moreover, with very high probability,

(i) any ball B2r⋆(x) around x ∈ Vτ has at most C cycles;

(ii) any ball B2r⋆(x) around x ∈ Vτ contains at most Cdξ2
τ−1 vertices in Vτ .

4 A star around a vertex x is a set of edges incident to x .
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Fig. 7. An illustration of a connected component of Dτ . Vertices of Vτ are drawn in white and the other
vertices in black. The ball B2r⋆ (x) around a chosen white vertex x is drawn in grey, where 2r⋆ = 4. The
illustrated component of Dτ has three cycles, two of which are in B2r⋆ (x). The blue and red cycles pass
through x . The purple edge is removed from the blue cycle, i.e. it is put into the graph Uτ . With very high
probability, the red cycle cannot appear, because it leaves the ball B2r⋆ (x) and therefore contains more white
vertices in B2r⋆ (x) than allowed by property (ii)

Claim (i) follows from [10, Corollary 5.6], the definition (1.8), and Lemma A.7. Claim
(ii) follows from [10, Lemma 7.3] and h((τ − 1)/2) ≍ (τ − 1)2 for 1 � τ � 2.

Let x ∈ Vτ . We claim that we can remove at most C edges of Dτ incident to x so
that no cycle passes through x . Indeed, if there were more than C cycles in Dτ passing
through x , then at least one such cycle would have to leave B2r⋆(x) (by (i)), which
would imply that B2r⋆(x) has at least r⋆ vertices in Vτ , which, by (ii), is impossible since

r⋆ � 2Cdξ2
τ−1 by τ � 1 + ξ1/2. See Fig. 7 for an illustration of Dτ .

Thus, we can remove a graph Uτ from Dτ such that Uτ has maximal degree C and
Dτ \ Uτ is a forest of maximal degree Cdξ2

τ−1 (by (ii)). The claim now follows from
Lemma A.4.

Proof of Proposition 3.9. We focus on the case σ = +; trivial modifications yield (3.14)
for σ = −. The basic strategy is to decompose (H τ − �(αx ))v

τ
+(x) into several error

terms that are estimated separately. A similar argument was applied in [10, Proposi-
tion 5.1] to the original graph G instead of G

τ , which however does not yield sharp
enough estimates to reach the optimal scale d ≫

√
log N (see Sect. 1.5).

We omit x from the notation in this proof and write ui , vτ+ and Sτi instead of ui (x),
vτ+(x) and Sτi (x). We define

sτi
..=

1Sτi

‖1Sτi
‖
, N τ

i (y)
..= |Sτ1 (y) ∩ Sτi | .

Note that (sτi )
2r⋆
i=0 form an orthonormal system. Defining the vectors

w2
..=

r⋆∑

i=2

ui√
d|Sτi |

∑

y∈Sτi−1

(
N τ

i (y)−
|Sτi |

|Sτi−1|

)
1y ,
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w3
..= u2

( √
|Sτ2 |√

d|Sτ1 |
− 1

)
sτ1 +

r⋆−1∑

i=2

⎡
⎣ui+1

(√
|Sτi+1|√
d|Sτi |

− 1

)
+ ui−1

⎛
⎝

√
|Sτi |

√
d|Sτi−1|

− 1

⎞
⎠
⎤
⎦ sτi ,

w4
..= ur⋆

(
1 −

1
√
αx

)
sτr⋆−1 + ur⋆−1

( √
|Sτr⋆ |√

d|Sτr⋆−1|
−

1
√
αx − 1

)
sτr⋆ + ur⋆

√
|Sτr⋆+1|
√

d|Sτr⋆ |
sτr⋆+1 , (3.33)

a straightforward computation using the definition of vτ+ yields

(H τ −�(αx ))v
τ
+ = w2 + w3 + w4. (3.34)

For a detailed proof of (3.34) in a similar setup, we refer the reader to [10, Lemma 5.2]
(note that in the analogous calculation of [10] the left-hand side of (3.34) is multiplied

by
√

d). The terms in (3.34) analogous to w0 and w1 in [10] vanish, respectively, because
the projection χ τ is included in (3.12) and because Gτ |Bτ2r⋆

is a tree by Proposition 3.1

(ii). The vector w4 from (3.33) differs from the one in [10] due to the special choice of
ur⋆ in (3.4).

We now complete the proof of (3.14) by showing that each term on the right-hand
side of (3.34) is bounded in norm by Cξ with very high probability. We start with w3 by
first proving the concentration bound

∣∣∣∣
|Sτi+1|
d|Sτi |

− 1

∣∣∣∣ = O

(√
log N

d

)
(3.35)

with very high probability, for i = 1, . . . , r⋆. To prove this, we use Proposition 3.1 (iv)
and (vi), as well as [10, Lemma 5.4], to obtain

|Sτi |
|Si |

= 1 −
|Si \ Sτi |

|Si |
� 1 − C

log N

(τ − 1)2d2
(3.36)

with very high probability, where we used that αx � 1, and the assumption [10, Eq.
(5.13)] is satisfied by the definition (1.8). Therefore, invoking [10, Lemma 5.4] in the
following expansion yields

|Sτi+1|
d|Sτi |

=
|Si+1|
d|Si |

|Si |
|Sτi |

|Sτi+1|
|Si+1|

=
(

1 + O

(√
log N

d

))(
1 + O

(
log N

d2(τ − 1)2

))
(3.37)

with very high probability. Hence, recalling the lower bound τ � 1 + ξ1/2, we obtain
(3.35).

We take the norm in the definition of w3, use the orthonormality of (sτi )
r⋆
i=0, and end

up with

‖w3‖2 �

⎡
⎢⎣
( √

|Sτ2 |√
d|Sτ1 |

− 1

)2

u2
2 + 2

r⋆−1∑

i=2

⎛
⎜⎝
(√

|Sτi+1|√
d|Sτi |

− 1

)2

u2
i+1 +

⎛
⎝

√
|Sτi |

√
d|Sτi−1|

− 1

⎞
⎠

2

u2
i−1

⎞
⎟⎠

⎤
⎥⎦ .

Consequently, (3.35) and
∑r⋆

i=0 u2
i = 1 yield the desired bound on ‖w3‖.

In order to estimate ‖w2‖, we use the definitions

Ni (y)
..= |S1(y) ∩ Si |, Yi

..=
1

|Sτi−1|
∑

y∈Sτi−1

(
Ni (y)− E[Ni (y)|Bi−1]

)2
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and the Pythagorean theorem to obtain

‖w2‖2 =
r⋆∑

i=2

u2
i

d|Sτi |
∑

y∈Sτi−1

(
N τ

i (y)−
|Sτi |

|Sτi−1|

)2

� 4

r⋆∑

i=2

u2
i

d|Sτi |
∑

y∈Sτi−1

[(
Ni (y)− E[Ni (y)|Bi−1]

)2
+
(
E[Ni (y)|Bi−1] − d

)2

+

(
d −

|Sτi |
|Sτi−1|

)2

+ (N τ
i (y)− Ni (y))

2

]

� 4 max
2�i�r⋆

|Sτi−1|
d|Sτi |

[
Yi + C log N +

(
max

y
D

G\Gτ
y

)2]
(3.38)

with very high probability. Here, in the last step, we used (3.35),
∑r⋆

i=0 u2
i = 1 and |d −

E[Ni (y)|Bi−1]| = d|Bi−1|/N � C with very high probability due to [10, Eq. (5.12b)]
and Lemma A.7.

Next, we claim that

Yi � C log N log d (3.39)

with very high probability, for i = 2, . . . , r⋆. The proof of (3.39) is based on a dyadic
decomposition analogous to the one used in the proof of [10, Eq. (5.26)]. We distinguish
two regimes and estimate

Yi � d +
1

|Sτi−1|
∑

y∈Sτi−1

1|Ni (y)−E[Ni (y)|Bi−1]|>d1/2 (Ni (y)− E[Ni (y)|Bi−1])2

� d +
1

|Sτi−1|

0∑

k=kmin

d2ek+1|N τ
i,k | (3.40)

with very high probability, where we introduced

kmin
..= ⌊− log d⌋ ,

N
τ
i,k

..=
{

y ∈ Sτi−1
.. d2ek <

(
Ni (y)− E[Ni (y)|Bi−1]

)2
� d2ek+1

}
.

In (3.40), we used that, with very high probability,
(
Ni (y)−E[Ni (y)|Bi−1]

)2
� d2

(
(τ−

1/2)2 ∨ 1
)

� d2e, because y ∈ Sτi−1 implies the conditions 0 � Ni (y) � Dy � τd

due to Proposition 3.1 (i) and d/2 � E[Ni (y)|Bi−1] � d with very high probability.

By Proposition 3.1 (iv), we have N τ
i,k ⊂ N

i−1
k , where N

i−1
k is defined as in the proof

of [10, Eq. (5.26)]. (Note that, in the notation of [10], there is a one-to-one mapping
between A(Bi−1) and Bi .) In this proof it is shown that, with very high probability,

|N i−1
k | � ℓk, ℓk

..=
C

d
(|Si−1| + log N )e−k .

Using (3.36) and (3.37), and then plugging the resulting bound into (3.40) concludes the
proof of (3.39).
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Thus, we obtain ‖w2‖ � Cξ with very high probability, by starting from (3.38) and
using (3.35), (3.39) and Proposition 3.1 (v) as well as the assumption 1 + ξ1/2 � τ � 2.

Finally, we estimate w4. Since αx � 2 and u0 � 1 we have that ur⋆ + ur⋆−1 �

3(αx − 1)−(r⋆−2)/2. The other coefficients of sτr⋆−1, sτr⋆ and sτr⋆+1 are bounded by C with
very high probability, due to αx � 2 and (3.35), respectively. Therefore, (3.7) implies
‖w4‖ � Cξ . This concludes the proof of Proposition 3.9.

Proof of Lemma 3.11. We have to estimate the norm of

H τ − Ĥ τ = �τ H τ�τ

−
∑

x∈V

∑

σ=±
σ�(αx )v

τ
σ (x)v

τ
σ (x)

∗ +�τ H τ�τ + (�τ H τ�τ )∗. (3.41)

Each x ∈ V satisfies the condition of Proposition 3.9 since ξ1/4 � C(log d)2/
√

log N

(see (3.8)). Hence, for any x ∈ V and σ = ±, Proposition 3.9 yields

H τvτσ (x) = σ�(αx )v
τ
σ (x) + eτσ (x) , supp eτσ (x) ⊂ Bτr⋆+1(x) , ‖eτσ (x)‖ � Cξ

with very high probability, where the second statement follows from the first together
with the definition (3.5) of vτσ (x) and Remark 3.7. By Proposition 3.1 (i), the balls Bτ2r⋆

(x)

and Bτ2r⋆
(y) are disjoint for x, y ∈ Vτ with x �= y. Hence, in this case, vτσ (x), eτσ (x) ⊥

vτ
σ ′(y), eτ

σ ′(y). For any a =
∑

x∈V

∑
σ=± ax,σvτσ (x), we obtain

�τ H τ�τa =
∑

x∈V

∑

σ=±
ax,σ�

τ H τvτσ (x) = �τ
∑

x∈V

∑

σ=±
ax,σ eτσ (x) .

Thus, with very high probability, ‖�τ H τ�τa‖2 �
∑

x∈V ‖
∑
σ=± ax,σ eτσ (x)‖2 �

4C2
∑

x∈V

∑
σ=± a2

x,σ ξ
2 = 4C2ξ2‖a‖2 by orthogonality. Therefore, ‖�τ H τ�τ‖ � Cξ

with very high probability. Similarly, the representation

(
�τ H τ�τ −

∑

x∈V

∑

σ=±
σ�(αx )v

τ
σ (x)v

τ
σ (x)

∗
)

a = �τ
∑

x∈V

∑

σ=±
ax,σ eτσ (x)

yields the desired estimate on the sum of the two first terms on the right-hand side of
(3.41).

3.4. Proof of Proposition 3.12. In this section we prove Proposition 3.12. Its proof relies
on two fundamental tools.

The first tool is a quadratic form estimate, which estimates H in terms of the diagonal
matrix of the vertex degrees. It is an improvement of [10, Proposition 6.1]. To state it,
for two Hermitian matrices X and Y we use the notation X � Y to mean that Y − X is
a nonnegative matrix, and |X | is the absolute value function applied to the matrix X .

Proposition 3.13. Let 4 � d � 3 log N. Then, with very high probability, we have

|H | � I + (1 + 2d−1/2)Q + C
log N

d2
∨ d−1/2,

where Q is the diagonal matrix with diagonal (αx )x∈[N ].



Delocalization Transition for Critical Erdős–Rényi Graphs 539

The second tool is a delocalization estimate for an eigenvector w of Ĥ τ associated
with an eigenvalue λ > 2. Essentially, it says that wx is small at any x ∈ Vτ unless
w happens to be the specific eigenvector vτ±(x) of Ĥ τ , which is by definition localized
around x . Thus, in any ball Bτ2r⋆

(x) around x ∈ Vτ , all eigenvectors except vτ±(x) are
locally delocalized in the sense that their magnitudes at x are small. Using that the balls
(Bτ2r⋆

(x))x∈Vτ are disjoint, this implies that eigenvectors of �τ H τ�τ have negligible
mass on the set V .

Proposition 3.14. Let d satisfy (1.10). If 1 + ξ1/2 � τ � 2 then the following holds with

very high probability. Let λ be an eigenvalue of Ĥ τ with λ > 2τ +Cξ and w = (wx )x∈[N ]
its corresponding eigenvector.

(i) If x ∈ V and vτ±(x) ⊥ w or if x ∈ Vτ \ V then

|wx |
‖w|Bτ2r⋆

(x)‖
�

λ2

(λ− 2τ − Cξ)2

(
2τ + Cξ

λ

)r⋆

.

(ii) Let w be normalized. If vτ±(x) ⊥ w for all x ∈ V then

∑

x∈Vτ

w2
x �

λ4

(λ− 2τ − Cξ)4

(
2τ + Cξ

λ

)2r⋆

.

Analogous results hold for λ < −2τ − Cξ .

We may now conclude the proof of Proposition 3.12.

Proof of Proposition 3.12. By Proposition 3.13, Lemma 3.11, and Lemma 3.8 we have

Ĥ τ � I + (1 + 2d−1/2)Q + C
log N

d2
∨ d−1/2 + ‖H − H τ‖ + ‖H τ − Ĥ τ‖

� I + (1 + 2d−1/2)Q + C(ξ + ξτ−1)

(3.42)

with very high probability, where we used
log N

d2 ∨ d−1/2 � (ξ + ξτ−1).

