
DELPHI: A Cryptographic Inference Service for Neural Networks

Pratyush Mishra Ryan Lehmkuhl Akshayaram Srinivasan

Wenting Zheng Raluca Ada Popa

UC Berkeley

Abstract

Many companies provide neural network prediction services

to users for a wide range of applications. However, current

prediction systems compromise one party’s privacy: either

the user has to send sensitive inputs to the service provider for

classification, or the service provider must store its proprietary

neural networks on the user’s device. The former harms the

personal privacy of the user, while the latter reveals the service

provider’s proprietary model.

We design, implement, and evaluate DELPHI, a secure pre-

diction system that allows two parties to execute neural net-

work inference without revealing either party’s data. DELPHI

approaches the problem by simultaneously co-designing cryp-

tography and machine learning. We first design a hybrid cryp-

tographic protocol that improves upon the communication

and computation costs over prior work. Second, we develop a

planner that automatically generates neural network architec-

ture configurations that navigate the performance-accuracy

trade-offs of our hybrid protocol. Together, these techniques

allow us to achieve a 22× improvement in online prediction

latency compared to the state-of-the-art prior work.

1 Introduction

Recent advances in machine learning have driven increasing

deployment of neural network inference in popular applica-

tions like voice assistants [Bar18] and image classification

[Liu+17b]. However, the use of inference in many such ap-

plications raises privacy concerns. For example, home moni-

toring systems (HMS) such as Kuna [Kun] and Wyze [Wyz]

use proprietary neural networks to classify objects in video

streams of users’ homes such as cars parked near the user’s

house, or faces of visitors to the house. These models are core

to these companies’ business and are expensive to train.

To make use of these models, either the user has to upload

their streams to the servers of the HMS (which then evaluate

the model over the stream), or the HMS has to store its model

on the user’s monitoring device (which then performs the

classification). Both of these approaches are unsatisfactory:

the first requires users to upload video streams containing

sensitive information about their daily activities to another

party, while the second requires the HMS to store its model

on every device, thus allowing users and competitors to steal

the proprietary model.

To alleviate these privacy concerns, a number of recent

works have proposed protocols for cryptographic predic-

Client

Cryptographic

Protocol

Prediction

NN Model

Cloud

Data

Figure 1: Cryptographic neural network inference. The lock indi-

cates data provided in encrypted form.

tion over (convolutional) neural networks [Gil+16; Moh+17;

Liu+17a; Juv+18] by utilizing specialized secure multi-party

computation (MPC) [Yao86; Gol+87]. At a high level, these

protocols proceed by encrypting the user’s input and the ser-

vice provider’s neural network, and then tailor techniques for

computing over encrypted data (like homomorphic encryption

or secret sharing) to run inference over the user’s input. At the

end of the protocol execution, the intended party(-ies) learn

the inference result; neither party learns anything else about

the other’s input. Fig. 1 illustrates this protocol flow.

Unfortunately, these cryptographic prediction protocols

are still unsuitable for deployment in real world applications

as they require the use of heavy cryptographic tools during

the online execution. These tools are computationally inten-

sive and often require a large amount of communication be-

tween the user and the service provider. Furthermore, this

cost grows with the complexity of the model, making these

protocols unsuitable for use with state-of-the-art neural net-

work architectures used in practice today. For example, using

a state-of-the-art protocol like GAZELLE [Juv+18] to per-

form inference for state-of-the-art deep neural networks like

ResNet-32 [He+16] requires ∼ 82 seconds and results in over

560MB communication.

Our contribution. In this paper, we present DELPHI, a

cryptographic prediction system for realistic neural network

architectures. DELPHI achieves its performance via a careful

co-design of cryptography and machine learning. DELPHI

contributes a novel hybrid cryptographic prediction protocol,

as well as a planner that can adjust the machine learning algo-

rithm to take advantage of the performance-accuracy trade-

offs of our protocol. Our techniques enable us to perform cryp-

tographic prediction on more realistic network architectures

than those considered in prior work. For example, using DEL-

PHI for cryptographic prediction on ResNet-32 requires just

3.8 seconds and 60MB communication in the online phase,

improving upon GAZELLE by 22× and 9× respectively.

1

1.1 Techniques

We now describe at a high level the techniques underlying

DELPHI’s excellent performance.

Performance goals. Modern convolutional neural networks

consist of a number of layers, each of which contains one sub-

layer for linear operations, and one sub-layer for non-linear

operations. Common linear operations include convolutions,

matrix multiplication, and average pooling. Non-linear opera-

tions include activation functions such as the popular ReLU

(Rectified Linear Unit) function.

Achieving cryptographic prediction for realistic neural net-

works thus entails (a) constructing efficient subprotocols for

evaluating linear and non-linear layers, and (b) linking the

results of these subprotocols with each other.

Prior work. Almost all prior protocols for cryptographic

prediction utilize heavyweight cryptographic tools to imple-

ment these subprotocols, which results in computation and

communication costs that are much higher than the equiva-

lent plaintext costs. Even worse, many protocols utilize these

tools during the latency-sensitive online phase of the protocol,

i.e., when the user acquires their input and wishes to obtain

a classification for it. (This is opposed to the less latency-

sensitive preprocessing phase that occurs before the user’s

input becomes available).

For example, the online phase of the state-of-the-art

GAZELLE protocol uses heavy cryptography like linearly

homomorphic encryption and garbled circuits. As we show

in Section 7.4, this results in heavy preprocessing and on-

line costs: for the popular network architecture ResNet-32

trained over CIFAR-100, GAZELLE requires ∼ 158 seconds

and 8GB of communication during the preprocessing phase,

and ∼ 50 seconds and 5GB of communication during the

preprocessing phase, and ∼ 82 seconds and 600MB of com-

munication during the online phase.

1.1.1 DELPHI’s protocol

To achieve good performance on realistic neural networks,

DELPHI builds upon techniques from GAZELLE to develop

new protocols for evaluating linear and non-linear layers that

minimize the use of heavy cryptographic tools, and thus mini-

mizes communication and computation costs in the prepro-

cessing and online phases. We begin with a short overview of

GAZELLE’s protocol as it is the basis for DELPHI’s protocols.

Starting point: GAZELLE. GAZELLE [Juv+18] is a state-

of-the-art cryptographic prediction system for convolutional

neural networks. GAZELLE computes linear layers using an

optimized linearly-homomorphic encryption (LHE) scheme

[Elg85; Pai99; Reg09; Fan+12] that enables one to perform

linear operations directly on ciphertexts. To compute non-

linear layers, GAZELLE uses garbled circuits [Yao86] to com-

pute the bitwise operations required by ReLU. Finally, be-

cause each layer in a neural network consists of alternating

linear and non-linear layers, GAZELLE also describes how

to efficiently switch back-and-forth between the two afore-

mentioned primitives via a technique based on additive secret

sharing.

As noted above, GAZELLE’s use of heavy cryptography

in the online phase leads to efficiency and communication

overheads. To reduce these overheads, we proceed as follows.

Reducing the cost of linear operations. To reduce the

online cost of computing the linear operations, we adapt

GAZELLE to move the heavy cryptographic operations over

LHE ciphertexts to the preprocessing phase. Our key insight

is that the service provider’s input M to the linear layer (i.e.

the model weights for that layer) is known before user’s input

is available, and so we can use LHE to create secret shares

of M during preprocessing. Later, when the user’s input be-

comes available in the online phase, all linear operations can

be performed directly over secret-shared data without invok-

ing heavy cryptographic tools like LHE, and without requiring

interactions to perform matrix-vector multiplications.

The benefits of this technique are two-fold. First, the on-

line phase only requires transmitting secret shares instead of

ciphertexts, which immediately results in an 8× reduction

in online communication for linear layers. Second, since the

online phase only performs computations over elements of

prime fields, and since our system uses concretely small 32-

bit primes for this purpose, our system can take advantage of

state-of-the-art CPU and GPU libraries for computing linear

layers; see Section 7.2 and Remark 4.2 for details.

Reducing the cost of non-linear operations. While the

above technique already significantly reduces computation

time and communication cost, the primary bottleneck for both

remains the cost of evaluating garbled circuits for the ReLU

activation function. To minimize this cost, we use an alternate

approach [Gil+16; Liu+17a; Moh+17; Cho+18] that is better

suited to our setting of computing over finite field elements:

computing polynomials. In more detail, DELPHI replaces

ReLU activations with polynomial (specifically, quadratic)

approximations. These can be computed securely and effi-

ciently via standard protocols [Bea95].

Because these protocols only require communicating a

small constant number of field elements per multiplication,

using quadratic approximations significantly reduces the com-

munication overhead per activation, without introducing ad-

ditional rounds of communication. Similarly, since the un-

derlying multiplication protocol only requires a few cheap

finite field operations, the computation cost is also reduced by

several orders of magnitude. Concretely, the online communi-

cation and computation costs of securely computing quadratic

approximations are 192× and 10000× smaller (respectively)

than the corresponding costs for garbled circuits.

However, this performance improvement comes at the cost

of accuracy and trainability of the underlying neural network.

Prior work has already established that quadratic approxi-

mations provide good accuracy in some settings [Moh+17;

Liu+17a; Gho+17; Cho+18]. At the same time, both prior

2

work [Moh+17] and our own experiments indicate that

in many settings simply replacing ReLU activations with

quadratic approximations results in severely degraded accu-

racy, and can increase training time by orders of magnitude

(if training converges at all). To overcome this, we develop a

hybrid cryptographic protocol that uses ReLUs and quadratic

approximations to achieve good accuracy and good efficiency.

Planning an efficient usage of the hybrid cryptographic

protocol. It turns out that it is not straightforward to de-

termine which ReLU activations should be replaced with

quadratic approximations. Indeed, as we explain in Section 5,

simply replacing arbitrary ReLU activations with quadratic

approximations can degrade the accuracy of the resulting

network, and can even cause the network to fail to train.

So, to find an appropriate placement or network configura-

tion, we design a planner that automatically discovers which

ReLUs to replace with quadratic approximations so as to max-

imize the number of approximations used while still ensuring

that accuracy remains above a specified threshold.

The insight behind our planner is to adapt techniques for

neural architecture search (NAS) and hyperparameter opti-

mization (see [Els+19; Wis+19] for in-depth surveys of these

areas) to our setting. Namely, we adapt these techniques to

discover which layers to approximate within a given neural

network architecture, and to optimize the hyperparameters for

the discovered network. See Section 5 for details.

The overall system. DELPHI combines the above in-

sights into a cohesive system that service providers can use

to automatically generate cryptographic prediction proto-

cols meeting performance and accuracy criteria specified by

the provider. In more detail, the service provider invokes

DELPHI’s planner with acceptable accuracy and performance

thresholds. The planner outputs an optimized architecture

that meets this goal, which DELPHI then uses to instantiate a

concrete cryptographic prediction protocol that utilizes our

cryptographic techniques from above.

