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Abstract

Accurate identification of DNA regulatory elements becomes an urgent need in the post-

genomic era. Recent genome-wide chromatin states mapping efforts revealed that DNA

elements are associated with characteristic chromatin modification signatures, based on

which several approaches have been developed to predict transcriptional enhancers. How-

ever, their practical application is limited by incomplete extraction of chromatin features and

model inconsistency for predicting enhancers across different cell types. To address these

issues, we define a set of non-redundant shape features of histone modifications, which

shows high consistency across cell types and can greatly reduce the dimensionality of fea-

ture vectors. Integrating shape features with a machine-learning algorithm AdaBoost, we

developed an enhancer predicting method, DELTA (Distal Enhancer Locating Tool based

on AdaBoost). We show that DELTA significantly outperforms current enhancer prediction

methods in prediction accuracy on different datasets and can predict enhancers in one cell

type using models trained in other cell types without loss of accuracy. Overall, our study

presents a novel framework for accurately identifying enhancers from epigenetic data

across multiple cell types.

Background

Temporal and tissue-specific regulation of gene transcription requires cooperativeness of

diverse cis-regulatory elements, such as transcriptional promoters, enhancers and insulators

[1,2]. Transcriptional enhancers play a critical role in the regulation of tissue-specific gene

expression and embody a large set of non-coding SNPs that may be linked to human disease

phenotypes [3]. However, enhancers are not located at fixed distances from the genes they

regulate, hence their identification is not trivial [1,4,5]. Early computational methods for pre-

dicting enhancers heavily relied on genome sequence context, and their performances were

severely limited by the incomplete knowledge of transcription factor binding motifs and the

inability to cope with condition-dependent data [6–10]. Experimental approaches were

recently developed to identify enhancers by investigating the binding sites of transcriptional
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co-activators p300 and CBP [11], as they are known to be associated with functional enhancers

[12,13]. Since not all enhancers are marked by a given set of co-activators, this approach could

only identify a subset of enhancers [14,15].

Recently, it was shown that different elements, such as promoters and enhancers, were

marked by distinct patterns of chromatin modifications. Specifically, Heintzman et al. found

that promoters showed an enrichment of H3K4me3, H3ac and H4ac and a depletion of

H3K4me1 and enhancers were enriched with H3K4me1, H3K4me2, H3ac and H4ac but lack

of H3K4me3 [15]. In addition, emerging evidence suggested that different regulatory elements

also exhibit different distributional patterns of modifications, such as broad or narrow, unimo-

dal or bimodal, symmetric or asymmetric. Genome-wide mapping of multiple histone modifi-

cations in CD4+ T and other cell types showed that H3K4me2 and H3K4me3 at transcription

start sites (TSSs) followed a bimodal distribution asymmetrically skewing towards the down-

stream coding region while their distribution around enhancers is unimodal and symmetric

[15–17].

Supervised and unsupervised computational approaches were developed for identifying

enhancers on the basis of chromatin modification mapping data. The supervised approaches

used chromatin signatures surrounding known enhancers to predict new enhancers. Existing

supervised approaches include profiling method (PM) [15], artificial neural networks

(CSI-ANN) [18], hidden Markov model (Chromatin and Chromia) [7,19], support vector

machine (ChromaGenSVM) [20] and random forests (RFECS) [21]. Some of them employed

feature selection strategies such as genetic algorithm optimization [20] or out-of-bag method

[21] to try to obtain an optimal subset of modifications for enhancer prediction. Unsupervised

approaches were also developed, including ChromaSig [22], ChromHMM [23], ChAT [24]

and Segway [25], to detect different chromatin states from the combinatorial patterns of chro-

matin modifications.

However, the practical application of these methods is limited by two primary constraints.

First, feature extraction of chromatin signatures is usually lacking. Most previous methods pre-

dict enhancers only using the intensity of histone modification, which refers to the total num-

ber of sequencing reads or the maximum coverage depth in a genomic region. However, the

distributions of chromatin modifications around regulatory elements are sequential profiles

with distinct shape features. Constructing intensity vectors by dividing genomic regions into

small bins, namely the “binned-vector”method, is a straightforward way to keep the distribu-

tional information of histone modifications around regulatory elements [21]. However, the

consequent high-dimensional feature set would easily exceed the capabilities of machine learn-

ing algorithms and reduces the model interpretability, especially when the number of modifica-

tions is large. Therefore, an efficient dimensionality reduction method is still lacking. Second,

model consistency across various cell types is not considered in previous methods. Most studies

trained models and made predictions in the same cell type and failed to validate their methods

on independent datasets, making them more vulnerable to the overfitting problem. Recent

study has shown that models trained in one cell type made less accurate predictions in another

cell type [21]. This problem will severely limit their application to enhancer prediction in new

cell types.

To address these issues, here we present a novel method for enhancer prediction based on

AdaBoost algorithm [26] and the shape features of chromatin modifications, showing that our

model not only significantly outperforms previous methods in prediction accuracy but also

exhibits an outstanding cell type generality during model training and prediction on diverse

cell types.
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Results

Quantification of the shape features of chromatin modifications at
promoters and enhancers

We know from the technical principles of ChIP-seq that the number of sequencing reads

mapped to a genomic region is proportional to the density of protein binding sites or chroma-

tin modifications [27]. Therefore, the distribution of reads across a genomic region can be

treated as a probability distribution reflecting the biological signals of chromatin modifications,

which enables us to quantify the distributional features of chromatin modifications in a statisti-

cal way. Actually, descriptive parameters have been widely used to quantify the probability dis-

tribution of variables in probability theory and statistics. Here we introduce three parameters

that are used in probability theory for describing the probability distribution of variables [28],

including Kurtosis, Skewness and Bimodality, to quantify the shape features of chromatin modi-

fication profiles surrounding regulatory elements. Specifically, Kurtosis is introduced to quan-

tify the “sharpness” of a ChIP-seq signal, Skewness quantifies the extent of a ChIP-seq signal

“leans” to one side of the mean, and Bimodality is a parameter that quantifies a bimodally dis-

tributed ChIP-seq signal, as illustrated in Fig 1A. In addition, an intensity parameterMax is

also introduced to describe the strength of a ChIP-seq signal. The definitions and calculation

methods are described in detail in Materials and Methods.

