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Abstract We consider Delone sets with finite local complexity. We characterize the
validity of a subadditive ergodic theorem by uniform positivity of certain weights.
The latter can be considered to be an averaged version of linear repetitivity. In this
context, we show that linear repetitivity is equivalent to positivity of weights com-
bined with a certain balancedness of the shape of return patterns.
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1 Introduction

Aperiodic point sets with long range order have attracted considerable attention in
recent years (see, e.g., the monographs and conference proceedings [1, 23, 24, 28]).
On the one hand, this is due to the actual discovery of physical substances, later
called quasicrystals, exhibiting such features [11, 27]. On the other hand, this is
due to intrinsic mathematical interest in describing the very border between crys-
tallinity and aperiodicity. While there is no axiomatic framework for aperiodic order
yet, various types of order conditions in terms of local complexity functions have
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been studied [12–14]. Here, we are concerned with linear repetitivity. This condition
is given by a linear bound on the growth rate of the repetitivity function. It has been
brought forward by Lagarias–Pleasants in [13] as a characterization of perfectly or-
dered quasicrystals. In fact, as shown in [14], among the aperiodic repetitive Delone
sets, linearly repetitive ones have the slowest possible growth rate of their repetitivity
function.

Let us also note that independent of the work of Lagarias–Pleasants, the analogue
notion for subshifts has received a thorough study in works of Durand [6, 7].

It turns out that linear repetitivity (or linear recurrence) implies validity of a subad-
ditive ergodic theorem [5]. Such a subadditive ergodic theorem is useful in application
to Schrödinger operators and to lattice gas theory [2, 3, 8–10, 17] (see Sect. 9 of [19]
for recent applications to diffraction theory as well). Now, for subshifts, it is possible
to characterize validity of a certain subadditive ergodic theorem by positivity of cer-
tain weights as shown by one of the authors in [16]. This positivity of weights can be
considered as an averaged version of linear repetitivity. This raises two questions:

Q1: Can validity of a subadditive ergodic theorem be characterized for Delone sets
in terms of positivity of certain weights?

Q2: What is the relationship between the positivity of weights and linear repetitivity?

Our main results deal with these questions. Theorem 1 shows that positivity of cer-
tain weights is indeed equivalent to validity of a subadditive ergodic theorem. This
answers Question 1. Theorem 2 characterizes linear repetitivity in terms of positivity
of these weights combined with a condition on the shape of return patterns. This gives
an answer to Question 2. In the case of symbolic dynamics analogues to Theorem 2
have been obtained earlier. In particular, there is some unpublished work of Monteil
[22] characterizing linear repetitivity in terms of positivity of weights and a repul-
sion property as well as a more general result obtained by Boshernitzan [4]. Bosher-
nitzan’s result shows equivalence of linear repetitivity and positivity of weights. Our
result and its proof are inspired by [4]. Condition (U) appearing below is not needed
in [4] (see Remark 5 at the end of the paper as well).

2 Notation and Results

Fix N ∈ N. We consider subsets of R
N . The Euclidean distance on R

N is denoted
by �. The closed ball around p ∈ R

N with radius R is denoted by BR(p). We write
BR for the closed ball BR(0) (around the origin 0 ∈ R

N ).
A subset Λ ⊂ R

N is called uniformly discrete if its packing radius

rpack(Λ) := inf

{
1

2
�(x, y) : x, y ∈ Λ,x �= y

}
(2.1)

is positive. A subset Λ is called relatively dense if its covering radius

rcov(Λ) := sup
{
�(p,Λ) : p ∈ R

N
}

(2.2)

is finite. A set which is both relatively dense and uniformly discrete is called a Delone
set.
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Let R
+ = {r ∈ R | r > 0} stand for the set of positive real numbers.