This co-design of cryptography and machine learning en-

ables DELPHI to efficiently provide cryptographic prediction

for networks deeper than any considered in prior work. For

example, in Section 7 we show that using DELPHI to provide

inference for the popular ResNet-32 architecture requires only

60MB communication and 3.8 seconds.

2 System overview

2.1 System setup

There are two parties in the system setup: the client and the

service provider (or server). In the plaintext version of our

system, the service provider provides prediction as a service

using its internal models via an API. The client uses this API

to run prediction on its own data by transferring its data to the

service provider. The service provider runs prediction using

the appropriate neural network, then sends the prediction

result back to the client. In DELPHI, the two parties execute

Cryptographic
Protocol

Service Provider

Client

Architectural search1

Preprocessing2

Online prediction3

Agree on

min. accuracy 92%

98% 94% 92%

Prediction

Precomputed

data

Input Data

Figure 2: DELPHI’s architecture. Orange layers represent quadratic

approximations while blue ones represent ReLUs.

a secure prediction together by providing their own inputs.

The service provider’s input is the neural network, while the

client’s input is its private input used for prediction.

2.2 Threat model

DELPHI’s threat model is similar to that of prior secure

prediction works such as GAZELLE [Juv+18] and Min-

iONN [Liu+17a]. More specifically, DELPHI is designed for

the two-party semi-honest setting, where only one of the par-

ties is corrupted by an adversary. Furthermore, this adversary

never deviates from the protocol, but it will try to learn in-

formation about the other parties’ private inputs from the

messages it receives.

2.3 Privacy goals

DELPHI’s goal is to enable the client to learn only two pieces

of information: the architecture of the neural network, and

the result of the inference; all other information about the

client’s private inputs and the parameters of the server’s neu-

ral network model should be hidden. Concretely, we aim to

achieve a strong simulation-based definition of security; see

Definition 4.1.

Like all prior work, DELPHI does not hide information

about the architecture of the network, such as the dimensions

and type of each layer in the network. For prior work, this is

usually not an issue because the architecture is independent

of the training data. However, because DELPHI’s planner uses

training data to optimally place quadratic approximations,

revealing the network architecture reveals some information

about the data. Concretely, in optimizing an ℓ-layer network,

the planner makes ℓ binary choices, thus reveals at most ℓ bits

of information about the training data. Because ℓ is concretely

small for actual networks (for example, ℓ = 32 for ResNet-

32), this leakage is negligible. This leakage can be further

mitigated by using differentially private training algorithms

[Sho+15; Aba+16]

DELPHI, like most prior systems for cryptographic predic-

tion, does not hide information that is revealed by the result

of the prediction. In our opinion, protecting against attacks

that exploit this leakage is a complementary problem to that

3

solved by DELPHI. Indeed, such attacks have been success-

fully carried out even against systems that “perfectly” hide the

model parameters by requiring the client to upload its input

to the server [Fre+14; Ate+15; Fre+15; Wu+16b; Tra+16].

Furthermore, popular mitigations for these attacks, such as

differential privacy, can be combined with DELPHI’s protocol.

We discuss these attacks and possible mitigations in more

detail in Section 8.2.

2.4 System architecture and workflow

DELPHI’s architecture consists of two components: a hybrid

cryptographic protocol for evaluating neural networks, and a

neural network configuration planner that optimizes a given

neural network for use with our protocol. Below we provide

an overview of these components, and then demonstrate how

one would use these in practice by describing an end-to-end

workflow for cryptographic prediction in home monitoring

systems (HMS).

Hybrid cryptographic protocol. DELPHI’s protocol for

cryptographic prediction consists of two phases: an offline

preprocessing phase, and an online inference phase. The of-

fline preprocessing phase is independent of the client’s input

(which regularly changes), but assumes that the server’s model

is static; if this model changes, then both parties would have

to re-run the preprocessing phase. After preprocesing, during

the online inference phase, the client provides its input to our

specialized secure two-party computation protocol, and even-

tually learns the inference result. We note that our protocol

provides two different methods of evaluating non-linear lay-

ers: the first offers better accuracy at the cost of worse offline

and online efficiency, while the other degrades accuracy, but

offers much improved offline and online efficiency.

Planner. To help service providers navigate the trade off

between performance and accuracy offered by these two com-

plementary methods to evaluate non-linear layers, DELPHI

adopts a principled approach by designing a planner that

generates neural networks that mix these two methods to max-

imize efficiency while still achieving the accuracy desired by

the service provider. Our planner applies neural architecture

search (NAS) to the cryptographic setting in a novel way in

order to automatically discover the right architectures.

Example 2.1 (HMS workflow). As explained in Section 1,

a home monitoring system (HMS) enables users to surveil

activity inside and outside their houses. Recent HMSes [Kun;

Wyz] use neural networks to decide whether a given activity

is malicious or not. If it is, they alert the user. In this setting

privacy is important for both the user and the HMS provider,

which makes DELPHI an ideal fit. To use DELPHI to provide

strong privacy, the HMS provider proceeds as follows.

The HMS provider first invokes DELPHI’s planner to op-

timize its baseline all-ReLU neural network model. Then,

during the HMS device’s idle periods, the device and the

HMS server run the preprocessing phase for this model. If the

device detects suspicious activity locally, it can run the online

inference phase to obtain a classification. On the basis of this

result, it can decide whether to alert the user or not.

Remark 2.2 (applications suitable for use with DELPHI). Ex-

ample 2.1 indicates that DELPHI is best suited for applications

where there is ample computational power available for pre-

processing, and where inference is latency-sensitive, but is not

performed frequently enough to deplete the reserve of prepro-

cessed material. Other examples of such applications include

image classification in systems like Google Lens [Goo].

3 Cryptographic primitives

In this section, we provide a high-level description of the

cryptographic building blocks used in DELPHI; this high-level

description suffices to understand our protocols. We provide

formal definitions of security properties in Appendix A, and

only provide high level intuitions here.

Garbled circuits. Garbled circuits (GC), introduced in the

seminal work of Yao [Yao86], are a method of encoding a

boolean circuit C and its input x such that, given the encoded

circuit and the encoded input, an evaluator can use a special

evaluation procedure to obtain the output C(x) while ensuring

that the evaluator learns nothing else about C or x. We now

describe this notion in more detail.

A garbling scheme [Yao86; Bel+12] is a tuple of algorithms

GS= (Garble,Eval) with the following syntax:

• GS.Garble(C) → (C̃,{labeli,0, labeli,1}i∈[n]). On input a

boolean circuit C, Garble outputs a garbled circuit C̃ and a

set of labels {labeli,0, labeli,1}i∈[n]. Here labeli,b represents

assigning the value b ∈ {0,1} to the i-th input label.

• GS.Eval(C̃,{labeli,xi
})→ y. On input a garbled circuit C̃

and labels {labeli,xi
} corresponding to an input x ∈ {0,1}n

,

Eval outputs a string y =C(x).

We provide a formal definition in Appendix A, and briefly

describe here the key properties satisfied by garbling schemes.

First, GS must be complete: the output of Eval must equal

C(x). Second, it must be private: given C̃ and {labeli,xi
}, the

evaluator should not learn anything about C or x except the

size of |C| (denoted by 1
|C|

) and the output C(x).

Linearly homomorphic public-key encryption. A lin-

early homomorphic encryption scheme [Elg85; Pai99] is a

public key encryption scheme that additionally supports (only)

linearly homomorphic operations on the ciphertexts. To give

more details, a linearly homomorphic encryption consists of a

tuple of algorithms HE= (KeyGen,Enc,Dec,Eval) with the

following syntax:

• HE.KeyGen→ (pk,sk). HE.KeyGen is a randomized algo-

rithm that outputs a public key pk and a secret key sk.

• HE.Enc(pk,m)→ c. On input the public key pk and a mes-

sage m, the encryption algorithm HE.Enc outputs a cipher-

text c. The message space is a finite ring R .

4

• HE.Dec(sk,c)→ m. On input the secret key sk and a ci-

phertext c, the decryption algorithm HE.Dec outputs the

message m contained in c.

• HE.Eval(pk,c1,c2,L)→ c
′
. On input the public key pk,

two ciphertexts c1,c2 encrypting messages m1 and m2, and

a linear function L,
1
HE.Eval outputs a new ciphertext c

′

encrypting L(m1,m2).
Informally, we require HE to satisfy the following properties:

• Correctness. HE.Dec, on input sk and a ciphertext c :=
HE.Enc(pk,m), outputs m.

• Homomorphism. HE.Dec, on input sk and a ciphertext c :=
HE.Eval(pk,HE.Enc(pk,m1),HE.Enc(pk,m2),L), outputs

L(m1,m2).
• Semantic security. Given a ciphertext c and two messages

of the same length, no attacker should be able to tell which

message was encrypted in c.

• Function privacy. Given a ciphertext c, no attacker can tell

what homomorphic operations led to c.

Oblivious transfer. An oblivious transfer protocol [Rab81;

Eve+82; Ish+03] is a protocol between two parties, a sender

who has as input two messages m0,m1, and a receiver who

has as input a bit b. At the end of the protocol, the receiver

learns mb. The security requirement states that the sender

does not learn anything about bit b and the receiver does not

learn anything about the string m1−b.

Additive secret sharing. Given a finite ring R and an el-

ement x ∈ R , a 2-of-2 additive secret sharing of x is a pair

([x]1, [x]2) = (x− r,r) ∈ R
2

(so that x = [x]1 +[x]2) where r

is a random element from the ring. Additive secret sharing is

perfectly hiding, i.e., given a share [x]1 or [x]2, the value x is

perfectly hidden.

Beaver’s multiplicative triples. Beaver’s multiplication

triples [Bea95] generation procedure is a two-party proto-

col that securely computes the following function. Sample

a,b ← R and return [a]1, [b]1, [ab]1 to the first party and

[a]2, [b]2, [ab]2 to the second party. In this work, we will gener-

ate Beaver’s triples using a linearly homomorphic encryption

scheme; we provide further details in Appendix A.

Beaver’s multiplication procedure. Let P1 and P2 be two

parties who hold [x]1, [y]1 and [x]2, [y]2 respectively where

x,y are some ring elements. Additionally, let us assume that

P1 and P2 also hold a Beaver’s multiplication triple, namely,

([a]1, [b]1, [ab]1) and ([a]2, [b]2, [ab]2) respectively. Beaver’s

multiplication procedure is a secure protocol such that at

the end of the protocol, parties P1 and P2 hold an additive

secret sharing of xy. We provide details of this protocol in

Appendix A but note here that this protocol can be used to

securely evaluate any polynomial.