Arguing by contradiction, we assume that there exists an eigenvalue λ > 2τ + C′(ξ +
ξτ−1) of �τ H τ�τ for some C′ � 2C to be chosen later. By the lower bound in (1.10),
we may assume that C′ξ � 1. Thus, by the definition of Ĥ τ , there is an eigenvector w
of Ĥ τ corresponding to λ, which is orthogonal to vτ±(x) for all x ∈ V . From (3.42), we
conclude

λ = 〈w, Ĥ τw〉 � 1 + (1 + 2d−1/2)
∑

x /∈Vτ

w2
xτ

+(1 + 2d−1/2)
∑

x∈Vτ

w2
x max

y∈[N ]
αy + C(ξ + ξτ−1). (3.43)

It remains to estimate the two sums on right-hand side of (3.43).
Since w ⊥ vτ±(x) for all x ∈ V , we can apply Proposition 3.14 (ii). We find

2r⋆ log

(
2τ + Cξ

λ

)
� 2r⋆ log

(
2τ + Cξ

2τ + C′ξ

)
� −2r⋆

(C′ − C)ξ

2τ + C′ξ

� −
c(C′ − C)

3

√
log N ξ , (3.44)
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where in the last step we recalled the definition (1.8) and used that τ � 2 and C′ξ � 1.
Using the estimate

λ4

(λ− 2τ − Cξ)4
�

C

(C′ − C)4ξ4
,

combined with Proposition 3.14 (ii), (3.44) and Lemma A.7, yields

1

ξ

∑

x∈Vτ

w2
x max

y∈[N ]
αy �

C log N

(C′ − C)4ξ5
exp

(
−

c(C′ − C)

3

√
log N ξ

)

�
Cd5 log N

(C′ − C)4
exp

(
−

c(C′ − C)

3

log N

d
log d

)

�
Cd5 log N

(C′ − C)4

1

d8
� 1 ,

where the third step follows by choosing C′ large enough, depending on C.
Plugging this estimate into (3.43) and using

∑
x w

2
x � 1 to estimate the first sum

in (3.43), we obtain λ � 2τ + 2C(ξ + ξτ−1). This is a contradiction to the assumption
λ > 2τ + C′(ξ + ξτ−1). The proof of Proposition 3.12 is therefore complete.

Proof of Proposition 3.13. We only establish an upper bound on H . The proof of the
same upper bound on −H is identical and, therefore, omitted.

We introduce the matrices H(t) = (Hxy(t))x,y∈[N ] and M(t) = (δxymx (t))x,y∈[N ]
with entries

Hxy(t)
..=

t Hxy

t2 − H2
xy

, mx (t)
..= 1 +

∑

y

H2
xy

t2 − H2
xy

By the estimate on the spectral radius of the nonbacktracking matrix associated with
H in [15, Theorem 2.5] and the Ihara–Bass-type formula in [15, Lemma 4.1] we have,
with very high probability, det(M(t) − H(t)) �= 0 for all t � 1 + Cd−1/2. Because
(M(t) − H(t)) → I as t → ∞, the matrix M(t) − H(t) is positive definite for
large enough t . By continuity of the eigenvalues, we conclude that all eigenvalues of
M(t)− H(t) stay positive for t � 1 + Cd−1/2, and hence

H(t) � M(t) (3.45)

for all t � 1 + Cd−1/2 with very high probability. We now define the matrix � =
(�xy)x,y∈[N ] with

�xy
..=
{

Hxy(t)− t−1 Hxy if x �= y∑
y′ |Hxy′(t)− t−1 Hxy′ | if x = y .

It is easy to check that � is a nonnegative matrix. We also have

∑

y′
|Hxy′(t)− t−1 Hxy′ | �

∑

y′

|Hxy′ |3

t (t2 − H2
xy′)

�
2

t3d1/2

(
αx +

1

d

)
,
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where we used that |Hxy | � d−1/2 and
∑

y′ H2
xy′ � αx + d

N
by definition of H . We use

this to estimate the diagonal entries of � and obtain

0 � � � H(t)− t−1 H +
2

t3
√

d
Q +

2

t3d3/2
. (3.46)

On the other hand, for the diagonal matrix M(t), we have the trivial upper bound

M(t) � I + t−2 Q + C
log N

d2
(3.47)

sinceαx � C(log N )/d with very high probability due to Lemma A.7. Finally, combining
(3.45), (3.46) and (3.47) yields

t−1 H � I +

(
t−2 +

2

t3
√

d

)
Q + C

log N

d2

and Proposition 3.13 follows by choosing t = 1 + Cd−1/2.

What remains is the proof of Proposition 3.14. The underlying principle behind
the proof is the same as that of the Combes–Thomas estimate [25]: the Green function
((λ− Z)−1)i j of a local operator Z at a spectral parameter λ separated from the spectrum
of Z decays exponentially in the distance between i and j , at a rate inversely proportional
to the distance from λ to the spectrum of Z . Here local means that Zi j vanishes if the
distance between i and j is larger than 1. Since a graph is equipped with a natural notion
of distance and the adjacency matrix is a local operator, a Combes–Thomas estimate
would be applicable directly on the level of the graph, at least for the matrix H τ . For our
purposes, however, we need a radial version of a Combes–Thomas estimate, obtained
by first tridiagonalizing (a modification of) Ĥ τ around a vertex x ∈ Vτ (see Appendix
A.2). In this formulation, the indices i and j have the interpretation of radii around
the vertex x , and the notion of distance is simply that of N on the set of radii. Since
Z is tridiagonal, the locality of Z is trivial, although the matrix Ĥ τ (or its appropriate
modification) is not a local operator on the graph Gτ .

To ensure the separation of λ > 2τ + o(1) and the spectrum of Z , we cannot choose
Z to be the tridiagonalization of Ĥ τ , since λ is an eigenvalue of Ĥ τ . In fact, Z is the
tridiagonalization of a new matrix Ĥ τ,x , obtained by restricting Ĥ τ to the ball Bτ2r⋆

(x)

and possibly subtracting a suitably chosen rank-two matrix, which allows us to show
‖Ĥ τ,x‖ � 2τ + o(1). By the orthogonality assumption on w, we then find that the Green
function ((λ− Z)−1)ir⋆ , 0 � i < r⋆, and the eigenvector components in the radial basis
ui , 0 � i < r⋆, satisfy the same linear difference equation. The exponential decay of
((λ− Z)−1)ir⋆ in r⋆ − i then implies that, for each x ∈ Vτ , u2

0 � o(1/ log N )
∑r∗

i=0 u2
i .

Going back to the original vertex basis, this implies that w2
x � o(1/ log N )‖w|Bτ2r⋆

(x)‖2

for all x ∈ Vτ , from which Proposition 3.14 follows since the balls Bτ2r⋆
(x), x ∈ Vτ , are

disjoint.

Proof of Proposition 3.14. For a matrix M ∈ R
N×N and a set V ⊂ [N ], we use the

notation (M |V )xy
..= 1x,y∈V Mxy .

We begin with part (i). We first treat the case x ∈ V . To that end, we introduce the
matrix

Ĥ τ,x ..= Ĥ τ |Bτ2r⋆
(x) −�(αx )v

τ
+(x)v

τ
+(x)

∗ +�(αx )v
τ
−(x)v

τ
−(x)

∗ . (3.48)
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We claim that, with very high probability,

‖Ĥ τ,x‖ � 2τ + Cξ . (3.49)

To show (3.49), we begin by noting that, by Proposition 3.1 (i) and (ii), Gτ restricted
to Bτ2r⋆

(x) is a tree whose root x has αx d children and all other vertices have at most τd

children. Hence, Lemma A.5 yields
∥∥H τ |Bτ2r⋆

(x)

∥∥ �
√
τ�(αx/τ∨2). Using Lemma 3.11

we find

‖Ĥ τ |Bτ2r⋆
(x) − H τ |B2r⋆ (x)

‖ � Cξ (3.50)

with very high probability, and since vτ±(x) is an eigenvector of Ĥ τ |Bτ2r⋆
(x) with eigen-

value ±�(αx ), we conclude

‖Ĥ τ,x‖ �
√
τ�(αx/τ ∨ 2) + Cξ (3.51)

with very high probability. The estimate (3.51) is rough in the sense that the subtraction of
the two last terms of (3.48) is not needed for its validity (since�(αx ) �

√
τ�(αx/τ∨2)).

Nevertheless, it is sufficient to establish (3.49) in the following cases, which may be
considered degenerate.

If αx � 2τ then (3.51) immediately implies (3.49), since
√
τ � τ . Moreover, if

αx > 2τ and �(αx ) � 2
√
τ + Cξ , then (3.51) implies

‖Ĥ τ,x‖ �
√
τ�(αx/τ) + Cξ �

√
τ�(αx ) + Cξ � 2τ + 3Cξ ,

which is (3.49) after renaming the constant C.
Hence, to prove (3.49), it suffices to consider the case �(αx ) > 2

√
τ + Cξ . By

Proposition 3.1 (i) and (ii), Gτ restricted to Bτ2r⋆
(x)\{x} is a forest of maximal degree at

most τd. Lemma A.4 therefore yields ‖H τ |Bτ2r⋆
(x)\{x}‖ � 2

√
τ . Moreover, the adjacency

matrix of the star graph consisting of all edges of Gτ incident to x has precisely two
nonzero eigenvalues, ±

√
dαx . By first order perturbation theory, we therefore conclude

that H τ |Bτ2r⋆
(x) has at most one eigenvalue strictly larger than 2

√
τ and at most one

strictly smaller than −2
√
τ . Using (3.50) we conclude that Ĥ τ |Bτ2r⋆

(x) has at most one

eigenvalue strictly larger than 2
√
τ +Cξ and at most one strictly smaller than −2

√
τ−Cξ .

Since vτ+(x) (respectively vτ−(x)) is an eigenvector of Ĥ τ |Bτ2r⋆
(x) with eigenvalue�(αx )

(respectively −�(αx )), and since �(αx ) > 2
√
τ + Cξ , we conclude (3.49).

Next, let (gi )
r⋆
i=0 be the Gram–Schmidt orthonormalization of the vectors ((Ĥ τ,x )i

1x )
r⋆
i=0. We claim that

supp gi ⊂ Bτr⋆+i (x) . (3.52)

for i = 0, . . . , r⋆. The proof proceeds by induction. The base case for i = 0 holds
trivially. For the induction step, it suffices to prove for 0 � i < r⋆ that if supp gi ⊂
Bτr⋆+i (x) then

supp(Ĥ τ,x gi ) ⊂ Bτr⋆+i+1(x) (3.53)

To that end, we note that by Proposition 3.1 (i) we have Ĥ τ,x =
(
�τ H τ�τ

)
|Bτ2r⋆

(x).

Hence, by induction assumption, Proposition 3.1 (i), and Remark 3.7,

Ĥ τ,x gi =
(

I −
∑

σ=±
vτσ (x)v

τ
σ (x)

∗
)

H τ

(
I −

∑

σ=±
vτσ (x)v

τ
σ (x)

∗
)

gi ,
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and we conclude (3.53), as supp vτσ (x) ⊂ Bτr⋆(x).

Let Z = (Zi j )
r⋆
i, j=0, Zi j

..= 〈gi , Ĥ τ,x g j 〉, be the tridiagonal representation of Ĥ τ,x

up to radius r⋆ (see Appendix A.2 below). Owing to (3.49), we have

‖Z‖ � 2τ + Cξ. (3.54)

We set ui
..= 〈gi ,w〉 for any 0 � i � r⋆. Because w is an eigenvector of Ĥ τ that is

orthogonal to vτ±(x), for any i < r⋆, (3.52) implies

λui =
〈
gi ,
(
Ĥ τ −�(αx )v

τ
+(x)v

τ
+(x)

∗ +�(αx )v
τ
−(x)v

τ
−(x)

∗)w
〉

=
〈
Ĥ τ,x gi ,w

〉

= 〈Zi i gi + Zi i+1gi+1 + Zi i−1gi−1,w〉
= Zi i ui + Zi i+1ui+1 + Zi i−1ui−1

(3.55)

with the conventions u−1 = 0 and Z0,−1 = 0. Let G(λ) ..= (λ− Z)−1 be the resolvent
of Z at λ. Note that λ− Z is invertible since λ > ‖Z‖ by assumption and (3.54). Since(
(λ− Z)G(λ)

)
i r⋆

= 0 for i < r⋆, we find

λGir⋆(λ) = Zi i Gir⋆(λ) + Zi i+1Gi+1 r⋆(λ) + Zi i−1Gi−1 r⋆(λ).

Therefore (Gir⋆(λ))i�r⋆ and (ui )i�r⋆ satisfy the same linear recursive equation (cf.
(3.55)); solving them recursively from i = 0 to i = r⋆ yields

Gir⋆(λ)

Gr⋆r⋆(λ)
=

ui

ur⋆

(3.56)

for all i � r⋆. Moreover, as λ > ‖Z‖ by assumption and (3.54), we have the convergent
Neumann series G(λ) = 1

λ

∑
k�0(Z/λ)

k . Thus, the offdiagonal entries of the resolvent
satisfy

G0r⋆(λ) =
1

λ

∑

k�0

(
(Z/λ)k

)
0r⋆
.

Since Z is tridiagonal, we deduce that
(
(Z/λ)k

)
0r⋆

= 0 if k < r⋆, so that, by (3.54),

|G0r⋆(λ)| �

(
2τ + Cξ

λ

)r⋆ 1

λ− 2τ − Cξ
. (3.57)

On the other hand, for the diagonal entries of the resolvent, we get, by splitting the
summation over k into even and odd values,

Gr⋆r⋆(λ) =
1

λ

∑

k�0

(
(Z/λ)k

)
r⋆r⋆

=
1

λ

∑

k�0

(
(Z/λ)k(I + Z/λ)(Z/λ)k

)
r⋆r⋆

�
1

λ
(I + Z/λ)r⋆r⋆ �

1

λ

(
1 −

2τ + Cξ

λ

)
, (3.58)

where in the thid step we discarded the terms k > 0 to obtain a lower bound using that
I + Z/λ � 0 by (3.54), and in the last step we used (3.54). Hence, the definition of ui

and (3.52) imply

|wx |
‖w|Bτ2r⋆

(x)‖
�

|u0|(∑r⋆
i=0 u2

i

)1/2 �
|u0|
|ur⋆ |

=
|G0r⋆(λ)|
Gr⋆r⋆(λ)

�
λ2

(λ− 2τ − Cξ)2

(
2τ + Cξ

λ

)r⋆

.
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Here, we used (3.56) in third step and (3.57) as well as (3.58) in the last step. This
concludes the proof of (i) for x ∈ V .

In the case x ∈ Vτ \ V , we set Ĥ τ,x ..= Ĥ τ |Bτ2r⋆
(x). We claim that (3.49) holds. To

see that, we use Proposition 3.1 (i) and (ii) as well as Lemma A.5 with p = d(2 + ξ1/4)

and q = dτ to obtain

‖H τ |Bτ2r⋆
(x)‖ �

√
τ�((2 + ξ1/4)/τ ∨ 2) � 2τ.

Here, the last step is trivial if τ � 1 + ξ1/4/2 and, if τ ∈ [1 + ξ1/2, 1 + ξ1/4/2], we used
that f (τ ) ..=

√
τ�((2 + ξ1/4)/τ)/(2τ) is monotonically decreasing on this interval and

f (1 + ξ1/2) � 1, as can be seen by an explicit analysis of the function f . Now we may
take over the previous argument verbatim to prove (i) for x ∈ Vτ \ V .