Given a Delone set Λ, the Cartesian product

PΛ = Λ × R
+ (2.3)

is referred to as the collection of ball patterns on Λ. A ball pattern

P = (x,R) ∈ Λ × R
+ = PΛ (2.4)

is determined by its center c(P ) = x and its radius r(P ) = R. Henceforth we often
abbreviate PΛ to just P when the Delone set Λ is clear from context.

Given a ball pattern P = (x,R), its patch is defined as the finite set

patch(P ) = patch(x,R) := (Λ − x) ∩ BR ⊂ R
N. (2.5)

Clearly, every patch contains the origin 0 ∈ R
N .

A subset A ⊂ R
N is called discrete if �(A ∩ BR) < ∞ for all R > 0. Here �(A) =

�A stands for the cardinality of a set A.
A Delone set Λ is said to be of finite local complexity (FLC) if the difference set

Λ − Λ = {x − y : x, y ∈ Λ} is a discrete subset of R
N . Note that Λ − Λ is exactly

the union of all patches:

Λ − Λ =
⋃

x∈Λ,R∈R+
patch(x,R),

and one verifies that (FLC) is equivalent to the following condition:

(FLC1) �
({

patch(x,R) | x ∈ Λ
})

< ∞ for all R > 0. (2.6)

(For every R > 0, there is only a finite number of patches for ball patterns of ra-
dius R).

In fact, both (FLC) and (FLC1) are equivalent to the following condition:

(FLC2) �
({

patch(x,R) | x ∈ Λ
})

< ∞ for R = 2rcov(Λ) (2.7)

(see (2.2) for the definition of rcov(Λ)). For proofs of the equivalence of the above
versions of (FLC), we refer to [12]. Given a ball pattern P = (x,R) ∈ PΛ, its locator
set LP is defined by the formula

LP (Λ) = {
y ∈ Λ : patch(y,R) = patch(x,R)

}
. (2.8)

A Delone set Λ is said to be repetitive if

rcov(LP ) < ∞ for any P ∈ PΛ,

i.e., if the locator set LP of any ball pattern P ∈ PΛ is relatively dense (equivalently,
forms a smaller Delone set).

A Delone set Λ is called strongly repetitive (compare Definition 2.5 in [14]) if

rcov(LP ) ≤ R(r) for any P = (x, r) ∈ PΛ,
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where the constant R(r) < ∞ depends only on the radius r = r(P ) of the ball pat-
tern P .

Repetitive Delone sets Λ do not need to satisfy (FLC). One can prove that a repet-
itive Delone set satisfies (FLC) if and only if it is strongly repetitive.

In the paper we deal mostly with repetitive Delone sets satisfying (FLC), i.e.,
strongly repetitive Delone sets.

A Delone set Λ is said to be nonperiodic if Λ − x �= Λ for all x ∈ R
N with x �= 0.

Denote by B the family of bounded subsets in R
N . Given a bounded set Q ∈ B

and a ball pattern P = (x,R) ∈ PΛ, we define the set

LP (Q) = {
y ∈ LP : BR(y) ⊂ Q

}

and two quantities �P Q, �′
P Q (valued in nonnegative integers) as follows.

The number �P Q (called the number of copies of P in Q) is defined by the formula

�P Q := �
(
LP (Q)

)
. (2.9)

The number �′
P Q ≤ �P Q (called the maximal number of completely disjoint

copies of P in Q) is defined by the formula

�′
P Q := max

{
�(A) : A ⊂ LP (Q) such that �(x, y) > 2R for all x, y ∈ A,x �= y

}
.

(2.10)
(Note that the inequality �(x, y) > 2R in the preceding line is equivalent to the re-
quirement that BR(x) ∩ BR(y) = ∅).

We write | · | for the Lebesgue measure in R
N . Clearly |BR| = RN |B1|.