4 Cryptographic protocols

In DELPHI, we introduce a hybrid cryptographic protocol for

cryptographic prediction (see Fig. 4). Our protocol makes two

1
L maps (m1,m2) to am1 +m2 for some a ∈ R .

key improvements to protocols proposed in prior work like

MiniONN [Liu+17a] and GAZELLE [Juv+18]. First, DELPHI

splits the protocol into a preprocessing phase and an online

phase such that most of the heavy cryptographic computation

is performed in the preprocessing phase. Second, DELPHI

introduces two different methods of evaluating non-linear

functions that provide the users with trade offs between accu-

racy and performance. The first method uses garbled circuits

to evaluate the ReLU activation function, while the second

method uses securely evaluates polynomial approximations of

the ReLU. The former provides maximum accuracy but is in-

efficient, while the latter is computationally cheap but lowers

accuracy. (We note that below we describe a protocol for eval-

uating any polynomial approximation, but in the rest of the

paper, we restrict ourselves only to quadratic approximations

because these are maximally efficient.)

Notation. Let R be a finite ring. Let HE = (KeyGen,
Enc,Dec,Eval) be a linearly homomorphic encryption over

the plaintext space R . The server holds a model M consist-

ing of ℓ layers M1, . . . ,Mℓ. The client holds an input vector

x ∈ R
n
.

We now give the formal definition of a cryptographic pre-

diction protocol. Intuitively, the definition guarantees that

after the protocol execution, a semi-honest client (i.e., one

that follows the specification of the protocol) only learns the

architecture of the neural network and the result of the in-

ference; all other information about the parameters of the

server’s neural network model are hidden. Similarly, a semi-

honest server does not learn any information about the client’s

input, not even the output of the inference.

Definition 4.1. A protocol Π between a server having as in-

put model parameters M = (M1, . . . ,Mℓ) and a client having

as input a feature vector x is a cryptographic prediction

protocol if it satisfies the following guarantees.

• Correctness. On every set of model parameters M that

the server holds and every input vector x of the client, the

output of the client at the end of the protocol is the correct

prediction M(x).
• Security:

– Corrupted client. We require that a corrupted, semi-

honest client does not learn anything about the server’s

network parameters M. Formally, we require the exis-

tence of an efficient simulator SimC such that View
Π

C ≈c

SimC(x,out), where View
Π

C denotes the view of the client

in the execution of Π (the view includes the client’s input,

randomness, and the transcript of the protocol), and out

denotes the output of the inference.

– Corrupted server. We require that a corrupted, semi-

honest server does not learn anything about the pri-

vate input x of the client. Formally, we require the exis-

tence of an efficient simulator SimS such that View
Π

S ≈c

SimS(M), where View
Π

S denotes the view of the server

in the execution of Π.

5

Client Server

enc(ri)

Sample ri ← Rn Sample si ← Rn

enc(Miri − si)

Miri − si
si

C̃i

Garbled

circuits

Beaver’s

triples Fpre

Beaver

[ai]1, [bi]1, [aibi]1 [ai]2, [bi]2, [aibi]2

Mi

OT

 for i ∈ [1,…, ℓ] for i ∈ [1,…, ℓ]

Linear

Figure 3: DELPHI’s preprocessing phase.

M
i
r
i
− s

i

M
i
, s

i
x, r

i

x
i
− r

i

M
i
(x

i
− r

i
) + s

i

C̃
i

Labels for M
i
(x

i
− r

i
) + s

i

x
i+1 − r

i+1r
i+1

F
online

Beaver

[x
i+1]1 [x

i+1]2

[x
i+1]1 − r

i+1

x
i+1 − r

i+1r
i+1

Garbled

circuits

Polynomial

approx.

Linear

Client Server

Evaluate

Figure 4: DELPHI’s online phase.

The DELPHI protocol proceeds in two phases: the prepro-

cessing phase and the online phase, and we give the details of

both these phases in the subsequent sections.

4.1 Preprocessing phase

During preprocessing, the client and the server pre-compute

data that can be used during the online execution. This phase

can be executed independent of the input values, i.e., DELPHI

can run this phase before either party’s input is known.

1. The client runs HE.KeyGen to obtain a public key pk and

a secret key sk.

2. For every i ∈ [ℓ], the client and the server choose random

masking vectors ri,si← R
n

respectively.

3. The client sends HE.Enc(pk,ri) to the server. The server

computes HE.Enc(pk,Mi · ri− si) using the HE.Eval pro-

cedure and sends this ciphertext to the client.

4. The client decrypts the above ciphertexts and to obtain

(Mi · ri− si) for each layer. The server holds si for each

layer and thus, the client and the server hold an additive

secret sharing of Miri.

5. This step depends on the activation type:

(a) ReLU: The server constructs C̃ by garbling the circuit

C described in Fig. 5. It sends C̃ to the client and

simultaneously, the server and the client exchange

labels for the input wires corresponding to ri+1 and

Mi · ri− si via an Oblivious Transfer (OT).

(b) Polynomial approximaitons: The client and the server

run the Beaver’s triples generation protocol to gener-

ate a number of Beaver’s multiplication triples.
2

2
The exact number of triples generated depends on the number of layers

that have to be approximated using a polynomial.

4.2 Online

The online phase is divided into a two stages: the setup and

the layer evaluation.

4.2.1 Setup

The client on input x, sends x− r1 to the server. The server

and the client now hold an additive secret sharing of x.

4.2.2 Layer evaluation

At the beginning of the i-th layer, the client holds ri and

the server holds xi− ri where xi is the vector obtained by

evaluating the first (i− 1) layers of the neural network on

input x (with x1 set to x). This invariant will be maintained

for each layer. We now describe the protocol for evaluating

the i-th layer, which consists of linear functions and activation

functions.

Linear layer. The server computes Mi(xi− ri)+ si, which

ensures that the client and the server an additive secret sharing

of Mixi.

Non-linear layer. After the linear functions, the server holds

Mi(xi− ri)+ si and the client holds Mi · ri− si. There are

two ways of evaluating non-linear layers: garbled circuits for

ReLU, or Beaver’s multiplication for polynomial approxima-

tion:

• Garbled circuits

1. The server sends the garbled labels corresponding to

Mi(xi− ri)+ si to the client.

2. The client evaluates the garbled circuit C̃ using the

above labels as well as the labels obtained via OT (in

the offline phase) to obtain a one-time pad ciphertext

OTP(xi+1−ri+1). It then sends this output to the server.

6

3. The server uses the one time pad key to obtain xi+1−
ri+1.

• Polynomial approximation

1. The client and the server run the Beaver’s multiplication

procedure to evaluate the polynomial approximating

this layer. At the end of the procedure, the client holds

[xi+1]1 and the server holds [xi+1]2.

2. The client computes [xi+1]1− ri+1 and sends them to

the server. The server adds [xi+1]2 to this value to obtain

xi+1− ri+1.

Output layer. The server sends xℓ− rℓ to the client who

adds this with rℓ to learn xℓ.

Hardwired: A random one time pad key.

Input: Mi(xi− ri)+ si, ri+1, Mi · ri− si.

1. Compute Mi ·xi = Mi(xi− ri)+ si +(Mi · ri− si).
2. Compute ReLU(Mi ·xi) to obtain xi+1.

3. Compute xi+1− ri+1 and output OTP(xi+1− ri+1).

Figure 5: A circuit that computes ReLU.

Remark 4.2 (fixed-point arithmetic in finite fields). The dis-

cussion so far assumes arithmetic over a finite ring. However,

popular implementations of neural network inference perform

arithmetic over floating-point numbers. We work around this

by using fixed-point representations of floating-point num-

bers, and embedding this fixed-point arithmetic in our ring

arithmetic.

Concretely, our implementation works over the 41-bit

prime finite field defined by the prime 2061584302081, and

uses a 11-bit fixed-point representation. This choice of pa-

rameters enables a single multiplication of two fixed-point

numbers before the result overflows capacity of the prime

field. To prevent values from growing exponentially with the

number of multiplications (and thus overflowing), we use a

trick from [Moh+17] that allows us to simply truncate the

extra LSBs of fixed-point values. This trick works even when

the result is secret-shared, albeit at the cost of a 1-bit error.

Similarly to Slalom [Tra+19], our choice of prime field also

enables us to losslessly embed our field arithmetic in 64-bit

floating point arithmetic. In more detail, 64-bit floating point

numbers can represent all integers in the range 2
−53, . . . ,253

.

Because the online phase of our protocol for linear layers

requires multiplication of a fixed-point matrix by a secret

shared vector, the result is a ∼ 52-bit integer, and hence can

be represented with full precision in a 64-bit floating point

number. This enables our implementation to use state-of-the-

art CPU and GPU libraries for linear algebra.

4.3 Security

Theorem 4.3. Assuming the existence of garbled circuits,

linearly homomorphic encryption and secure protocols for

Beaver’s triples generation and multiplication procedure, the

protocol described above is a cryptographic prediction proto-

col (see Definition 4.1).

Proof. Below we describe simulators first for the case where

the client is corrupted, and then for the case where the server

is corrupted. We provide a hybrid argument that relies on

these simulators in Appendix B.

4.3.1 Client is corrupted

The simulator Sim, when provided with the client’s input x,

proceeds as follows:

1. Sim chooses an uniform random tape for the client.

2. In the offline phase:

(a) Sim receives the public key and the ciphertext

HE.Enc(pk,ri) from the client. In return, it sends

HE.Enc(pk,−s
′
i) for a randomly chosen s

′
i from R

n
.

(b) Sim uses the simulator for garbled circuits SimGS and

runs it on 1
λ,1|C| and sets the output of the circuit to

be a random value. SimGS outputs C̃,{labeli}. For the

i-th OT execution, Sim gives the labeli in both slots

as input. It sends C̃ to the client.

(c) For the secure protocol to generate the Beaver’s

triples, Sim runs the corresponding simulator for this

procedure.

3. Online phase. In the preamble phase, Sim receives x−r1.

It sends x to the ideal functionality (a semi-honest client

uses the same x as its input) and receives the output y. Sim

performs the layer evaluation as follows:

(a) Garbled circuits layer. Sim sends the simulated la-

bels.

(b) Polynomial approximation layer. Sim uses the sim-

ulator for the Beaver’s multiplication procedure to

evaluate the polynomial.

4. Output layer. Sim sends y− rℓ to the client.

In Appendix B, we show that the simulated distribution is com-

putationally indistinguishable to the real world distribution

using the security of the underlying cryptographic building

blocks.

4.3.2 Server is corrupted

The simulator Sim, when provided with the server’s input

M1, . . . ,Mℓ−1, proceeds as follows.

1. Sim chooses an uniform random tape for the server.

2. In the offline phase:

(a) Sim chooses a public key pk for a linearly homomor-

phic encryption scheme. It then sends HE.Enc(pk,0)
to the server. In return, it receives the homomorphi-

cally evaluated ciphertext from the server.

