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Delta- and theta-band cortical tracking and phase-amplitude 

coupling to sung speech by infants 

Adam Attaheri*, Áine Ní Choisdealbha, Giovanni M. Di Liberto, Sinead Rocha, Perrine Brusini, 

Natasha Mead, Helen Olawole-Scott, Panagiotis Boutris, Samuel Gibbon, Isabel Williams, 

Christina Grey, Sheila Flanagan & Usha Goswami  
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Abstract 

The amplitude envelope of speech carries crucial low-frequency acoustic information that 

assists linguistic decoding at multiple time scales. Neurophysiological signals are known to track 

the amplitude envelope of adult-directed speech (ADS), particularly in the theta-band. Acoustic 

analysis of infant-directed speech (IDS) has revealed significantly greater modulation energy 

than ADS in an amplitude-modulation (AM) band centered on ~2 Hz. Accordingly, cortical 

tracking of IDS by delta-band neural signals may be key to language acquisition. Speech also 

contains acoustic information within its higher-frequency bands (beta, gamma). Adult EEG and 

MEG studies reveal an oscillatory hierarchy, whereby low-frequency (delta, theta) neural phase 

dynamics temporally organize the amplitude of high-frequency signals (phase amplitude 

coupling, PAC). Whilst consensus is growing around the role of PAC in the matured adult brain, 

its role in the development of speech processing is unexplored. 

Here, we examined the presence and maturation of low-frequency (<12Hz) cortical 

speech tracking in infants by recording EEG longitudinally from 60 participants when aged 4-, 7- 
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and 11- months as they listened to nursery rhymes. After establishing stimulus-related neural 

signals in delta and theta, cortical tracking at each age was assessed in the delta, theta and alpha 

[control] bands using a multivariate temporal response function (mTRF) method. Delta-beta, 

delta-gamma, theta-beta and theta-gamma phase-amplitude coupling (PAC) was also assessed. 

Significant delta and theta but not alpha tracking was found, the earliest such demonstration for 

infants. Significant PAC was present at all ages, with stronger delta-driven coupling observed, as 

hypothesised.   

Graphical abstract 
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Introduction 

Neural signals synchronise to the auditory envelope during speech listening. This cortical 

tracking phenomenon has an important functional role for speech comprehension in adults (1, 2). 

The speech envelope is the low-frequency amplitude modulation that carries crucial acoustic 

information required for perceptual encoding and linguistic decoding at multiple temporal scales. 

Theorists in speech perception have argued for special roles for syllable-level acoustic rhythmic 

information (slower temporal modulations centred on ~5 Hz) and phoneme-level acoustic 

information (rapid temporal modulations centred on ~ 40 Hz) (3). It is proposed that intrinsic 

neural signals in cortex at matching frequencies (theta, 4-8 Hz; low gamma, 30-50 Hz) provide 

one mechanism for encoding this acoustic information, parsing speech signals into temporal 

chunks or windows for subsequent analysis and comprehension (multiple time resolution (2)). 

Delta-band tracking in the adult brain is also found, thought to reflect discourse-level tracking 

and perceptual grouping (4, 5). Low-frequency (delta, theta) phase and high-frequency (gamma) 

amplitudes also track acoustic rhythms in the speech signal by operating together as an integrated 

representational mechanism via phase-amplitude coupling, PAC (6–8), where the phase 

dynamics of low-frequency neural signals temporally organize the amplitude of high-frequency 

signals (9–11). Adult studies have demonstrated the functional importance of PAC for speech 

encoding, with delta and theta phase coupling with gamma amplitude during stimulus-specific 

speech sampling (6). The role of cortical tracking for speech intelligibility has also been 

demonstrated by EEG (12), MEG (13–15) as well as intra-cranial measurements in adult patients 

using electrocorticography (ECoG) (16–18). Studies measuring adult cortical tracking of 

unintelligible speech report reduced tracking compared to intelligible speech (5, 6, 12–15, 19–
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21), however the data are mixed, with the role of cortical tracking to the different elements of 

speech, and their role in speech intelligibility widely debated (12, 22–26). To date almost all 

available studies of PAC and cortical tracking at different frequencies rely on adult neural 

imaging (21), indicating a reasonable degree of consensus concerning neural mechanisms, with a 

core role established for theta tracking (5, 12, 14, 21).  

While theta tracking may be a core feature of adult speech encoding, it is important to 

remember that the adult participants in neural studies have years of listening experience. 

Accordingly, the theoretical weight given to theta and gamma oscillations and linguistic units (2)  

may reflect top-down processing and the end state of development. Studies of children suggest 

that the weighting of different speech encoding mechanisms may change with development (27). 

For example, data from children with developmental dyslexia show core cognitive impairments 

in processing phonological (speech-sound) information, and associated atypical neural 

synchronisation to, and tracking of, speech input in the delta band, not in the theta band (4, 12, 

28–30). Regarding degraded speech, typically-developing children show delta-band tracking of 

speech-in-noise, but not efficient theta-band tracking (31).  

In adult studies, delta-band tracking is frequently related to auditory attentional 

mechanisms linked to the processing of sequential attributes of speech sounds, for example 

grouping (21, 32), and to discourse-level parsing related to phrasing (14, 33). While the pre-

verbal infant brain may also utilize grouping mechanisms, infants have not yet learned discourse-

level speech information (34). Cross-language linguistic data show that strong syllables are 

produced approximately twice per second (2 Hz) in all languages, both stress-timed and syllable-

timed (35). Strong (stressed) syllables may provide a set of acoustic landmarks at a delta-band 
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rate that facilitate grouping, enabling the infant brain to begin to represent the acoustic structure 

of human speech. Even newborn infants can discriminate languages from different rhythm 

classes (stress timed [e.g. English], syllable timed [e.g. French] or mora timed [Japanese]) (36). 

Rhythm perception has thus been described in the cognitive literature as a language-universal 

precursor to language acquisition (37). One way to study early cortical tracking of speech is to 

use sung or chanted speech, as exemplified by the nursery rhymes of the English cradle (38). 

Further, the role of PAC in the development of speech processing by children and infants is not 

yet explored. 

There are three previous infant language-based cortical tracking studies of speech, two 

with 7 month-old infants (39, 40) and one with neonates and 6-month-olds (41). These prior 

studies were not longitudinal and adopted either a forward linear modelling approach (detailed 

methods; 37), or a cross-correlation analysis, to estimate how well the amplitude envelope of 

IDS was represented in the cortical activity. All studies reported significant cortical tracking, 

however none addressed the potential developmental roles of delta- versus theta-band tracking 

regarding language processing, nor examined possible developmental changes for delta versus 

theta tracking. To date, there are two PAC studies in infants. Both have focused on clinical 

applications, specifically the role of PAC in functional connectivity (42, 43). For example, one 

study measuring PAC in sleeping newborns during active versus quiet sleep reported hierarchical 

nesting of oscillations in both sleep states (42). Accordingly, current data suggests that PAC 

mechanisms in the infant brain may be online at birth. However, no study to date has looked at 

the functional relevance of infant PAC when processing sensory stimuli, leaving PAC during 

language processing yet to be explored. 
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Here we assess infant cortical tracking of the temporal modulation information in IDS 

present in both delta- and theta-rate AM bands. We analysed cortical tracking of nursery rhymes, 

originally recorded being sung or chanted to an alert infant. We used sung speech as theoretically 

it provides an optimally-structured stimulus for the infant brain to employ cortical tracking of 

speech, since all the amplitude modulations at different frequencies are temporally aligned. 

