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Abstract The aim of this study was to classify different

movements about the right wrist. Four different movements

were performed: extension, flexion, pronation and supina-

tion. Two-class single trial classification was performed on

six possible combinations of two movements (extension–

flexion, extension–supination, extension–pronation, flex-

ion–supination, flexion–pronation, pronation–supination).

Both real and imaginary movements were analysed. The

analysis was done in the joint time–frequency domain using

the Gabor transform. Feature selection was based on the

Davis-Bouldin Index (DBI) and feature classification was

based on Elman’s recurrent neural networks (ENN). The best

classification results, near 80% true positive rate, for imag-

inary movements were achieved for discrimination between

extension and any other type of movement. The experiments

were run with 10 able-bodied subjects. For some subjects,

real movement classification rates higher than 80% were

achieved for any combination of movements, though not

simultaneously for all six combinations of movements. For

classification of the imaginary movements, the results sug-

gest that the type of movement and frequency band play an

important role. Unexpectedly, the delta band was found to

carry significant class-related information.

Keywords Brain computer interface (BCI) � EEG �
Motor tasks � Movement imagery � Right hand

1 Introduction

Brain computer interface (BCI) systems based on EEG

recordings can be utilized for a broad range of applications,

from a long term use to assist communication in locked-in

patients, driving a wheelchair and giving a command to a

neural prosthesis, to short term applications for therapeutic

treatment in rehabilitation and in different brain disorders

[24]. The main advantages of EEG based BCI systems are

that they are non-invasive, easy to use and relatively

inexpensive. The main drawback of such BCI over more

invasive recording is the low signal to noise ratio and low

spatial resolution.

Motor imagination is often used for BCIs as it can uti-

lize the cortical somatotopic representation of different

parts of the body. However, this kind of BCI has typically

been limited to four classes corresponding to four different

parts of the body, such as left and right hand, both legs and

tongue [23, 30]. The main difficulty in detecting different

movements of the same limb, especially different move-

ments about the same joint, is that they all activate nearly

the same area of the motor cortex. Therefore, there have

been only a few attempts to detect different real move-

ments of a single limb from EEG recordings [6, 7, 19, 28,

33].

In the present study, a method for two class single trial

classifications of both imaginary and real wrist movements

were proposed. Different combinations of movements were

classified in order to find which combination of movements

would give the best classification results. Classification of

different movements of the same wrist should increase the

number of separable classes available for a BCI system

(especially if used in combination with movements of

different limbs) and should also enable more intuitive

prosthesis control.
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2 Methods

2.1 The experimental procedure

Ten neurologically healthy volunteers (8 men and 2

women, mean age 27.3 ± 7.8) participated in the study.

All subjects signed a consent form based on the University

of Essex’s Ethical Committee recommendations. Subjects

were comfortably seated on an armchair, their nose tips

approximately 1 m from the computer screen, with the

forearms on the armrest. They were asked to perform four

types of real and kinaesthetic (i.e., the subject feels his/her

limb executing a given action without visualizing the

movement) imaginary right wrist movements that would

correspond to rotation of the wrist around two axes:

extension (E)/flexion (F), and pronation (palm down P)/

supination (palm up S). For practice, prior to starting to

record the EEG, the subjects had one full training session

(approximately 12 min) of real movements and half of a

session of the imaginary movements. During the experi-

ment, real and imaginary movements were separated in

different sessions. Each subject performed three sessions of

real movements and four sessions of imaginary movements

in the following order: real, imaginary, real, imaginary,

real, imaginary, imaginary. Each session consisted of 15

repetitions of 4 different movements (E, F, P and S, in

random order), 60 movements in total. Hence, each subject

performed 180 real and 240 imaginary movements. The

purpose of the real movement sessions was to help the

subject to imagine the kinaesthetic movements later. Each

session lasted about 12 min and the break between the

sessions was between 5 and 15 min to allow the subject to

rest.