Finally, we prove (ii). By (i) we have

∑

x∈Vτ

w2
x �

∑

x∈Vτ

‖w|Bτ2r⋆
(x)‖2 λ4

(λ− 2τ − Cξ)4

(
2τ + Cξ

λ

)2r⋆

�
λ4

(λ− 2τ − Cξ)4

(
2τ + Cξ

λ

)2r⋆

,

where we used that the the balls {Bτ2r⋆
(x) .. x ∈ Vτ } are disjoint, which implies 1 =

‖w‖2 �
∑

x∈Vτ
‖w|Bτ2r⋆

(x)‖2.

3.5. Proof of Proposition 3.1. We conclude this section with the proof of Proposition
3.1.

Proof of Proposition 3.1. Parts (i)–(v) follow immediately from parts (i)–(iv) and (vi)
of [10, Lemma 7.2]. To see this, we remark that the function h from [10] satisfies
h((τ − 1)/2) ≍ (τ − 1)2 for 1 < τ � 2. Moreover, by Lemma A.7 and the upper
bound on d, we have maxx Dx � C log N with very high probability. Hence, choosing
the universal constant c small enough in (1.8) and recalling the lower bound on τ −1, in
the notation of [10, Equations (5.1) and (7.2)] we obtain for any x ∈ Vτ the inequality
2r⋆ � ( 1

4
rx ) ∧ ( 1

2
r(τ )) with very high probability. This yields parts (i)–(v).

It remains to prove (vi), which is the content of the rest of this proof. From now on
we systematically omit the argument x from our notation. Part (v) already implies the
bound

|S1 \ Sτ1 | = D
G\Gτ
x � C

log N

(τ − 1)2d
(3.59)

with very high probability, which is (3.2) for i = 1.
From [10, Eq. (7.13)] we find

|Si \ Sτi | �
∑

y∈S1\Sτ1

|Si−1(y)| .

(As a guide to the reader, this estimate follows from the construction of Gτ given in [10,
Proof of Lemma 7.2], which ensures that if a vertex z ∈ Si is not in Sτi then any path in
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G of length i connecting z to x is cut in Gτ at its edge incident to x .) Hence, in order to
show (vi) for i � 2, it suffices to prove

∑

y∈S1\Sτ1

|Si−1(y)| � C
log N

(τ − 1)2
d i−2 (3.60)

with very high probability, for all 2 � i � 2r⋆.
We start with the case i = 2. We shall use the relation

∑

y∈S1\Sτ1

|S1(y)| =
∑

y∈S1\Sτ1

N2(y) +
∑

y∈S1\Sτ1

|S1(y) ∩ S1| + |S1 \ Sτ1 | , (3.61)

where, for y ∈ S1, we introduced N2(y)
..= |S1(y)∩S2|. Note that N2(y) is the number of

vertices in S2 connected to x via a path of minimal length passing through y. The identity
(3.61) is a direct consequence of |S1(y)| = |S1(y) ∩ S2| + |S1(y) ∩ S1| + |S1(y) ∩ S0|
using the definition of N2 and |S1(y) ∩ S0| = |S1(y) ∩ {x}| = 1.

The second and third terms of (3.61) are smaller than the right-hand side of (3.60)
for i = 2 due to [10, Eq. (5.23)] and (3.59), respectively. Hence, it remains to estimate
the first term on the right-hand side of (3.61) in order to prove (3.60) for i = 2.

To that end, we condition on the ball B1 and abbreviate PB1(·) ..= P( · | B1). Since

N2(y) =
∑

z∈[N ]\B1

Ayz , (3.62)

we find that conditioned on B1 the random variables (N2(y))y∈S1 are independent

Binom(N − |B1|, d/N ) random variables. We abbreviate Ŵ ..= log N

(τ−1)2
. For given C, C′,

we set C′′ ..= C′ + 2C and estimate

PB1

( ∑

y∈S1\Sτ1

N2(y) � C
′′Ŵ

)

� PB1

( ∑

y∈S1\Sτ1

1N2(y)�2d N2(y) � (C′′ − 2C)Ŵ

)

+ PB1

( ∑

y∈S1\Sτ1

1N2(y)<2d N2(y) � 2CŴ

)

� PB1

(∑

y∈S1

12d�N2(y)�N 1/4 N2(y) � C
′Ŵ

)

+
∑

y∈S1

PB1

(
N2(y) � N 1/4

)
+ PB1

(
|S1 \ Sτ1 | � CŴd−1

)
. (3.63)

In order to estimate the first term on the right-hand side of (3.63), we shall prove that if
|B1| � N 1/4 then

EB1

[
exp
(
12d�N2(y)�N 1/4 N2(y)t

)]
� 2 (3.64)

for all y ∈ S1 and t � 1/8. To that end, we estimate

EB1

[
exp
(
12d�N2(y)�N 1/4 N2(y)t

)]
� 1 + EB1

[
12d�N2(y)�N 1/4 eN2(y)t

]
.
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With Poisson approximation, Lemma A.6 below, we obtain (assuming that 2d is an
integer to simplify notation)

EB1

[
12d�N2(y)�N 1/4 eN2(y)t

]
=

∑

2d�k�N 1/4

(d − d|B1|/N )ketk

k!
e−d+d|B1|/N

(
1 + O(N−1/2)

)

�
∑

k�2d

dketk

k!
e−d
(
1 + O(N−1/2)

)

=
d2d e2td

(2d)!
e−d

∑

i�0

d i et i

∏2d+i
j=2d+1 j

(
1 + O(N−1/2)

)

�
d2d e2td

(2d)!
e−d

∑

i�0

2d i et i

(2d)i
=

d2d e2td

(2d)!
e−d 2

(1 − et/2)
.

By Stirling’s approximation we get

log

(
d2de2td

(2d)!
e−d

)
= d (2t − 2 log 2 + 1)−

1

2
log(4πd) + o(1).

The term in the parentheses on the right-hand side is negative for t � 1/8, and hence

EB1

[
12d�N2(y)�N 1/4 eN2(y)t

]
� 1

for large enough d, which gives (3.64). Since the family (N2(y))y∈S1 is independent
conditioned on B1, we can now use Chebyshev’s inequality to obtain, for 0 � t � 1/8,

PB1

(∑

y∈S1

12d�N2(y)�N 1/4 N2(y) � C
′Ŵ

)
�

maxy∈S1

(
EB1 exp

(
12d�N2(y)�N 1/4 N2(y)t

))|S1|

etC′Ŵ

� exp

(
|S1| log 2 − C

′ t

(τ − 1)2
log N

)
.

Now we set t = 1/8, recall the bound τ � 2, plug this estimate back into (3.63), and take
the expectation. We use Lemma A.7 to estimate |S1|, which in particular implies that
|B1| � N 1/4 with very high probability; this concludes the estimate of the expectation of
the first term of (3.63) by choosing C′ large enough. Next, the expectation of the second
term is easily estimated by Lemma A.7 since N2(y) has law Binom(N − |B1|, d/N )

when conditioned on B1. Finally, the expectation of the last term of (3.63) is estimated
by (3.59) by choosing C large enough. This concludes the proof of (3.60) for i = 2.

We now prove (3.60) for i + 1 with i � 2 by induction. Using [10, Lemma 5.4 (ii)]
combined with Lemma A.7, we deduce that

|Si (y)| � d|Si−1(y)| + C
√

d|Si−1(y)| log N

with very high probability for all y ∈ S1 \ Sτ1 and all i � r⋆. Therefore, using the
induction assumption, i.e. (3.60) for i , we obtain

∑

y∈S1\Sτ1

|Si (y)| � C
log N

(τ − 1)2
d i−1 + C

√
d log N

∑

y∈S1\Sτ1

√
|Si−1(y)|
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� C
log N

(τ − 1)2
d i−1 + C

√
d log N |S1 \ Sτ1 |

( ∑

y∈S1\Sτ1

|Si−1(y)|
|S1 \ Sτ1 |

)1/2

� C
log N

(τ − 1)2
d i−1 + C

√
d log N

log N

d(τ − 1)2

√
d i−1

with very high probability, where we used the concavity of
√

· in the second step,

(3.59) and (3.60) for i in the last step. Since
√

d i log N � d i/2+1 � d i for i � 2 and

the sequence (d1−i/2)i∈N is summable, this proves (3.60) for i + 1 with a constant C

independent of i . This concludes the proof of Proposition 3.1.

4. The Delocalized Phase

In this section we prove Theorem 1.8. In fact, we state and prove a more general result,
Theorem 4.2 below, which immediately implies Theorem 1.8.

4.1. Local law. Theorem 4.2 is a local law for a general class of sparse random matrices
of the form

M = H + f ee∗ , (4.1)

where f � 0 and e ..= N−1/2(1, 1, . . . , 1)∗. Here H is a Hermitian random matrix
satisfying the following definition.

Definition 4.1. Let 0 < d < N . A sparse matrix is a complex Hermitian N × N matrix
H = H∗ ∈ C

N×N whose entries Hi j satisfy the following conditions.

(i) The upper-triangular entries (Hi j
.. 1 � i � j � N ) are independent.

(ii) We have EHi j = 0 and E|Hi j |2 = (1 + O(δi j ))/N for all i, j .

(iii) Almost surely, |Hi j | � K d−1/2 for all i, j and some constant K .

It is easy to check that the set of matrices M defined as in (4.1) and Definition 4.1
contains those from Theorem 1.8 (see the proof of Theorem 1.8 below). From now on
we suppose that K = 1 to simplify notation.

The local law for the matrix M established in Theorem 4.2 below provides control
of the entries of the Green function

G(z) ..=
(
M − z

)−1
(4.2)

for z in the spectral domain

S ≡ Sκ,L ,N = Sκ × [N−1+κ , L] (4.3)

for some constant L � 1. We also define the Stieltjes transform g of the empirical

spectral measure of M given by

g(z) ..=
1

N

N∑

i=1

1

λi (M)− z
=

1

N
Tr G(z) . (4.4)
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The limiting behaviour of G and g is governed by the following deterministic quan-
tities. Denote by C+

..= {z ∈ C
.. Im z > 0} the complex upper half-plane. For z ∈ C+

we define m(z) as the Stieltjes transform of the semicircle law μ1,

m(z) ..=
∫
μ1(du)

u − z
, μ1(du) ..=

1

2π

√
(4 − u2)+ du . (4.5)

An elementary argument shows that m(z) can be characterized as the unique solution m

in C+ of the equation

1

m(z)
= −z − m(z) . (4.6)

For α � 0 and z ∈ C+ we define

mα(z)
..= −

1

z + αm(z)
, (4.7)

so that m1 = m by (4.6). In Lemma A.3 below we show that mα is bounded in the
domain S, with a bound depending only on κ .

For x ∈ [N ] we denote the square Euclidean norm of the x th row of H by

βx
..=
∑

y

|Hxy |2 , (4.8)

which should be thought of as the normalized degree of x ; see Remark 4.3 below.

Theorem 4.2 (Local law for M). Fix 0 < κ � 1/2 and L � 1. Let H be a sparse

matrix as in Definition 4.1, define M as in (4.1) for some 0 � f � N κ/6, and define G

and g as in (4.2) and (4.4) respectively. Then with very high probability, for d satisfying

(1.18), for all z ∈ S we have

max
x,y∈[N ]

∣∣Gxy(z)− δxymβx (z)
∣∣ � C

(
log N

d2

)1/3

, (4.9)

∣∣g(z)− m(z)
∣∣ � C

(
log N

d2

)1/3

. (4.10)

Proof of Theorem 1.8. Under the assumptions of Theorem 1.8 we find that M ..= A/
√

d

is of the form (4.1) for some H and f satisfying the assumptions of Theorem 4.2. Now
Theorem 1.8 is a well-known consequence of Theorem 4.2 and the boundedness of
mα(z) in (A.4) below. For the reader’s convenience, we give the short proof. Denoting
the eigenvalues of M by (λi (M))i∈[N ] and the associated eigenvectors by (wi (M))i∈[N ],
setting z = λ+iηwith η = N−1+κ , by (4.9) and (A.4) we have with very high probability

C � Im Gxx (z) =
∑

i∈[N ]

η|〈1x ,wi (M)〉|2

η2 + (λ− λi (M))2
�

1

η
|〈1x ,w〉|2 ,

where in the last step we omitted all terms except i satisfying λi (M) = λ. The claim
follows by renaming κ → κ/2. (Here we used that Theorem 4.2 holds also for random
z ∈ S, as follows form a standard net argument; see e.g. [16, Remark 2.7].)
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Remark 4.3 (Relation between αx and βx ). In the special case M = d−1/2 A with A

the adjacency matrix of G(N , d/N ), we have

βx =
1

d

∑

y

(
Axy −

d

N

)2

= αx + O

(
d(1 + αx )

N

)
= αx + O

(
d + log N

N

)

with very high probability, by Lemma A.7.

By definition, mα(z) ∈ C+ for z ∈ C+, i.e. mα is a Nevanlinna function, and
limz→∞ zmα(z) = −1. By the integral representation theorem for Nevanlinna func-
tions, we conclude that mα is the Stieltjes transform of a Borel probability measure μα
on R,

mα(z) =
∫
μα(du)

u − z
. (4.11)

Theorem 4.2 implies that the spectral measure of M at a vertex x is approximately μβx

with very high probability.
Inverting the Stieltjes transform (4.11) and using the definitions (4.5) and (4.7), we

find after a short calculation

μα(du) = gα(u) du + hαδsα (du) + hαδ−sα (du) , (4.12)

where

gα(u)
..=
α1|u|<2

2π

√
4 − u2

(1 − α)u2 + α2
, hα

..= 1α>2
α − 2

2α − 2
+
1α=0

2
, sα

..= 1α>2�(α) .

The family (μα)α�0 contains the semicircle law (α = 1), the Kesten-McKay law of
parameter d (α = d/(d − 1)), and the arcsine law (α = 2). For rational α = p/q, the
measure μp/q can be interpreted as the spectral measure at the root of the infinite rooted
(p, q)-regular tree, whose root has p children and all other vertices have q children. We
refer to Appendix A.2 for more details. See Fig. 8 for an illustration of the measure μα .

Remark 4.4. Using a standard application the Helffer-Sjöstrand formula (see e.g. [16,
Section 8 and Appendix C]), we deduce from Theorem 4.2 the following local law for
the spectral measure. Denote by ̺x the spectral measure of M at vertex x . Under the
assumptions of Theorem 4.2, with very high probability, for any inverval I ⊂ Sκ , we
have

̺x (I ) = μβx (I ) + O

(
|I |
(

log N

d2

)1/3

+ N κ−1

)
.

The error is smaller than the left-hand side provided that |I | � CN κ−1.

The remainder of this section is devoted to the proof of Theorem 4.2. For the rest of this
section, we assume that M is as in Theorem 4.2. To simplify notation, we consistently
omit the z-dependence from our notation in quantities that depend on z ∈ S. Unless
mentioned otherwise, from now on all statements are uniform in z ∈ S.