Although the center frequencies of canonical EEG bands may shift during infancy (44, 45), the 

delta band is relatively stable, and there is no consensus on the exact boundaries of different 

EEG bands at specific time points in development (35). There are also no infant data regarding 

center frequencies from studies utilizing speech stimuli. Accordingly, the EEG delta and theta 

bands were defined following the prior speech processing literature (delta, 0.5-4 Hz; theta, 4-8 

Hz). These bands have also been identified by modelling the temporal modulation architecture of 

IDS (46). Leong et al. theorised that the amplitude envelope of spoken IDS contains a nested 

oscillatory hierarchy of amplitude modulations (AMs) in three temporal bands, corresponding to 

the timing of delta, theta and beta/low gamma cortical neural signals. Furthermore, they 

demonstrated that the low-frequency AM bands in IDS showed different degrees of coupling 

with each other compared to adult-directed speech (ADS). IDS both had significantly more 

modulation energy in the delta band than ADS (which had significantly more modulation energy 

in the theta band), and significantly greater phase synchronisation between the delta-rate and 

theta-rate bands of AM than ADS. Based on this computational modelling (46), we therefore 

hypothesised that delta-band neural signals would track the speech envelope most strongly early 

in infant development. We also tentatively hypothesised that theta tracking may come online 

more slowly. 
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64-channel EEG was recorded from a sample of 60 infants as they watched and listened 

passively to a video of a range of nursery rhymes with different beat structures being sung or 

rhythmically chanted by a female “talking head”. The video lasted approximately 20 minutes 

(see Figure 2a), and was followed by a resting “silent state” recording. Prominent modulation 

spectrum peaks were identifiable in the nursery rhyme stimuli at rates corresponding to adult 

delta and theta neural signals (Supplementary Figures S2, S3 and S4). The neural data presented 

here were recorded from the first half of infants recruited to an ongoing longitudinal study of 113 

infants (122 infants recruited, 113 retained), who listened to nursery rhymes at the ages of 4-, 7- 

and 11-months. Data collection with the other infants is still ongoing. Our approach allows for 

subsequent confirmatory testing of the current results with the second half of the sample.  

Multivariate temporal response functions (mTRFs) were employed to measure cortical 

tracking (47). mTRFs are encoding models that describe how the inputs and outputs of a system 

are linearly related. Forward models provide researchers with information regarding the precise 

spatial and temporal patterns reflecting the neural processing of a stimulus, as used previously 

with infants (30, 31). A backward ‘stimulus reconstruction’ version of the TRF linear modelling 

technique, not yet used with infants, was employed here. The backward mTRF uses information 

from all EEG channels simultaneously to reconstruct the speech envelope, thereby enabling 

increased sensitivity to signal differences between highly correlated response channels, thus 

offering several advantages (47) over forward modeling (39, 40) or cross-correlation approaches 

(41). The mTRF provides a single summary measure of speech-EEG coupling for data recorded 

over long periods of time by assessing the fidelity of the reconstruction (47). Here, we 

reconstructed the heard speech in the delta and theta bands, using stimulus reconstruction in the 
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alpha band as a control condition. Although alpha band responses may be important in adult 

speech tracking (48–50), alpha-band AMs did not play a role in the prior computational 

modelling of IDS (46). Accordingly, we do not predict significant cortical tracking in the alpha 

band for the infant brain.   

Finally, we hypothesised that low-frequency oscillatory phase, specifically within the 

delta band, would couple with high-frequency amplitudes in the infant brain during speech 

processing. Given our hypothesis that delta-band neural signals would be particularly prominent 

early in infant development, we predicted that delta-driven PAC should emerge prior to theta-

driven PAC. If individual differences in sensory processing drive cognitive development rather 

than individual differences in brain mechanisms (51), the basic neural mechanisms for speech 

encoding should be present at birth. 

Materials and Methods  

Infant participants 

Data from the first half (N=60) of a larger longitudinal cohort (122 infants recruited, 113 

retained) were used in all analyses. From this initial cohort, four participants withdrew without 

providing any data and one withdrew after the first session so was also excluded. The remaining 

sample of 55 infants provided data at ~4-months (115.6 ± 5.3 days), ~7-months (212.2 ± 7.2 

days) and ~11-months (333.1 ± 5.6 days) [mean ± standard deviation (SD)]. Due to missed 

appointments (7-months N=2), technical issues with the data file (4-months, N=1) the final 

number of data points at each month was, ~4-months (N=54), ~7-months (N=53), ~11-months 

(N=55). 
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Infants were recruited from a medium sized city in the United Kingdom and surrounding 

areas via multiple means including flyers in hospitals, schools and antenatal classes, research 

presentations at maternity classes and online advertising. All infants were born full term (37-42 

gestational weeks) and had no diagnosed developmental disorder. The study was reviewed by the 

Psychology Research Ethics Committee of the University of Cambridge. Parents gave written 

informed consent after a detailed explanation of the study and families were repeatedly reminded 

that they could withdraw from the study at any point during the repeated appointments.  

Stimuli 

A selection of 18 typical English language nursery rhymes were chosen as the stimuli. 

Audio-visual stimuli of a singing head were recorded using a Canon XA20 video camera at 

1080p, 50fps and with audio at 4800Hz. A native female speaker of British English used infant 

directed speech to melodically sing (for example “Mary Mary Quite Contrary”) or rhythmically 

chant (for nursery rhymes like “There was an old woman who lived in a shoe”) the nursery 

rhymes whilst listening to a 120 bpm metronome. Although the nursery rhymes had a range of 

beat rates and indeed some utilized a 1 Hz rate (Supplementary Figures S2 and S4), the 

metronome was used to keep the singer on time. The beat was not present on the stimulus videos 

but it ensured that a consistent quasi-rhythmic production was maintained throughout the 18 

nursery rhymes. To ensure natural vocalizations the nursery rhyme videos were recorded sung, 

or rhythmically chanted, live to an alert infant or sung again immediately afterwards if the infant 

fussed out.  
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EEG data collection 

Infants were seated in a highchair, approximately one meter in front of their primary care 

giver, within a sound-proof acoustic chamber. EEG data was recorded at a sampling rate of 

1000Hz using a GES 300 amplifier connected to a correctly sized 64 channel infant electrode net 

(Geodesic Sensor Net, Electrical Geodesics Inc., Eugene, OR, USA). The infant was seated 

~650mm away from the presentation screen and sounds were presented at 60dB (checked by 

sound level meter) from speakers (Q acoustics 2020i driven by a Cambridge Audio Topaz AM5 

Stereo amplifier) placed either side of the screen. Whilst the infant attended to the screen, the 18 

nursery rhyme videos played sequentially, each repeated 3 times (54 videos, with a presentation 

time of 20’ 33’’ in total). If the infant lost attention to the screen an attention grabber video was 

played at the end of that nursery rhyme. If the infant became too fussy a short break was allowed 

before continuing, otherwise the session was ended. All infants included in analysis listened to at 

least 2 repetitions of each nursery rhyme (minimum of 36 nursery rhymes, lasting 13’ 42’’). This 

stimulus period was followed by 5 minutes of silent recording (silent state). To ensure 

compliance from the infant, and therefore a good EEG signal during the silent state, it was 

necessary for a researcher to sit alongside the infant during the silent state recording. To ensure 

consistency across participants, the researcher performed the same action of silently blowing 

bubbles and showing the same picture book to the infant. 