At t = 0 s, a blank screen was presented to the subject

(Fig. 1). At t = 1 s, a warning sign (a rectangle) appeared

for 0.25 s on the screen. At t = 2 s, an arrow of 5 cm

length, pointing right (E), left (F), up (P) or down (S)

stayed for 3 s on the screen, i.e., until t = 5 s. The arrow

indicated the movement to be executed (letters in paren-

thesis above). During that time, the subject was asked to

keep the hand in a required position, i.e., to perform a

sustained movement, whether real or imagined. The time

between the arrow’s disappearance and the new warning

was random between 4 and 7 s. The total time between two

trials was between 9 and 12 s.

2.2 Data recording

The electroencephalogram was recorded using a 64 chan-

nel BiosemiTM ActiveTwo system. Electrode placement

was done according to the Biosemi ABC system, which,

for 64 electrodes, corresponds to the international 10–10

system [1]. The ActiveTwo System has a preamplifier stage

on the electrode and can correct for high impedances (in

the range of 100 kOhm), so impedance measurements are

not necessary. Nonetheless, the offset voltage (between the

A/D box and the body) was kept between 25 and 50 mV, as

recommended by Biosemi. The EEG amplitude was kept

within 50 lV. The system has 8 additional monopolar

electrodes (called EX here) for measuring potentials from

the other parts of the body. The reference electrode for

EEG recording was an EX electrode placed on the right

ear. All electrodes had the same ground. Electro-oculo-

grams (EOGs) were recorded from the orbicularis oculi,

from the outer cantus of the right eye, and below the right

eye. EMG was bipolary recorded during real and imaginary

movements with two pairs of EX electrodes placed 2 cm

apart on the flexor carpi and extensor carpi [10]. In that

way, it was possible to determine whether there was any

real movement during imaginary movement sessions. Also,

to detect the onset of muscle activity, EMG was rectified

and averaged over 30 ms [11]. The criterion for movement

onset was that the averaged EMG while the arrow was on a

screen exceeded mean ± (2*SD) of the averaged EMG

from the first 50 ms of the reference period (the reference

period started 1 s before a warning sign, that had no muscle

activity related to the analysed movement) [11].

2.3 EOG removal using independent component

analysis

EOG artefact was minimized using independent compo-

nent analysis (ICA) as described in [13]. ICA components

were compared with EOG and components that included

EOG were set to zero before inverting the data to the EEG

domain.

2.4 Data pre-processing

The raw EEG was referenced to the right ear and filtered

(Butterworth filter of the 5th order, high pass cut off fre-

quency at 0.5 Hz and low pass cut off frequency at 90 Hz).

The highest frequency of interest was three times lower

than the sampling frequency, as recommended by [2]. In

addition, a Butterworth stopband filter was applied at

50 Hz. To obtain a reference-free recording, a Laplacian

WARNING 

0 1 2 3 4

ARROW POINTING  
DIRECTION 

4-7 s

Time (s) 1

WARNING 

05

Fig. 1 Imagination protocol. A warning sign was presented 1 s

before an arrow that indicated the type of movement. The duration of

the warning sign was 0.25 s and the arrow was shown for 3 s.

Meaning of arrow directions: right extension, left flexion, up supina-

tion, and down pronation
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was computed based on [12] that included the center and

the four nearest electrodes (three nearest electrodes for

electrodes at the edge). A flow chart showing the signal

processing procedure is shown in Fig. 2.

2.5 Calculating independent components for feature

extraction

EEG signals at nearby points of the scalp tend to be cor-

related. This effect is not very pronounced if the recording

electrodes are relatively far from each other, such as when

different limb movements are analysed. However, if the

recording electrodes of interests are close to each other, it

is desirable to de-correlate the underlying sources as much

as possible. Therefore, in this study, before applying fea-

ture extraction, the EEG was replaced with its independent

components.