For the proof of Theorem 4.2, it will be convenient to single out the generic constant
C from (1.18) by introducing a new constant D and replacing (1.18) with

D
√

log N � d � (log N )3/2 . (4.13)
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Fig. 8. An illustration of the probability measure μα for various values of α. For α > 2, μα has two atoms
which we draw using vertical lines. The measureμα is the semicircle law for α = 1, the arcsine law for α = 2,
and the Kesten-McKay law with d = α

α−1 for 1 < α < 2. Note that the density of μα is bounded in Sκ ,
uniformly in α. The divergence of the density near 0 is caused by values of α close to 0, and the divergence
of the density near ±2 by values of α close to 2

Fig. 9. The dependency graph of the various quantities appearing in the proof of Theorem 4.2. An arrow from
x to y means that y is chosen as a function of x . The independent parameters, κ and ν, are highlighted in blue

Our proof will always assume that C ≡ Cν and D ≡ Dν are large enough, and the
constant C in (1.18) can be taken to be C ∨D. For the rest of this section we assume that
d satisfies (4.13) for some large enough D, depending on κ and ν. To guide the reader
through the proof, in Fig. 9 we include a diagram of the dependencies of the various
quantities appearing throughout this section.

4.2. Typical vertices. We start by introducing the key tool in the proof of Theorem 4.2, a
decomposition of vertices into typical vertices and the complementary atypical vertices.
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Heuristically, a typical vertex x has close to d neighbours and the spectral measure of
M at x is well approximated by the semicircle law. In fact, in order to be applicable to
the proof of Proposition 4.18 below, the notion of a typical vertex is somewhat more
complicated, and when counting the number of neighbours of a vertex x we also need
to weight the neighbours with diagonal entries of a Green function, so that the notion
of typical vertex also depends on the spectral parameter z, which in this subsection we
allow to be any complex number z with Im z � N−1+κ . This notion is defined precisely
using the parameters �x and �x from (4.18) below. The main result of this subsection
is Proposition 4.8 below, which states, in the language of graphs when M = d−1/2 A

with A the adjacency matrix of G(N , d/N ), that most vertices are typical and most
neighbours of any vertex are typical. To state it, we introduce some notation.

Definition 4.5. For any subset T ⊂ [N ], we define the minor M (T ) with indices in T as
the (N − |T |)× (N − |T |)-matrix

M (T ) ..= (Mxy)x,y∈[N ]\T . (4.14)

If T consists only of one or two elements, T = {x} or T = {x, y}, then we abbreviate
M (x) and M (xy) for M ({x}) and M ({x,y}). We also abbreviate M (T x) for M (T ∪{x}). The
Green function of M (T ) is denoted by

G(T )(z) ..= (M (T ) − z)−1. (4.15)

We use the notation

(T )∑

x

..=
∑

x∈[N ]\T

. (4.16)

Definition 4.6 (Typical vertices). Let a > 0 be a constant, and define the set of typical

vertices

Ta
..= {x ∈ [N ] .. |�x | ∨ |�x | � ϕa} , ϕa

..= a

(
log N

d2

)1/3

, (4.17)

where

�x
..=

(x)∑

y

(
|Hxy |2 −

1

N

)
, �x

..=
(x)∑

y

(
|Hxy |2 −

1

N

)
G(x)

yy . (4.18)

Note that this notion depends on the spectral parameter z, i.e. Ta ≡ Ta(z). The
constant a will depend only on ν and κ . It will be fixed in (4.23) below. The constant
D � a3/2 from (4.13) is always chosen large enough so that ϕa � 1.

The following proposition holds on the event {θ = 1}, where we introduce the
indicator function

θ ..= 1maxx,y |Gxy |�Ŵ (4.19)

depending on some deterministic constant Ŵ � 1. In (4.40) below, we shall choose a
constant Ŵ ≡ Ŵκ , depending only on κ , such that the condition θ = 1 can be justified
by a bootstrapping argument along the proof of Theorem 4.2 in Sect. 4.3 below.

Throughout the sequel we use the following generalization of Definition 2.1.
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Definition 4.7. An event � holds with very high probability on an event � if for all
ν > 0 there exists C > 0 such that P(� ∩�) � P(�)− CN−ν for all N ∈ N.

We now state the main result of this subsection.

Proposition 4.8. There are constants 0 < q � 1, depending only on Ŵ, and a > 0,

depending only on ν and q, such that, on the event {θ = 1}, the following holds with

very high probability.

(i) Most vertices are typical:

|T c
a | � exp(qϕ2

ad) + N exp(−2qϕ2
ad).

(ii) Most neighbours of any vertex are typical:

(x)∑

y∈T c
a

|Hxy |2 � Cϕa + Cd4 exp(−qϕ2
ad)

uniformly for x ∈ [N ].
For the interpretation of Proposition 4.8 (ii), one should think of the motivating

example M = d−1/2 A, for which d
∑(x)

y∈T c
a
|Hxy |2 is the number of atypical neighbours

of x , up to an error term O
( d2+d log N

N

)
by Remark 4.3.

The remainder of Sect. 4.2 is devoted to the proof of Proposition 4.8. We need the
following version of Ta defined in terms of H (T ) instead of H .

Definition 4.9. For any x ∈ [N ] and T ⊂ [N ], we define

�(T )x
..=

(T x)∑

y

(
|Hxy |2 −

1

N

)
, �(T )x

..=
(T x)∑

y

(
|Hxy |2 −

1

N

)
G(T x)

yy

and

T
(T )

a
..= {x ∈ [N ] \ T .. |�(T )x | ∨ |�(T )x | � ϕa} .

Note that �
(∅)
x = �x and �

(∅)
x = �x with the definitions from (4.18), and hence

T
(∅)

a = Ta. The proof of Proposition 4.8 relies on the two following lemmas.

Lemma 4.10. There are constants 0 < q � 1, depending only on Ŵ, and a > 0,

depending only on ν and q, such that, for any deterministic X ⊂ [N ], the following

holds with very high probability on the event {θ = 1}.
(i) |X ∩ T c

a/2| � exp(qϕ2
ad) + |X | exp(−2qϕ2

ad).

(ii) If |X | � exp(2qϕ2
ad) then |X ∩ T c

a/2| � ϕad.

For any deterministic x ∈ [N ], the same estimates hold for
(
T
(x)

a/2

)c
instead of T c

a/2 and

a random set X ⊂ [N ] \ {x} that is independent of H (x).

Lemma 4.11. With very high probability, for any constant a > 0 we have

θ |�y −�(x)y | � ϕa/2, θ |�y −�(x)y | � ϕa/2

for all x, y ∈ [N ].
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Before proving Lemmas 4.10 and 4.11, we use them to establish Proposition 4.8.

Proof of Proposition 4.8. For (i), we choose X = [N ] in Lemma 4.10 (i), using that
Ta/2 ⊂ Ta.

We now turn to the proof of (ii). By Lemma 4.11, on the event {θ = 1} we have

T c
a ⊂

(
T
(x)

a/2

)c
with very high probability and hence

θ

(x)∑

y∈T c
a

|Hxy |2 � θ

(x)∑

y∈(T (x)
a/2 )

c

|Hxy |2

with very high probability. Since |Hxy |2 � 1/d almost surely, we obtain the decompo-
sition

(x)∑

y∈(T (x)
a/2 )

c

|Hxy |2 �

log N∑

k=0

(x)∑

y∈(T (x)
a/2 )

c

|Hxy |21d−k−2�|Hxy |2�d−k−1 +
1

N

�

log N∑

k=0

(x)∑

y∈(T (x)
a/2 )

c

d−k−1
1|Hxy |2�d−k−2 +

1

N

=
log N∑

k=0

d−k−1|Xk ∩ (T (x)
a/2)

c| +
1

N
,

(4.20)

where we defined

Xk
..=
{

y �= x .. |Hxy |2 � d−k−2
}
.

Since
∑(x)

y |Hxy |2 � Cd with very high probability by Definition 4.1 and Bennett’s
inequality, we conclude that

|Xk | � Cdk+3 (4.21)

with very high probability.

We shall apply Lemma 4.10 to the sets X = Xk and (T
(x)

a/2)
c. To that end, note that

Xk ⊂ [N ]\{x} is a measurable function of the family (Hxy)y∈[N ], and hence independent

of H (x). Thus, we may apply Lemma 4.10.

We define K ..= max
{
k � 0 .. Cdk+3 � e2qϕ2

ad
}

and decompose the sum on the
right-hand side of (4.20) into

log N∑

k=0

d−k−1|Xk ∩
(
T
(x)

a/2

)c| =
K∑

k=0

d−k−1|Xk ∩
(
T
(x)

a/2

)c| +

log N∑

k=K +1

d−k−1|Xk ∩
(
T
(x)

a/2

)c|

�

K∑

k=0

d−k−1ϕad +

log N∑

k=K +1

d−k−1
(
eqϕ2

ad + Cdk+3e−2qϕ2
ad
)

� 2ϕa + Cd2e−qϕ2
ad log N

with very high probability. Here, we used Lemma 4.10 (ii) to estimate the summands if
k � K and Lemma 4.10 (i) and (4.21) for the other summands. Since log N � d2, this
concludes the proof of (ii).
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The rest of this subsection is devoted to the proofs of Lemmas 4.10 and 4.11. Let θ
be defined as in (4.19) for some constant Ŵ � 1. For any subset T ⊂ [N ], we define the
indicator function

θ (T ) ..= 1
maxa,b/∈T |G(T )

ab |�2Ŵ
.

Lemma 4.10 is a direct consequence of the following two lemmas.
The first one, Lemma 4.12, is mainly a decoupling argument for the random variables

(�x )x∈[N ]. Indeed, the probability that any fixed vertex x is atypical is only small, o(1),
and not very small, N−ν ; see (4.31) below. If the events of different vertices being atypical
were independent, we could deduce that the probability that a sufficiently large set of
vertices are atypical is very small. However, these events are not independent. The most

serious breach of independence arises from the Green function G
(x)
yy in the definition of

�x . In order to make this argument work, we have to replace the parameters�x and�x

with their decoupled versions �
(T )
x and �

(T )
x from Definition 4.9. To that end, we have

to estimate the error involved, |�x − �
(T )
x | and |�x − �

(T )
x |. Unfortunately the error

bound on the latter is proportional to βx (see (4.32)), which is not affordable for vertices
of large degree. The solution to this issue involves the observation that if βx is too large
then the vertex is atypical by the condition on�x , which allows us to disregard the size
of �x . The details are given in the proof of Lemma 4.12 below.

The second one, Lemma 4.13, gives a priori bounds on the entries of the Green
function G(T ), which shows that if the entries of G are bounded then so are those of
G(T ) for |T | = o(d). For T of fixed size, this fact is a standard application of the
resolvent identities from Lemma A.24. For our purposes, it is crucial that T can have
size up to o(d), and such a quantitative estimate requires slightly more care.

Lemma 4.12. There is a constant 0 < q � 1, depending only on Ŵ, such that, for any

ν > 0, there is C > 0 such that the following holds for any fixed a > 0. If x /∈ T ⊂ [N ]
are deterministic with |T | � ϕad/C then

P
(
T ⊂ T

c
a/2, θ = 1

)
� e−4qϕ2

ad|T | + CN−ν, (4.22a)

P
(
T ⊂

(
T
(x)

a/2

)c
, θ (x) = 1

)
� e−4qϕ2

ad|T | + CN−ν . (4.22b)

Lemma 4.13. For any subset T ⊂ [N ] satisfying |T | � d
CŴ2 we have θ � θ (T ) with

very high probability.

Before proving Lemma 4.12 and Lemma 4.13, we use them to show Lemma 4.10.

Proof of Lemma 4.10. Throughout the proof we abbreviate Pθ (�)
..= P(� ∩ {θ = 1}).

Let C be the constant from Lemma 4.12, and set

a ..=
(

Cν

4q

)1/3

. (4.23)

For the proof of (ii), we choose k = ϕad/C and estimate

Pθ (|X ∩ T
c

a/2| � k) �
∑

Y⊂X :|Y |=k

Pθ (Y ⊂ T
c

a/2) �

(
|X |
k

)(
e−4qϕ2

adk + CN−ν
)

�
(
|X |e−4qϕ2

ad
)k

+C|X |k N−ν � e−2qϕ2
adk +Ce2qϕ2

adk N−ν
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= N−2qa3/C +CN 2qa3/C−ν .

where in the second step we used (4.22a). Thus, by our choice of a, we have Pθ (|X ∩
T c

a/2| � k) � (C + 1)N−ν/2, from which (ii) follows after renaming ν and C.

To prove (i) we estimate, for t > 0 and l ∈ N,

Pθ (|X ∩ T
c

a/2| � t) �
1

t l
E

(∑

x∈X

1x∈T c
a/2
θ

)l

=
1

t l

∑

x1,...,xl∈X

Pθ (x1 ∈ T
c

a/2, . . . , xl ∈ T
c

a/2) .

Choosing l = ϕad/C, regrouping the summation according to the partition of coinci-
dences, and using Lemma 4.12 yield

Pθ (|X ∩ T
c

a/2| � t) �
1

t l

∑

π∈Pl

|X ||π |(e−4qϕ2
ad|π | + CN−ν)

�
1

t l

l∑

k=0

(
l

k

)
ll−k |X |k

(
e−4qϕ2

adk + CN−ν) =
(l + |X |e−4qϕ2

ad)l + CN−ν(l + |X |)l

t l
.

Here, Pl denotes the set of partitions of [l], and we denote by k = |π | the number of
blocks in the partition π ∈ Pl . We also used that the number of partitions of l elements

consisting of k blocks is bounded by
(

l
k

)
ll−k . The last step follows from the binomial

theorem. Therefore, using l = ϕad/C and choosing t = eqϕ2
ad + |X |e−2qϕ2

ad as well as
C and ν sufficiently large imply the bound in Lemma 4.10 (i) with very high probability,
after renaming C and ν. Here we used (4.13).

To obtain the same statements for T
(x)

a/2 instead of Ta/2, we estimate

Pθ

(
|X ∩ (T (x)

a/2)
c| � t

)
�E

[
P

(
|X ∩ (T (x)

a/2)
c|� t, θ (x)=1

∣∣∣X
)]

+P
(
θ (x)=0, θ=1

)
.

For both parts, (i) and (ii), the conditional probability P
(
|X ∩ (T (x)

a/2)
c| � t, θ (x) = 1

∣∣X
)

can be bounded as before using (4.22b) instead of (4.22a) since, by assumption on X ,

the set T
(x)

a/2 and the indicator function θ (x) are independent of X . The smallness of

P(θ (x) = 0, θ = 1) � P(θ (x) < θ) is a consequence of Lemma 4.13. This concludes
the proof of Lemma 4.10.

The rest of this subsection is devoted to the proofs of Lemmas 4.11, 4.12, and 4.13.

Lemma 4.14. There is c ≡ cν > 0, depending on ν and κ , such that for any deterministic

T ⊂ [N ] satisfying |T | � cd/Ŵ2 we have with very high probability

θ max
x,y /∈T

∣∣G(T )
xy

∣∣ � 2Ŵ . (4.24)

Moreover, under the same assumptions on T and for any u ∈ [N ] \ T , we have

θ max
x,y /∈T ∪{u}

∣∣G(T u)
xy − G(T )

xy

∣∣ � Cd−1 (4.25)

with very high probability.