(b) For every oblivious transfer execution where Sim acts

as the receiver, it uses junk input, say 0 as the re-

ceiver’s choice bit. It receives C̃ from the server.

7

(c) For the secure protocol for generating the Beaver’s

triples, Sim runs the corresponding simulator for this

procedure.

3. Online phase. In the preamble phase, Sim sends r1 for an

uniformly chosen r1. Sim performs the layer evaluation

step as follows:

(a) Garbled circuits layer. Sim sends a random value

back to the server.

(b) Polynomial approximation layer. Sim uses the sim-

ulator for the Beaver’s multiplication procedure to

evaluate the polynomial. At the last round of this step,

it sends a random value back to the server.

In Appendix B, we show that the simulated distribution is

indistinguishable from the real world distribution using the

security of the underlying cryptographic primitives.

5 Planner

DELPHI’s planner takes the service provider’s neural network

model (as well as other constraints) and produces a new neural

network architecture that meets the accuracy and efficiency

goals of the service provider. At the heart of this planner is an

algorithm for neural architecture search (NAS) that enables

the service provider to automatically find such network ar-

chitectures. Below we give a high level overview of this key

component and describe how our planner uses it.

Background: neural architecture search. Recently, ma-

chine learning research has seen rapid advancement in the area

of neural architecture search (NAS) [Els+19; Wis+19]. The

goal of NAS is to automatically discover neural network ar-

chitectures that best satisfy a set of user-specified constraints.

Most NAS algorithms do so by (partially) training a number

of different neural networks, evaluating their accuracy, and

picking the best-performing ones.

Overview of our planner. DELPHI’s planner, when given

as input the baseline all-ReLU neural network, operates in

two modes. When retraining is either not possible or unde-

sirable (for example if the training data is unavailable or if

the provider cannot afford the extra computation required

for NAS), the planner operates in the first mode and simply

outputs the baseline network. If retraining (and hence NAS)

is feasible, then the planner takes as additional inputs the

training data, and a constraint on the minimum acceptable

prediction accuracy t, and then uses NAS to discover a net-

work configuration that maximizes the number of quadratic

approximations while still achieving accuracy greater than t.

Our planner then further optimizes the hyperparameters of

this configuration. In more detail, in this second mode, our

planner uses NAS to optimize the following properties of

a candidate network configuration given t: (a) the number

of quadratic approximations, (b) the placement of these ap-

proximations (that is, the layers where ReLUs are replaced

with approximations), and (c) training hyperparameters like

learning rate and momentum.

The foregoing is a brief description that omits many details.

Below, we describe how we solved the challenges that re-

quired solving to adapt NAS to this setting (Section 5.1), our

concrete choice of NAS algorithm (Section 5.2), and detailed

pseudocode for the final algorithm (Fig. 6).

5.1 Adapting NAS for DELPHI’s planner

Challenge 1: Training candidate networks. Prior work

[Moh+17; Gil+16; Gho+17; Cho+18] and our own experi-

ments indicate that networks that use quadratic approxima-

tions are challenging to train and deploy: the quadratic acti-

vations cause the underlying gradient descent algorithm to

diverge, resulting in poor accuracy. Intuitively, we believe

that this behavior is caused by these functions’ large and

alternating gradients.

To solve this issue, we used the following techniques:

• Gradient and activation clipping: During training, we mod-

ify our optimizer to use gradient value clipping, which

helps prevent gradients from exploding [Ben+94]. In par-

ticular, we clip the values of all gradients to be less than

2. We furthermore modify our networks to use the ReLU6

activation function [Kri10] that ensures that post-activation

values have magnitude at most 6. This keeps errors from

compounding during both inference and training.

• Gradual activation exchange: Our experiments determined

that despite clipping, the gradients were still exploding

quickly, especially in deeper networks that contained a

higher fraction of approximations. To overcome this, we

made use of the following insight: intuitively, ReLU6 and

(clipped) quadratic approximations to ReLU should share

relatively similar gradients, and so it should be possible to

use ReLU6 to initially guide the descent towards a stable

region where gradients are smaller, and then to use the ap-

proximation’s gradients to make fine-grained adjustments

within this region.

We take advantage of this insight by modifying the train-

ing process to gradually transform an already-trained all-

ReLU6 network into a network with the required number

and placement of quadratic approximations. In more de-

tail, our training process expresses each activation as a

weighted average of quadratic and ReLU6 activations, i.e.,

act(x) := wq ·quad(x)+wrReLU(x) such that wq+wr = 1.

In the beginning, wq = 0 and wr = 1. Our training algo-

rithm then gradually increases wq and reduces wr, so that

eventually wq = 1 and wr = 0.

This technique also improves running times for the NAS

as it no longer has to train each candidate network configu-

ration from scratch.

Challenge 2: Efficiently optimizing configurations. Re-

call from above that our planner aims to optimize the number

of quadratic approximations, their placement in the network,

and the training hyperparameters. Attempting to optimize all

of these variables within a single NAS execution results in

a large search space, and finding efficient networks in this

8

search space takes a correspondingly long time.

To solve this problem, we divided up the monolithic NAS

execution into independent runs that are responsible for op-

timizing different variables. For instance, for an architecture

with n non-linear layers, for relevant choices of m < n, we

first perform NAS to find high-scoring architectures that have

m approximation layers, and then perform NAS again to opti-

mize training hyperparameters for these architectures. At the

end of this process, our planner outputs a variety of networks

with different performance-accuracy trade-offs.

Challenge 3: Prioritizing efficient configurations. Our

planner’s goal is to choose configurations containing the

largest number of approximations in order to maximize effi-

ciency. However, network configurations with large numbers

of approximations take longer to train and may be slightly

less accurate than networks with fewer approximations. Since

the traditional NAS literature focuses on simply maximizing

efficiency, using NAS in this default setting results in select-

ing slower networks over more efficient networks that are just

slightly less accurate than the slower ones. To overcome this,

we changed the way the NAS assigns “scores” to candidate

networks by designing a new scoring function score(·) which

balances prioritizing accuracy and performance. Our experi-

ments from Section 7 indicate that this function enables us to

select networks that are both efficient and accurate.

score(N) := acc(N)
(

1+ #quad. activations
#total activations

)
.

5.2 Choosing a NAS algorithm

The discussion so far has been agnostic to the choice of NAS

algorithm. In our implementation, we decided to use the pop-

ular population-based training algorithm [Jad+17] because

it was straightforward to customize it for our use case, and

because it enjoys a number of optimized implementations

(like the one in [Lia+18]).

Population-based training (PBT) [Jad+17] maintains a pop-

ulation of candidate neural networks that it trains over a series

of time steps. At the end of each time step, it measures the

performance of each candidate network via a user-specified

scoring function, and replaces the worst-performing candi-

dates with mutated versions of the best-performing ones (the

mutation function is specified by the user). At the end of

the optimization process, PBT outputs the best-performing

candidate network architectures it has found (along with the

hyperparameters for training them).

6 System implementation

We implemented DELPHI’s cryptographic protocols in Rust

and C++. We use the SEAL homomorphic encryption library

[Sea] to implement HE, and rely on the fancy-garbling

library
3

for garbled circuits. To ensure an efficient prepro-

cessing phase, we reimplemented GAZELLE’s efficient algo-

3
https://github.com/GaloisInc/fancy-garbling/

Planner




all-ReLU6 neural network N

training data D

accuracy threshold t




1. Let the number of non-linear layers in N be n.

2. Initialize set of output networks F .

3. For i in {n/2, . . . ,n}:
(a) Compute the set of best performing models

with i quadratic approximation layers: Si ←
PBT(N,D,score(·)).

(b) Optimize hyperparameters for these models:

S
′
i ← PBT(Si,D,score(·)).

(c) If for any N j ∈ S
′
i the accuracy of N j is less than t,

discard N j .

(d) Define Ni to be the network with the maximum score

among the remaining networks.

(e) Set F := F ∪{Ni}.
4. Output F .

Figure 6: Pseudocode for DELPHI’s planner.

rithms for linear layers in SEAL; this may be of indepen-

dent interest. DELPHI’s planner is implemented in Python

and uses the scalable PBT [Jad+17] implementation in Tune

[Lia+18]. Our implementation is available online at https:

//github.com/mc2-project/delphi.

Remark 6.1 (reimplementing GAZELLE’s algorithms). Riazi

et al. [Ria+19] note that GAZELLE’s implementation does not

provide circuit privacy for HE, which can result in leakage

of information about linear layers. To remedy this, they rec-

ommend using larger parameters that ensure circuit privacy.

(The caveat is that these parameters result in worse perfor-

mance than using GAZELLE’s highly optimized parameters.)

Because DELPHI uses GAZELLE’s algorithms in our prepro-

cessing phase, we attempted to modify GAZELLE’s implemen-

tation
4

to use the circuit-private parameters. However, this

proved to be difficult, and so we decided to reimplement these

algorithms in SEAL, which does support these parameters.

7 Evaluation

We divide our evaluation into three sections that answer the

following questions.

• Section 7.2: How efficient are DELPHI’s building blocks?

• Section 7.3: Does DELPHI’s planner provide a good bal-

ance between efficiency and accuracy for realistic neural

networks, such as ResNet-32?

• Section 7.4: What is the latency and communication cost

of using DELPHI for serving predictions with such neural

networks? Does DELPHI’s protocol preserve the accuracy

of the plaintext model?

7.1 Evaluation setup

All cryptographic experiments were carried out on AWS

c5.2xlarge instances possessing an Intel Xeon 8000 series

4
https://github.com/chiraag/gazelle_mpc

9

https://github.com/GaloisInc/fancy-garbling/
https://github.com/mc2-project/delphi
https://github.com/mc2-project/delphi
https://github.com/chiraag/gazelle_mpc

machine CPU at 3.0GHz with 16GB of RAM. The client and

server were executed on two such instances located in the

us-west-1 (Northern California) and us-west-2 (Oregon)

regions respectively. The client and server executions used 4

threads each. Machine learning experiments were carried out

on various machines with NVIDIA Tesla V100 GPUs. Our

machine learning and cryptographic protocol experiments

rely on the following datasets and architectures:

1. CIFAR-10 is a standardized dataset consisting of (32×
32) RGB images separated into 10 classes. The training

set contains 50,000 images, while the test set has 10,000

images. Our experiments use the 7-layer CNN architecture

specified in MiniONN [Liu+17a]. Doing so allows us to

compare our protocol with prior work.

2. CIFAR-100 contains the same number of training and test

images as CIFAR-10, but divides them up into 100 classes

instead of 10. This increased complexity requires a deeper

network with more parameters, and so our experiments use

the popular ResNet-32 architecture introduced in [He+16].

We note that no prior work on secure inference attempts to

evaluate their protocols on difficult datasets like CIFAR-

100 or on deep network architectures like ResNet-32.