Epochs were extracted from the EEG signals after EOG

artefact removal. An epoch started at t = 0 s and finished

at t = 5 s, when the arrow disappeared from the screen

(see Fig. 1 above). A reference period was determined in

which there was no activity related to the movements i.e.,

from t = 0 s to t = 1 s. The baseline value (i.e., the mean

value of 50 ms EEG at the beginning of the reference

period) was subtracted from the whole epoch to avoid low

frequency drifts. Independent components were calculated

again based on epoched EEG, according to Eq. 1 below. To

calculate the ICs, only the EEG channels were used. The

Infomax algorithm was used [21] as implemented in open

source Matlab Toolbox EEGLab [5]. EEG epochs were

divided into four groups (EEG1–EEG4) according to the

class of a movement. Independent components were cal-

culated for one class of movement (separately for each

subject) and the same transformation matrix was then

applied to the other classes of movements. If the ICs were

calculated independently for each class, it would not be

possible to compare the ICs for two different classes for the

corresponding locations because components obtained

from different movements generally do not have the same

numbering. Therefore IC1 and the unmixing matrix W1

were calculated only for one EEG set, hereby named EEG1.

The same unmixing matrix W1 was then applied to the

EEG2–4 signals for the other three movements to calculate

the IC2–4 for those movements, as follows:

IC1 ¼W1 � EEG1 IC2 ¼W1 � EEG21

IC3 ¼W1 � EEG31
IC4 ¼W1 � EEG41

ð1Þ

To avoid biased classification towards one class of move-

ment, IC1 was chosen so that each class from four possible

classes was used at least twice. After calculating the ICs on

5 s epochs, the first two seconds were discarded and only

the period from t = 2 s to t = 5 s remained. Thus IC sets

contained only 3 s long epochs showing brain activity

while the arrow was on the screen, i.e., EEG related to the

movement.

IC components containing noise (i.e., segments that

exceeded mean ± 3SD of the mean amplitude of the rest of

the ICs) that was present in at least 25% of the epochs (i.e.,

it was present at least during one recording session) were

excluded from the analysis, as suggested in [29]. The

spatial location of the noisy components was checked using

EEGLab and it typically corresponded to location of the

electrodes that were recording a noisy raw signal. In that

way, no epochs were excluded because of EOG or noise

(only the corrupted IC components were removed, not the

entire epoch).

Removing EOG artefact using ICA 

Preprocessing 

Epoching EEG (5s long epochs) 

Calculating ICA on epoched EEG,
Removing noisy ICs 

Re-epoching ICA to 3s 

Calculating Gabor Coefficients 

Calculating DBI for feature selection  

Training NN 

Testing NN 

Training Set Testing Set 

E
E

G
 processing for

feature extraction 
F

eature
E

xtraction

F
eature

Selection
F

eature
classification 

Fig. 2 Flow chart of the overall analysis procedure
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2.6 Time–frequency analysis

The discrete Gabor transformation (DGT) was applied to

the ICs to calculate the Gabor coefficients (GCs). The

Gabor transformation is a windowed Fourier Transforma-

tion with a fixed size of the windows in both time and

frequency domain [18, 25]. The size of the window in this

study was 120 ms in the time domain and 2 Hz in the

frequency domain. The size of the window in the frequency

domain was chosen to enable analysis of the alpha band.

The 120 ms time window corresponded to time windows

typically used to analyse ERD and ERS.

The windowing function used was the Gaussian func-

tion. In this study, only a direct DGT was applied to

calculate the Gabor coefficients, as follows:

GCmn ¼
XL�1

k¼0

IC½k�c k � m � DM½ � exp �jkn
2p
N

� �
;

� DN\m\DN 0� n�DM � 1

c½k� ¼

ffiffiffiffiffiffiffiffiffiffi
2
p

T1

s

� e
�p� k�0:5 N1�1ð Þ

T1

� �2

0� k�N1 � 1;

T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DM � N
p

; ð2Þ

where IC are the independent components, c is the analysis

Gaussian function, N1 = 256 is the number of samples in

the analysis function (and at the same time it is the number

of grid points in the time and frequency dimension),

DM = 32 is the time step, DN = 2 is the frequency step,

i.e., the bandwidth, and N = 128 is the number of fre-

quency steps DN in the frequency dimension [18].