Next, given a ball pattern P = (x,R) ∈ PΛ, we define two quantities, ν(P ) and
ν′(P ), as follows. The lower density of P , ν(P ), is defined by the formula

ν(P ) := lim inf|C|→∞
�P C · |BR|

|C| = |B1| · lim inf|C|→∞
�P C · RN

|C| , (2.11)

and the lower reduced density of P , ν′(P ), is defined by the formula

ν′(P ) := lim inf|C|→∞
�′
P C · |BR|

|C| = |B1| · lim inf|C|→∞
�′
P C · RN

|C| . (2.12)

Henceforth, when writing |C| → ∞, it is always meant that C runs over the cubes
in R

N .
One easily verifies that, for any Delone set Λ and any ball pattern P ∈ PΛ, the

inequalities

0 ≤ ν′(P ) ≤ ν(P ) < ∞, (2.13)

ν′(P ) ≤ |B1|
(√

N

2

)N

, and (2.14)

ν′(P ) > 0 (assuming that Λ is repetitive) (2.15)
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hold. (Inequality (2.14) follows from the observation that the diameter of a cube is
smaller than 2R if its sidelength is smaller than 2R√

N
.)

A Delone set Λ is said to satisfy positivity of quasiweights (PQ) if

(PQ) w′ := inf
P∈P

r(P )≥1

ν′(P ) > 0 (2.16)

(see (2.12)). A Delone set Λ is said to satisfy positivity of weights (PW) if

(PW) w := inf
P∈P

r(P )≥1

ν(P ) > 0 (2.17)

(see (2.11)). The constant 1 (in (2.16) and (2.17)) is arbitrary; it can be replaced by
any other positive constant.

The following is a useful observation.

Remark 1 Let Λ be a Delone set. Then w′ ≤ w, and the following implications hold:

(Λ satisfies PQ) ⇒ (Λ satisfies PW) ⇒ (
Λ is repetitive and has (FLC)

)
. (2.18)

Indeed, w′ ≤ w follows from (2.13)), and the implications are straightforward.
Recall that B stands for the family of bounded subsets in R

N . A real-valued func-
tion F : B → R is called subadditive if

(subadditivity) F(Q1 ∪ Q2) ≤ F(Q1) + F(Q2) (2.19)

whenever Q1,Q2 ∈ B are disjoint. Such a function F is said to be Λ-invariant if

F(Q) = F(t + Q) whenever t + (Q ∩ Λ) = (t + Q) ∩ Λ.

A Delone set Λ is said to satisfy a subadditive ergodic theorem (SET) if for any
subadditive invariant function F , the limit

(SET) μ(F ) = lim|C|→∞
F(C)

|C| (2.20)

exists. (Recall that, under our conventions, C runs over the cubes in R
N ).

Theorem 1 Let Λ be a repetitive Delone set with (FLC). Then (SET) is equivalent to
(PQ).

Remark 2 It is possible to replace the cubes appearing in the limit of (SET) by cube
like sequences. We refrain from giving details.

The theorem has the following corollary.

Corollary 1 If a Delone set Λ satisfies (PQ), then for every ball pattern P ∈ PΛ, the
frequency lim|C|→∞ �P C

|C| exists.
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Proof of Corollary 1 By Theorem 1, Λ satisfies (SET). The claim of Corollary 1
follows because F(Q) = −�P (Q) is a subadditive function on B. �

Remark 3 It is known that the dynamical system associated to a Delone set Λ of
finite local complexity satisfying (SET) is uniquely ergodic [15, 21]. In fact, unique
ergodicity is equivalent to existence of pattern frequencies. Thus, Corollary 1 shows
that (PQ) is also a sufficient condition for unique ergodicity of this system.

We will be concerned with further combinatorial quantities associated with Delone
sets Λ. These quantities will be discussed next.