Whenever we compare DELPHI with GAZELLE, we estimate

the cost of GAZELLE’s protocols by summing the costs of

our re-implementation of the relevant subprotocols for linear

and non-linear layers. We do this as there is no end-to-end

implementation of GAZELLE’s protocol; only the individual

subprotocols are implemented.

7.2 Microbenchmarks

We provide microbenchmarks of DELPHI’s performance on

linear and non-linear layers, comparing both with GAZELLE.

7.2.1 Linear operations

Below we focus on the performance of convolution operations

because these comprise the majority of the cost of neural

networks’ linear operations. The complexity of a convolution

is determined by the dimensions of the input and the size

and number of convolution kernels, as well as the padding

and stride (the latter parameter decides how often the kernel

is applied to the input). In Table 1, we evaluate the cost of

convolutions used in ResNet-32. The key takeaway is that

our online time is over 80× smaller than GAZELLE’s, and our

online communication is over 150× lower. On the other hand,

our preprocessing time and communication are higher than

GAZELLE’s, but are at most equal to GAZELLE’s online time

and communication.

Optimized GPU operations. As explained in Remark 4.2,

DELPHI’s choice of prime field enables DELPHI to use stan-

dard GPU libraries for evaluating convolutional layers in the

online phase. However, doing so requires copying the layer

weights and input into GPU memory, and copying the output

back into CPU memory for every linear layer. This copying

can have substantial overhead. To amortize it, one can batch

convolutions over different inputs together. In Table 2, we

report the cost of doing so for a batch sizes of 1, 5, and 10. The

key takeaway is that, for single convolutions these costs are

over 50–100× lower than the equivalent ones in Table 1, and

for batched convolutions, the cost seems to scale sub-linearly

with the batch size.

7.2.2 ReLU and quadratic activations

Recall that our protocol for evaluating ReLU activations uses

garbled circuits. Our circuit for ReLU follows the design laid

out in [Juv+18] with minor additional optimizations. To eval-

uate quadratic activations, our protocol uses Beaver’s mul-

tiplication procedure [Bea95], which requires sending one

field element from the server to the client and vice versa, and

then requires some cheap local field operations from each

party. The communication and computation costs for both

activations are presented in Table 3.

7.3 DELPHI’s planner

To demonstrate the effectiveness of our planner we need to

show that (a) quadratic activations are an effective replace-

ment for ReLU activations, and that (b) the networks found by

the planner offer better performance than all-ReLU networks.

In our experiments below, we use 80% of the training data

to train networks in the planner, and the remaining 20% as a

validation set. The planner scores candidate networks based

on their validation accuracy, but the final reported accuracy is

the test set accuracy.

Quadratic activations are effective. We need to show that

not only do networks output by our planner achieve good

accuracy, but also that the quadratic activations are not redun-

dant. That is, we need to show that the network is not learning

to “ignore” quadratic activations. This is a concern because

prior work [Mol+17; Liu+18] has shown that modern neural

network architectures can be “pruned” to remove extraneous

parameters and activations while still maintaining almost the

same accuracy.

We show this point by running our planner in two modes.

In the first mode, our planner was configured to find perfor-

mant networks that used quadratic activations, while in the

second mode it was configured to find networks that used

the identity function instead of quadratic activations, with the

intuition that if the quadratic activations were ineffective, then

networks that used the identity function instead would per-

form just as well. The results of these runs for varying number

of non-ReLU layers are displayed in Fig. 7 (for CIFAR-10)

and in Fig. 8 (for CIFAR-100). Together, these results indicate

that the networks output by our planner achieve performance

that is comparable to that of the all-ReLU baselines. Fur-

thermore, as the number of non-ReLU layers increase, the

best-performing networks that use the identity activation func-

tion have much worse accuracy than the equivalent networks

that use quadratic activations.

Planned networks perform better. To evaluate the ability

of our planner to find networks that offer good performance,

10

conv. parameters

system
time (ms) comm. (MB)

input

C×H×W

kernel

N×K×K

stride &

padding
preproc. online preproc. online

16×32×32 16×3×3 (1, 1)
DELPHI 1255 17.41 10.48 0.065

GAZELLE — 1255 — 10.48

32×16×16 32×3×3 (1, 1)
DELPHI 1285 17.17 5.24 0.020

GAZELLE — 1285 — 5.24

64×8×8 64×3×3 (1, 1)
DELPHI 2775 17.05 5.24 0.036

GAZELLE — 2775 — 5.24

Table 1: Computation time and communication cost of ResNet-32 convolutions in DELPHI.

0 1 2 3 4 5 6 7
Number of non-ReLU layers

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

all-ReLU baseline
ReLU + Identity
ReLU + Quadratic

Figure 7: CIFAR-10 accuracy of 7-layer Min-

iONN networks found by our planner.

0 5 10 15 20 25
Number of non-ReLU layers

56

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

all-ReLU baseline
ReLU + Identity
ReLU + Quadratic

Figure 8: CIFAR-100 accuracy of ResNet-32

networks found by our planner.

0 5 10 15 20 25
Number of non-ReLU layers

50 k

100 k

150 k

200 k

250 k

300 k

Nu
m

be
r o

f R
eL

Us

all-ReLU baseline
Delphi

Figure 9: Number of ReLU activations in

ResNet-32 networks found by our planner.

conv. parameters time (ms)
input

C×H×W

kernel

N×K×K

stride &

padding
b = 1 b = 5 b = 10

16×32×32 16×3×3 (1, 1) 0.34 1.07 2.75

32×16×16 32×3×3 (1, 1) 0.24 0.61 1.10

64×8×8 64×3×3 (1, 1) 0.24 0.37 0.616

Table 2: Computation time and communication cost of ResNet-32

convolutions in DELPHI when run on the GPU across different batch

sizes b.

activation

function

time (µs) comm. (kB)

preproc. online preproc. online

Quad 9.6 0.04 0.152 0.008

ReLU 111.9 65.0 17.5 2.048

Table 3: Amortized computation time and communication cost of

individual ReLU and quadratic activations in DELPHI.

MiniONN ResNet-320

25

50

75

100

125

150

175

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Delphi preproc.
Delphi online
Gazelle preproc.
Gazelle online

Figure 10: Total execution time on the best planned network

(DELPHI) and the all-ReLU baseline (GAZELLE).

we run the planner to produce networks with a varying num-

ber (say k) of quadratic layers. We then compare the number

of ReLU activations in these networks to that in all-ReLU

networks (like those supported by GAZELLE). Fig. 9 illus-

trates this comparison for ResNet-32 on CIFAR-100. We

observe that the networks found by our planner consistently

have fewer activations than the all-ReLU baseline.

7.4 DELPHI’s cryptographic protocols

We demonstrate the effectiveness of DELPHI’s cryptographic

protocol by showing that DELPHI’s preprocessing phase and

online phase offer significant savings in latency and commu-

nication cost over prior work (GAZELLE). Figs. 10 and 11

summarizes this improvement for networks found by our plan-

ner; we provide a detailed evaluation next.

11

MiniONN ResNet-320

1

2

3

4

5

6
To

ta
l d

at
a

tra
ns

fe
rre

d
(G

B)
Delphi preproc.
Delphi online
Gazelle preproc.
Gazelle online

Figure 11: Total communication on the best planned network

(DELPHI) and the all-ReLU baseline (GAZELLE).

Preprocessing phase. Figs. 12a and 13a compare the time

required to execute the preprocessing phases of DELPHI

and GAZELLE on ResNet-32 on CIFAR-100 and the Min-

iONN architecture on CIFAR-10, respectively. In both cases,

we observe that, on networks that have a large number of

ReLU activations, DELPHI’s preprocessing time is larger than

GAZELLE’s. This is because DELPHI needs to additionally

perform preprocessing for each linear layer. However, as the

number of approximate activations increases, DELPHI’s pre-

processing time quickly decreases below that of GAZELLE,

because garbling circuits for ReLUs is far more expensive

than the preprocessing phase for the approximate activations.

A similar trend can be observed for communication costs in

Figs. 12c and 13c. Overall, for the most efficient networks

output by our planner, DELPHI requires 1.5–2 × less prepro-

cessing time, and 6–40 × less communication.

Online phase. Figs. 12b and 13b compare the time required

to execute the online phases of DELPHI and GAZELLE on

ResNet-32 on CIFAR-100 and the MiniONN architecture

on CIFAR-10, respectively. In both cases, we observe that

GAZELLE’s use of HE for processing linear layers imposes a

significant computational cost. Furthermore, as the number of

approximate activations increases, the gap between DELPHI

and GAZELLE grows larger. A similar trend can be observed

for communication costs in Figs. 12d and 13d. Overall, for

the most efficient networks output by our planner, DELPHI

requires 22–100 × less time to execute its online phase, and

9–40 × less communication.

Accuracy during protocol execution. As noted in Re-

mark 4.2, DELPHI uses a “truncation trick” from [Moh+17]

to avoid overflow when multiplying secret-shared fixed point

numbers. However, ABY
3

[Moh+18] demonstrates that this

trick can introduce large errors with non-negligible probabil-

ity. For DELPHI, this can result in erroneous classifications. To

verify that DELPHI avoids such errors, we ran the following

experiment. For each MiniONN model output by our planner,

we first sampled 1000 images from the CIFAR-10 test set, and

then counted the number of images that the plaintext model

classified differently from DELPHI. We found that, for each

model, the two methods agreed over 99.2% of the time, thus

indicating that DELPHI mostly avoids these errors.

8 Related work

We first discuss cryptographic techniques for for secure exe-

cution of machine learning algorithms in Section 8.1. Then,

in Section 8.2, we discuss model inference attacks that re-

cover information about the model from predictions, as well

as countermeasures for these attacks. Finally, in Section 8.3,

we discuss prior work on neural architecture search.

8.1 Secure machine learning

The problem of secure inference can be solved via generic

secure computation techniques like secure two-party (2PC)

computation [Yao86; Gol+87], fully homomorphic encryp-

tion (FHE) [Gen09], or homomorphic secret sharing (HSS)

[Boy+16]. However, the resulting protocols would suffer from

terrible communication and computation complexity. For in-

stance, the cost of using 2PC to compute a function grows

with the size of the (arithmetic or boolean) circuit for that func-

tion. In our setting, the function being computed is the neural

network itself. Evaluating the network requires matrix-vector

multiplication, and circuits for this operation grow quadrat-

ically with the size of the input. Thus using a generic 2PC

protocol for secure inference would result in an immediate

quadratic blow up in both computation and communication.

Similarly, despite a series of efforts to improve the effi-

ciency of FHE [Bra+11; Gen+11; Fan+12; Hal+18; Hal+19]

and HSS [Boy+17], their computational overhead is still large,

making them unsuitable for use in our scenario.