EEG preprocessing 

All analyses were conducted with custom-made scripts in Matlab 2017a (The 

MathWorks, Inc., Natick, MA) incorporating the EEGLab toolbox (52).  
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The four (channels 61, 62, 63 and 64) facial electrodes were excluded from all analyses 

because they do not exist on the infant-sized EGI Geodesic sensor nets. The EEG data, from the 

remaining 60 channels, was filtered (pop_eegfiltnew function of EEGLab toolbox) into a 

broadband signal (0.5-45Hz for PSD and PAC) or the frequency band of interest (0.5-4Hz, 4-

8Hz or 8-12Hz for the mTRF analysis) using zero-phase bandpass Hamming windowed FIR 

filters (transition band widths of 2Hz with cutoff frequencies at -6 dB, 0-5Hz, 3-9Hz and 7-13Hz 

respectively). The EEG data was down sampled to 100Hz to reduce the computational load. 

Next, the clean_asr EEGLab function (52) was used to clean noise artifacts from the data by 

identifying and removing bad principal components via a modified PCA procedure (see 

supplement for more details). Further bad channels were identified via probability and kurtosis 

and were interpolated (via spherical interpolation), if they were 3SD away from the mean 

(average number of interpolated channels; 4mo = 6.7, 7mo = 6.3, 11mo = 6.6), before all 

channels were re-referenced to a 60-channel average reference. 

EEG responses were epoched into trials aligned to the start and ending at the completion 

of a phrase (e.g. “Mary had a little lamb”), producing EEG responses to 83 phrases (M length ± 

SD: 4.23sec ±0.88) which were repeated a maximum of 3 times in the experiment (249 epochs in 

total). This epoching procedure was decided as infant EEG typically contains short, irregular, 

movement artifacts and using shorter epochs increases the likelihood of generating a whole 

artifact free epoch whilst maintaining long enough epochs for optimising the model fit with the 

mTRF toolbox (47). The infants occasionally rested their head or touched the EEG cap in such a 

way that specific channels showed short bursts of noise whilst the rest of the channels remained 

clean. To account for this, and retain a large volume of the data, epoch by epoch channel 
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rejection was conducted. Per epoch, probability and kurtosis were used to identify bad channels 

and were interpolated (via spherical interpolation) if they were 3SD away from the mean. 

Finally, bad epochs were rejected with the pop_autorej function (EEGLab), removing epochs 

with fluctuations above 1000uV and values outside a 3SD of the probability threshold. 

Multivariate Temporal Response Function (mTRF) 

TRFs are encoding models that can describe how an input and output of a system are 

related via linear convolution (47). Here, we applied TRFs in a backward direction to assess how 

strongly a stimulus property, in this case the stimulus envelope, is encoded in the neural 

response. The backwards, “stimulus reconstruction”, mTRF model has important advantages 

compared to previous forward linear encoding models in infants (39, 40). Specifically, it utilises 

data from all the EEG channels simultaneously in a multivariate manner, while forward TRF 

models are fit on individual channels separately.  

After preprocessing, the epochs of EEG data in response to each NR trial, were averaged 

together to improve the signal to noise ratio of the data for the mTRF analysis (4-month, 75.9 ± 

13.3 epochs; 7-month, 79.4  ± 6.4 epochs; 11-month, 80.7 ± 5.1 epochs [mean ± standard 

deviation (SD)]). If less than half (42 averaged trials) remained after preprocessing the file was 

removed from further analysis (minimum numbers at 4-month, 47 epochs; 7-month, 47 epochs 

and 11-month 65 epochs). The mTRF analysis was conducted using the multivariate temporal 

response function (mTRF) toolbox (47) through Matlab 2017a (The MathWorks, Inc., Natick, 

MA). The backwards model can be expressed by the following formula in which the 

reconstructed stimulus envelope ŝ(t) is created by a linear decoder, g(τ, n), mapping the neural 

response, r(t,n), back to the stimulus, s(t). The TRF decoder was used to integrate the neural 
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responses at multiple time lags, τ, between 0 and 250ms (τmin = 0ms, τmax = 250ms). These 

‘stimulus-relevant’ time lags where selected in keeping with the previous literature (5, 28, 47) 

 

The quality of the envelope tracking within each EEG frequency band was assessed by a 

"leave-one-out" cross-validation per infant (47). First the average trial EEG epochs (maximum of 

83) were normalised via function nt_normcol (Noisetools http://audition.ens.fr/adc/NoiseTools/). 

Normalisation decreased the range of values that were necessary for the regularisation parameter 

search in the mTRF toolbox, making the cross validation more efficient. Next, the normalized 

epoch trials were rotated M-1 times, each serving once as the "test set” with the remainder of the 

trials being the TRF "training set”.  For each rotation, the resultant M-1 training models were 

averaged to create one average model from the training set. The average model was subsequently 

convolved with the test data to reconstruct the stimulus. Pearson's correlation (r) was used to 

validate how well the reconstructed stimulus correlated to the original. This process was repeated 

for the M-1 rotations. To avoid overfitting the model to a specific trial, an average r value was 

taken from the 83 r validation values. This process was repeated at 12 ridge regressions (λ 

values, 1x10-3:1x108) with the lowest λ value, where any increase gave no further improvement 

to the average r value, was taken (47). Choosing the correct lambda value here again mitigated 

the potential overfitting of the TRF model. This average r value, at the optimal λ, was used for 

all further analysis.    

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2020.10.12.329326doi: bioRxiv preprint 

http://audition.ens.fr/adc/NoiseTools/
https://doi.org/10.1101/2020.10.12.329326
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 
 

mTRF auditory stimuli preprocessing 

The envelope of the auditory signal was extracted by taking the absolute value of the 

analytic signal generated by the Hilbert transform (Matlab). As the envelope of the lower 

frequencies is linearly relatable to the EEG signal (16, 17, 53) the envelope of the stimuli was 

filtered between 0.5Hz and 15Hz (lowpass; 6th order Butterworth filter. Highpass; 9th order 

Butterworth filter). The resultant envelopes were normalized using nt_normcol (Noisetools). 

Finally, the stimulus envelopes were down sampled to 100Hz to match the EEG signal. 

mTRF Statistics 

Random permutation statistics were created for each participant to measure the average 

stimulus reconstruction (r) that could be obtained by chance. The random permutation procedure 

was conducted per participant for each frequency band producing a paired chance stimulus 

reconstruction (r) per participant. To obtain a random permutation of the data, whilst maintaining 

phase integrity, each of the stimulus envelopes were first reversed and a random circular shift 

was applied. Next, the mTRF cross-validation was ran in the same way as the real data (see 

above for details), to give a stimulus reconstruction (r) value. This procedure was iterated 100 

times to create a null distribution and the average of these 100 iterations were used as that 

participant’s random stimulus reconstruction (r) value.  

mTRF Linear mixed effects model 

A linear mixed effects model (LMEM), as described in the main text, was conducted in 

SPSS (IBM SPSS statistics 24), submitting data type (real r values, random permutation r 

values), frequency band (delta, theta or alpha) and age (4-, 7- or 11-months) along with 
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interactions between data type by frequency band, data type by age and age by frequency band, 

to the LMEM. Due to the sensitivity of LMEM to outliers in the sample, outlier analysis was 

conducted to exclude data more than 1.5 interquartile ranges above the upper quartile or below 

the lower quartile separately per band and per age group, leaving, delta (4-months N=53, 7-

months N=53 and 11-months N=51), theta (4-months N=53, 7-months N=52 and 11-months 

N=55) and alpha (4-months N=53, 7-months N=52 and 11-months N=52) data sets included in 

the LMEM (Table 2 and Figure 3). Visual inspection of residual plots did not reveal any obvious 

deviations from homoscedasticity or normality. 