Because enhancers and promoters are known to have distinct chromatin signatures, we first

examined whether the defined parameters could accurately describe the characteristic patterns

of histone modifications surrounding the two types of elements. We used the datasets of 38

and 26 histone modifications in CD4+ T and H1 cells to investigate the shape and intensity

parameters at enhancers and promoters. p300 binding sites overlapping with DNase-I hyper-

sensitive sites (DHSs) and distal (>2.5 kb) to UCSC TSSs are treated as representative of active

enhancers, and UCSC TSSs overlapped with DHSs are treated as representative of active pro-

moters. A total of 1983 and 6693 active and distal p300 sites and 9476 and 10663 active TSSs

were included in this survey in CD4+ T and H1 cells, respectively.

We found that the shape parameters accurately quantify the known chromatin signatures of

promoter and enhancer. The skewed distribution of histone modifications is an important fea-

ture of promoters, and several histone modifications enriched at promoters were reported to

be skewed towards the downstream (transcribed region) of TSS [15,16]. We found the average

Skewness of H3K4me1, H3K4me2, H3K4me3 and H3K9ac at promoters is negative, indicating

their distribution is asymmetrically biased to the left (i.e., downstream) of TSS. In contrast,

their average Skewness at enhancers is very close to zero, indicating their unbiased distribution

at enhancers (S1 and S2 Tables). Another important feature of promoters is the bimodal distri-

bution of histone modifications, implying depletion of nucleosomes at this position [7,15,29].

We found that the average Bimodality of H3K4me1, H3K4me2 and H3K4me3 at promoters is

significantly larger than 5/9 (a value for unimodal distribution), indicating their distribution

is generally bimodal (Fig 1B–1D). Their average Bimodality at enhancers is around 5/9, in-

dicating their unimodal distribution at enhancers. We also noticed that most histone modi-

fications at enhancers had larger Kurtosis than those at promoters, indicating the distributions

of histone modifications at enhancers are sharper (or narrower) than those at promoters. In

addition, we found that a subset of histone modifications displayed very distinct shape and

intensity parameters between enhancers and promoters. Among all modifications, H3K4me1,

H3K4me2 and H3K4me3 are three modifications exhibiting the most significant differences,

as shown in Fig 1B–1D, and for two (H3K4me1 and H3K4me2) of them, shape parameters

exhibit even more significant difference thanMax does, suggesting the potential capability of

shape features of histone modification in enhancer prediction.
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We also investigated whether p300-positive and p300-negative enhancers have different his-

tone modification profiles. We examined the shape and intensity parameters at a p300-inde-

pendent transcriptional coactivator MED1 (TRAP220), which has been shown to occupy

enhancers as well as promoters [12] in ENCODE regions, and compared them to those of distal

p300 sites in HeLa cells. As shown in S1 Fig., all four parameters (Kurtosis, Skewness, Bimodal-

ity andMax) showed good consistency, and no significant difference were found between p300

and MED1-binding sites (P> 0.01, Wilcoxon test) for all three important modifications

H3K4me1, H3K4me2 and H3K4me3, indicating p300-positive/negative enhancers share simi-

lar histone modification profiles.

An AdaBoost-based framework for enhancer prediction

AdaBoost, short for “Adaptive Boosting”, is a machine learning meta-algorithm [30]. The core

principle of AdaBoost is to fit a sequence of weak classifiers (in this case small decision trees)

Fig 1. Quantification of intensity and shape features of ChIP-seq signals. A) Graphical representation of four parametersMax, Kurtosis, Skewness and
Bimodality. The dashed curves indicate standard normal distribution, and the light blue area under curve indicates a probability distribution with the
corresponding parameter changed. The boxplots of the four parameters and significances of the difference between enhancers and promoters for B)
H3K4me1, C) H3K4me2 and D) H3K4me3 in CD4+ T cells. Significance (P-value) of the difference between two means was calculated byWilcoxon rank-
sum difference test.

doi:10.1371/journal.pone.0130622.g001
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on repeatedly modified versions of the data to produce a powerful “committee”. Compared to

bagging and random forests, AdaBoost adopts a cleverer way of averaging trees by increasing

the weight of misclassified data at each iteration, hence can dramatically improve the accuracy

of predictions [31,32]. Using the four extracted parameters Kurtosis, Skewness, Bimodality and

Max as the input features of AdaBoost, we developed a new method for predicting transcrip-

tional enhancers: DELTA or a Distal Enhancer Locating Tool based on AdaBoost algorithm.

To train DELTA, we selected active and distal p300 binding sites overlapping DNase-I

hypersensitive sites (DHSs) and distal (>2.5 kb) to UCSC TSSs as representative of enhancers

(positive class set). The background set (negative class set) is composed of two types of genomic

regions: UCSC TSSs overlapping DHSs as well as random genomic regions distal (>2.5 kb) to

UCSC TSSs and p300 binding sites. We used a sliding window approach to predict enhancers

along the genome with a step size of 100 bp. For each window, the shape and intensity parame-

ters are calculated in both directions (forward and backward). A true enhancer with symmetric

modification profiles will be assigned to high probabilities in both directions, while promoters

and noise signals will be assigned to low probabilities in at least one direction. Thus, the lower

probability in the two directions is treated as the final probability of a window.