Hence, it seems that it is necessary to design specialized

protocols for secure machine learning, and indeed there is a

long line of prior work [Du+04; Lau+06; Bar+09; Nik+13a;

Nik+13b; Sam+15; Bos+15; Wu+16a; Aon+16; Sch+19] that

does exactly this. These works generally fall into two cat-

egories: those that focus on secure training, and those that

focus on secure inference. Since secure training is not our

focus in this paper, we omit discussing it, and instead focus

on prior work on secure inference. Most of these early works

focus on simpler machine learning algorithms such as SVMs

and linear regression. Designing cryptographic protocols for

these simpler algorithms is often more tractable than our set-

ting of inference for neural networks.

Hence, in the rest of this section we discuss prior work that

focus on secure inference over neural networks. This work

generally falls into the following categories: (a) 2PC-based

protocols; (b) FHE-based protocols; (c) TEE-based protocols;

and (d) protocols working in a multi-party model.

2PC-based protocols. SecureML [Moh+17] is one of the

first systems to focus on the problem of learning and predict-

ing with neural networks securely. However, it relies entirely

on generic 2PC protocols to do this, resulting in poor perfor-

mance on realistic networks. MiniONN [Liu+17a] uses the

12

0 5 10 15 20 25
Number of non-ReLU layers

100

120

140

160

180
Pr

ep
ro

ce
ss

in
g

tim
e

(s
)

Delphi
Gazelle

(a) Preprocessing time

0 5 10 15 20 25
Number of non-ReLU layers

0

20

40

60

80

In
fe

re
nc

e
tim

e
(s

)

Delphi
Gazelle

(b) Online time

0 5 10 15 20 25
Number of non-ReLU layers

2

4

6

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(c) Preprocessing communication

0 5 10 15 20 25
Number of non-ReLU layers

0.2

0.4

0.6

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(d) Online communication

Figure 12: Comparison of DELPHI with GAZELLE on the ResNet-32 architecture.

0 2 4 6 8
Number of non-ReLU layers

40

60

80

100

Pr
ep

ro
ce

ss
in

g
tim

e
(s

)

Delphi
Gazelle

(a) Preprocessing time

0 2 4 6 8
Number of non-ReLU layers

0

20

40

In
fe

re
nc

e
tim

e
(s

)

Delphi
Gazelle

(b) Online time

0 2 4 6 8
Number of non-ReLU layers

1

2

3

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(c) Preprocessing communication

0 2 4 6 8
Number of non-ReLU layers

0.0

0.1

0.2

0.3

Da
ta

 tr
an

sf
er

re
d

(G
B)

Delphi
Gazelle

(d) Online communication

Figure 13: Comparison of DELPHI with GAZELLE on the architecture from MiniONN [Liu+17a].

SPDZ protocol to compute linear layers and polynomial ap-

proximation activations. Unlike DELPHI, MiniONN generates

multiplicative triples for each multiplication in a linear layer;

for a layer with input size n, MiniONN requires n
2

offline and

online communication, compared to n for DELPHI.

GAZELLE [Juv+18] is the system most similar to ours: it

uses an efficient HE-based protocol for linear layers, while

using garbled circuits to compute non-linear activations. How-

ever, its reliance on heavy cryptographic operations in the

online phase results in a protocol that is more expensive than

DELPHI’s protocol with respect to both computation and com-

munication (see Section 7 for a thorough comparison).

DeepSecure [Rou+18], the protocol of Ball et al. [Bal+19],

and XONN [Ria+19] all use circuit garbling schemes to im-

plement constant-round secure inference protocols. While

DeepSecure and the protocol of [Bal+19] both support general

neural networks, XONN is optimized for binarized neural net-

works [Cou+15] which have boolean weights. This restriction

enables XONN to achieve much better performance than both

DeepSecure and the protocol of [Bal+19], as these latter pro-

tocols need to compute expensive fixed-point matrix-vector

products inside the garbled circuit. Despite this improved

performance, we chose to compare against Gazelle [Juv+18]

and not XONN because (a) an open-source implementation

of XONN was not available at the time of writing, and so we

could not evaluate it in our experimental setup, and (b) the

benchmarks in [Ria+19] indicate that Gazelle performs better

than XONN on larger networks such as ResNet-32.

EzPC [Cha+17], on input a high-level description of a pro-

gram, synthesizes a cryptographic protocol implementing that

program. The compiled protocol intelligently uses a mix of

arithmetic and boolean 2PC protocols to increase efficiency.

FHE-based protocols. CryptoNets [Gil+16] is the first work

that attempts to optimize and tailor FHE schemes for secure

inference. Despite optimizations, the limitations of FHE mean

that CryptoNets is limited to networks only a few layers deep,

and even for these networks it only becomes efficient when

processing a batch of inputs. Recent papers [Hes+17; Bru+18;

Bou+18; Cho+18; San+18] develop different approaches to

optimize the CryptoNets paradigm, but the resulting proto-

cols still require tens of minutes to provide predictions over

networks much smaller than the ones we consider here.

CHET [Dat+19] compiles high-level specifications of neu-

ral network to FHE-based inference protocols. To efficiently

use FHE, CHET must replace all ReLUs with polynomial

approximations, which harms accuracy for large networks.

TEE-based protocols. There are two approaches for infer-

ence using trusted execution enclaves (TEEs): (a) inference

via server-side enclaves, where the client uploads their input

to the server’s enclave, and (b) inference in client-side en-

claves, where the client submits queries to a model stored in

the client-side enclave.

Slalom and Privado are examples of protocols that rely on

server-side enclaves. Slalom [Tra+19], like DELPHI, splits

inference into an offline and online phase, and uses additive

secret sharing for the online phase. Unlike DELPHI, Slalom

uses the Intel SGX hardware enclave [McK+13] to securely

compute both the offline and online phases. Privado [Top+18]

13

compiles neural networks into oblivious neural networks,

meaning that computing the transformed network does not re-

quire branching on secret data. They use the oblivious network

to perform inference inside Intel SGX enclaves. Slalom’s im-

plementation indicates that it does not implement linear or

non-linear layers obliviously.

MLCapsule [Han+18] describes a system for performing

inference via client-side enclaves. Apple uses a client-side

secure enclave to perform fingerprint and face matching to

authorize users [App19].

In general, most TEE-based cryptographic inference pro-

tocols offer better efficiency than protocols that rely on cryp-

tographic (like DELPHI). This improved efficiency comes at

the cost of a weaker threat model that requires trust in hard-

ware vendors and the implementation of the enclave. Further-

more, because the protocol execution occurs in an adversarial

environment, any side-channel leakage is more dangerous

(since the adversary can carefully manipulate the execution

to force this leakage). Indeed, the past few years have seen a

number of powerful side-channel attacks [Bra+17; Häh+17;

Göt+17; Mog+17; Sch+17; Wan+17; Van+18] against popu-

lar enclaves like Intel SGX and ARM TrustZone.

Protocols with more parties. The discussion above focuses

on two-party protocols, because in our opinion secure infer-

ence maps naturally to this setting. Nevertheless, a number of

works [Ria+18; Wag+18; Tfe; Bar+19] have instead targeted

the three-party setting where shares of the model are divided

amongst two non-colluding servers, and a client must interact

with these servers to obtain their prediction.

8.2 Model leakage from predictions

Prediction API attacks [Ate+15; Fre+15; Wu+16b; Tra+16;

Sho+17; Jag+19] aim to learn private information about the

server’s model or training data given access only to the results

of predictions on arbitrary queries.

There is no general defense against prediction API attacks

beyond rate limiting and query auditing [Jag+19]. However,

there are defenses against specific classes of attacks. For

example, one can use differentially private training [Sho+15;

Aba+16] to train neural networks that that do not leak sensitive

information about the underlying training data.

The guarantees of DELPHI are complementary to those pro-

vided by any such mitigations. Indeed, with sufficient effort,

these techniques can be integrated into DELPHI to provide

even stronger privacy guarantees; we leave this to future work.

8.3 Neural architecture search

Recently, machine learning research has seen rapid advance-

ment in the area of neural architecture search (NAS) (see

[Els+19; Wis+19] for surveys). The aim of this field is to

develop methods to automatically optimize properties of a

neural network like accuracy and efficiency by optimizing

the hyperparameters of the network. Examples of commonly

optimized hyperparameters include the size of convolutional

kernels, the number of layers, and parameters of the gradient

descent algorithm like learning rate and momentum. In this

work, we rely on NAS algorithms only for optimizing the

placement of quadratic approximation layers within a net-

work, as ReLU activations were the bottleneck in our system.

Common approaches to neural architecture search include

those based on reinforcement-learning [Zop+17], evolution-

ary algorithms [Yao99; Ber+13], and random search [Ber+12;

Jad+17]. DELPHI’s planner uses the Population-Based Train-

ing algorithm [Jad+17] to perform NAS. PBT can be seen

as a hybrid of the evolutionary algorithm and random search

approaches.

9 Acknowledgements

We thank Liam Li for the suggestion to use the PBT algorithm

to perform NAS, Joey Gonzalez for answering questions about

PBT, Robert Nishihara for the suggestion to use ReLU’s gradi-

ents to guide gradient descent, Chiraag Juvekar for providing

the code for GAZELLE, and our shepherd Siddharth Garg and

the anonymous reviewers for their invaluable feedback. This

work was supported by the NSF CISE Expeditions Award

CCF-1730628, as well as gifts from the Sloan Foundation,

Bakar and Hellman Fellows Fund, Alibaba, Amazon Web Ser-

vices, Ant Financial, Arm, Capital One, Ericsson, Facebook,

Google, Intel, Microsoft, Scotiabank, Splunk and VMware.

References

[Aba+16] M. Abadi, A. Chu, I. J. Goodfellow, H. B.

McMahan, I. Mironov, K. Talwar, and L. Zhang.

“Deep Learning with Differential Privacy”. In:

CCS ’16.

[Aon+16] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang.

“Scalable and Secure Logistic Regression via

Homomorphic Encryption”. In: CODASPY ’16.

[App19] Apple. “iOS Security”. https://www.apple.

com/business/docs/site/iOS_Security_

Guide.pdf.

[Ate+15] G. Ateniese, L. V. Mancini, A. Spognardi, A. Vil-

lani, D. Vitali, and G. Felici. “Hacking smart ma-

chines with smarter ones: How to extract mean-

ingful data from machine learning classifiers”.

In: IJSN (2015).

[Bal+19] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and

N. Schimanski. “Garbled Neural Networks are

Practical”. ePrint Report 2019/338.

[Bar+09] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti,

A. Sadeghi, and T. Schneider. “Secure Evalua-

tion of Private Linear Branching Programs with

Medical Applications”. In: ESORICS ’09.

[Bar18] B. Barrett. “The year Alexa grew up”. https:

//www.wired.com/story/amazon-alexa-

2018-machine-learning/.

14

https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/

[Bar+19] A. Barak, D. Escudero, A. Dalskov, and M.