A Delone set Λ is called linearly repetitive (LR) if

(LR) sup
P∈PΛ
r(P )≥1

rcov(L
Λ
P )

r(P )
< ∞. (2.21)

It is clear that linearly repetitive Delone sets are strongly repetitive.
A Delone set Λ is said to satisfy the repulsion property (RP) if

(RP) inf
P∈PΛ

rpack(L
Λ
P )

r(P )
> 0. (2.22)

We finally need the notion of return pattern. For subshifts, an intense study of this
notion has been carried out in work of Durand [6, 7]. The analogue for Delone sets
(or rather tilings) has then been investigated by Priebe [25] (see, e. g., [20, 26] as
well).

Recall that a subset Γ ⊂ R
N is called discrete if �(Γ ∩ BR) < ∞ for all R > 0.

Given a discrete subset Γ ⊂ R
N of cardinality �(Γ ) ≥ 2, the Voronoi cell of some

x ∈ Γ is defined by the formula

Vx(Γ ) := {
p ∈ R

N : �(p,x) ≤ �(p,y) for all y ∈ Γ
}
. (2.23)

(Recall that �(·, ·) stands for the Euclidean distance in R
N ). The collection

Ṽ (Γ ) = {
Vx(Γ ) | x ∈ Γ

}

is called the Voronoi partition of R
N corresponding to Γ .

Each Voronoi cell Vx = Vx(Γ ) (an element of this partition) is a convex subset in
R

N with nonempty interior containing x.
The distortion λ(Vx) of the Voronoi cell Vx is defined as the ratio

λ(Vx) = rout(Vx)

rin(Vx)
∈ [1,∞]

of the outer and inner radii of the cell Vx (denoted rout(Vx) and rin(Vx), respectively).
These are defined as follows:

rin(Vx) := sup
{
R > 0 : BR(x) ⊂ Vx

} = inf
y∈∂Vx

�(x, y) = �(x, ∂Vx),
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rout(Vx) := inf
{
R > 0 : Vx ⊂ BR(x)

} = sup
y∈∂Vx

�(x, y).

If Λ is a Delone set, the Voronoi cells Vx(Λ) ∈ Ṽ (Λ) are easily seen to form
compact polytopes in R

N , and their distortions are uniformly bounded by rcov(Λ)
rpack(Λ)

.
By a distortion of a Delone set Λ we mean the supremum of distortions of its

Voronoi cells: λ(Λ) = supx∈Λ λ(Vx).
It follows that the distortion of any Delone set Λ must be finite:

1 < λ(Λ) ≤ rcov(Λ)

rpack(Λ)
< ∞.

Assume from now on that Λ is a fixed repetitive Delone set. Then for every ball
pattern P ∈ PΛ, the locator set LP = LΛ

P (see (2.1)) is itself a Delone set which
determines its own Voronoi partition

ṼP = Ṽ (LP ) = {
Vx(LP ) | x ∈ LP

}
.

A Delone set Λ is said to satisfy uniformity of return words (U) if the distortions
of all its locator sets are uniformly bounded, i.e., if

(U) sup
P∈PΛ

λ(LP ) < ∞. (2.24)

Theorem 2 Let Λ be a nonperiodic Delone set. Then the following assertions are
equivalent:

(i) The set Λ satisfies (LR).
(ii) The set Λ satisfies (PQ) and (U).

(iii) The set Λ satisfies (PW) and (U).

For definitions of the properties (LR), (PQ), (PW) and (U) of a Delone set Λ see
(2.21), (2.16), (2.17) and (2.24), respectively.

Remark 4 Note that a Delone set satisfying (LR) or (PQ) or (PW) must be repetitive
and satisfy (FLC) as discussed above.

In Sect. 3, we provide a proof for Theorem 1. Section 4 deals with Theorem 2.

3 A Subadditive Ergodic Theorem

Proof of Theorem 1 We have to show that conditions (SET) and (PQ) are equivalent.
The analogue result in the setting of symbolic dynamics is given in [16]. Here, we
indicate the necessary modifications.

(PQ) ⇒ (SET): The proof given in [16] is easily carried over to show that (PQ)
implies existence of the limit lim|C|→∞ F(C)

|C| where C runs over the cubes in R
N .