The LMEM can be described by the following equation. 

R VALUEij = β0j +β1j AGEij + β2DATA TYPEij + β3FREQUENCY BANDij + β4(DATA TYPE x  

AGE)ij + β5(DATA TYPE x FREQUENCY BAND)ij + β6(AGE X FREQUENCY BAND) ij + eij 

Phase amplitude coupling (PAC) 

All remaining epochs after preprocessing were concatenated back into one continual 

signal. Due to the increased susceptibility of PAC analysis to noise, manual rejection was 

conducted to further remove noisy periods of data from the signal. 

To asses PAC, a modified version of the WinPACT plugin (EEGLab) (52) was used to 

acquire Canolty and colleagues' modulation index (MI) values (10). The MI method combines 

the amplitude envelope time series A1(t + τ) of a high-frequency with the phase time series φ2(t) 

of a specified low-frequency, creating a composite complex-valued signal z(t, τ). The resulting 

value is a widely validated metric of the coupling strength and preferred phase between two 

frequencies. For each infant’s data, low-frequency phase (LFP) and high-frequency amplitude 
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(HFA) were extracted with a zero-phase FIR filter (Hamming window), separately for all 60 

electrodes. LFP centre frequencies were filtered from 2 to 8Hz, in 1Hz steps, with 1Hz 

bandwidth and HFA centre frequencies from 15 to 45Hz, in 5Hz steps, with 5Hz bandwidth. A 

sliding 5 second analysis window was implemented with 2.5 ms overlaps, with a mean vector 

length calculated per window. Next, 200 surrogate statistical iterations were created for each 

PAC calculation window, with a generalized family-wise error rate correction implemented for 

the multiple PAC calculations. Statistically significant windows were identified if the MI value 

exceeded 95% confidence interval of the distribution of the surrogate statistical windows (the 

200 iterations created per PAC calculation window). Statistically significant window MIs were 

averaged per participant and grand averaged for group level plots.  

PAC Linear mixed effects model (LMEM) 

A LMEM was conducted using SPSS (IBM SPSS statistics 24), to investigate whether 

the MI values (Canolty’s modulation index) (10) were significantly different when either delta or 

theta was the low-frequency carrier phase, when either beta or gamma was the high-frequency 

amplitude and if this relationship was affected by the age of the infants. Due to the sensitivity of 

LMEMs to outliers in the sample, outlier analysis was conducted to exclude data more than 1.5 

interquartile ranges above the upper quartile or below the lower quartile, leaving, 4-months 

N=54, 7-months N=50 and 11-months N=54 data sets included in the LMEM Table 3 and Figure 

4.  

PACij = β0j +β1j AGEij + β2 LFPij + β3HFAij + β4(AGE x  LFP)ij + β5(AGE x  HFA)ij + eij 
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 The LMEM can be described by the equation above, in which LFP denotes the band of 

the low-frequency phase (delta; 2-4Hz or theta; 4-8Hz), HFA is the band of the high-frequency 

amplitude (beta; 15-30Hz or gamma; 30-45Hz) and age is the age grouping of the infant (~4-

months, ~7-months or ~11-months). 

Spectral analysis (periodogram PSD estimate) 

The same concatenated data sets created for the PAC analysis were also used for the 

periodogram Power Spectral Density (PSD) estimates. A one-sided PSD estimate was conducted 

separately for each electrode channel using the periodogram function (Matlab). The length of the 

participants data was zero padded to ensure the size of the rectangular window used was equal in 

length to the number of discrete Fourier transform (DFT) points, ensuring the correct FFT across 

participants. This resulted in 52,834 equal spaced frequency bins from 0 to 50Hz. 

The periodogram can be defined by the following formula. In which the EEG signal, xn , 

is sampled at 100Hz, with Δt as the sampling interval. 

 

   

To achieve the one-sided periodogram output reported in Figure 1, values at all 

frequencies (except 0 and the Nyquist, 1/2Δt), were multiplied by two to conserve the total 

power. 
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PSD Linear mixed effects model 

To investigate whether the PSD was significantly higher in response to the nursery 

rhymes compared to the silent state, and whether this relationship was affected by the age of the 

participants, a linear mixed effects model (LMEM) was conducted separately for the 2.18Hz and 

4.40 Hz frequency peaks (IBM SPSS statistics 24). To allow for individual subject variation, 

peak values per participant were taken as the maximum value of a participants’ 60 channel 

average data, within a 1Hz window centered around the peak of interest (2.18Hz or 4.40Hz). 

Fixed effects of recording type (nursery rhymes, silent state), age (4-, 7- or 11-months) and a 

recording type by age interaction were included in the model. Silent state data and 11-months 

data were set as the respective base cases for each variable in the model. Due to the sensitivity of 

LMEMs to outliers in the sample, outlier analysis was conducted to exclude data more than 1.5 

interquartile ranges above the upper quartile or below the lower quartile leaving the following 

data sets included in the LMEM and Figure 1. Final numbers = stimulus period (4-months N=44, 

7-months N=47, 11-months N=50) and silent state (4-months N=35, 7-months N=46, 11-months 

N=38).  

 The model can be described by the following equation:  

PSDpeakij = β0j + β1jAGEij + β2RECORDING TYPEij + β3(RECORDING TYPE x AGE)ij + eij 

Results: 

Both delta and theta EEG frequency bands respond to nursery rhymes 

Prior to investigating cortical tracking and PAC, the distribution of low-frequency neural 

signals within our data was established using spectral decomposition of the signal, achieved 
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using the periodogram power spectral density (PSD) estimate. After preprocessing, PSD was 

obtained for each of the remaining 60 electrodes in response to audio-visually presented nursery 

rhymes and during a five minute period of silence. A grand average across channels and ages 

revealed two frequency peaks centered around 2.18Hz and 4.4 Hz for the nursery rhyme period 

(Supplementary Figure S1). These peak responses corresponded to the frequency peaks found in 

the acoustic envelope of the nursery rhymes (Supplementary Figures S2, S3 and S4). Separating 

the data by age revealed ~2.18Hz PSD peaks were consistently present at 4-, 7- and 11-months 

(Figure 1), whereas, the mean values of the ~4.40 Hz peaks displayed an age-related increase in 

PSD. 

 

Figure 1, Spectral decomposition of the EEG signal (0.5-12 Hz) in response to nursery rhyme 

stimulation. A periodogram was used to obtain a power spectral density (PSD) estimate 

separately for 4- (red), 7- (green) and 11- (blue) months data. Bold lines indicate the mean values 
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and pale shading plots the standard deviation of the data. Outlier analysis was also conducted to 

remove extreme data points that would compromise the LMEM (detailed rejection criteria given 

in methods). The data plotted included, N=44 4-month, N=47 7-month and N=50 11-month old 

infants. 