Before proving Lemma 4.14, we use it to conclude the proof of Lemma 4.13.
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Proof of Lemma 4.13. The bound in (4.24) of Lemma 4.14 implies that θ = θθ (T ) with
very high probability. Since θ � 1, the proof is complete.

Proof of Lemma 4.14. Throughout the proof we work on the event {θ = 1} exclusively.
After a relabelling of the vertices [N ], we can suppose that T = [k] with k � cd/Ŵ2.
For k ∈ [N ], we set

Ŵk
..= 1 ∨ max

x,y /∈[k]
|G([k])

xy | .

Note that Ŵ0 � Ŵ by definition of θ .
We now show by induction on k that there is C > 0 such that

Ŵk � Ŵ0

(
1 +

16CŴ2

d

)k

(4.26)

for all k ∈ N satisfying k � d
32 CŴ2 . Since 1+ x � ex , (4.26) implies that Ŵk � e1/2Ŵ0 �

2Ŵ. This directly implies (4.24) by the definition of θ .
The initial step with k = 0 is trivially correct. For the induction step k → k + 1, we

set T = [k] and u = k + 1. The algebraic starting point for the induction step is the
identities (A.32a) and (A.32b). We shall need the following two estimates. First, from
Lemma A.23 and Cauchy–Schwarz, we get

f

N

∣∣∣∣G
(T )
uy

(T u)∑

a

G(T u)
xa

∣∣∣∣ �
f

N
Ŵk

√
N

Im z
Ŵk+1 � N−κ/3ŴkŴk+1 , (4.27)

where we used that Ŵk+1 � 1, f � N κ/6, and Im z � N−1+κ . Second, the first estimate

of (A.28) in Corollary A.21 with ψ = Ŵk+1/
√

d and γ =
√
Ŵk+1/(N Im z), Lemma

A.23, and Ŵk+1 � 1 imply

∣∣∣∣
(T u)∑

a

G(T u)
xa Hau

∣∣∣∣ �
C

√
d
Ŵk+1 (4.28)

with very high probability.
Hence, owing to (A.32a) and (A.32b) with T = [k] and u = k+1, we get, respectively,

Ŵk+1 � Ŵk +
C

√
d
ŴkŴk+1, Ŵk+1 � Ŵk +

C

d
ŴkŴ

2
k+1 (4.29)

with very high probability.

By the induction assumption (4.26) we have CŴk/
√

d � 2CŴ/
√

d � 1/2, so that the
first inequality in (4.29) implies the rough a priori bound

Ŵk+1 � 2Ŵk (4.30)

with very high probability. From the second inequality in (4.29) and (4.30), we deduce
that

Ŵk+1 � Ŵk

(
1 +

4C

d
Ŵ2

k

)
� Ŵk

(
1 +

16CŴ2

d

)
,

where in the second step we used Ŵk � 2Ŵ, by the induction assumption (4.26). This
concludes the proof of (4.26), and, hence, of (4.24).

For the proof of (4.25), we start from (A.32b) and use (4.27), (4.28) as well as (4.24).
This concludes the proof of Lemma 4.14.



Delocalization Transition for Critical Erdős–Rényi Graphs 557

The next result provides concentration estimates for the parameters �x and �x .

Lemma 4.15. There is a constant 0 < q � 1, depending only on Ŵ, such that the

following holds. Let c > 0 be as in Lemma 4.14, and let x ∈ [N ] and T ⊂ [N ] be

deterministic and satisfy |T | � cd/Ŵ2. Then for any 0 < ε � 1 we have

θ (T )P
(
|�(T )x | > ε

∣∣ H (T )
)

� e−32qε2d , θ (T )P
(
|�(T )x | > ε

∣∣ H (T )
)

� e−32qε2d ,

(4.31)

and, for any u /∈ T ,

�(T u)
x −�(T )x = O

(
1

d

)
, θ (T )

(
�(T u)

x −�(T )x

)
= O

(
1 + βx

d

)
(4.32)

with very high probability.

Before proving Lemma 4.15, we use it conclude the proof of Lemma 4.11.

Proof of Lemma 4.11. Using (A.27b), we find that βx � C(1 +
log N

d
) with very high

probability. The claim now follows from (4.32) with T = ∅ and the definition of ϕa,
choosing the constant D in (4.13) large enough.

Proof of Lemma 4.15. Set q ..= 1
211(eŴ)2

. We get, using (A.27b) with r ..= 32qε2d � d,

E|Hxy |2 = 1/N , and Chebyshev’s inequality,

θ (T )P
(
|�(T )x | > ε

∣∣∣ H (T )
)

= P

(
θ (T )

∣∣∣∣
(T x)∑

y

(|Hxy |2 − E|Hxy |2)G(T )
yy

∣∣∣∣ > ε

∣∣∣∣ H (T )

)

�

(
8Ŵ

ε

√
r

d

)r

= e−32qε2d

with very high probability for any 0 < ε � 1. This proves the estimate on�
(T )
x in (4.31),

and the estimate for �
(T )
x is proved similarly.

We now turn to the proof of (4.32). If x = u then the statement is trivial. Thus, we
assume x �= u. In this case we have

�(T u)
x −�(T )x = −

(
|Hxu |2 −

1

N

)
(4.33)

and the claim for � follows by Definition 4.1. Next,

�(T u)
x −�(T )x =

(T ux)∑

y

(
|Hxy |2 −

1

N

)(
G(T ux)

yy − G(T x)
yy

)
−
(

|Hxu |2 −
1

N

)
G(T x)

uu .

The last term multiplied by θ (T ) is estimated by O(Ŵ/d) since θ (T )|G(T x)
uu | � 4Ŵ by

(4.30). We estimate the first term using (4.25) in Lemma 4.14, which yields

θ (T )
∣∣�(T u)

x −�(T )x

∣∣ �
(T ux)∑

y

|Hxy |2
C

d
+

1

N

(T ux)∑

y

C

d
+ O

(
Ŵ

d

)
= O

(
1 + βx

d

)

with very high probability. This concludes the proof of Lemma 4.15.
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Proof of Lemma 4.12. Throughout the proof we abbreviate Pθ (�)
..= P(� ∩ {θ = 1}).

We have

P
(
T ⊂ T

c
a/2, θ = 1

)
= Pθ

(⋂

x∈T

�x

)
,

where we defined the event

�x
..=
{
|�x | > ϕa/2

}
∪
{
|�x | > ϕa/2

}
=
{
|�x | > ϕa/2

}
∪
{
|�x | � ϕa/2, |�x | > ϕa/2

}
.

We have the inclusions

{
|�x | > ϕa/2

}
⊂
{
|�(T )x | > ϕa/4

}
∪
{
|�x −�(T )x | > ϕa/4

}
,

{
|�x | � ϕa/2, |�x | > ϕa/2

}
⊂
{
|�(T )x | > ϕa/4

}
∪
{
|�x | � ϕa/2, |�x −�(T )x | > ϕa/4

}
.

Defining the event

�(T )x
..=
{
|�(T )x | > ϕa/4

}
∪
{
|�(T )x | > ϕa/4

}
,

we therefore deduce by a union bound that

Pθ

(⋂

x∈T

�x

)
� Pθ

(⋂

x∈T

�(T )x

)
+
∑

x∈T

Pθ

(
|�x −�(T )x | > ϕa/4

)

+
∑

x∈T

Pθ

(
|�x | � ϕa/2, |�x −�(T )x | > ϕa/4

)
. (4.34)

We begin by estimating the first term of (4.34). To that end, we observe that, condi-

tioned on H (T ), the family (�
(T )
x )x∈T is independent. Using Lemma 4.13 we therefore

get

Pθ

(⋂

x∈T

�(T )x

)
� E

[
θ (T )P

(⋂

x∈T

�(T )x

∣∣∣∣ H (T )

)]
+ CN−ν = E

[
θ (T )

∏

x∈T

P(�(T )x |H (T ))

]
+ CN−ν ,

and we estimate each factor using (4.31) from Lemma 4.15 as

θ (T )P(�(T )x |H (T )) � θ (T )P
(
|�(T )x | > ϕa/4

∣∣ H (T )
)

+ θ (T )P
(
|�(T )x | > ϕa/4

∣∣ H (T )
)

� 2e−8qϕ2
ad � e−4qϕ2

ad ,

where in the last step we used that e−4qϕ2
ad � 1/2. We conclude that

Pθ

(⋂

x∈T

�(T )x

)
� e−4qϕ2

ad|T | + CN−ν .

Next, we estimate the second term of (4.34). After renaming the vertices, we may
assume that T = [k] with k � ϕad/C, so that we get from (4.32) from Lemma 4.15
(using that ϕad/C � cd/Ŵ2 provided that D in (4.13) is chosen large enough, depending
on a), by telescoping and recalling Lemma 4.13,

|�x −�(T )x | �

k−1∑

i=0

∣∣�([i])x −�([i+1])
x

∣∣ � O

(
k

d

)
� ϕa/4 (4.35)
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with very high probability on the event {θ = 1}, if the constant C in the upper bound
ϕad/C on k is large enough.

The last term of (4.34) is estimated analogously, with the additional observation that,
by definition of �x and since ϕa/2 � 1/2, on the event {|�x | � ϕa/2} we have βx � 2.
Thus, on the event {θ = 1} ∩ {|�x | � ϕa/2} we have, by Lemma 4.13,

|�x −�(T )x | �

k−1∑

i=0

∣∣�([i])x −�([i+1])
x

∣∣ � O

(
k(1 + βx )

d

)
� ϕa/4 (4.36)

with very high probability, for large enough C in the upper bound on k. We conclude that
the two last terms of (4.34) are bounded by CN−ν , and the proof of (4.22a) is therefore
complete.

The proof of (4.22b) is identical, replacing the matrix M with the matrix M (x).

4.3. Self-consistent equation and proof of Theorem 4.2. In this subsection, we derive
an approximate self-consistent equation for the Green function G, and use it to prove
Theorem 4.2. The key ingredient is Proposition 4.18 below, which provides a bootstrap-
ping bound stating that if Gxx − mβx is smaller than some constant then it is in fact
bounded by ϕa with very high probability. It is proved by first deriving and solving a
self-consistent equation for the entries Gxx indexed by typical vertices x ∈ Ta, and
using the obtained bounds to analyse Gxx for atypical vertices x ∈ T c

a .
We begin with a simple algebraic observation.

Lemma 4.16 (Approximate self-consistent equation). For any x ∈ [N ] and z ∈ C+, we

have

1

Gxx

= −z −
(x)∑

y

|Hxy |2G(x)
yy + Yx ,

where we introduced the error term

Yx
..= Hxx +

f

N
−

(x)∑

a �=b

Hxa G
(x)
ab Hbx −

(x)∑

a,b

(
f

N

(
Hxa G

(x)
ab + G

(x)
ab Hbx

)
+

f 2

N 2
G
(x)
ab

)
. (4.37)

Proof. The lemma follows directly from (A.31) and the definition (4.1).

Let θ be defined as in (4.19) with some Ŵ � 1. The following lemma provides a
priori bounds on the error terms appearing in the self-consistent equation.

Lemma 4.17. For all z ∈ C with Im z � N−1+κ , with very high probability,

θ max
x

|Yx | � Cd−1/2, (4.38a)

θ max
x �=y

|Gxy | � Cd−1/2, (4.38b)

θ max
x �=a �=y

|Gxy − G(a)
xy | � Cd−1. (4.38c)
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Proof. We first estimate Yx . From Definition 4.1, the upper bound on f , and (4.13), we
conclude that |Hxx | + f/N = O(d−1/2) almost surely. Moreover, the Cauchy–Schwarz
inequality, Lemma A.23, (4.24) and the upper bound on f imply

θ
f 2

N 2

∣∣∣∣
(x)∑

a,b

G
(x)
ab

∣∣∣∣ � Cκ
f 2

√
N Im z

� CκN−κ/6 �
C

√
d
,

for some constant Cκ depending only on κ . Next, we use the first estimate of (A.28),
Lemma A.23, and the upper bound on f to conclude that

f

N
θ

∣∣∣∣
(x)∑

a,b

HxaG
(x)
ab

∣∣∣∣ +
f

N
θ

∣∣∣∣
(x)∑

a,b

G
(x)
ab Hbx

∣∣∣∣ �
C

√
d

f
√

N Im z
�

C
√

d
N−κ/3 �

C
√

d

with very high probability (compare the proof of (4.28)). Moreover, from Lemma A.23
and the second estimate of (A.28) we deduce that remaining term in (4.37) is O(d−1) =
O(d−1/2). This concludes the proof of (4.38a).

For the proof of (4.38b), we start from (A.29) and use Mxa = Hxa + f/N to obtain

Gxy = −Gxx

(x)∑

a

HxaG(x)
ay − Gxx HxyG(x)

yy −
f

N
Gxx

(x)∑

a

G(x)
ay .

Similar arguments as in (4.28) and (4.27) show that the first and third term, respectively,
are bounded by Cd−1/2 with very high probability. The same bound for the second term
follows from Definition 4.1 and (4.24) in Lemma 4.14. This proves (4.38b).

Finally, (4.38c) follows directly from (4.25).

Proposition 4.18 below is the main tool behind the proof of Theorem 4.2. To formulate
it, we introduce the z-dependent random control parameters

�d
..= max

x
|Gxx − mβx | , �o

..= max
x �=y

|Gxy | , � ..= �d ∨�o ,

and, for some constant λ � 1, the indicator function

φ ..= 1��λ . (4.39)

Proposition 4.18 below provides a strong bound on � provided the a priori condition
φ = 1 is satisfied. Each step of its proof is valid provided λ is chosen small enough
depending on κ . Note that, owing to (A.4), there is a deterministic constantŴ, depending
only on κ , such that, for all z ∈ S, we have

φmax
x,y

|Gxy | � Ŵ . (4.40)

In particular, if Ŵ in the definition (4.19) of θ is chosen as in (4.40) then

φ � θ . (4.41)

Proposition 4.18. There exists λ > 0, depending only on κ , such that, for all z ∈ S,

with very high probability,

φ� � Cϕa .
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For the proof of Proposition 4.18, we employ the results of the previous subsections
to show that the diagonal entries (Gxx )x∈Ta

of the Green function of M at the typical
vertices satisfy the approximate self-consistent equation (4.42) below. This is a perturbed
version of the relation (4.6) for the Stieltjes transform m of the semicircle law, which
holds for all z ∈ C+. The stability estimate, (4.43) below, then implies that Gxx and m

are close for all x ∈ Ta. From this we shall, in a second step, deduce that Gxx is close
to mβx for all x ; this steps includes also the atypical vertices.

The next lemma is a relatively standard stability estimate of self-consistent equations
in random matrix theory (compare e.g. to [27, Lemma 3.5]). It is proved in Appendix A.9.