We used a 5-fold cross-validation approach and Receiver Operating Characteristic (ROC)

curves to determine the optimal window size and the ratio of p300 sites to background regions

in training dataset. For window size determination, we evaluated four different window sizes

(1, 2, 4 and 6 kb) and found that a window size of 2 kb shows the highest Area Under the

Curve (AUC) both in CD4+ T (AUC = 0.9606) and H1 (AUC = 0.9726), as shown in Fig 2A

and 2B. To determine the ratio of positive enhancers to background regions, we compared the

ROC curves of four different ratios (1:4, 1:6, 1:8 and 1:10) and found that the ROC curves of

different ratios are very similar (S2 Fig). A ratio of 1:8 was used for a fair comparison with pre-

vious methods using ratios from 1:7 to 1:10 [20,21].

The number of boosting iteration is the main parameter of AdaBoost algorithm, which

decides the number of decision trees. To determine the optimal number of iteration for model

training, we used a 5-fold cross-validation approach to track the training and testing error rates

during the whole iteration process. We found training error continuously decreased through

the iteration, while testing error became stable beyond 50 iterations for CD4+ T and 150 for H1

cells (Fig 2C and 2D). Therefore, we chose 150 iterations for training AdaBoost as it appears to

be optimal for both cases.

Importance rankings of histone modifications are highly correlated in
AdaBoost models across different cell types

We then used AdaBoost model to assess the importance of histone modifications for enhancer

prediction. As an ensemble learning algorithm, AdaBoost maintains most of the desirable

properties of its basic learners (decision trees in this case). A measurement of importance for

predictor variables of a decision tree has been proposed previously [33]. We chose to generalize

this importance measure to AdaBoost by averaging over the trees as described in [31]. Due to

the stabilizing effect of averaging, AdaBoost can give a very reliable measurement of variable

importance.

To comprehensively assess the variable importance of histone modifications for enhancer

prediction, chromatin profiles of 38 and 26 histone modifications in CD4+ T and H1 cells were

used to train the AdaBoost models, and both a clean and a noisy non-enhancer background

were constructed. The clean background contains only random genomic regions distal (>2.5

kb) from UCSC TSSs and p300 binding sites, and the noisy background contains both random

genomic regions and UCSC TSSs overlapping DHSs. Heatmaps (Fig 3A–3D) were used to

DELTA: A Distal Enhancer Locating Tool Based on AdaBoost
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display the variable importance of the shape and intensity parameters of histone modifications

calculated by 5-fold cross-validation. When training AdaBoost model with active p300 sites

and clean background, we foundMax was the most important feature for all histone modifica-

tions both in CD4+ T and H1 (Fig 3A and 3C). The Kurtosis and Bimodality of several modifi-

cations also showed considerable importance, but Skewness didn’t exhibit any importance in

both models. Interestingly, when training AdaBoost model with noisy background, we found

the importance of shape parameters dramatically increased. For instance, the Kurtosis of

H3K4me1 and H3K4me2 showed higher importance thanMax both in CD4+ T and H1 (Fig

3B and 3D). The Skewness of promoter-enriched histone modifications (e.g., H3K4me2 and

H3K4me3) showed significantly higher importance than in the case of clean background, dem-

onstrating that Skewness is a specific and important shape feature for discriminating functional

enhancers from noisy genome background with promoters.

Fig 2. Determination of optimal window size and number of boosting iteration for DELTA. 5-fold cross-validation ROC curves at different window sizes
(1, 2, 4 and 6 kb) are shown in (A) CD4+ T and (B) H1 cells, and a window size of 2 kb shows the largest AUC both in CD4+ T and H1. Train and test error
curves at different numbers of iteration of AdaBoost are shown in (C) CD4+ T and (D) H1 cells. The train error continuously drops as number of iteration
increases, but the test error becomes stable beyond 50-th iteration in CD4+ T and 150-th in H1. An iteration number of 150 is chosen for training AdaBoost as
it appears to be optimal for both cases.

doi:10.1371/journal.pone.0130622.g002
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To obtain an informative set of histone modifications for enhancer prediction, we used a K-

means clustering method to automatically divide these modifications into clusters on the basis

of their variable importance. An average silhouette width method was used to estimate the

optimal number of clusters [34]. For both CD4+ T and H1, the optimal numbers of clusters

were estimated to be 3. Accordingly, histone modifications in CD4+ T and H1 were grouped

into three clusters, termed “strong predictor”, “weak predictor” and “irrelevant predictor”,

respectively. Nine histone modifications in CD4+ T and five modifications in H1 were classified

as strong predictors. Among all histone modifications, H3K4me1, H3K4me2 and H3K4me3

were the sole three modifications consistently presented in “strong predictor” sets in all four

cases. Our findings as well as the similar results obtained in H1 and IMR90 by Rajagopal et al.

[21] confirmed that H3K4me1, H3K4me2 and H3K4me3 were three most informative histone

modifications for enhancer prediction among all available modifications.