To investigate whether the PSD was significantly higher in response to the nursery 

rhymes compared to the silent state, and whether this relationship was affected by the age of the 

participants, a linear mixed effects model (LMEM) was conducted separately for the 2.18Hz and 

4.40Hz frequency peaks (see methods). The average PSD across all 60 electrodes was used, with 

the peak value (within the 1 Hz window centered on the peak of interest) submitted to the model 

for each participant. Fixed effects of recording type (nursery rhyme stimulus period, silent state), 

age (4-, 7- or 11-months) and a recording type by age interaction were included in the model. 

Silent state data and 11-months data were set as the respective base cases for each effect in the 

model. Individual differences across the 3 recording sessions (at 4-, 7- and 11-months) were 

accounted for by including a random intercept (AR1) per participant.  

For the 2.18Hz peak, tests of fixed effects revealed that recording type had a significant 

effect (F(1, 98.560) = 15.513, P = 1.53x10-4) on PSD, as the ~2Hz PSD increased significantly 

during the stimulus period (M = 29.782, SE ± 1.670) vs the silent state (M=23.832, SE ±1.751). 

Neither age (F(2, 137.925) = 2.780, P = 0.066) nor age by recording type (F(2, 98.427) = 0.045, 

P = 0.956) showed an effect on PSD. Accordingly, the stimulus effect present at 11-months is 

also present at 4- and 7-months (see Table 1a).  

For the 4.40Hz peak, recording type again showed a significant effect (F(1, 154.963) = 

5.560, P = 0.020) on PSD, increasing during the stimulus period (M = 21.428, SE ± 2.180) vs 
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silent state (M=15.111, SE ± 2.341). Furthermore, both age (F(2, 201.747) = 6.406, P = 0.002) 

and age by recording type (F(2, 154.883) = 4.005, P = 0.020) exerted a significant effect on 

PSD. Exploration of the estimates of fixed effects showed that the significant interaction between 

recording type by age was driven by a greater effect at 11-months (Table 1b). Bonferroni-

corrected pairwise comparisons showed that PSD increased significantly between 4- and 11-

months (M increase = 12.869, SE ± 3.793, P = 0.002) and 7- and 11-months (M increase = 9.902, 

SE ± 3.783, P = 0.029). Hence regardless of recording type, there was a developmental increase 

in 4.40Hz PSD. This may indicate age-related maturation of theta activity. Importantly, we also 

observed a stimulus-driven interaction with age for the 4.40Hz PSD peaks, with the largest 

increase observed at 11-months (silent state, M = 17.404, SE ± 3.909; nursery rhymes, M = 

34.316, SE ± 3.437).  

a, 2.18Hz       

 β SE b df t P 95% CI 
Recording type (stim. rel. to silent) 6.580 2.607 98.912 2.524 .013 [1.407 11.752] 
Age 4mo (rel. 11mo) -5.769 3.459 233.264 -1.668 .097 [-12.584 1.045] 
Age 7mo (rel. 11mo) -2.976 3.472 179.022 -.857 .392 [-9.828 3.876] 
Recording type * 4mo (rel. 11mo) -1.077 3.795 100.233 -.284 .777 [-8.599 6.446] 
Recording type * 7mo (rel. 11mo)  -.812 3.599 96.824 -.226 .822 [-7.956 6.332] 

 

b, 4.40Hz       

 β SE b df t P 95% CI 
Recording type (stim. rel. to silent)  16.913 4.615 157.232 3.665 3.38x10-4 [7.797 26.028] 
Age 4mo (rel. 11mo) -4.037 5.364 238.194 -.753 .452 [-14.606 6.531] 
Age 7mo (rel. 11mo) -2.840 5.137 241.386 -.553 .581 [-12.959 7.280] 
Recording type * 4mo (rel. to 11mo) -17.664 6.710 156.221 -2.633 .009 [-30.918 -4.410] 
Recording type * 7mo (rel. to 11mo)  -14.125 6.392 154.641 -2.210 .029 [-26.752 -1.497] 
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Table 1, Parameter information detailing estimates of fixed effects on periodogram PSD peaks at 

a, 2.18Hz and b, PSD peaks at 4.40Hz, taken from the LMEM described in the text. The base 

cases for the LMEM were set as 11-months for age and silent state for recording type.      

The data indicate that the nursery rhymes produced a ~2Hz PSD response as early as 4-

months of age whereas the nursery rhymes produced a ~4Hz response that developed between 4- 

and 11-months.  

Delta and theta EEG frequency bands track nursery rhyme envelopes 

Power spectral density (PSD) analysis confirmed that the nursery rhyme stimuli showed 

increased power in the delta (~2.18 Hz) and theta (~4.40 Hz) bands. To investigate the presence 

and strength of cortical tracking, backward mTRFs (Figure 2a) (47) were trained with either 

delta (0.5-4 Hz), theta (4-8Hz) or alpha (8-12 Hz) EEG signals. The quality of the stimulus 

reconstruction was then compared to randomly permuted data. The decoding model was fit 

separately to the Hilbert envelope of each of the 83 nursery rhyme trials for each participant, 

using a leave-one-out cross-validation procedure (see methods). Pearson's correlation (r) was 

used to test the quality of the reconstruction (Figure 2b). This provided an objective metric of 

envelope tracking at the individual level. To test the correlation (r) values against chance, 

random permutation statistics were created for each participant (N = 100 permutations).  
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Figure 2, mTRF stimulus reconstruction. a) Schematic of the experimental procedure along with 

a summary of the mTRF analysis pipeline. The EEG signal and the stimulus envelope (absolute 

value of the Hilbert envelope) were submitted to the mTRF stimulus reconstruction. For the 

cross validation procedure, 83 nursery rhyme trials were rotated M-1 times each serving once as 

the "test set” with the remainder of the trials being the "training set”.  The process was repeated 

at 12 ridge regressions (λ values, 1x10-3:1x108) with the average model convolved with the test 

data to reconstruct the stimulus envelope at the optimal λ. b) Example of one of the 83 mTRF 

stimulus reconstructions for one participant along with the original acoustic stimulus envelope. . 

The black line depicts the reconstruction (in arbitrary units) and the orange line illustrating the 

absolute value of the Hilbert envelope of the stimulus (in arbitrary units).  
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The reconstruction analyses showed that cortical delta and theta neural signals 

significantly tracked the envelopes of the nursery rhyme stimuli, but alpha signals did not 

(Figure 3). 

A LMEM was conducted to investigate potential developmental changes. Main effects of 

data type (real r values, random permutation r values), frequency band (delta, theta or alpha) and 

age (4-, 7- or 11-months) were investigated along with interactions between data type by 

frequency band, data type by age and age by frequency band. Random permutation r values, 

alpha frequency band and 11-month data were set as the respective base cases for each variable 

in the model. A random intercept (AR1) per participant was included to account for individual 

differences across the 3 recording sessions (4-, 7- and 11-months).  