Lemma 4.19 (Stability of the self-consistent equation for m). Let X be a finite set,

κ > 0, and z ∈ C+ satisfy |Re z| � 2 − κ . We assume that, for two vectors (gx )x∈X ,

(εx )x∈X ∈ C
X , the identities

1

gx

= −z −
1

|X |
∑

y∈X

gy + εx (4.42)

hold for all x ∈ X . Then there are constants b,C ∈ (0,∞), depending only on κ , such

that if maxx∈X |gx − m(z)| � b then

max
x∈X

|gx − m(z)| � C max
x∈X

|εx |, (4.43)

where m(z) satisfies (4.6).

Proof of Proposition 4.18. Throughout the proof, we work on the event {φ = 1}, which,
by (4.41), is contained in the event {θ = 1}. Fix a as in Proposition 4.8. Throughout the
proof we use that d−1/2 � ϕa by the upper bound in (4.13). Owing to (4.38b), it suffices
to estimate �d. Let b be chosen as in Lemma 4.19, and set λ ..= b/2 in the definition
(4.39) of φ.

For the analysis of Gxx we distinguish the two cases x ∈ Ta and x /∈ Ta.
If x ∈ Ta then we write using Lemma 4.16 and the definition (4.18) of �x that

1

Gxx

= −z −
(x)∑

y

|Hxy |2G(x)
yy + Yx = −z −

1

N

(x)∑

y

G(x)
yy + Yx −�x

= −z −
1

|Ta|
∑

y∈Ta

G yy + εx ,

where the error term εx satisfies

|εx | = O

(
d−1/2 +

1

N
exp(qϕ2

ad) + exp(−2qϕ2
ad) + ϕa

)
= O(ϕa) (4.44)

with very high probability. Here, in the first step of (4.44) we used (4.38a), (4.38c),
Proposition 4.8 (i), and the bound on�x in the definition (4.17) of Ta, and in the second
step of (4.44) we used that ϕ2

ad = a2(log N )2/3d−1/3 and (4.13) imply (log N )1/6/C �

ϕ2
ad � C(log N )1/2, which yields

1

N
exp(qϕ2

ad) + exp(−2qϕ2
ad) � Cd−10 � ϕa . (4.45)
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Thus, for (Gxx )x∈Ta
we get the self-consistent equation in (4.42) with gx = Gxx

and X = Ta. Moreover, by the bound on �x in the definition (4.17) of Ta, we have
βx = 1 + O(ϕa). Hence, by (A.5), the assumption φ = 1 and d � C

√
log N , we find

that

|Gxx − m| � |Gxx − mβx | + |mβx − m| � b ,

choosing the constant D in (4.13) large enough that the right-hand side of (A.5), i.e.
C |βx − 1|, is bounded by b/2. Hence Lemma 4.19 is applicable and we obtain |Gxx −
m| = O(maxy∈Ta

|εy |). Therefore, we obtain

|Gxx − mβx | � |Gxx − m| + |m − mβx | � Cϕa (4.46)

with very high probability. This concludes the proof in the case x ∈ Ta.
What remains is the case x /∈ Ta. In that case, we obtain from Lemma 4.16 that

1

Gxx

= −z −
(x)∑

y∈Ta

|Hxy |2G(x)
yy −

(x)∑

y∈T c
a

|Hxy |2G(x)
yy + Yx = −z − βx m + εx , (4.47)

where the error term εx satisfies εx = O((1+βx )ϕa)with very high probability. Here we
used (4.38a) as well as (4.38c), (4.45), (4.46) and Proposition 4.8 (ii) twice to conclude
that

(x)∑

y∈Ta

|Hxy |2G(x)
yy = βx m + O(βxϕa) ,

(x)∑

y∈T c
a

|Hxy |2G(x)
yy = O

(
ϕa + d4 exp(−qϕ2

ad)
)

= O(ϕa)

with very high probability. From (4.7) and (4.47) we therefore get

Gxx − mβx = −mβx

1

−z − βx m + εx

εx . (4.48)

To estimate the right-hand side of (4.48), we consider the cases βx � 1 and βx > 1
separately.

If βx � 1 then, by (A.4), the first factor of (4.48) is bounded by C . Thus, by (4.7),
the second factor is bounded by 2C provided that |εx | � 1/2C by choosing D in (4.13)
large enough, and the third factor is bounded by Cϕa. This yields the claim.

If βx > 1, we use that Im m � c for some constant c > 0 depending only on κ and
L . Thus, the right-hand side of (4.48) is bounded in absolute value, again using (A.4),
by C 1

βx c/2
Cβxϕa, provided that D in (4.13) is chosen large enough. This yields the

claim.

Proof of Theorem 4.2. After possibly increasing L , we can assume that L in the defini-
tion of S in (4.3) satisfies L � 2/λ + 1, where λ is chosen as in Proposition 4.18.

We first show that (4.10) follows from (4.9). Indeed, averaging the estimate on |Gxx −
mβx | in (4.9) over x ∈ [N ], using that mβx = m + O(ϕa) for x ∈ Ta by (A.5) and
estimating the summands in T c

a by Proposition 4.8 (i) and (A.4) yield (4.10) due to
(4.45).
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What remains is the proof of (4.9). Let z0 ∈ S, set J ..= min{ j ∈ N0 : Im z0 +
j N−3 � 2/λ}, and define z j

..= z0 + i j N−3 for j ∈ [J ]. We shall prove the bound
in (4.9) at z = z j by induction on j , starting from j = J and going down to j = 0.

Since |Gxy(z)| � (Im z)−1 and |mβx (z)| � (Im z)−1 for all x, y ∈ [N ], we have
maxx |Gxx (z J )− mβx (z J )| � λ and φ(z J ) = 1.

For the induction step j → j −1, suppose that φ(z j ) = 1 with very high probability.
Then, by Proposition 4.18, we deduce that �(z j ) � Cϕa with very high probability.

Since Gxy and mβx are Lipschitz-continuous on S with constant N 2, we conclude that

�(z j−1) � Cϕa + N−1 with very high probability. If N is sufficiently large and ϕa is
sufficiently small, obtained by choosing D in (4.13) large enough, then we deduce that
�(z j−1) � λ with very high probability and hence φ(z j−1) = 1 with very high proba-
bility. Using Proposition 4.18, this concludes the induction step, and hence establishes
�(z0) � Cϕa with very high probability. Here we used that the intersection of J events
of very high probability is an event of very high probability, since J � C N 3, where C

depends on κ .
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A. Appendices

In the following appendices we collect various tools and explanations used throughout
the paper.

A.1. Simulation of the ℓ∞-norms of eigenvectors. In Fig. 10 we depict a simulation of the

ℓ∞-norms of the eigenvectors of the adjacency matrix A/
√

d of the Erdős–Rényi graph
G(N , d/N ) restricted to its giant component. We take d = b log N with N = 10′000
and b = 0.6. The eigenvalues and eigenvectors are drawn using a scatter plot, where
the horizontal coordinate is the eigenvalue and the vertical coordinate the ℓ∞-norm of
the associated eigenvector. The higher a dot is located, the more localized the associated
eigenvector is. Complete delocalization corresponds to a vertical coordinate ≈ 0.01, and
localization at a single site to a vertical coordinate 1. Note the semilocalization near the
origin and outside of [−2, 2]. The two semilocalized blips around ±0.4 are a finite-N

effect and tend to 0 as N is increased. The Perron–Frobenius eigenvalue is an outlier
near 2.8 with delocalized eigenvector.

http://creativecommons.org/licenses/by/4.0/
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Fig. 10. A scatter plot of (λ, ‖w‖∞) for all eigenvalue-eigenvector pairs (λ,w) of the adjacency matrix A/
√

d

of the critical Erdős–Rényi graph restricted to its giant component, where N = 10′000 and d = 0.6 log N

A.2. Spectral analysis of the infinite rooted (p, q)-regular tree. In this appendix we
describe the spectrum, eigenvectors, and spectral measure of the following simple graph.

Definition A.1. For p, q ∈ N
∗ we define Tp,q as the infinite rooted (p, q)-regular tree,

whose root has p children and all other vertices have q children.

A convenient way to analyse the adjacency matrix of Tp,q is by tridiagonalizing it around

its root. To that end, we first review the tridiagonalization5 of a general symmetric matrix
X ∈ R

N×N around a vertex x ∈ [N ]; we refer to [10, Appendices A–C] for details.
Let r ∈ N and x ∈ [N ]. Suppose that the vectors 1x , X1x , X21x , . . . , Xr 1x are linearly
independent, and denote by g0, g1, g2, . . . , gr the associated orthonormalized sequence.
Then the tridiagonalization of X around x up to radius r is the (r + 1)× (r + 1) matrix
Z = (Zi j )

r
i, j=0 with Zi j

..= 〈gi , Xg j 〉. By construction, Z is tridiagonal and conjugate

to X restricted to the subspace Span{g0, g1, . . . , gr }.
Let now X = A ≡ ATp,q be the adjacency matrix of Tp,q , whose root we denote by o.
Then it is easy to see that gi = 1Si (o)/‖1Si (o)‖ and the tridiagonalization of A around
the root up to radius ∞ is the infinite matrix

√
q Z(p/q), where

Z(α) ..=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√
α√

α 0 1
1 0 1

1 0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
. (A.1)

5 The tridiagonalization algorithm that we use is the Lanczos algorithm. Tridiagonalizing matrices in
numerical analysis and random matrix theory [26,55] is usually performed using the numerically more stable
Householder algorithm. However, when applied to the adjacency matrix X = A of a graph, the Lanczos
algorithm is more convenient because it can exploit the sparseness and local geometry of A.
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If α > 2, a transfer matrix analysis (see [10, Appendix C]) shows that Z(α) has precisely
two eigenvalues in R \ [−2, 2], which are ±�(α). The associated eigenvectors are

((±)i ui )i∈N, where u0 > 0 and ui
..=

√
α

(α−1)i/2
u0 for i � 1. Note that the eigenvector

components are exponentially decaying since α > 2, and hence u0 can be chosen so
that the eigenvectors are normalized. Going back to the original vertex basis of Tp,q ,
setting α = p/q, we conclude that the adjacency matrix A has eigenvalues ±√

q�(α)

with associated eigenvectors
∑

i∈N
(±)i ui 1Si (o)/‖1Si (o)‖.

Next, we show that the measure μα from (4.12) is the spectral measure at the root of

ATp,q /
√

d and the spectral measure at 0 of (A.1).

Lemma A.2. (i) For any α � 0 the measure μα is the spectral measure of Z(α) at 0.

(ii) For any p, q ∈ N
∗ the measure μp/q is the spectral measure of the normalized

adjacency operator ATp,q /
√

q at the root.

Proof. For (i), define the vector e0 = (1, 0, 0, . . . ) ∈ ℓ2(N). The spectral measure of
Z(α) with respect to e0 is characterized by its Stieltjes transform

〈
e0 , (Z(α)− z)−1e0

〉
=

1

−z − α
〈
e0 , (Z(1)− z)−1e0

〉 . (A.2)

Here, we used Schur’s complement formula on the Green function (Z(α) − z)−1, ob-
serving that the minor of Z(α) obtained by removing the zeroth row and column is Z(1).
Setting α = 1 in (A.2) and recalling the defining relation (4.6) of the Stieltjes transform
m of the semicircle law, we conclude that

〈
e0 , (Z(1)− z)−1e0

〉
= m(z) and hence from

(4.7) and (A.2) we get
〈
e0 , (Z(α)− z)−1e0

〉
= mα(z), as desired.

The proof of (ii) is analogous. Denote the root of Tp,q by o. Again using Schur’s

complement formula to remove the oth row and column of H = ATp,q /
√

q , we deduce
that

〈
1o ,
(

ATp,q /
√

q − z
)−1

1o

〉
=
(

−z −
p

q

〈
1o ,
(

ATq,q /
√

q − z
)−1

1o

〉)−1

, (A.3)

where we used that Tp,q from which o has been removed consists of p disconnected
copies of Tq,q . Setting p = q in (A.3) and comparing to (4.6) implies that the left-hand
side of (A.3) is equal to m(z) if p = q, and hence (ii) for general p follows from (4.7).
Finally, we remark that the equality of the spectral measures of Z(p/q) and ATp,q /

√
q

can also be seen directly, by noting that Z(p/q) is the tridiagonalization of ATp,q /
√

q

around the root o.

We conclude with some basic estimates for the Stieltjes transform mα of μα used in
Sect. 4.

Lemma A.3. For each κ > 0 there is a constant C > 0 depending only on κ such that

for all z ∈ S and all α � 0 we have

|mα(z)| � C , (A.4)

|mα(z)− m(z)| � C |α − 1| . (A.5)

Proof. The simple facts follow directly from the corresponding properties of the semi-
circle law and its Stieltjes transform m (see e.g. [16, Lemma 3.3]). We leave the details
to the reader.
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A.3. Bounds on adjacency matrices of trees. In this appendix we derive estimates on
the operator norm of a tree. We start with a standard estimate on the operator norm of a
graph.

Lemma A.4. Let T be a graph whose vertices have degree at most q +1 for some q � 1.

Then ‖AT‖ � q + 1 and if in addition T is a tree then ‖AT‖ � 2
√

q.

Proof. The first claim is obvious by the Schur test for the operator norm. To prove the
second claim, choose a root o and denote by Cx the set of children of the vertex x . Then
for any vector w = (wx ) we have

∣∣〈w , ATw
〉∣∣ =

∣∣∣∣
∑

x,y

wx AT
xywy

∣∣∣∣ = 2

∣∣∣∣
∑

x

∑

y∈Cx

wxwy

∣∣∣∣ �
∑

x

∑

y∈Cx

(
1

√
q
w2

x +
√

qw2
y

)

�
q + 1
√

q
w2

o +
∑

x �=o

(
q

√
q
w2

x +
√

qw2
x

)
� 2

√
q
∑

x

w2
x ,

where in third step we used Young’s inequality and in the fourth step that each vertex
in the sum appears once as a child and at most q times as a parent. This concludes the
proof.

The same proof shows that if T is a rooted tree whose root has at most p children and
all other vertices at most q children, then ‖AT‖ �

√
q(p/q ∨ 2). This bound is sharp

for p � 2q but not for p > 2q. The sharp bound in the latter case is established in the
following result.

Lemma A.5. Let p, q ∈ N
∗. Let T be a tree whose root has p children and all the

other vertices have at most q children. Then the adjacency matrix AT of T satisfies

‖AT‖ �
√

q�(p/q ∨ 2).