Although GCs are complex, only the absolute value of the

GCs corresponding to 0.5–90 Hz (45 frequency bands,

width of each band 2 Hz) were included for the analysis in

this study. In that way the delta, theta, alpha, beta and

gamma ranges were taken into account.

2.7 Feature selection using the Davis-Bouldin index

The total number of GCs calculated as described above was

large. For example, for 64 ICs there were 64*25*45 =

72,000 Gabor coefficients per epoch, where 25 is the

number of 120 ms wide time windows and 45 is the

number of 2 Hz wide frequency bands. Therefore, it was

necessary to find which features (GCs) were the most

distinctive between different types of movements. The

Davis-Bouldin index (DBI) was used to estimate overlap-

ping between any two classes (i.e., paired combinations of

four different wrist movements) based on the absolute

values of the Gabor coefficients. The DBI is a function of

the sum of within-cluster scatter to between-cluster sepa-

ration [3]. DBI has already been used for classification of

biological signals, like EMG and EEG [27, 34]. In this

study, the DBI was used for EEG class separation as

described in [27]. The numerical values of the DBI are

proportional to the degree of class overlapping. A small

DBI value for one feature means that that feature has very

distinctive values for different classes, which corresponds

to good class separation.

An optimum number of features for the given data set

cannot be estimated a priori but had to be tested empiri-

cally. In general, an insufficient number of features or too

large number of features (i.e., including features with a big

degree of overlapping) would result in poor separation.

Features selected according to their minimum DBI and

used for classification will be called ‘‘relevant features’’ in

the text.

As already mentioned, spatial information for different

movements was poor and could not be utilized. Therefore

choosing small time-frequency windows (2 Hz and

120 ms) was necessary in order to capture small differ-

ences between different types of movements. However for

such small time-frequency windows features can be highly

nonstationary. To solve this problem, DBIs were calculated

for each feature five times, on a randomly chosen subset of

the training set, containing each time 50% of the whole

training set. Every time each feature was ranked and an

average DBI value was calculated. Feature selection was

then based on the average rank values of the DBI indexes.

2.8 Feature classification

2.8.1 Neural networks

Although the DBI index gives information about the rele-

vance of features, it is still necessary to apply a classifier to

discriminate between the different movement classes. As

the focus of the current study was on defining the fre-

quency and temporal distribution of features that are

distinctive among different classes of movements about the

same joint, and not on investigating which classifier would

be best for the task, only two types of supervised NN were

applied, one feed forward and the other recurrent. Elman

networks (ELMNN) [8] were used for feature classifica-

tion, as they were already proven to be successful for

discrimination between different mental tasks [22]. The

ELMNN was trained with gradient descent with momen-

tum and the adaptive learning rate backpropagation

algorithm. The stopping criterion was MSE = 0.015.

The feed-forward network we used was a multi-layer

perceptron (MLP). Similar to the ELMNN, the MLP was

trained with the adaptive learning rate backpropagation

algorithm and had the same stopping criteria (MSE =

0.015) and output rating criteria. The MLP was chosen

because it had the same training algorithm and transfer

functions as the recurrent network.
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Before training the networks, all weights in the hidden

layer were given random values in the range between the

smallest and the largest values of the network input based

on the whole training set. The output rating criteria were

‘winner takes all’ for both networks. To exclude the pos-

sibility that the recurrent network learns the order in which

different classes were presented, rather than the class itself,

the order of presentation of the different classes was dif-

ferent in the training and the testing sets, but was the same

for both networks.