Tests of fixed effects showed a significant effect of data type (F(1, 901.802) = 118.656, P 

= 4.806 x10-26), as the real data values were significantly higher than the random permutation 

values (Figure 3). A significant effect of frequency band (F(2,903.216) = 401.939, P = 1.399 

x10-125) highlighted that cortical tracking (r values) differed by frequency band, with the 

estimates of fixed effects confirming greater tracking in both delta and theta bands compared to 

the alpha base case (Table 2). Furthermore, estimates of fixed effects for the alpha base case 

(Table 2) confirmed that alpha band itself did not produce significant cortical tracking above the 

randomly permuted values. A significant interaction between data type and frequency band 

(F(2,901.802) = 47.657, P = 2.114 x10-20) indicated that cortical tracking in the delta and theta 

bands was driven by their values being significantly above the randomly permuted r values (as 

compared to the alpha base case; Table 2). A significant effect of age (F(2,755.514) = 5.079, P = 

0.006) showed that the strength of the cortical tracking values changed with age. There were 
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significant interactions between age by data type (F(2,901.802) = 3.413, P = 0.033) and age by 

frequency band (F(4,902.774) = 3.372, P = 0.009). Inspecting the estimates of fixed effects 

(Table 2), the data shows that the significant difference between random permutation and real r 

values is strongest in the 4 month data and the frequency band differences between the age 

groups is predominantly driven by greater cortical tracking in the delta band at 4 months (as 

compared to 11 months).  

 

 

Figure 3, Grand averaged stimulus reconstruction values (Pearson’s r) per frequency band. Each 

bar represents the grand average r value across the participants at the 3 age points; 4-months 
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(red), 7-months (green) and 11-months (blue). Age responses are grouped along the X axis by 

EEG frequency band, delta (0.5-4Hz) theta (4-8Hz) and alpha (8-12Hz). Light grey boxes signify 

the average random permutation value across subjects. Outlier analysis was conducted to remove 

extreme values which would compromise the LMEM, full rejection numbers detailed in 

methods. 

To highlight the relative contribution of delta and theta to the LMEM, the model’s base 

case within frequency band was changed from alpha to theta. Estimates of fixed effects revealed 

that delta produced significantly larger cortical tracking (r values) than theta (Supplementary 

Table S1). This increase was again driven by the real rather than the random permutation data. 

LMEM estimates of fixed effects for Pearson correlation (r) values 

 β SE b df t P 95% CI 
Data type (real rel. to rand for 

alpha base case) 

-9.48x10-4 .001 901.802 -.816 .415 [-.003 .001] 

Delta (rel. to alpha) .010 .001 904.662 7.531 1.22x10-13 [.007 .012] 

Theta (rel. to alpha) .005 .001 902.980 4.005 6.70x10-5 [.003 .008] 
Age (4mo rel. 11mo) -.002 .001 907.156 -1.365 .173 [-.004 7.63x10-4] 
Age (7mo rel.11mo) -2.84x10-4 .001 886.784 -.221 .825 [-.003 .002] 
Data type * delta (rel. to alpha) .012 .001 901.802 9.549 1.19x10-20 [.010 .015] 
Data type * theta (rel. to alpha) .004 .001 901.802 3.039 .002 [.001 .006] 
Data type * 4mo (rel. to 11mo) .003 .001 901.802 2.471 .014 [.001 .006] 
Data type * 7mo (rel. to 11mo) 6.36x10-4 .001 901.802 .501 .617 [-.002 .003] 
4mo * Delta (rel. to 11mo) .005 .002 903.729 3.391 .001 [.002 .008] 
4mo * Theta (rel. to 11mo) .001 .002 902.587 .803 .422 [-.002 .004] 
7mo * Delta (rel. to 11mo) .001 .002 903.407 .901 .368 [-.001 .004] 
7mo * Theta (rel. to 11mo) 8.70x10-5 .002 902.608 .056 .955 [-.003 .003] 

Table 2. Parameter estimates from the LMEM. Individual subject person correlations (r values) 

derived from 3 frequency bands (delta 0.5-4Hz, theta 4-8Hz and alpha 8-12Hz), 3 ages (4-, 7- or 

11-months) and 2 data types (random or real). Random permutation r values, alpha and 11-
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months data were set as the respective base cases data type, frequency band and age in the 

model. 

The mTRF stimulus reconstruction data show that delta and theta EEG responses track 

the acoustic envelope of sung and chanted speech from the age of 4-months, supporting our 

hypothesis that delta-band cortical tracking is developmentally important. Furthermore, 4-month 

infants showed significantly greater tracking than older infants, and this was strongly influenced 

by the strength of the delta-band response. This could either reflect bottom-up infant use of 

acoustic landmarks at a delta-band rate in the sung and chanted speech, facilitating attentional 

mechanisms such as grouping, or could reflect the fact the speech was sung and therefore 

rhythmic (54), or both. Theta-band neural signals also tracked the speech envelope, but at a 

significantly lower level. In contrast to the developmental maturation observed in theta power 

(Figure 1), there was no evidence for a developmental change in theta envelope tracking during 

the first year of life. Significant theta tracking was observed as early as 4-months, the age at 

which infants are thought to recognize their first word (55) (their own name). In accordance with 

our sensory hypothesis (51), as infants become more efficient speech comprehenders, top-down 

processes may be expected to increase the degree of theta tracking beyond that observed here. 

Increased attention to speech content with increasing comprehension may also introduce alpha 

tracking, perhaps during the second year of life. 

Phase Amplitude Coupling (PAC) 

Modulation index (MI) was determined following the method used by Canolty et al. to 

measure PAC, as it is the most tolerant to signal noise (56), a common issue in infant EEG. This 

measure combines the amplitude envelope of a selected high-frequency band with the phase time 
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series of a low-frequency band, creating a complex-valued signal referred to as the modulation 

index (10).  

For each participant low-frequency phases from 2 to 8Hz (1 Hz steps) and high-

frequency amplitudes from 15 to 45Hz (5 Hz steps) were extracted from the EEG signal from 

each of the 60 electrode channels. For each of these PAC steps, multiple MI’s were calculated 

per infant via a 5-second sliding window. The significant windows, as compared to surrogate 

statistical iterations (N=200), were averaged per participant before a grand average (Figure 4) 

was calculated for each phase amplitude pairing (see methods).  

 

Figure 4, Violin plots of phase amplitude coupling (Canolty’s modulation index). Significant 

MI’s were averaged for each individual infant before being plotted as a grand average violin plot 

across infants. Outlier analysis was conducted to remove extreme data points that would 
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compromise the LMEM, therefore data plotted consisted of the following number of data points 

(4-months, N=54; 7-months N=50; 11-months N=54). 

To investigate whether the MI values were significantly different when either delta or 

theta was the low-frequency carrier phase plus when either beta or gamma were the high-

frequency amplitudes, and if this relationship was affected by the age of the infants, a LMEM 

was conducted. Fixed effect factors of low-frequency phase (delta or theta), high-frequency 

amplitude (beta or gamma) and age (4-, 7- or 11-months) were inputted to the LMEM. Theta, 

gamma and 4-months data were defined as the respective base cases. The maximum MI value 

from the four PAC band pairings (delta/beta, delta/gamma, theta/beta and theta/gamma), from 

pre-defined frequency band groupings (delta 2-4Hz, theta 4-8Hz, beta 15-30Hz and gamma 30-

45Hz) were extracted per participant and submitted to the model. Interactions of low-frequency 

phase by age and high-frequency amplitude by age were also included in the model, with a 

random intercept (AR1) per participant included to account for individual differences across the 

3 ages of recording (see methods). 

Tests of fixed effects showed a significant effect of low-frequency phase (F(1, 572) = 

201.915, P = 1.827 x10-39) and high-frequency amplitude (F(1, 572) = 11.308, P = 8.23 x10-4). 