We then investigated the relationship between the variable importance of histone modifica-

tions in CD4+ T and H1 cells. We ranked 23 histone modifications that presented in both data-

sets by their overall variable importance and examined the correlation of their rankings

between two cell types. For the clean background case, we observed a correlation of 0.688 (P-

-value = 4.091E-4, Spearman’s rho test) between the importance rankings (Fig 3E). Because

recognizing active enhancers from clean background was a relatively simple task and heavily

relied on theMax parameter, it is easy for highly correlated modifications to provide redundant

features, which will cause variability among the cell types. For the noisy background case, we

observed a high correlation of 0.837 (P-value = 1.711E-6, Spearman’s rho test) between the

rankings (Fig 3F), indicating a strong consistency of variable importance of histone

Fig 3. Variable importance analysis of intensity and shape parameters in CD4+ T and H1 cells.Histone modification clustering based on the variable
importance of intensity (Max) and shape parameters (Kurtosis, Skewness and Bimodality) in CD4+ T and H1 cells. In CD4+ T, 38 histone modifications were
used to train models with (A) clean background and (B) noisy background; In H1, 26 modifications were used to train models with (C) clean background and
(D) noisy background. The average variable importance in 5-fold cross-validation is log transformed and represented by different colours. Clustering was
performed using a K-means algorithm. Each set of modifications was classified into three groups, which were termed "Strong predictor", "Weak predictor"
and "Irrelevant predictor". Scatter plot was used to show the correlation of importance ranks of histone modifications for enhancer prediction between CD4+ T
and H1 cells. 23 shared histone modifications in models with (E) clean background and (F) noisy background were ranked by their average variable important
across four parameters.

doi:10.1371/journal.pone.0130622.g003
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modifications between the two distinct cell types. For comparison, we also calculated the corre-

lation of variable importance of the noisy background using binned-vector features, which is a

vector of binned reads in a window as used by previous method [21], and found a considerably

lower correlation of 0.633 (P-value = 0.0015, Spearman’s rho test). Rajagopal et al. ranked 24

shared modification between H1 and IMR90 using RFECS and obtained a correlation of 0.645

(P-value = 6.63E-4, Spearman’s rho test) with noisy background training data [21], also signifi-

cantly lower than that of our method. Taken together, our findings not only demonstrate that

the combined set of shape and intensity features exhibits higher consistency across different

cell types than single intensity and binned-vector features, but also suggest that enhancers

might share common chromatin signatures across different cell types.

Assessment of prediction accuracy of AdaBoost with different feature
sets

We next assessed the prediction accuracy of AdaBoost models with different feature sets. In the

case of enhancer predictions, the definition of true negatives is not straightforward, because we

can never be certain that the randomly selected TSS- and p300-distal genomic regions are all

non-functional. Therefore, we determined the predictive power of model by counting the per-

centage of predicted enhancers that overlap markers of enhancers (validation rate) or active

TSSs (misclassification rate) as in the previous studies [20,21]. In addition, an F-score was

computed from validation rate and misclassification rate to measure the overall performance

of a prediction (see Materials and Methods). Since model training and enhancer prediction

using large histone modification sets and binned-vector features is very time-consuming, we

assessed prediction accuracy using randomly sampled regions from ~10% of human genome

instead of the whole genome.

We first investigated the predictive power of different combinations of histone modifica-

tions using AdaBoost model in CD4+ T and H1 cells. We applied AdaBoost models with three

different sets of histone modifications: all histone modifications in the datasets (38 for CD4+

T, 26 for H1), modifications classified as strong predictors (9 for CD4+ T, 5 for H1), and

three core modifications H3K4me1/H3K4me2/H3K4me3 and computed validation and mis-

classification rate and F-score at different numbers of enhancers determined by taking different

probability cutoffs. As shown in Fig 4A, 4B, 4D and 4E, we found that the all-modification set

and strong-predictor set made predictions with higher validation rates but also higher misclas-

sification rates than the H3K4me1/2/3 set. As a whole, the three sets showed a very close

resemblance in F-score curves both in CD4+ T and H1 (Fig 4C and 4F), indicating the strong-

-predictor set and H3K4me1/2/3 set preserve most of the information for enhancer prediction.

We next investigated the impact of different feature extraction procedures on the predictive

power of AdaBoost models. We considered three types of features: binned-vector features,

intensity features and the combination of shape and intensity features, among which the for-

mer two were frequently used in previous studies [18,20,21]. We applied AdaBoost models

with the three feature sets to the datasets of H3K4me1/2/3 in CD4+ T and H1 cells and com-

puted validation and misclassification rate and F-score at different numbers of enhancers. We

found the shape and intensity feature set performed significantly better than the intensity fea-

ture set both in CD4+ T and H1 (Fig 4G–4L). However, the performances of binned-vector fea-

ture set in two datasets are inconsistent. In H1, the binned-vector feature set performed as well

as the shape and intensity feature set, while in CD4+ T it performed even worse than the inten-

sity feature set, suggesting the high-dimensional feature vector produced by binned-vector

method may cause model instability.
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Comparison of DELTA with other enhancer prediction models

We next compared the performance of DELTA with three currently available methods for

enhancer prediction: CSI-ANN, ChromaGenSVM and RFECS. The three existing methods

Fig 4. Prediction accuracy of AdaBoost models with different feature sets. (A) Validation rates, (B) Misclassification rates and (C) F-scores of enhancer
predictions using AdaBoost models with three histone modification sets (all modifications, strong predictor modifications and H3K4me1/2/3) in 10% genome
in CD4+ T and H1 (D-F). (G) Validation rates, (H) Misclassification rates and (I) F-scores of predictions using AdaBoost models with three feature extraction
methods (binned-vector, intensity only and shape and intensity features) in 10% genome in CD4+ T and H1 (J-L). In CD4+ T, validation rates were measured
as overlap with either p300 binding sites, DNase-I hypersensitive sites (DHS) or TF binding sites including CBP, ETS1, FOXP3, RUNX1 and STAT5, and
misclassification rates were measured as overlap with UCSC TSSs, versus total number of enhancers determined by taking different probability cutoffs. In
H1, validation rates were measured as overlap with either p300 binding sites, DHSs or sequence-specific TF binding sites from FactorBook, and
misclassification rates were measured as overlap with UCSC TSSs, versus total number of enhancers determined by taking different probability cutoffs.