2.8.2 Training and testing set

A feature set consisted of absolute values from the GC

calculated on the 0.5–90 Hz range. A training set consisted

of 2/3 of the data and the testing set consisted on the

remaining 1/3 of the data. For each subject, both networks

were trained on 10, 25, 40, 50, 60, 75, 100, 150, 200, 300,

400 and 500 features with the lowest DBIs.

For the imaginary movements, training and testing was

performed on 10 subjects. Training sets had 40 trails and

testing sets had 20 trials. For the real movements, classi-

fication was performed on 4 subjects only due to EEG

recording availability problems. Training sets consisted of

30 trials and testing sets consisted of 15 trials.

Each subject performed four different types of wrist

movements. When two different movements were classi-

fied, there were six possible combinations:

1. Extension–Flexion (EF)

2. Extension–Supination (ES)

3. Extension–Pronation (EP)

4. Flexion–Supination (FS)

5. Flexion–Pronation (FP)

6. Supination–Pronation (PS)

2.9 Statistical analysis

Kruskal-Wallis nonparametric one-way analysis of vari-

ance was performed to test whether there was a statistically

significant differences between any of the groups. After

that, for each pair the Wilcoxon rank-sum test was per-

formed to test for statistically significant differences.

3 Results

3.1 Classification of two different right wrist imaginary

movements

Classification results using ELMNN for all six combina-

tions of imaginary movements, for all ten subjects, are

shown in Table 1. The training step preceded in time the

testing set as this is a prerequisite for an on-line application

such as a BCI.

There were statistically significant differences between

classification rates for the six different pairs of movements

(Kruskal Wallis test P = 2.4144*10-6). The best classifi-

cation results were achieved when extension was one of the

movements that were classified. There was no statistically

significant difference between the classification rate for any

of the combinations of EF, EP and ES (EF vs. EP, EF vs.

ES and EP vs. ES, Kruskall Wallis test P = 0.434) but

there was a statistically significant difference in the clas-

sification rate between any of EF, EP or ES and any of FP,

FS or SP (nine combinations in total). There was also a

statistically significant difference between the classification

rates of FP versus FS. In most cases, up to 150 features (out

of 72,000) were sufficient to obtain a good classification. In

many cases, classification rates higher than 80% were

achieved with as few as 10 features with the lowest DBI.

Increasing the number of features over 100 decreased in

most cases the classification accuracy, probably because

most features do not contain class-related information.

In addition, the ELMNN network was trained on each of

three combinations of 2/3 of the set and tested on the

remaining 1/3 of the data. The results for EF, EP and ES,

that achieved the highest classification accuracy in the

previous example are shown in Table 2. Classification rates

were similar to those in Table 1.

A feed-forward network was trained to classify imagi-

nary flexion versus imaginary extension. The first 2/3 of the

data were used for training and the remaining 1/3 of the

data was used for testing. Results are shown in Table 3.

The average classification rate was 78 ± 12. That is 4%

less than the average classification rate for the ELMNN.

Still, these classification results are relatively high for the

single-joint scenario, showing that the features are sepa-

rable even with a simple neural network. An important

Table 1 True positive rate classification of two imaginary movements

with ELMNN for six different combinations of movements

Subject Ext–Flex Ext–Pro Ext–Sup Flex–Pro Flex–Sup Sup–Pron

1 100 96 93 72 65 61

2 92 92 85 66 61 58

3 87 92 82 56 61 61

4 87 82 78 64 67 67

5 83 83 77 50 67 58

6 87 82 77 50 67 64

7 77 82 77 58 67 72

8 77 72 72 42 59 55

9 82 77 67 61 56 67

10 53 53 83 56 77 64

Mean 82 ± 12 81 ± 12 79 ± 7 58 ± 9 65 ± 6 63 ± 5
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advantage of the ELMNN over the feed-forward NN was