A similar reasoning can also be found in the proof of (LR) ⇒ (SET) given in [5].
(SET) ⇒ (PQ): Assume to the contrary that (SET) holds but (PQ) fails.
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Since (PQ) does not hold, there exists a sequence (Pn) of ball patterns with
ν′(Pn) → 0 (see (2.12)). By repetitivity, ν′(Pn) > 0 for all n (see (2.15)). As Λ satis-
fies (FLC), this implies r(Pn) → ∞.

With notation as in Sect. 2, define the real-valued functions Fn : B → R by

Fn(Q) := �′
Pn

(Q)|Br(Pn)| (n ≥ 1).

(Recall that B stands for the family of all bounded subsets of R
n, and �′

Pn
(Q) is

defined as in (2.10)).
Observe that each function −Fn is subadditive and also Λ-invariant. By (SET),

the limits lim|C|→∞ Fn(C)
|C| exist and are equal to ν(Pn) = μ(F) (see (2.20)).

Since ν(Pn) → 0, it follows that

ν(Pn) = μ(Fn) = lim|C|→∞
Fn(C)

|C| → 0 (n → ∞).

Select now a positive ε <
|B1|
2N . Using the relations ν(Pn) → 0 and r(Pn) → ∞, one

constructs inductively a subsequence (Pnk
) of (Pn) such that

1

|C|
k∑

j=1

Fnj
(C) < ε and r(Pn

k+1
) > r(Pnk

)

for all k ≥ 1 and all cubes C with sidelengths s(C) ≥ 1
2 r(Pn

k+1
).

Define the function F : B → R by F(Q) := ∑∞
j=1 Fnj

(Q).
Since r(Pn) → ∞, only finitely many terms in this sum do not vanish. As each

function −Fn is subadditive and Λ-invariant, so is −F . Therefore, (SET) implies
existence of the limit μ(F) = lim|C|→∞ F(C)

|C| .
For any k ≥ 1 and for any cube C with its sidelength s(C) satisfying the inequali-

ties 1
2 r(Pn

k+1
) ≤ s(C) < 2r(Pn

k+1
), we obtain

F(C)

|C| =
∞∑

j=1

Fnj
(C)

|C| =
k∑

j=1

Fnj
(C)

|C| < ε.

On another hand, for a cube C with sidelength 2r(Pnk
) and center of mass in

x ∈ LPnk
, we have

F(C)

|C| ≥ Fnk
(C)

|C| ≥ |Br(Pnk
)|

|C| = |r(Pnk
)|N · |B1|

|2r(Pnk
)|N = |B1|

2N
.

It follows that |B1|
2N ≤ μ(F) ≤ ε, contrary to the choice of ε.

This completes the proof of Theorem 1. �

4 Linear Repetitive Delone Sets

In this section Theorem 2 is proved. We need several auxiliary results.
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Proposition 4.1 Let Λ be a nonperiodic Delone set. Then (LR) implies (RP).

For the definitions of properties (LR) and (RP), see (2.21) and (2.22).

Proof For linearly repetitive nonperiodic tilings, this (and in fact a slightly stronger
result) is proven in Lemma 2.4 of [29]. That proof carries easily over to Delone sets,
as discussed in Lemma 2.1 in [18] (see [14] and [7] as well). �

Proposition 4.2 Let Λ be a nonperiodic Delone set. Then, (LR) implies (U).