doi:10.1371/journal.pone.0130622.g004
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have been applied on histone modification datasets of CD4+ T and H1 cells in previous studies

[18,20,21]. Using histone modifications H3K4me1, H3K4me3 and H3K27ac in CD4+ T cells,

CSI-ANN made 21832 predictions [18], ChromaGenSVMmade 23574 predictions [20] and

RFECS made 22947 predictions [21]. To make a fair comparison across methods, we made

enhancer predictions genome-wide using DELTA with the same modifications in CD4+ T, and

cutoff was selected that yielded a similar number of predictions (22182), as listed in S3 Table.

Validation rates were computed by comparing predicted enhancers to TSS-distal p300 binding

sites, DNase-I hypersensitive sites and 5 sequence-specific TFs (CBP, ETS1, FOXP3, RUNX1

and STAT5) binding sites, and misclassification rates were computed by comparing to known

UCSC TSSs (see Materials and Methods). As shown in Fig 5A, we found that the validation

rate of DELTA predictions is 80%, considerably higher than the other three methods

(CSI-ANN 43%, ChromaGenSVM 39% and RFECS 63%), and that more than 15% DELTA

predictions were supported by all three markers, also much higher than the other methods

(CSI-ANN 5%, ChromaGenSVM 7% and RFECS 8%). Moreover, the misclassification rate of

DELTA is 2%, considerably lower than the 7% and 3% rates of CSI-ANN and RFECS.

In H1, histone modifications H3K4me1, H3K4me2 and H3K4me3 were used for enhancer

prediction. CSI-ANN made 30996 predictions [18] and ChromaGenSVMmade 29598 predic-

tions [20]. Cutoffs were selected to make a similar number of predictions for both RFECS

(29500) and DELTA (30734), as listed in S4 Table. We used TSS-distal p300 binding sites,

DNase-I hypersensitive sites and sequence-specific TFs binding sites to compute the validation

rates. We found that more than 85% DELTA predictions were validated by at least one marker,

substantially higher than the other three methods (CSI-ANN 65%, ChromaGenSVM 52% and

RFECS 74%), as shown in Fig 5B. In addition, over 26% DELTA predictions were supported by

all three markers, much higher than the other methods (CSI-ANN 13%, ChromaGenSVM 12%

and RFECS 13%). Furthermore, the misclassification rate of DELTA is 1.6%, considerably

lower than the 25%, 3.5% and 1.9% rates of CSI-ANN, ChromaGenSVM and RFECS. Overall,

these results demonstrated DELTA significantly improved the prediction accuracy over current

enhancer prediction techniques.

Enhancers can be accurately predicted in one cell type by DELTA model
trained on other cell types

Because the importance rankings of histone modifications in AdaBoost models are highly cor-

related across different cell types, we anticipated that DELTA could accurately predict enhanc-

ers in one cell type using models trained on other cell types. To test this hypothesis, the dataset

of H3K4me1, H3K4me2 and H3K4me3 of five human cell types: H1, GM12878, HeLaS3, K562

and HepG2 was downloaded from the ENCODE project for model training and enhancer pre-

diction. We also downloaded the corresponding p300 binding sites, sequence-specific TFs

binding sites and DHS regions to validate the predictions. In order to validate prediction in a

uniform criterion across cell types, CD4+ T was excluded from this analysis because the dataset

of sequence-specific TFs binding sites is not available for this cell type.

Enhancers were predicted in each of the five ENCODE cell types using two AdaBoost mod-

els: one trained on the same cell type and the other trained on a combined dataset of the other

four cell types. For the combined dataset, 1000 representative enhancers (active and distal p300

binding sites) and 8000 background regions (4000 active TSSs and 4000 random and distal

genomic regions) were randomly sampled from each of the four cell types and then constituted

a “multicell” training set. Validation rate, misclassification rate and F-score were calculated at

each cutoff as described previously to evaluate prediction accuracy. We compared the predic-

tions made by the two AdaBoost models and found that the two prediction sets exhibited very
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Fig 5. Comparison of DELTAwith other enhancer predictionmodels. (A) In CD4+ T, validation rates were measured as overlap with either p300 binding
sites, DNase-I hypersensitive sites (DHS) or TF binding sites including CBP, ETS1, FOXP3, RUNX1 and STAT5, and misclassification rates were measured
as overlap with UCSC TSSs. (B) In H1, validation rates were measured as overlap with either p300 binding sites, DHSs or sequence-specific TF binding sites
from FactorBook, and misclassification rates were measured as overlap with UCSC TSSs.

doi:10.1371/journal.pone.0130622.g005
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similar validation rate, misclassification rate and F-score curves in all five cell types, as shown

in Fig 6A–6C, indicating that DELTA can accurately predict enhancers in one cell type using

models trained on independent cell types without loss of prediction accuracy. We also carried

Fig 6. Enhancer predictions in five ENCODE cell types using DELTA. (A) Validation rates, (B) Misclassification rates and (C) F-scores of enhancer
predictions using AdaBoost models trained in the same cell type (solid lines) and other four cell types (dashed lines) in five cell types. Validation rates were
measured as overlap with either p300 binding sites, DNase-I hypersensitive sites (DHS) or sequence-specific TF binding sites from FactorBook, and
misclassification rates were measured as overlap with UCSC TSSs, versus total number of enhancers determined by taking different probability cutoffs. (D)
False Discovery Rate (FDR) for each cell type plotted as a function of prediction probability. (E) Percentages of validated and misclassified enhancer
predictions in five cell types at a FDR of 5% with number of enhancer predictions shown at the left of the bar.

doi:10.1371/journal.pone.0130622.g006
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out the comparisons between the two models as described above using binned-vector parame-

ters in the five cell types and found a decrease in F-score when predicting enhancers using

combined datasets of other cell types than using the dataset of the same cell type (S3 Fig).