Keller. “Secure Evaluation of Quantized Neural

Networks”. ePrint Report 2019/131.

[Bea95] D. Beaver. “Precomputing Oblivious Transfer”.

In: CRYPTO ’95.

[Bel+12] M. Bellare, V. T. Hoang, and P. Rogaway. “Foun-

dations of garbled circuits”. In: CCS ’12.

[Ben+94] Y. Bengio, P. Y. Simard, and P. Frasconi. “Learn-

ing long-term dependencies with gradient de-

scent is difficult”. In: IEEE Trans. Neural Net-

works (1994).

[Ber+12] J. Bergstra and Y. Bengio. “Random Search

for Hyper-Parameter Optimization”. In: JMLR

(2012).

[Ber+13] J. Bergstra, D. Yamins, and D. D. Cox. “Mak-

ing a Science of Model Search: Hyperparameter

Optimization in Hundreds of Dimensions for

Vision Architectures”. In: ICML ’13.

[Bos+15] R. Bost, R. A. Popa, S. Tu, and S. Gold-

wasser. “Machine Learning Classification over

Encrypted Data”. In: NDSS ’15.

[Bou+18] F. Bourse, M. Minelli, M. Minihold, and

P. Paillier. “Fast Homomorphic Evaluation

of Deep Discretized Neural Networks”. In:

CRYPTO ’18.

[Boy+16] E. Boyle, N. Gilboa, and Y. Ishai. “Function

Secret Sharing: Improvements and Extensions”.

In: CCS ’16.

[Boy+17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and

M. Orrú. “Homomorphic Secret Sharing: Opti-

mizations and Applications”. In: CCS ’17.

[Bra+11] Z. Brakerski and V. Vaikuntanathan. “Efficient

Fully Homomorphic Encryption from (Stan-

dard) LWE”. In: FOCS ’11.

[Bra+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kos-

tiainen, S. Capkun, and A. Sadeghi. “Software

Grand Exposure: SGX Cache Attacks Are Prac-

tical”. In: WOOT ’17.

[Bru+18] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach.

“Low Latency Privacy Preserving Inference”.

ArXiV, cs.CR 1812.10659.

[Cha+17] N. Chandran, D. Gupta, A. Rastogi, R. Sharma,

and S. Tripathi. “EzPC: Programmable, Effi-

cient, and Scalable Secure Two-Party Compu-

tation for Machine Learning”. ePrint Report

2017/1109.

[Cho+18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque,

and L. Fei-Fei. “Faster CryptoNets: Leveraging

Sparsity for Real-World Encrypted Inference”.

ArXiV, cs.CR 1811.09953.

[Cou+15] M. Courbariaux, Y. Bengio, and J. David. “Bi-

naryConnect: Training Deep Neural Networks

with binary weights during propagations”. In:

NeurIPS ’18.

[Dat+19] R. Dathathri, O. Saarikivi, H. Chen, K. Laine,

K. E. Lauter, S. Maleki, M. Musuvathi, and T.

Mytkowicz. “CHET: An optimizing compiler

for fully-homomorphic neural-network inferenc-

ing”. In: PLDI ’19.

[Du+04] W. Du, Y. S. Han, and S. Chen. “Privacy-

Preserving Multivariate Statistical Analysis:

Linear Regression and Classification”. In:

SDM ’04.

[Elg85] T. Elgamal. “A public key cryptosystem and a

signature scheme based on discrete logarithms”.

In: IEEE Trans. on Inf. Theory (1985).

[Els+19] T. Elsken, J. H. Metzen, and F. Hutter. “Neu-

ral Architecture Search: A Survey”. In: JMLR

(2019).

[Eve+82] S. Even, O. Goldreich, and A. Lempel. “A Ran-

domized Protocol for Signing Contracts”. In:

CRYPTO ’82.

[Fan+12] J. Fan and F. Vercauteren. “Somewhat Practical

Fully Homomorphic Encryption”. ePrint Report

2012/144.

[Fre+14] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page,

and T. Ristenpart. “Privacy in Pharmacogenet-

ics: An End-to-End Case Study of Personalized

Warfarin Dosing”. In: USENIX Security ’14.

[Fre+15] M. Fredrikson, S. Jha, and T. Ristenpart. “Model

Inversion Attacks that Exploit Confidence In-

formation and Basic Countermeasures”. In:

CCS ’15.

[Gen09] C. Gentry. “Fully homomorphic encryption us-

ing ideal lattices”. In: STOC ’09.

[Gen+11] C. Gentry and S. Halevi. “Implementing Gen-

try’s Fully-Homomorphic Encryption Scheme”.

In: EUROCRYPT ’11.

[Gho+17] Z. Ghodsi, T. Gu, and S. Garg. “SafetyNets: Ver-

ifiable Execution of Deep Neural Networks on

an Untrusted Cloud”. In: NIPS ’17.

[Gil+16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K.

Lauter, M. Naehrig, and J. Wernsing. “Cryp-

toNets: Applying Neural Networks to Encrypted

Data with High Throughput and Accuracy”. In:

ICML ’16.

[Gol+87] O. Goldreich, S. Micali, and A. Wigderson.

“How to Play any Mental Game or A Complete-

ness Theorem for Protocols with Honest Major-

ity”. In: STOC ’87.

15

[Goo] Google. “Google Lens”. https : / / lens .

google.com/.

[Göt+17] J. Götzfried, M. Eckert, S. Schinzel, and T.

Müller. “Cache Attacks on Intel SGX”. In: EU-

ROSEC ’17.

[Häh+17] M. Hähnel, W. Cui, and M. Peinado. “High-

Resolution Side Channels for Untrusted Operat-

ing Systems”. In: ATC ’2017.

[Hal+18] S. Halevi and V. Shoup. “Faster Homomor-

phic Linear Transformations in HElib”. In:

CRYPTO ’18.

[Hal+19] S. Halevi, Y. Polyakov, and V. Shoup. “An Im-

proved RNS Variant of the BFV Homomorphic

Encryption Scheme”. In: CT-RSA ’19.

[Han+18] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem,

M. Augustin, M. Backes, and M. Fritz. “ML-

Capsule: Guarded Offline Deployment of Ma-

chine Learning as a Service”. ArXiV, cs.CR

1808.00590.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep

Residual Learning for Image Recognition”. In:

CVPR ’16.

[Hes+17] E. Hesamifard, H. Takabi, and M. Ghasemi.

“CryptoDL: Deep Neural Networks over En-

crypted Data”. ArXiV, cs.CR 1711.05189.

[Ish+03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.

“Extending Oblivious Transfers Efficiently”. In:

CRYPTO ’03.

[Jad+17] M. Jaderberg, V. Dalibard, S. Osindero, W. Czar-

necki, J. Donahue, A. Razavi, et al. “Population

Based Training of Neural Networks”. ArXiV,

cs.LG 1711.09846.

[Jag+19] M. Jagielski, N. Carlini, D. Berthelot, A. Ku-

rakin, and N. Papernot. “High-Fidelity Extrac-

tion of Neural Network Models”. ArXiV, cs.LG

1909.01838.

[Juv+18] C. Juvekar, V. Vaikuntanathan, and A. Chan-

drakasan. “GAZELLE: A Low Latency Frame-

work for Secure Neural Network Inference”. In:

USENIX ’18.

[Kri10] A. Krizhevsky. “Convolutional Deep Belief Net-

works on CIFAR-10”. Unpublished manuscript.

http://www.cs.utoronto.ca/~kriz/conv-

cifar10-aug2010.pdf.

[Kun] Kuna. “Kuna AI”. https://getkuna.com/

blogs/news/2017- 05- 24- introducing-

kuna-ai.

[Lau+06] S. Laur, H. Lipmaa, and T. Mielikäinen. “Cryp-

tographically private support vector machines”.

In: KDD ’06.

[Lia+18] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E.

Gonzalez, and I. Stoica. “Tune: A Research Plat-

form for Distributed Model Selection and Train-

ing”. In:

[Liu+17a] J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivi-

ous Neural Network Predictions via MiniONN

Transformations”. In: CCS ’17.

[Liu+17b] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and

F. E. Alsaadi. “A survey of deep neural network

architectures and their applications”. In: Neuro-

computing (2017).

[Liu+18] K. Liu, B. Dolan-Gavitt, and S. Garg. “Fine-

Pruning: Defending Against Backdooring

Attacks on Deep Neural Networks”. In:

RAID ’2018.

[McK+13] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.

Rozas, H. Shafi, V. Shanbhogue, and U. R. Sav-

agaonkar. “Innovative instructions and software

model for isolated execution”. In: HASP ’13.

[Mog+17] A. Moghimi, G. Irazoqui, and T. Eisenbarth.

“CacheZoom: How SGX Amplifies the Power of

Cache Attacks”. In: CHES ’17.

[Moh+17] P. Mohassel and Y. Zhang. “SecureML: A Sys-

tem for Scalable Privacy-Preserving Machine

Learning”. In: IEEE S&P ’17.

[Moh+18] P. Mohassel and P. Rindal. “ABY
3
: A Mixed

Protocol Framework for Machine Learning”. In:

CCS ’18.

[Mol+17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and

J. Kautz. “Pruning Convolutional Neural Net-

works for Resource Efficient Inference”. In:

ICLR ’17.

[Nik+13a] V. Nikolaenko, S. Ioannidis, U. Weinsberg,

M. Joye, N. Taft, and D. Boneh. “Privacy-

preserving matrix factorization”. In: CCS ’13.

[Nik+13b] V. Nikolaenko, U. Weinsberg, S. Ioannidis,

M. Joye, D. Boneh, and N. Taft. “Privacy-

Preserving Ridge Regression on Hundreds of

Millions of Records”. In: IEEE S&P ’13.

[Pai99] P. Paillier. “Public-Key Cryptosystems Based

on Composite Degree Residuosity Classes”. In:

EUROCRYPT ’99.

[Rab81] M. O. Rabin. “How To Exchange Secrets with

Oblivious Transfer”. Harvard University Tech-

nical Report 81 (TR-81).

[Reg09] O. Regev. “On lattices, learning with errors, ran-

dom linear codes, and cryptography”. In: JACM

(2009).

16

https://lens.google.com/
https://lens.google.com/
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai
https://getkuna.com/blogs/news/2017-05-24-introducing-kuna-ai

[Ria+18] M. S. Riazi, C. Weinert, O. Tkachenko, E. M.

Songhori, T. Schneider, and F. Koushanfar.

“Chameleon: A Hybrid Secure Computation

Framework for Machine Learning Applica-

tions”. In: AsiaCCS ’18.

[Ria+19] M. S. Riazi, M. Samragh, H. Chen, K. Laine,

K. Lauter, and F. Koushanfar. “XONN: XNOR-

based Oblivious Deep Neural Network Infer-

ence”. In: USENIX ’19.