The estimates of fixed effects (see Table 3) show that changing the low-frequency phase (delta 

vs theta) has a greater effect on the MI value than changing the high-frequency amplitude (beta 

vs gamma). Bonferroni-corrected pairwise comparisons showed MI values were larger when 

delta (M = 1.513, SE ± 0.053) rather than theta (M = 0.596, SE ± 0.053) was the low-frequency 

carrier phase. MI values were also larger when beta (M = 1.163, SE ± 0.053) rather than gamma 

(M = 0.946, SE ± 0.053) was the high-frequency amplitude. Age (F(2, 190.459) = 0.387, P = 
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0.680), age by low-frequency phase (F(2, 572) = 1.448, P = 0.236) and age by high-frequency 

amplitude (F(2, 572) = 2.047, P = 0.130) were not significant.  

Accordingly, as hypothesised, delta plays a greater role than theta as a carrier phase for 

coupling with higher-frequency amplitudes in the infant brain. Indeed, the importance of delta as 

the carrier phase does not alter between 4- and 11-months, with delta-beta PAC producing larger 

values than delta-gamma PAC at all ages (Mean diff. = 0.386, SE ± 0.070). Given the importance 

of canonical babbling in the first year of life, enhanced delta-beta PAC may indicate the 

importance of motor prediction of speech for the language-learning brain (57). Early infant 

babbling is known to reflect the rhythmic properties of the adult language, as behavioural studies 

show that the babble of Arabic-, French- and Cantonese-learning infants are distinguishably 

different (58). 

LMEM estimates of fixed effects for PAC values 

 β SE b df t P 95% CI 
Low-frequency phase (rel. to θ) .872 .110 572.000 7.920 1.245x10-14 [.656 1.088] 
High-frequency amplitude (rel. to γ) .330 .110 572.000 2.994 0.003 [.113 .546] 
Age (11mo rel. to 4mo) .005 .135 572 .035 .972 [-.260 .270] 
Age (7mo rel. to 4mo) -.042 .161 261.842 -.263 .792 [-.359 .274] 
LFP * 7mo (rel. to 4mo) .197 .159 572 1.243 .214 [-.115 .509] 
LFP * 11mo (rel. to 4mo) -.063 .156 572.000 -.406 .685 [-.370 .243] 
HFA * 7mo (rel. to 4mo) -.298 .159 572 -1.877 .061 [-.610 .014] 
HFA * 11mo (rel. to 4mo) -.0402 .156 572 -.258 .797 [-.347 .266] 

Table 3. Parameter estimates from the LMEM. Maximum MI values from the four PAC band 

pairings (delta/beta, delta/gamma, theta/beta and theta/gamma), from pre-defined frequency band 

groupings (beta 2-4Hz, theta 4-8Hz, beta 15-30Hz and gamma 30-45Hz) were submitted to the 

model. The base cases for the LMEM were set as 4-months for age, theta (θ) for LFP and gamma 

(γ) for HFA.  
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Discussion 

Here we show, for the first time, that infant delta and theta cortical signals track the 

rhythmic fluctuations of the speech envelope of sung IDS. We demonstrate that delta tracking of 

the speech envelope is significantly stronger than theta tracking during the first year of life, and 

that delta tracking is particularly strong at the earliest measurement, 4 months. The stimulus-

produced delta signal power (PSD) is large and constant from 4-months, whilst theta power 

develops continuously between 4- and 11-months. Also for the first time, we demonstrate PAC 

in response to speech, at all ages studied. We show that delta, rather than theta neural signals, 

may act as the dominant carrier phase for the temporal organisation of higher frequency 

amplitudes in the infant brain, which may be different to adults, where theta-gamma coupling 

appears dominant. In infants, delta-beta PAC is greater than theta-gamma PAC. However, PAC 

to sung speech in adults has not yet been measured. By contrast to adult studies, alpha cortical 

tracking was not observed for infants in the current paradigm. As our participants are pre-verbal, 

top-down mechanisms related to language encoding and attentional prediction should not yet be 

present. 

Significant cortical tracking was already evident in our sample at 4-months of age. 

Indeed, non-speech studies with newborn infants (using amplitude-modulated noise) have shown 

that delta cortical tracking of rhythm is present at birth (59). Accordingly, language experience 

may not be required for efficient delta-band cortical tracking of speech rhythm (51). The early 

delta-band tracking observed here may provide a foundation for the attentional and grouping 

mechanisms that support perceptual organization of the speech signal, as indicated by adult 

studies (24). Here, rather than reflecting the use of discourse-level information, it is likely that 
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the acoustic landmarks provided by stressed syllable placement in the varied nursery rhymes 

underpin the dominant delta-band tracking observed. However, delta-band tracking may also 

reflect the speech input being sung and thus highly rhythmic, although note that a range of 

different beat rates and rhythmic patterns (trochaic, iambic, dactyl) were utilized for the current 

nursery rhyme corpus (35). To disentangle these possibilities, similar studies with adults are 

required, which we are currently engaged in (Attaheri 2021; in preparation). Animal studies have 

also demonstrated cortical tracking of rhythmically-structured acoustic input in both delta and 

theta bands (9, 60), possibly suggesting that these are general auditory perceptual abilities 

conserved across mammalian species. Nevertheless, animals do not learn spoken language, while 

both IDS and nursery rhymes are highly rhythmic and optimally-structured to support infant 

language learning (46). IDS has increased delta-band modulation energy and significantly 

stronger delta-theta phase synchronization of AMs than ADS (61). Accordingly, it seems 

plausible that infants, who are exposed to maternal speech rhythms while in the womb, may use 

these general perceptual abilities to entrain to human speech. Following birth, they may rapidly 

augment low-frequency cortical tracking with the higher-frequency information perceived by the 

human ear, for example via PAC.  

It has been demonstrated in adult studies that adding more acoustic features (such as 

spectral features) to the envelope information studied here improves the performance of TRF 

models (28, 62). In a similar vein, the infant brain may rapidly augment basic delta-band tracking 

with a rich repertoire of other linguistic elements as language comprehension grows. It is known 

from fMRI studies that by age 3 months the infant cortex is already structured into several 

regions of functional importance for speech processing, for example Broca’s area and anterior 
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temporal regions (63). While the neural mechanisms underlying synchronization with the 

auditory envelope during speech listening are actively debated in the adult literature (1), there is 

gathering evidence that the alignment of cortical neural signals to specific stimulus parameters of 

the speech plays a key role in language processing and comprehension (6, 17, 53). The current 

findings will enable us to see whether individual differences in the cortical tracking observed 

here will predict individual differences in language outcomes as our infants acquire language. If 

this were the case, it would support the view that the infant brain synchronises with attended 

speech in order to learn language. The likelihood that our infants were not yet comprehending 

the nursery rhymes may explain the absence of alpha tracking, as alpha tracking may reflect both 

attention to and comprehension of speech (65) . As our sample age, we plan to investigate these 

possibilities.  
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Supplement  

Grand average PSD across 4-, 7- and 11-months in response to nursery 

rhymes 

 

Figure S1, Spectral decomposition of the EEG signal (0.5-12 Hz). A periodogram was used to 

obtain a power spectral density (PSD) estimate separately for 4-, 7- and 11-months data, before 

being averaged together to create a grand average. The bold black line indicates the mean values 

and pale shading plots the standard deviation of the data. Outlier analysis was also conducted to 

remove extreme data points that would compromise the LMEM (detailed rejection criteria in 

main methods). The data plotted are for nursery rhyme stimulation only (4-months N=44, 7-

months N=47, 11-months N=50). 
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Modulation Spectrum of nursery rhyme sound files 

All analysis was computed using MATLAB 2016a. The modulation spectrum extraction 

was based on an approach described by Plomp, et al., (1) and developed by Leong, et al. (2).  