A set of high-confidence enhancer predictions in multiple cell types would contribute sub-

stantially to the functional annotation of human non-coding genomic regions and to the reli-

able construction of genetic regulatory networks (GRNs). We predicted enhancers in the five

ENCODE cell types using DELTA models trained on the same cell type. When predicting

enhancers across multiple cell types, it is preferable to have enhancer predictions with the same

level of confidence. We calculate a False Discovery Rate (FDR) to determine the appropriate

cutoff for each cell type. Two cases are treated as false discovery evens: declaration as enhancer

at permuted genomic regions and declaration as enhancer at active TSSs. The ratio of false dis-

covery evens/enhancers predicted in real data is computed as FDR at various cutoffs (Fig 6D).

The contributions of the two components to FDR in five cell types are shown in S4 Fig. Using

an FDR of 5%, we predicted a consistent set of high-confidence enhancers in the five ENCODE

cell types, as listed in S5 Table. The numbers of enhancer predictions in five cell types range

from 48885 to 73182 as shown at the left of the bar in Fig 6E. The validation rates are above

85% for all cell types except for H1 and the misclassification rates are all below 5%. Besides,

20–60% of the predicted enhancers are marked by all three types of experimental evidences.

We examined the correlation between the numbers of available TFs in five cell types and the

corresponding validation rates and didn’t find a significant correlation between numbers of

TFs and validation rates (P-value = 0.35, Spearman’s rank correlation test).

We next compared these predictions with those of ChromHMM in four shared cell types.

We found the numbers of enhancers predicted by ChromHMM (H1: 619061, GM12878:

571339, HepG2: 546343 and K562: 622257) are one magnitude order larger than those pre-

dicted by DELTA with a FDR of 0.05. Despite the great difference in the number of predictions,

we found the vast majority of the predictions by DELTA overlapped with Weak/Strong

enhancers states of ChromHMM (H1: 98.8%, GM12878: 99.0%, HepG2: 98.5% and 95.9%).

Moreover, we examined the validation rates and misclassification rates of ChromHMM in the

four cell types and found it can achieve validation rates of 60.5–69.6% and misclassification

rates of 9.4–10.5%, as shown in S5 Fig.

In addition, we found enhancers predicted by both the same-cell type model and cross-cell

type model are highly cell-type specific. As shown in S6 Fig., we randomly sampled 10000 pre-

dicted enhancers from each cell type and found ~86–92% predicted enhancers are specific to

one cell type. Very few enhancers are shared by three or more cell types simultaneously and

only ~2–3% enhancers are shared by two different cell types. This ratio is lower than the obser-

vation (~6%) in a previous study in HeLas3 and K562 using only p300-positive enhancers [35].

In summary, we developed a method for accurately predicting enhancers across different

cell types and obtained a high-confidence set of enhancer predictions in multiple ENCODE

cell lines with the same level of confidence. This will enable us to systemically locate and anno-

tate the regulatory non-coding genomic regions in a wide range of human cell lines.

Discussion In recent years, the chromatin modification data of a growing number of cell

types have been obtained with the progress of ENCODE and Roadmap epigenomics projects,

but accurately predicting DNA regulatory elements from these chromatin data remains a great

challenge, as current prediction tools are limited in their prediction accuracy and ability to reli-

ably predict regulatory elements in new cell types. In this paper, we described a novel method

for predicting transcriptional enhancers on the basis of shape features of histone modifications

and AdaBoost algorithm. There are several advantages of our method that will significantly

contribute to the field of enhancer prediction.
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Initially, we developed an efficient dimension reduction method by systemically introducing

and assessing a set of shape parameters of histone modifications profiles. We showed that these

parameters can accurately reflect the distributional characteristics of histone modifications at

promoters and enhancers and that the combined shape and intensity parameters could achieve

significantly higher prediction accuracy than the previously used feature sets (intensity features

and binned-vector features), indicating it is a more advanced method for feature extraction of

chromatin modification profiles than the current techniques.

In addition, we developed a new automatic approach for selecting informative histone mod-

ifications for enhancer prediction from a variety of modifications. AdaBoost models with small

decision trees also gave information on the variable importance of histone modifications for

making enhancer predictions. We used an unsupervised clustering method to automatically

classify histone modifications into different groups according to their variable importance for

enhancer prediction. We found that predictions made by AdaBoost using modifications

termed as “strong predictor” closely resembled those made by the full set of modifications in

prediction accuracy. We also confirmed that H3K4me1/2/3 constitute a robust modification

set that keeps most of the information for enhancer prediction in different datasets. These find-

ings indicate combining AdaBoost algorithm with automatic clustering method is an efficient

way to select importance variables from a variety of histone modifications.

Furthermore, our enhancer prediction method significantly outperformed existing methods

in prediction accuracy. Three experimental markers of enhancers, including p300 binding

sites, sequence-specific TF binding sites and Dnase-I hypersensitive sites, were used to evaluate

the prediction accuracy. We found DELTA improves the validation rates of at least one marker

on the previous methods RFECS, CSI-ANN and ChromaGenSVM by 13.3–105% relatively and

the validation rates of three markers by 87.5–300% relatively in CD4+ T and H1 cells.