Proof By Proposition 4.1, Λ satisfies (RP). Now, from (LR) and (RP) there follows
existence of positive constants c and C depending only on Λ such that the inequalities
rpack(LP ) ≥ cr(P ) and rcov(LP ) < Cr(P ) hold for all ball patterns P . These imply
that rcov(LP )

rpack(LP )
< C

c
. For x ∈ LP , we have the following inclusions for the set Vx(LP )

(defined in (2.23)):

B
(
x, rpack(LP )

) ⊂ Vx(LP ) ⊂ B
(
x, rcov(LP )

)
,

see Corollary 5.2 in [28] for details. The estimate

λ
(
Vx(P )

) = rout(Vx(P ))

rin(Vx(P ))
≤ rcov(LP )

rpack(LP )
≤ Cr(P )

cr(P )
<

C

c

implies λ(LP ) ≤ C
c

, which completes validation of (U) (see (2.24)). �

Proposition 4.3 Let Λ be a Delone set. Then (LR) implies (PQ).

Proof By definition, (LR) implies that every pattern P = (x,R) ∈ P occurs in every
box of sidelength CR. We can now partition any sufficiently large cube into smaller
cubes of sidelength 3CR up to its boundary. Each of these smaller cubes contains
a cube of sidelength CR “in the middle,” i. e., with distance CR to the boundary.
Choosing a copy of P in each of these middle cubes, we easily obtain the statement. �

We will need two further lemmas before we can give the proof of the second main
theorem.

Lemma 4.4 Let m > n ≥ 1 be integer numbers. Then
∑m

k=n
1
k

≥ ln(m+1
n

).

Proof As the function f (x) = 1
x

is decreasing on the interval ]0,+∞[, we find∑m
k=n

1
k

≥ ∫ m+1
n

dx
x

= ln(m+1
n

). �

Lemma 4.5 Let Λ be a Delone set satisfying (PW) and (U), and let

P = (x0,R) ∈ Λ × R
+ = PΛ = P
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be a ball pattern of radius R := r(P ) ≥ 3. Then, for all points x ∈ LP (see (2.8)), the
following inequality holds:

rin
(
Vx(LP )

) ≤ cR, (4.1)

where c = max(2,4 exp( 6N

2wN
)), and the constant w is coming from the definition of

(PW).

Proof Set d to be the distance from x to the closest point in the set LΛ
P \ {x}:

d := min
y∈LΛ

P
y �=x

�(x, y).

We may assume that d > 4R because otherwise inequality in (4.1) holds with
c = 2.

For t ∈ R, let E(t) denote the greatest integer smaller than t . Set

d ′ = E

(
d

3

)
, R′ = E(R),

m = d ′ − R′, Rk = R′ + k (k ≥ 0).

Since d
3 − R > R

3 ≥ 1, it follows that m ≥ 1, and we have

2 < 3 ≤ R′ = R0 ≤ R < R1 < · · · < Rm = d ′ ≤ d

3
.

Consider the following m ball patterns:

Pk = (x,3Rk) ∈ P , 1 ≤ k ≤ m.

We list the following observations (Facts 1–5):

Fact 1 The following inclusions are fulfilled:

x ∈ LPi
⊂ LPj

⊂ LP (for 1 ≤ j ≤ i ≤ m).

Fact 2 For z ∈ LPi
with 1 ≤ i ≤ k, we have LP ∩ B2Ri

(z) = {z}.

In fact even more is true:

Fact 3 For z ∈ LPi
with 1 ≤ i ≤ k, we have

(LP − z) ∩ B2Ri

1= (LP − x) ∩ B2Ri

2= {0}.

Indeed, the first equality 1= holds since R = r(P ) ≤ Ri and both x, z ∈ LPi
. The

second equality 2= follows from the inequalities 2Ri < 3Ri ≤ 3Rm < d .
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Fact 4 If z ∈ LPi
and y ∈ LPj

with z �= y and i, j ∈ {1,2, . . . ,m}, then

(
BRi

(z) \ BRi−1(z)
) ∩ ((

BRj
(y) \ BRj−1(y)

)) = ∅. (4.2)

Indeed, assuming (without loss of generality) that i ≥ j , we have y ∈ LPj
⊂ LP

(Fact 1), and, in view of the Fact 2, we obtain �(x, y) > 2Ri , whence the claim of
Fact 4 follows. The next observation (Fact 5) is obvious.