[Rou+18] B. D. Rouhani, M. S. Riazi, and F. Koushanfar.

“DeepSecure: Scalable Provably-secure Deep

Learning”. In: DAC ’18.

[Sam+15] B. K. Samanthula, Y. Elmehdwi, and W. Jiang.

“k-Nearest Neighbor Classification over Seman-

tically Secure Encrypted Relational Data”. In:

IEEE Trans. Knowl. Data Eng. (2015).

[San+18] A. Sanyal, M. Kusner, A. Gascón, and V.

Kanade. “TAPAS: Tricks to Accelerate

(encrypted) Prediction As a Service”. In:

ICML ’18.

[Sch+17] M. Schwarz, S. Weiser, D. Gruss, C. Maurice,

and S. Mangard. “Malware Guard Extension:

Using SGX to Conceal Cache Attacks”. In:

DIMVA ’17.

[Sch+19] P. Schoppmann, A. Gascon, M. Raykova, and

B. Pinkas. “Make Some ROOM for the Zeros:

Data Sparsity in Secure Distributed Machine

Learning”. ePrint Report 2019/281.

[Sea] “Microsoft SEAL (release 3.3)”. https : / /

github.com/Microsoft/SEAL. Microsoft Re-

search, Redmond, WA.

[Sho+15] R. Shokri and V. Shmatikov. “Privacy-

Preserving Deep Learning”. In: CCS ’15.

[Sho+17] R. Shokri, M. Stronati, C. Song, and V.

Shmatikov. “Membership Inference Attacks

Against Machine Learning Models”. In:

S&P ’17.

[Tfe] “TF Encrypted”. https : / / github . com /

mortendahl/tf-encrypted.

[Top+18] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and

R. Ramjee. “Privado: Practical and Secure DNN

Inference”. ArXiV, cs.CR 1810.00602.

[Tra+16] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and

T. Ristenpart. “Stealing Machine Learning Mod-

els via Prediction APIs”. In: USENIX Secu-

rity ’16.

[Tra+19] F. Tramer and D. Boneh. “Slalom: Fast, Verifi-

able and Private Execution of Neural Networks

in Trusted Hardware”. In: ICLR ’19.

[Van+18] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,

B. Kasikci, F. Piessens, M. Silberstein, T. F.

Wenisch, Y. Yarom, and R. Strackx. “Fore-

shadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execu-

tion”. In: USENIX Security ’18.

[Wag+18] S. Wagh, D. Gupta, and N. Chandran. “Se-

cureNN: Efficient and Private Neural Network

Training”. ePrint Report 2018/442.

[Wan+17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang,

V. Bindschaedler, H. Tang, and C. A. Gunter.

“Leaky Cauldron on the Dark Land: Understand-

ing Memory Side-Channel Hazards in SGX”. In:

CCS ’17.

[Wis+19] M. Wistuba, A. Rawat, and T. Pedapati. “A Sur-

vey on Neural Architecture Search”. ArXiV,

cs.LG 1905.01392.

[Wu+16a] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter.

“Privately Evaluating Decision Trees and Ran-

dom Forests”. In: PoPETs (2016).

[Wu+16b] X. Wu, M. Fredrikson, S. Jha, and J. F.

Naughton. “A Methodology for Formalizing

Model-Inversion Attacks”. In: CSF ’16.

[Wyz] “Wyze: Contact and Motion Sensors for Your

Home”. https://www.wyze.com/.

[Yao86] A. C. Yao. “How to Generate and Exchange

Secrets (Extended Abstract)”. In: FOCS ’86.

[Yao99] X. Yao. “Evolving artificial neural networks”.

In: Proceedings of the IEEE (1999).

[Zop+17] B. Zoph and Q. V. Le. “Neural Architec-

ture Search with Reinforcement Learning”. In:

ICLR ’17.

A Security properties of our building blocks

Security for garbled circuits requires the existence of a

simulator SimGS that, given input 1
λ,1|C|, and C(x), outputs

C̃,{labeli}i∈[n] such that this output is computationally indis-

tinguishable to (C̃,{labeli,xi
}) generated by GS.Garble.

Security for linearly homomorphic encryption schemes re-

quires the scheme to satisfy the following properties:

• Semantic security. For any two messages m,m′, we require

{pk,HE.Enc(pk,m)} ≈c {pk,HE.Enc(pk,m
′)}, where the

two distributions are over the random choice of pk and the

random coins of the encryption algorithm.

• Function privacy. There exists a simulator SimFP such that

for every efficient adversary A , every linear function L, and

every pair of messages m1,m2, we have that the following

17

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/mortendahl/tf-encrypted
https://github.com/mortendahl/tf-encrypted
https://www.wyze.com/

distributions are computationally indistinguishable:





(r,r1,r2,c
′) :

(r,r1,r2)←{0,1}
λ

(pk,sk)← HE.KeyGen(1λ
;r)

c1← HE.Enc(pk,m1;r1)
c2← HE.Enc(pk,m2;r2)

c
′← HE.Eval(pk,c1,c2,L)





≈c

SimFP(1
λ,m1,m2,L(m1,m2))

B Security proofs

Proof of indistinguishability with corrupted client. We

show that the real world distribution is computationally indis-

tinguishable to the simulated distribution via a hybrid argu-

ment. In the final simulated distribution, the simulator does

not use the weights for the server’s model, and so a corrupted

client learns nothing beyond the output prediction and the

model architecture in the real world.

• Hyb0: This corresponds to the real world distribution where

the server uses its input matrices M1, . . . ,Mℓ−1.

• Hyb1: This hybrid involves only a syntactic change. In

the output phase, the simulator sends y− rℓ to the client,

where y is the output of the neural network on input x. Ad-

ditionally, the simulator uses the knowledge of the client’s

random tape to begin the evaluation of the i-th layer with

xi− ri. Since this is a syntactic change, Hyb1 is distributed

identically to Hyb0.

• Hyb2: We change the inputs that the server provides to

each OT execution where it acts as the sender. Instead of

providing the labels corresponding to 0 and 1 in each OT

execution, the server provides labeli,b where b is the input

used by the client in that OT execution. Note that in the

semi-honest setting, we know b as a result of setting the

random tape as well learning the input of the corrupted

client. It follows from the sender security of OT that Hyb2

is indistinguishable from Hyb1.

• Hyb3: In this hybrid, for every layer of the neural network

that uses garbled circuits, we generate C̃ using SimGS on

input 1
λ,1|C| and C(z) where z is the input that the client

uses to evaluate this circuit (this is again known in the semi-

honest setting as a result of setting the random tape and

knowing the input). Note that C(z) is an OTP encryption

and hence is distributed identically to a random string. It

follows from the security of the garbled circuits that Hyb3

is indistinguishable from Hyb2.

• Hyb4: In this hybrid, we generate the multiplication triples

in the offline phase using the corresponding simulator for

Beaver’s protocol. It follows from the simulation security

of this protocol that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, for every quadratic approximation

layer, we use the simulator for Beaver’s multiplication

procedure. It again follows from the simulation security

that this hybrid is indistinguishable to the previous hybrid.

Notice that in this hybrid, the server is no longer using

xi− ri,si as well as the matrix Mi to evaluate the i-th layer.

• Hyb6: For every homomorphic evaluation in the offline

phase, we use the simulator SimFP for the function privacy

of HE. Note that SimFP only requires the output Mi · ri−
si to generate the homomorphically evaluated ciphertext.

It follows from the function privacy of HE that Hyb6 is

computationally indistinguishable from Hyb5.

• Hyb7: In this hybrid, we replace the input −s
′
i given to

SimFP with randomly sampled s
′
i from R

n
(instead of the

true value Mi · ri− si). Thus Hyb7 is distributed identically

to Hyb6 as si is chosen uniformly at random. Finally, we

note that Hyb7 is identically distributed to the simulator’s

output, completing the proof.

Proof of indistinguishability with corrupted server. We

show that the real world distribution is computationally indis-

tinguishable to the simulated distribution via a hybrid argu-

ment. In the final simulated distribution, the simulator does

not use the user’s input, and so a corrupted server learns noth-

ing in the real world.

• Hyb0: This corresponds to the real world distribution where

the client uses its actual input x.

• Hyb1: This hybrid involves only a syntactic change. For

every layer that is evaluated by garbled circuits, instead of

evaluating the circuits, we instead send OT P(xi+1− ri+1)
by using our knowledge of x, the matrices Mi, and the

random tape of the server. Similarly, in every quadratic

approximation layer, we send a share in the final round

such that when the server adds it with its own share it gets

xi+1− ri+1. Because this change is only syntactic, Hyb1 is

identical to Hyb0.

• Hyb2: In this hybrid, we change the inputs that the client

provides to each OT execution where it is acting as the

receiver. Instead of providing the actual inputs, it provides

some junk inputs, say 0. It follows from the receiver secu-

rity of the underlying oblivious transfer protocol that Hyb2

is computationally indistinguishable from Hyb1.

• Hyb3: In this hybrid, we generate the multiplication triples

in the offline phase using the simulator for Beaver’s multi-

plication protocol. It follows from the simulation security

of this protocol that Hyb4 is indistinguishable from Hyb2.

• Hyb4: In this hybrid, for every quadratic approximation

layer of the neural network, we use the simulator for the

Beaver’s multiplication procedure. It follows from simula-

tion security that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, we change the ciphertexts sent by the

client in the offline phase. Instead of sending encryptions

of ri, the client sends HE.Enc(pk,0). It follows from the

semantic security of the encryption scheme that Hyb5 is

computationally indistinguishable from Hyb4.

18

• Hyb6: In this hybrid, we make the following changes. For

every layer that is evaluated by garbled circuits, we send

OT P(ri+1) for a randomly chosen ri+1. Similarly, in every

quadratic approximation layer, we send a share in the final

round that is chosen uniformly at random. Additionally, in

the preamble phase, we send an uniformly chosen value r1.

Hyb6 is distributed identically to Hyb5. Finally, note that

Hyb6 is identically distributed to the simulator’s output,

completing the proof.

19

	Introduction
	Techniques
	Delphi's protocol

	System overview
	System setup
	Threat model
	Privacy goals
	System architecture and workflow

	Cryptographic primitives
	Cryptographic protocols
	Preprocessing phase
	Online
	Setup
	Layer evaluation

	Security
	Client is corrupted
	Server is corrupted

	Planner
	Adapting NAS for Delphi's planner
	Choosing a NAS algorithm

	System implementation
	Evaluation
	Evaluation setup
	Microbenchmarks
	Linear operations
	ReLU and quadratic activations

	Delphi's planner
	Delphi's cryptographic protocols

	Related work
	Secure machine learning
	Model leakage from predictions
	Neural architecture search

	Acknowledgements
	Security properties of our building blocks
	Security proofs