Moreover, DELTA is the first model that successfully predicts enhancers in one cell type

using models trained in other cell types without loss of accuracy. We attribute this success to

the non-redundant shape parameters of histone modification that are highly consistent across

different cell types, because the AdaBoost models with binned-vector features didn’t show such

property. This finding also indicates a general mechanism of histone modifications acting on

transcriptional enhancers.

In summary, all above features make DELTA a powerful and reliable tool for predicting

enhancers in a variety of cell types. We also want to mention that the entire workflow of this

study, including shape feature extraction, variable importance assessment and model training

and prediction, can be conveniently applied to identify other types of DNA elements with dis-

tinct chromatin signatures.

Materials and Methods Data Source

For CD4+ T cells, the ChIP-seq data of 38 histone modifications were obtained fromWang

et al. [36]. The p300 ChIP-seq data was obtained fromWang et al. [37], the DNase-I data was

obtained from Boyle et al. [38] and the ChIP-seq data of five sequence-specific transcription

factors: CBP, ETS1, FOXP3, RUNX1 and STAT5 were obtained from Schmidl et al. [39]. For

H1 cells, the data of 26 histone modifications was downloaded from NIH Roadmap Epigenome

Project page (http://www.genboree.org/EdaccData/) [40] and the p300 ChIP-seq data was

downloaded from NCBI GEO under accession number GSE37858 [21]. For cell lines

GM12878, HeLas3, K562 and HepG2, the ChIP-seq data of three histone modifications

H3K4me1, H3K4me2 and H3K4me3 were downloaded from the UCSC ENCODE [41] under

the GEO accession number GSE29611, and p300 ChIP-seq data was downloaded from UCSC

ENCODE page (http://hgdownload.cse.ucsc.edu/ goldenPath/hg19/encodeDCC/
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wgEncodeSydhTfbs/). We obtained sequence-specific TFs binding sites from FactorBook Ver-

sion 3 dataset at UCSC ENCODE website (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/

encodeDCC/wgEncodeRegTfbsClustered/). The numbers of available TFs in H1, HeLas3,

HepG2, GM12878 and K562 are 28, 30, 40, 47 and 50 respectively. [42]. Narrow DNase-I

peaks of the five cell lines were downloaded from ENCODE page (http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/). Any data mapped to hg18 or hg17

genome version was converted to hg19 using UCSC liftover tool [43].

Data normalization and smoothing

To obtain histone modification profiles, the ChIP-seq reads were first binned into short inter-

vals (100 bp). The number of reads in each interval was normalized against the total read count

by using an RPKM-like measure [44]. In order to lower data noise, the Hanning window func-

tion [45] was employed to smooth the profiles of histone modifications by correcting the

RPKM value of each bin based on the RPKM values of its neighbourhoods.

Peak calling

To determine the binding sites of p300 and other five TFs: CBP, ETS1, FOXP3, RUNX1 and

STAT5, we used MACS [46] software to call peaks from their ChIP-seq data. ChIP-seq input

files were used as background and default p-value cutoff of 1e-5 was used.

Defining the shape features of histone modification ChIP-seq signal

To describe the shape features of a ChIP-seq signal, we employed three descriptive parameters

defining three distinct aspects of a probability distribution. Their definitions are listed as

follows:

Kurtosis: Kurtosismeasures the “sharpness” of a probability distribution, ranging from 1 for

uniform distribution to infinity for extremely sharp distribution. It can be quantified in differ-

ent ways, and one common measure is based on a scaled version of the fourth moment, which

is defined as:

Kurt ¼
E½ðX � mÞ

4
�

ðE½X � m�
2
Þ
2
� 3 ¼

m
4

s4
� 3 ð1Þ

In this study, we used a sample Kurtosis to quantify the sharpness of a ChIP-seq signal. Let

xi index the relatively position of the i-th read in a sliding window, �x index the average position

of all n reads in the window. The Kurtosis of the ChIP-seq signal in this window can be calcu-

lated as follows:

kurt ¼
m

4

m2

2

� 3 ¼
1

n

Xn

i¼1
ðxi � �xÞ

4

ð1
n

Xn

i¼1
ðxi � �xÞ

2
Þ
2
� 3 ð2Þ

Skewness: Skewnessmeasures the asymmetry of the probability distribution of a random

variable about its mean, ranging from -1 for extremely right-skewed distribution to +1 for

extremely left-skewed distribution, and a zero value indicates symmetric distribution. The pop-

ulation Skewness can be defined as:

Skew ¼
m
3

s3
¼

E½ðX � mÞ
3
�

ðE½X � m�
2
Þ
3=2

ð3Þ
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We used a sample Skewness as follows to quantify the extent of a ChIP-seq signal “leans” to

one side of the mean:

skew ¼
m

3

m
3=2
2

¼
1

n

Xn

i¼1
ðxi � �xÞ

3

ð1
n

Xn

i¼1
ðxi � �xÞ

2
Þ
3=2

ð4Þ

Bimodality: Bimodality is a describer to indicate a probability distribution is bimodal or

unimodal. Here we use Sarle’s bimodality coefficient to represent the Bimodality, which is

defined as:

BI ¼
Skew2 þ 1

Kurt
ð5Þ

Bimodality ranges from 0 to 1, and value greater than 5/9 indicate a bimodal distribution.

We used the following equation to calculate the Bimodality of the ChIP-seq signal in a window:

bi ¼
skew2 þ 1

kurtþ 3ðn�1Þ2

ðn�2Þðn�3Þ

ð6Þ

The intensity of a ChIP-seq signal is a feature frequently used in previous enhancer predic-

tion methods. We used aMax parameter to measure the abundance of histone modification. It

is defined as the maximum RPKM value of bins in a window.