First, the sound files were down sampled to 14.7 kHz and then band-pass filtered using a series 

of adjacent FIR filters, into five bands: 100-300 Hz, 300-700 Hz, 700-1750 Hz, 1750-3900 Hz, 

and 3900- 7250 Hz.  Next, the Hilbert envelope was extracted from each of the five sub-band 

signals.  The five envelopes were down sampled to 1050 Hz then filtered through a modulation 

filter bank. This modulation filter bank comprised 24 channels logarithmically spaced between 

0.9-40 Hz.  In Figure S2, the RMS difference power was averaged across 18 nursery rhymes and 

determined for each spectral band.  In Figure S3, for one nursery rhyme, the RMS power in each 

spectral band was divided by the overall RMS power, revealing the relative amount of energy in 

each band. In Figure S4, the “all band averages” from each of the 18 individual nursery rhymes 

are depicted together, as denoted by the thin multicolored lines. The grand average of these 18 

individual “all band averages” and STD are denoted by the black line and grey shading 

respectively. Modulation filter bank corner frequencies were taken as [0.93; 1.09; 1.27; 1.49; 

1.74; 2.03; 2.38; 2.78; 3.25; 3.80; 4.45; 5.20; 6.08; 7.11; 8.32; 9.72; 11.38; 13.30; 15.56; 18.20; 

21.28; 24.89; 29.11; 34.04; 39.81]. Clear peaks in modulation power can be observed at ~2.18 

and ~4.4Hz. 
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Figure S2, Average modulation spectrum of all the Nursery rhyme stimuli.  

Figure S3, Example Modulation spectrum of one the Nursery rhyme stimuli (‘Simple Simon’). 
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RMS power in each spectral band was derived by the overall RMS power.

 

Figure S4, Grand average of the 18 individual nursery rhymes “All Band AVG” Modulation 

spectrums, with the “All Band AVG” depicted for each individual rhyme by the separate 

multicolored lines. The grand average of the 18 individual “All Band AVG”, and their standard 

deviations (STD), are denoted by the black line and grey shading respectively. 

Clean_ASR EEGLab function 

Artifact Subspace Reconstruction (ASR) (3) is an automated artifact rejection function. It 

uses principle component analysis (PCA) to ensure no period of the data signal has abnormally 

strong power. First the algorithm finds the cleanest portion of the data to use as the calibration 

data, and the first statistics are computed. Next, a 0.5 second sliding window PCA (with 50% 

window) is performed across all the channels to identify bad PCs. The algorithm next finds the 

subspaces in which the activity that is more than 5 standard deviations away from the calibration 
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data. The high variance subspaces (i.e. group of channels associated with the ‘bad’ PC’s) are 

then reconstructed using a mixing matrix that was calculated on the clean data. 

LMEM examining mTRF r values with theta base case for frequency band 

A Linear Mixed Effects Model (LMEM) was ran to highlight the relative contribution of 

delta and theta frequency bands, on the Pearsons correlation (r) values. This LMEM was 

constructed with the same factors as the LMEM described in the main text (main effects of data 

type [real r values, random permutation r values], frequency band [delta, theta or alpha] and age 

[4-, 7- or 11-months], along with interactions between data type by frequency band, data type by 

age and age by frequency band. However, to highlight the relative contribution of delta and theta, 

the base case for frequency band was changed to theta. The base cases for data type and age 

where kept as real r values and 11-months data respectively. A random intercept (AR1) per 

participant was included to account for individual differences across the 3 recording sessions (4-, 

7- and 11-months). As the model remained the same, and only the base case was changed, the 

tests of fixed effects showed identical tests of fixed effects as to those found in the main text. 

Parameter estimates from the LMEM are given in Table S1. 
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LMEM estimates of fixed effects for Pearson correlation (r) values 

 β SE b df t P 95% CI 
Data type (real rel. to rand for 

theta base case) 

.003 .001 901.802 2.531 .012 [6.52 x10-10 .005] 

Delta (rel. to theta) .005 .001 903.367 3.630 .005 [.002 .007] 
Alpha (rel to theta) -.005 .001 902.980 -4.005 .000 [-.008 -.003] 
Age (4mo rel. to 11mo) -5.03x10-4 .001 905.613 -.398 .691 [-.003 .002] 
Age (7mo rel. to 11mo) -1.96x10-4 .001 886.323 -.155 .877 [-.003 .002] 
Data type * delta (rel. to 

theta) 

.008 .001 901.802 6.554 9.41x10-11 [.006 .011] 

Data type * alpha (rel. to 

theta) 

-.004 .001 901.802 -3.039 .002 [-.006 -.001] 

Data type * 4mo (rel. to 11mo) .003 .001 901.802 2.471 .014 [6.44x10-4 .006] 
Data type * 7mo (rel. to 11mo) 6.36x10-4 .001 901.802 .501 .617 [-.002 .003] 
4mo * Delta (rel. to 11mo) .004 .001 902.847 2.614 .009 [.001 .007] 
4mo * Alpha (rel. to 11mo) -.001 .001 902.587 -.803 .422 [-.004 .002] 
7mo * Delta (rel. to 11mo) .001 .001 903.112 .851 .395 [-.002 .004] 
7mo * Alpha (rel. to 11mo) -8.70x10-5 .001 902.608 -.056 .955 [-.003 .003] 

Table S1. Parameter estimates from the LMEM. Individual subject person correlations (r values) 

derived from 3 frequency bands (delta 0.5-4Hz, theta 4-8Hz and alpha 8-12Hz), 3 ages (4-, 7- or 

11-months) and 2 data types (random or real). Random permutation r values, theta and 11-

months data were set as the respective base cases data type, frequency band and age in the 

model.  

Random effects from the Linear Mixed Effects Models (LMEM) 

PSD model 

At 2.18 Hz, the random intercept in the model demonstrated that the effect of age on PSD 

showed significant variance across participants (AR1 diagonal estimate = 89.364, X2 (1) = 4.177, 

P = 2.9 x10-5 ) and this variance across participants significantly covaried between each repeated 

measure (AR1 rho estimate = -0.330, X2 (1) = -2.246, P = .025 ). 
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At 4.40 Hz, the random intercept in the model demonstrated that the effect of age on PSD 

showed significant variance across participants (AR1 diagonal estimate = 75.491, X2 (1) = 2.756, 

P = 0.006), however this variance across participants did not significantly covary between each 

repeated measure (AR1 rho estimate = -0.315, X2 (1) = -1.876, P = .061 ). 

mTRF model 

The random intercept in the model demonstrated that the variance of age across 

participants did not show significant covariance between each repeated measure (AR1 rho 

estimate = .347, X2 (1) = 0.732, P = .464). 

PAC model 

The random intercept in the mTRF model demonstrated that the effect of age on PAC 

(MI) showed significant variance across participants (AR1 diagonal estimate = .087, X2 (1) = 

3.346, P = 8.2x10-4). 
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Data storage 

Study data were collected and managed using REDCap electronic data capture tools 

hosted at Cambridge university (4). REDCap (Research Electronic Data Capture) is a secure, 

web-based software platform designed to support data capture for research studies, providing 1) 

an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and 

export procedures; 3) automated export procedures for seamless data downloads to common 

statistical packages; and 4) procedures for data integration and interoperability with external 

sources. 
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