Fact 5 If i �= j and z ∈ LPi
∩LPj

with i, j ∈ {1,2, . . . ,m}, then Eq. (4.2) takes place.

Given the disjointness observations (4.2) (Facts 4 and 5), the inequality

m∑
k=1

�Pk

(
Φd ′(C)

)|BRk
\ BRk−1 | ≤ |C|

holds for any cube C. Here, for Q ⊂ R
N and s > 0, we denote by Φs(Q) the set of

points of Q with distance at least s to the boundary of Q.
Let Cn be an arbitrary sequence of cubes with |Cn| → ∞. Then

1 ≥
m∑

k=1

�Pk
(Φd ′(Cn))

|Cn| |BRk
\ BRk−1 | for all n.

By letting n → ∞ we obtain from (PW) (see (2.17) for the definition of (PW))

1 ≥
m∑

k=1

w

|Pk| |BRk
\ BRk−1 | ≥

w

3N
·

d ′∑
s=R′+1

sN − (s − 1)N

sN
. (4.3)

Using the inequalities sN−(s−1)N

sN >
N(s−1)N−1

sN >
N(s/2)N−1

sN = N

s·2N−1 with s ≥ 2
and then Lemma 4.4, we can rewrite (4.3) in the form

1 ≥ w

3N
· N

2N−1
·

d ′∑
s=R′+1

1

s
≥ 2wN

6N
· ln

(
d ′ + 1

R′ + 1

)
.

It follows that d
3 ≤ d ′ + 1 ≤ (R′ + 1) · exp( 6N

2wN
). In view of the inequalities R′ + 1 <

R + 1 ≤ 4R
3 (which hold for R ≥ 3), we obtain

d < 4R exp

(
6N

2wN

)
,

completing the proof of Lemma 4.5. �

We can now turn to the following:

Proof of Theorem 2 Through the present proof, Λ is assumed to be a nonperiodic
Delone set, and the properties (PQ), (U), (LR), and (FLC) refer to it.
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We show (LR) =⇒ ((PQ) and (U)) =⇒ ((PW) and (U)) =⇒ (LR).
The implication (LR)=⇒((PQ) and (U)) immediately follows from Proposi-

tions 4.2 and 4.3.
The implication ((PQ) and (U)) =⇒ ((PW) and (U)) is clear in view of (2.18).
In what follows, we establish linear repetitivity (LR) of a nonperiodic Delone set

Λ satisfying (PW) and (U). (Note that Λ is repetitive and also satisfies (FLC) (both
properties follow from (PW))).

Let t ∈ R
N be arbitrary, and let P = (x0,R) ∈ P be a ball pattern in Λ with

R := r(P ) ≥ 3. Select x ∈ LP such that t ∈ Vx . By Lemma 4.5 we have

rin(Vx) ≤ cR

and then, by (U) (see (2.24)),

rout(Vx) ≤ cσR.

As the ball of radius rout(Vx) around t contains x, we obtain

rcov(LP ) ≤ cσR whenever R ≥ 3. (4.4)

Since the collection of patches corresponding to ball patterns of radius ≤ 3 is finite
in view of (FLC) of Λ (see (2.6)), the validity of (LR) follows from (4.4) (for the
definition of (LR) see (2.21)). This completes the proof of Theorem 2. �

Remark 5 Let us shortly comment on assumption (U) appearing above. It can be un-
derstood as a form of isotropy condition. From this point of view it seems reasonable
that it is not necessary in the one-dimensional case. Indeed, in this case one does not
need to work with the “centers” of the Voronoi cells but can rather work with intervals
to the right (or left) of the points [4]. One might wonder whether assumption (U) be
dropped in the higher-dimensional situation as well. On the other hand, it seems also
an interesting question which restrictions are imposed on the geometry of a discrete
set by condition (U) alone.
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