Training dataset

In order to train AdaBoost models, p300 binding sites overlapping with DNase-I hypersensitive

sites and distal to annotated TSS were used as representative of positive enhancers (true posi-

tives). For negative training data, we constructed both a clean and a noisy non-enhancer back-

ground. The clean background only contains random genomic regions distal from known TSSs

and enhancers, while the noisy background contains both random genomic regions and anno-

tated TSSs overlapping with DNase-I locations. The clean background was only used in the

variable importance assessment procedure.

Prediction validation

In the case of enhancer predictions, the definition of true negatives is not straightforward,

because we can never be certain that the randomly selected TSS- and p300-distal genomic

regions are all non-functional. Therefore, to compare model performances, we used three types

of experimental markers of enhancers, including p300 binding sites (excluding those used in

training), a wide range of sequence-specific transcription factors binding sites (TFBSs)

obtained from FactorBook (http://www.factorbook.org/) [42] and other studies [37,39], and

DNase-I hypersensitive sites (DHSs) downloaded from ENCODE (http://genome.ucsc.edu/

ENCODE/) [41]. The binding sites of CTCF were removed from the validation set since it is

known as a marker of insulators [47]. We recorded the percentages of predicted enhancers that

overlap these markers as validation rates and the percentages of predicted enhancers that over-

lap DHS-positive UCSC TSSs [43] as misclassification rates. Specifically, predicted enhancers

are classified as ‘‘validated”, ‘‘misclassified” or ‘‘unknown” based on the following criteria: 1)

if the nearest experimental evidence lies within 1 kb of the enhancer and the nearest TSS is

greater than 2.5 kb away from the evidence, the enhancer is ‘‘validated”. A window of -1 to +1

kb is a relatively strict criterion for validation compared to those used by previous studies (-2.5

to 2.5 kb for RFECS and ChromaGenSVM, -1.25 to 1.25 kb for CSI-ANN); 2) if a TSS lies
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within 2.5 kb of the enhancer and the nearest experimental evidence is greater than 1 kb away,

the enhancer is ‘‘misclassified”; 3) if there is no experimental evidence or TSS within 2.5 kb of

the enhancer, it is “unknown”. In addition, we compute an F-score based on validation rate

and misclassification rate to measure the overall performance of a prediction:

F� score ¼
2� Validation Rate� ð1�Misclassification RateÞ

Validation Rateþ ð1�Misclassification RateÞ
ð7Þ

Software implementation

The DELTA software was implemented in Python and R. Specifically, reads counting, FPKM

normalization and profile smoothing was implemented in Python using the “pybedtools” pack-

age [48]. Shape parameter computing was implemented in Python using the “scipy” package.

The AdaBoost algorithm is implemented in R using ‘ada’ package [49] and decision trees were

used as the basic learner of AdaBoost during its boosting iteration procedure. The DELTA soft-

ware and source code is freely available from GitHub (https://github.com/drlu/delta).

Supporting Information

S1 Fig. Boxplots of the four parameters and significances of the difference between p300

and MED1-binding sites for B) H3K4me1, C) H3K4me2 and D) H3K4me3 in ENCODE

regions of HeLas3 cells. Significance (P-value) of the difference between two means was calcu-

lated by Wilcoxon rank-sum difference test.

(TIF)

S2 Fig. 5-fold cross-validation ROC curves at different ratios of p300:background in A)

CD4+ T and B) H1 cells.

(TIF)

S3 Fig. Enhancer predictions in five ENCODE cell types using DELTA with binned-vector

features. A) Validation rates, B) Misclassification rates and C) F-scores of enhancer predictions

using AdaBoost models trained in the same cell type (solid lines) and other four cell types

(dashed lines) in five cell types. Validation rates were measured as overlap with either p300

binding sites, DNase-I hypersensitive sites (DHS) or sequence-specific TF binding sites from

FactorBook, and misclassification rates were measured as overlap with UCSC TSSs, versus

total number of enhancers determined by taking different probability cutoffs.

(TIF)

S4 Fig. Two components of False Discovery Rate (FDR) plotted as a function of prediction

probability in A) H1, B) GM12878, C) HeLas3, D) HepG2 and E) K562 cells.

(TIF)

S5 Fig. Evaluation of enhancers predicted by ChromHMM in four ENCODE cell types. Val-

idation rates were measured as overlap with either p300 binding sites, DHSs or sequence-spe-

cific TF binding sites from FactorBook, and misclassification rates were measured as overlap

with UCSC TSSs.

(TIF)

S6 Fig. Venn diagrams of enhancers predicted by A) same-cell type and B) cross-cell type

model in five ENCODE cell types.

(TIF)
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S1 Table. The mean values of four parameters and corresponding significances (P-values)

of the differences between enhancers and promoters of 38 histone modifications in CD4+

T.

(XLSX)

S2 Table. The mean values of four parameters and corresponding significances (P-values)

of the differences between enhancers and promoters of 26 histone modifications in H1.

(XLSX)

S3 Table. Enhancer predictions (22182) in CD4+ T cells using DELTA with H3K4me1,

H3K4me3 and H3K27ac.
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S4 Table. Enhancer predictions (30734) in H1 cells using DELTA with H3K4me1,

H3K4me2 and H3K4me3.

(XLSX)

S5 Table. Enhancer predictions using DELTA with H3K4me1, H3K4me2 and H3K4me3 at

a FDR of 5% in H1, GM12878, HeLas3, K562 and HepG2 cells
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