Proof. Let r ∈ N and denote by Tp,q(r) the rooted (p, q)-regular tree of depth r , whose
root x has p children, all vertices at distance 1 � i � r from x have q children, and all
vertices at distance r + 1 from x are leaves. For large enough r , we can exhibit T as a
subgraph of Tp,q(r). By the Perron–Frobenius theorem,

‖AT‖ = 〈w , ATw〉 (A.6)

for the some normalized eigenvector w whose entries are nonnegative. We extend w to
a vector indexed by the vertex set of Tp,q(r) by setting wy = 0 for y not in the vertex
set of T. Clearly,

〈w , ATw〉 � 〈w , ATp,q (r)w〉 . (A.7)

Abbreviating A ≡ ATp,q (r), it therefore remains to estimate the right-hand side of (A.7)
for large enough r . To that end, we define Z as the tridiagonalization of A around the
root up to radius r (see Appendix A.2). The associated orthonormal set g0, g1, . . . , gr

is given by gi = 1Si (x)/‖1Si (x)‖, and Z = √
q Zr (p/q), where Zr (α) is the upper-left

(r + 1) × (r + 1) block of (A.1). We introduce the orthogonal projections P0
..= g0g∗

0
and P ..=

∑r
i=0 gi g

∗
i . Clearly, P0 P = P0 and hence (1 − P)(1 − P0) = 1 − P . For

large enough r the vectors gr and w have disjoint support, and hence (1 − P)APw =
(1 − P)A

∑r−1
i=0 gi 〈gi ,w〉 = 0, since Agi ⊂ Span{gi−i , gi+1} for i < r . Thus we have

〈w , Aw〉 = 〈w , P APw〉 + 〈w , (1 − P)A(1 − P)w〉
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= 〈w , P APw〉 + 〈w , (1 − P)(1 − P0)A(1 − P0)(1 − P)w〉 . (A.8)

From [10, Appendices B and C] we find

lim
r→∞

‖P AP‖ = lim
r→∞

‖Z‖ = √
q�(p/q ∨ 2) . (A.9)

Moreover, the operator (1 − P0)A(1 − P0) is the adjacency matrix of a forest whose
vertices have degree at most q. By Lemma A.4, we therefore obtain ‖(1 − P0)A(1 −
P0)‖ � 2

√
q . From (A.8) we therefore get

lim sup
r→∞

〈w , Aw〉�√
q�(p/q ∨ 2)‖Pw‖2+2

√
q‖(1−P)w‖2 �

√
q�(p/q ∨ 2)‖w‖2 .

By (A.6) and (A.7), the proof is complete.

A.4. Degree distribution and number of resonant vertices. In this appendix we record
some basic facts about the distribution of degrees of the graph G(N , d/N ), and use them
to estimate the number of resonant vertices Wλ,δ .
The following is a quantitative version of the Poisson approximation of a binomial
random variable.

Lemma A.6. (Poisson approximation) If D is a random variable with law Binom(n, p)

then for k �
√

n and p � 1/
√

n we have

P(D = k) =
(pn)k

k!
e−pn

(
1 + O

(
k2

n
+ p2n

))
.

Proof. Plugging the estimates (1 − p)n−k = e(n−k) log(1−p) = e−np+O(pk+p2n) and

n!
(n − k)!

= nk

k−1∏

i=0

(
1 −

i

n

)
= nke

∑k−1
i=0 log

(
1− i

n

)
= nke

O
(

k2

n

)
,

into P(Dx = k) = n!
k!(n−k)! pk(1− p)n−k yields the claim, since pk � k2/n + p2n.

Lemma A.7. For G(N , d/N ) we have αx � C
(
1 +

log N
d

)
with very high probability.

Proof. This is a simple application of Bennett’s inequality; see [10, Lemma 3.3] for
details.

Next, we recall some standard facts about the distribution of the degrees. Define the
function fd : [1,∞) →

[
1
2

log(2πd),∞
)

through

fd(α)
..= d(α logα − α + 1) +

1

2
log(2παd) , (A.10)

which is bijective and increasing. For its interpretation, we note that if Y
d= Poisson(d)

then by Stirling’s formula we have P(Y = k) = exp
(
− fd(k/d) + O

(
1
k

))
for any k ∈ N.

There is a universal constant C > 0 such that for 1 � l � N

C
√

d
the equation fd(β) =

log(N/ l) has a unique solution β ≡ βl(d). The interpretation of βl(d) is the typical
location of ασ(l). By the implicit function theorem, we find that d �→ βl(d) on the

interval
(
0, N 2

Cl2

]
is a decreasing bijective function.
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Definition A.8. An event � ≡ �N holds with high probability if P(�) = 1 − o(1).

The following result is a slight generalization of [10, Proposition D.1], which can be
established with the same proof. We note that the qualitative notion of high probability
can be made stronger and quantitative with some extra effort, which we however refrain
from doing here.

Lemma A.9. If d � 1 and l � 1 satisfies βl(d) � 3/2 then

|ασ(l) − βl(d)| �
1 ∨ (ζ/ logβl(d))

d
(A.11)

with high probability, where ζ is any sequence tending to infinity with N.

The following result6 gives bounds on the counting function of the normalized degrees
(αx )x∈[N ].

Lemma A.10. Suppose that ζ satisfies

1 ≪ ζ �
d

C log log N
(A.12)

for some large enough universal constant C. Then for any α � 2 we have with high

probability

⌊
(Ne− fd (α) − 1)(log N )−2ζ

⌋
� |{x ∈ [N ] .. αx � α}| �

⌈
(Ne− fd (α) + 1)(log N )2ζ

⌉
.

(A.13)

Proof. If d > 3 log N , then an elementary analysis using Bennett’s inequality shows
that |{x ∈ [N ] .. αx � α}| = 0 with high probability. Since Ne− fd (α) � 1 for α � 2,
the claim follows. Thus, for the following we assume that d � 3 log N .

Abbreviateϒ ..= 3
2
ζ
d

, which is an upper bound for the right-hand side of (A.11). For the
following we adopt the convention that β0(d) = ∞. Choose l � 0 such that

βl+1(d) < α � βl(d) , (A.14)

and define

k ..=
⌊
l(log N )−2ζ

⌋
, k ..=

⌈
(l + 1)(log N )2ζ

⌉
.

We shall show that

βk(d)− ϒ � βl(d) (A.15)

for k � 1,

βk(d) +ϒ � βl+1(d) , (A.16)

and

k � Ne− fd (3/2) . (A.17)

6 The assumption d ≫ log log N in Lemma A.10 is tailored so that it covers the entire range α � 2, which
is what we need in this paper. The assumption on d could also be removed at the expense of introducing a
nontrivial lower bound on α.



Delocalization Transition for Critical Erdős–Rényi Graphs 569

Thus βk(d) � 3/2 and, assuming k � 1, Lemma A.9 is applicable to the indices k and
k. We obtain, with high probability,

ασ(k) � βk(d) + ϒ � βl+1(d) � α � βl(d) � βk(d)− ϒ � ασ(k) , (A.18)

from which we deduce that

k � |{x ∈ [N ] .. αx � α}| � k , (A.19)

which also holds trivially also for the case k = 0. By applying the function fd to (A.14)

we obtain l � Ne− fd (α) � l + 1, so that (A.19) yields (A.13).
Next, we verify (A.17). We consider the cases l = 0 and l � 1 separately. If l = 0 then,
by the definition of βk(d), for (A.17) we require (log N )2ζ + 1 � Ne− fd (3/2), which
holds by the assumption d � 3 log N and the upper bound on ζ . Let us therefore suppose
that l � 1. By (A.14), α � 2, and the definition of βl(d), we have l � Ne− fd (2), and we
have to ensure that (l + 2)(log N )2ζ � Ne− fd (3/2). Since l � 1, this is satisfied provided
that 3e− fd (2)(log N )2ζ � e− fd (3/2), which holds provided that fd(2) − fd(3/2) �
3ζ log log N . This inequality is true because fd(2) − fd(3/2) � f ′

d(3/2)/2 � d/C ,

where we used that f ′
d(α) = d logα + 1

2α
.

What remains, therefore, is the proof of (A.15) and (A.16). We begin with the proof of
(A.15). We get from the mean value theorem that

βk(d)− βl(d) = f −1
d

(
log

(
N

k

))
− f −1

d

(
log

(
N

l

))
�

3

4d logβk(d)
log

(
l

k

)
.

(A.20)

The right-hand side of (A.20) is bounded from below by ϒ provided that

log

(
l

k

)
� 2ζ logβk(d) . (A.21)

We estimate βk(d) � β1(d) using the elementary bound fd(β) � d
10
β for β � 2, which

yields log N = fd(β1(d)) � d
10
β1(d). By assumption on d we therefore get

β1(d) � log N . (A.22)

Thus, (A.21) holds by k � l/(log N )2ζ . This concludes the proof of (A.15).
Next, we prove (A.16). As in (A.20), we find

βl+1(d)− βk(d) = f −1
d

(
log

(
N

l + 1

))
− f −1

d

(
log

(
N

k

))

�
3

4d logβl+1(d)
log

(
k

l + 1

)
. (A.23)

Together with βl+1(d) � β1(d) � log N from (A.22), we deduce that the right-hand side

of (A.23) is bounded from below by ϒ provided that log
(

k
l+1

)
� 2ζ log log N , which is

true by definition of k. This concludes the proof of (A.16).

The following result follows easily from Lemma A.10. Recall the definition (1.13) of
the exponent θb(α).
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Corollary A.11. Suppose that ζ satisfies (A.12). Write d = b log N. Then for any α � 2
we have

|{x ∈ [N ] .. αx � α}| ∨ 1 = N θb(α)+ε , ε = O

(
ζ log log N

log N

)

with high probability.

Using the exponent θb(α) from (1.13) and αmax(b) defined below it, we may state the
following estimate on the density of the normalized degrees and the number of resonant
vertices.

Lemma A.12. The following holds for a large enough universal constant C. Suppose

that ζ satisfies (A.12). Write d = b log N.

(i) For 2 � α < β � αmax(b) satisfying β − α � C
ζ log log N

d logα
, with high probability

we have

|{x ∈ [N ] .. α � αx � β}| = N θb(α)+ε , ε = O

(
ζ log log N

log N

)
. (A.24)

(ii) For δ � C
ζ log log N

d
and 2 + δ � λ � �(αmax(b)), with high probability we have

|Wλ,δ| = N θb(�
−1(λ−δ))+ε , ε = O

(
ζ log log N

log N

)
.

Note that, since ξ � d−1/2, if the conclusion of Theorem 1.2 is nontrivial then δ � d−1/2,
and hence the assumption on δ in Lemma A.12 (ii) is automatically satisfied for suitably
chosen ζ .

Proof of Lemma A.12. Part (i) follows Corollary A.11 below by noting that the assump-

tion on β implies θb(α)− θb(β) � C
ζ log log N

log N
by the mean value theorem.

Part (ii) follows from Part (i), using that log(λ − δ) � log 2, that �′ is bounded on
[2,∞), and the mean value theorem.

Corollary A.13. The following holds for large enough universal constants C, C. Suppose

that (1.10) holds. Write d = b log N. Let w = (wx )x∈[N ] be a normalized eigenvector

of A/
√

d with nontrivial eigenvalue 2 + Cξ1/2 � λ � �(αmax(b)). Then with high

probability for any 2 � p � ∞ we have

‖w‖2
p � N (2/p−1)θb(�

−1(λ))+ε , ε = O

[
log log N
√

log N
+ b(log λ)

(
λ +

1
√
λ− 2

)
(ξ + ξλ−2)

]
.

Proof. We choose δ ..= C(ξ+ξλ−2). Then by assumption onλwe have δ � (λ−2)/2, and
hence Theorem 1.2 yields, using that v(x) is supported in Br⋆(x),

∑
x∈Wλ,δ

∑
y∈Br⋆ (x)

w2
y � 1

2
with high probability. Using that for any vector x ∈ R

n we have ‖x‖2
p �

n2/p−1‖x‖2
2 (by Hölder’s inequality), with the choice n =

∑
x∈Wλ,δ

|Br⋆(x)|, we get

‖w‖2
p �

1

2

( ∑

x∈Wλ,δ

|Br⋆(x)|
)2/p−1

�
1

2

(
|Wλ,δ|N C log log N/

√
log N

)2/p−1
(A.25)
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with high probability, where we used Lemma A.7 to estimate maxx∈[N ]|Br⋆(x)| �

N C log log N/
√

log N with high probability.
Next, using the mean value theorem and elementary estimates on the derivatives of θb

and �−1, we estimate

θb(�
−1(λ− δ))− θb(�

−1(λ)) � Cb(log λ)

(
λ +

1
√
λ− 2

)
δ .

Invoking Lemma A.12 (ii) with ζ ..= log log N , and recalling (A.25), therefore yields
the claim.

A.5. Connected components of G(N , d/N ). In this appendix we give some basic esti-
mates on the sizes of connected components of G(N , d/N ). These are needed for the
analysis of the tuning forks in Appendix A.6 below. The arguments are standard and are
tailored to work well in the regime 1 ≪ d � log N that we are interested in. For smaller
values of d, see e.g. [17].

Lemma A.14. Let Wk be the number of connected components that have k vertices and

Ŵk the number of connected components that have k vertices and are not a tree. Then

for k � N/2 we have

E[Wk] � Ne−k(d/2−log d−1) , E[Ŵk] � e−k(d/2−log d−1) .

Proof. For a set X ⊂ [N ], denote by T (X) the set of spanning trees of X . If X is a
connected component of G then there exists T ∈ T (X) a subgraph of G such that no
vertex of X is connected to a vertex of [N ] \ X . Hence,

Wk �
∑

X⊂[N ]
1|X |=k

∑

T∈T (X)

1T⊂G

∏

x∈X

∏

y∈[N ]\X

(1 − Axy) .

Taking the expectation now easily yields the claim, using |T (X)| = |X ||X |−2 by Cayley’s
theorem, that a tree on k vertices has k − 1 edges, Stirling’s approximation, and 1 − x �
e−x .
The argument to estimate Ŵk is similar, noting that in addition to a spanning tree T of
X , we also have to have at least one edge not in T connecting two vertices of X . Thus,

Ŵk �
∑

X⊂[N ]
1|X |=k

∑

T∈T (X)

1T⊂G

∏

x∈X

∏

y∈[N ]\X

(1 − Axy)
∑

{u,v}∈X2\E(T)

Auv ,

and we may estimate the expectation as before.

We call a connected component of G small if it is not the giant component. For the
following statement we recall the definition of high probability from Definition A.8.

Corollary A.15. Suppose that d ≫ 1. All small components of G have at most O
( log N

d

)

vertices with very high probability. All small components of G are trees with high proba-

bility. The giant component of G has at least N (1−e−d/4) vertices with high probability.
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Proof. Any small component has at most N/2 vertices. Using Lemma A.14 we therefore
get that the probability that there exists a small component with at least K vertices is
bounded by

P(∃k ∈ [K , N/2] ,Wk � 1) �

N/2∑

k=K

E[Wk] � 2Ne−K (d/2−log d−1) ,

by summing the geometric series. Since d/2−log d−1 � cd for some universal constant
c, we obtain the first claim. To obtain the second claim, we use Lemma A.14 to estimate

the probability that there exists a small component that is not a tree by
∑N/2

k=1 EŴk �

e−d/3. To obtain the last claim, we estimate the expected number of vertices in small

components by E
[∑N/2

k=1 kWk

]
� N

∑∞
k=1 ke−k(d/2−log d−1) � C Ne−d/3 using Lemma

A.14, and the third claim follows from Chebyshev’s inequality.

We may now estimate the adjacency matrix on the small components of G(N , d/N ).
The following result follows immediately from Corollary A.15 and Lemma A.4.

Corollary A.16. Suppose that d ≫ 1. Then the operator norm of A/
√

d restricted to

the small components of G is bounded by O
(√

log N
d

)
with high probability.

Corollary A.16 makes it explicit that Theorem 1.8 excludes all eigenvectors on small
components of G, whose eigenvalues lie outside Sκ precisely under the lower bound
from (1.18).

A.6. Tuning forks and proof of Lemma 1.12. In this appendix we give a precise definition
of the D-tuning forks from Sect. 1.5 and prove Lemma 1.12.

Definition A.17. A star of degree D ∈ N consists of a vertex, the hub, and D leaves
adjacent to the hub, the spokes. A star tuning fork of degree D is obtained by taking two
disjoint stars of degree D along with an additional vertex, the base, and connecting both
hubs to the base. We say that a star tuning fork is rooted in a graph H if it is a subgraph
of H in which both hubs have degree D + 1 and all spokes are leaves.

Lemma A.18. If a star tuning fork of degree D is rooted in some graph H, then the

adjacency matrix of H has eigenvalues±
√

D with corresponding eigenvectors supported

on the stars of the tuning fork, i.e. on 2D + 2 vertices.

Proof. Suppose first that D � 1. Note first that the adjacency matrix of a star of degree

D has rank two and has the two nonzero eigenvalues ±
√

D, with associated eigenvector

equal to ±
√

D at the hub and 1 at the spokes. Now take a star tuning fork of degree D

rooted in a graph H. Define a vector on the vertex set of H by setting it to be ±
√

D at

the hub of the first star, 1 at the spokes of the first star, ∓
√

D at the hub of the second
star, −1 at the spokes of the second star, and 0 everywhere else. Then it is easy to check

that this vector is an eigenvector of the adjacency matrix of H with eigenvalue ±
√

D. If
D = 0 the construction is analogous, defining the vector to be +1 at one hub and −1 at
the other.

We recall from Sect. 1.5 that F(d, D) denotes the number of star tuning forks of degree
D rooted in Ggiant.



Delocalization Transition for Critical Erdős–Rényi Graphs 573

Lemma A.19. Suppose that 1 ≪ d ≪
√

N and 0 � D ≪
√

N. Then

E[F(d, D)] =
Nd2e−2d

2D!2
(de−d+1)2D(1 + o(1)) (A.26)

and E[F(d, D)2] � E[F(d, D)]2(1 + o(1)).

Proof of Lemma 1.12. From Lemma A.19 we deduce that if 1 ≪ d = b log N =
O(log N ) and D ≪ log N/ log log N , then E[F(d, D)] = N 1−2b−2bD+o(1). The claim
then follows from the second moment estimate in Lemma A.19 and Chebyshev’s in-
equality.

Proof of Lemma A.19. Let x1, x2 ∈ [N ] be distinct vertices and R1, R2 ⊂ [N ]\{x1, x2}
be disjoint subsets of size D. We abbreviate U = (x1, x2, R1, R2) and sometimes identify
U with {x1, x2} ∪ R1 ∪ R2. The family U and a vertex o ∈ [N ] \ U define a star tuning
fork of degree D with base o, hubs x1 and x2, and associated spokes R1 and R2. Let
Ck(H) denote the vertex set of the kth largest connected component of the graph H.
Then F(d, D) = 1

2

∑
U

∑
o∈[N ]\U 1o∈C1(G)So,U , where

So,U
..=

2∏

i=1

( ∏

u∈Ri ∪{o}
Axi u

∏

u∈[N ]\(Ri ∪{o})
(1 − Axi u)

∏

u∈Ri

∏

v∈[N ]\{xi }
(1 − Auv)

)
.

The factor 1
2

corrects the overcounting from the labelling of the two stars.
For disjoint deterministic U , we split the random variables A = (A′, A′′) into two
independent families, where A′ ..= (Auv

.. u ∈ U or v ∈ U ) and A′′ ..= (Auv
.. u, v ∈

[N ] \ U ). Note that So,U is A′-measurable. We define the event

� ..= {|C1(G|[N ]\U )| > |C2(G|[N ]\U )| + 2D + 2} ,

which is A′′-measurable. By Corollary A.15 and the assumption on D, the event� holds
with high probability. Moreover, we have 1�1o∈C1(G)So,U = 1�1o∈C1(G|[N ]\U )So,U ,
since the component of o in G and G|[N ]\U differ by 2D + 2 vertices. Thus, for fixed
o ∈ [N ] \ U , using the independence of A′ and A′′, we get

E[1o∈C1(G)So,U ] = E[1�1o∈C1(G|[N ]\U )So,U ] + E[1�c1o∈C1(G)So,U ]
= E[So,U ]

[
P
(
o ∈ C1(G|[N ]\U )

)
+ O

(
P(�c)

)]
.

We have P(�c) = o(1) and P
(
o ∈ C1(G|[N ]\U )

)
= 1 − o(1) by Corollary A.15 and

the assumption on D. Computing E[So,U ] and performing the sum over o and U , we
therefore conclude that

E[F(d, D)] =
N (N − 1) · · · (N − 2D − 3 + 1)

2D!2(
d

N

)2D+2(
1 −

d

N

)2(N−D−1)+2D(N−1)

(1 + o(1)) ,

from which (A.26) follows. The estimate of the second moment is similar; one can
even disregard the restriction to the giant component by estimating E[F(d, D)2] �
1
4

∑
U,Ũ

∑
o,õ∈[N ] E[So,U S

õ,Ũ
]; we omit the details.
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A.7. Multilinear large deviation bounds for sparse random vectors. In this appendix we
collect basic large deviation bounds for multilinear functions of sparse random vectors,
which are proved in [42]. The following result is proved in Propositions 3.1, 3.2, and
3.5 of [42]. We denote by ‖X‖r

..= (E|X |r )1/r the Lr -norm of a random variable X .

Proposition A.20. Let r be even and 1 � d � N. Let X1, . . . , X N be independent

random variables satisfying

EX i = 0, E|X i |k �
1

Nd(k−2)/2

for all i ∈ [N ] and 2 � k � r . Let ai ∈ C and bi j ∈ C be deterministic for all i, j ∈ [N ].
Suppose that

(
1

N

∑

i

|ai |2
)1/2

� γ ,
maxi |ai |√

d
� ψ,

and

(
max

i

1

N

∑

j

|bi j |2
)1/2

∨
(

max
j

1

N

∑

i

|bi j |2
)1/2

� γ,
maxi, j |bi j |

d
� ψ

for some γ,ψ � 0. Then

∥∥∥∥
∑

i

ai X i

∥∥∥∥
r

�

(
2r

1 + 2(log(ψ/γ ))+
∨ 2

)(
γ ∨ ψ

)
, (A.27a)

∥∥∥∥
∑

i

ai

(
|X i |2 − E|X i |2

)∥∥∥∥
r

� 2

(
1 +

2d

N

)
max

i
|ai |
(

r

d
∨
√

r

d

)
, (A.27b)

∥∥∥∥
∑

i �= j

bi j X i X j

∥∥∥∥
r

�

(
4r

1 + (log(ψ/γ ))+
∨ 4

)2(
γ ∨ ψ

)
. (A.27c)

The Lr -norm bounds in Proposition A.20 induce bounds that hold with very high prob-
ability.

Corollary A.21. Fix κ ∈ (0, 1). Let the assumptions of Proposition A.20 be satisfied. If

ψ/γ � N κ/4 then with very high probability

∣∣∣∣
∑

i

ai X i

∣∣∣∣ � Cψ ,

∣∣∣∣
∑

i �= j

bi j X i X j

∣∣∣∣ � Cψ . (A.28)

Remark A.22. Our proof of Corollary A.21 shows thatC can be chosen as a linear function
of ν for the first estimate of (A.28) and as a quadratic function of ν for the second estimate
of (A.28).

Proof. Fix ν � 1. We choose r = ν log N in (A.27a) of Proposition A.20 and obtain
from Cheybshev’s inequality that

P

(∣∣∣∣
∑

i

ai X i

∣∣∣∣ > Cψ

)
� N−ν, C ..=

4e

κ
ν
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as κ ∈ (0, 1). Similarly, choosing r = 1
2
ν log N in (A.27c) yields

P

(∣∣∣∣
∑

i �= j

bi j X i X j

∣∣∣∣ > 4Cψ

)
� N−ν, C ..=

16e2

κ2
ν2 .

A.8. Resolvent identities. In this appendix we record some well-known identities for
the Green function (4.2) and its minors from Definition 4.5. We assume throughout that
z ∈ C \ R.

Lemma A.23 (Ward identity). For x /∈ T ⊂ [N ] we have

(T )∑

y

|G(T )
xy |2 =

1

Im z
Im G(T )

xx .

Proof. This is a standard identity for resolvents, see e.g. [16, Eq. (3.6)].

Lemma A.24. Let T ⊂ [N ]. For x, y /∈ T and x �= y, we have

G(T )
xy = −G(T )

yy

(T y)∑

a

G
(T y)
xa May = −G(T )

xx

(T x)∑

b

MxbG
(T x)
by . (A.29)

For x, y, a /∈ T and x �= a �= y, we have

G(T a)
xy = G(T )

xy −
G
(T )
xa G

(T )
ay

G
(T )
aa

. (A.30)

For any x ∈ [N ], we have

1

Gxx

= Mxx − z −
(x)∑

a,b

MxaG
(x)
ab Mbx . (A.31)

Proof. All identities are standard and proved e.g. in [16]: (A.29) in [16, Eq. (3.5)], (A.30)
in [16, Eq. (3.4)] and (A.31) in [16, Lemma A.1 and (5.1)].

We recall (4.1) and derive two expansions used in Sect. 4. For any T ⊂ [N ] and
x, y, u /∈ T , x �= u �= y, we have

G(T u)
xy = G(T )

xy +

(T u)∑

a

G(T u)
xa HauG(T )

uy +
f

N
G(T )

uy

(T u)∑

a

G(T u)
xa , (A.32a)

which follows from (A.30) and (A.29). Under the same assumptions, applying (A.29)
to (A.32a) yields

G(T u)
xy = G(T )

xy − G(T )
uu

(T u)∑

a

G(T u)
xa Hau

(T u)∑

b

HubG
(T u)
by

−
f

N
G(T )

uu

(T u)∑

a

G(T u)
xa Hau

(T u)∑

b

G
(T u)
by +

f

N
G(T )

uy

(T u)∑

a

G(T u)
xa .

(A.32b)
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A.9. Stability estimate—proof of Lemma 4.19. In this appendix we prove Lemma 4.19.
The estimate in [27, Lemma 3.5] corresponding to (4.43) has logarithmic factors, which
are not affordable for our purposes: they have to be replaced with constants. The fol-
lowing proof of Lemma 4.19 is analogous to that of the more complicated bulk stability
estimate from [9, Lemma 5.11].

Proof of Lemma 4.19. We introduce the vectors g ..= (gx )x∈X and ε
..= (εx )x∈X . More-

over, with the abbreviation m ..= m(z) we introduce the constant vectors m = (m)x∈X

and e ..= |X |−1/2(1)x∈X . We regard all vectors as column vectors. A simple computation
starting from the difference of (4.6) and (4.42) reveals that

B(g − m) = m(g − m)
(
ee∗(g − m)

)
− (g − m)mε − m2

ε, (A.33)

where B ..= 1 − m2ee∗, and column vectors are multiplied entrywise. The inverse of B

is

B−1 = 1 +
m2

1 − m2
ee∗.

For a matrix R ∈ C
X×X , we write ‖R‖∞→∞ for the operator norm induced by the

norm ‖r‖∞ = maxx∈X |rx | on C
X . It is easy to see that there is c > 0, depending only

on κ , such that |1−m(w)2| � c for allw ∈ C+ satisfying |Rew| � 2−κ . Hence, owing
to ‖ee∗‖∞→∞ = 1, we obtain ‖B−1‖∞→∞ � 1 + |1 − m2|−1 � 1 + c−1. Therefore,
inverting B in (A.33) and choosing b, depending only on κ , sufficiently small to absorb
the term quadratic in g − m into the left-hand side of the resulting bound yields (4.43)
for some sufficiently large C > 0, depending only on κ . This concludes the proof of
Lemma 4.19.

A.10. Instability estimate—proof of (2.11). In this appendix we prove (2.11), which
shows that the self-consistent equation (2.10) is unstable with a logarithmic factor,
which renders it useless for the analysis of sparse random graphs. More precisely, we
show that the norm ‖(I − m2S)−1‖∞→∞ is ill-behaved precisely in the situation where
we need it. For simplicity, we replace m2 with a phase α−1 ∈ S1 separated from ±1,
since for Re z ∈ Sκ we have

|m(z)|2 = 1 − O(Im z) , Im m(z) ≍ 1 , (A.34)

by [33, Lemma 3.5]. Moreover, for definiteness, recalling that with very high probability
most of the d(1 + o(1)) neighbours of any vertex in T are again in T , we assume that S

is the adjacency matrix of a d-regular graph on T divided by d.
By the spectral theorem and because S is Hermitian, ‖(α − S)−1‖2→2 is bounded, but,
as we now show, the same does not apply to ‖(α− S)−1‖∞→∞. Indeed, the upper bound
of (2.11) follows from [34, Proposition A.2], and the lower bound from the following
result.

Lemma A.25 (Instability of (2.10)). Let S be 1/d times the adjacency matrix of a graph

whose restriction to the ball of radius r ∈ N
∗ around some distinguished vertex is a

d-regular tree. Let α ∈ S1 be an arbitrary phase. Then

‖(α − S)−1‖∞→∞ � c

(
r

log r
∧ d

)
(A.35)

for some universal constant c > 0.
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In particular, denoting by N the number of vertices in the tree (which may be completed

to a d-regular graph by connecting the leaves to each other), for d ≍ log N and r ≍ log N
log d

we find

‖(α − S)−1‖∞→∞ �
c log N

(log log N )2
, (A.36)

which is the lower bound of (2.11).

Proof of Lemma A.25. After making r smaller if needed, we may assume that r
log r

� d.

We shall construct a vector u satisfying ‖u‖∞ = 1 and ‖(α − S)u‖∞ = O
( log r

r

)
,

from which (A.35) will follow. To that end, we construct the sequence a0, a1, . . . , ar by
setting

a0
..= 1 , a1

..= α , ak+1
..=

d

d − 1
αak −

1

d − 1
ak−1 for 1 � k � r − 1 .

A short transfer matrix analysis shows that |ak | � eC1k/d for some constant C1. Now

choose μ ..= C2
log r

r
with C2

..= 2 ∨ 2C1, and define bk
..= e−μkak . Calling o the

distinguished vertex, we define ux
..= bk if k = dist(o, x) � r and ux = 0 otherwise.

It is now easy to check that ‖(α − S)u‖∞ = O
( log r

r

)
, by considering the cases k = 0,

1 � k � r − 1, and k � r separately. The basic idea of the construction is that if μ
were zero, then (α − S)u would vanish exactly on Br−1(o), but it would be large on
the boundary Sr (o). The factor e−μk introduces exponential decay in the radius which
dampens the contribution of the boundary Sr (o) at the expense of introducing errors in
the interior Br−1(o).
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