the computational speed. For the same parameters (number

of features, hidden neurons, and training criteria) and for a

larger number of features ([50), the ELMNN was trained

more than 10 times faster (less than 1 min with the

ELMNN compared to 10 min with the MLP all programs

being executed in Matlab 7 on a PC Pentium 3.6 GHz with

1 GB RAM).

3.2 Classification of two different right wrist real

movements

Table 4 shows classification results for six groups of two

real wrist movements. While for the imaginary movements

the best results were achieved for classification of exten-

sion versus other types of movements, such a tendency was

not observed for the real movements. There was no sta-

tistically significant difference between the classification of

all six different combinations of movements (Kruskal

Wallis test P = 0.9198). Classification rates equal or

higher than 80% were achieved for any combination of two

real movements.

However, for none of the subjects were good classifi-

cation rates achieved for all six combinations of

movements. The training sets for the imaginary movements

were 33% larger than those for the real movements. Better

classification results would be expected for classification of

the real movements if the same sizes of the training sets

were available. In all but one case 10 to 200 features were

used and in one case (EP subject 4) 400 features were used.

3.3 Temporal and frequency distribution of the features

used for training

Figure 3a–f shows the distribution of features used for

classification between two imaginary movements for all

subjects in the time–frequency domain. The figures were

obtained by summation of features over all subjects. All

classifications that included extension as one of the

movements had clearly dominant features in the delta band.

In addition, for classification of flexion versus pronation,

the lower delta band (0–2 Hz) contained the largest number

of features per 2 Hz band. Although there was no averag-

ing, but only summation across the subjects, from the total

number of features and number of features per subject, it is

evident that delta band features were dominant in all sub-

jects. The temporal distribution of features in the delta

band showed that, with the exception of the first 120 ms,

the features were distributed in the whole 3 s range.

However, the overall temporal distribution of the features

for the E–F, E–S and E–P combinations showed the largest

number of features in the first second and in the third

second (close to the end of the sustained movement). The

first second corresponded to movement preparation and

execution. The increased number of features at the end of

the third second might indicate preparation for a movement

that should bring the hand back to the resting position, as it

is possible that after a lot of repetition a subject could

roughly predict the length of a 3 s period.

Figure 4a–f shows the distribution of features used for

classification between two real movements. It is interesting

to notice that for all six combinations of movements, there

were many features outside of the alpha and beta bands.

There was a large number of features in the 0–2 Hz

delta band for classification of E–F and E–S combinations.

In the case of classification of E–P, F–S and S–P there were

Table 2 Mean value of true positive rate for classification of two real movements with ELMNN for different combinations of movements

S 1 2 3 4 5 6 7 8 9 10

EF 96 ± 4 90 ± 2 89 ± 3 83 ± 3 82 ± 1 81 ± 1 79 ± 3 75 ± 3 83 ± 2 52 ± 1

EP 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2 95 ± 2

ES 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4 96 ± 4

Training set preceded in time the testing set

Table 3 True positive rate for classification between extension and

flexion with feed-forward NN

Subj 1 2 3 4 5 6 7 8 9 10

Clas. 89 81 81 83 64 72 77 76 100 55

NF 25 60 75 75 10 10 10 25 25 60

Training set preceded in time the testing set

Table 4 True positive rate for classification of two real movements

with ELMNN for six different combinations of movements

Subject Ext–

Flex

Ext–Pro Ext–

Sup

Flex–

Pro

Flex–

Sup

Sup–

Pron

2 61 61 77 83 77 77

4 83 86 75 61 56 47

5 60 90 85 90 85 80

6 75 57 70 54 100 57

Mean 70 ± 11 74 ± 17 77 ± 7 72 ± 17 80 ± 18 65 ± 16

S subject; EF extension–flexion; ES extension–supination;

EP extension–pronation
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not many features in the delta band, but the largest number

of features per 2 Hz band was in the theta band. Again,

although figures present summed up features across the

subjects, it can be noticed that the delta band features were

not as dominant as for the imaginary movements, espe-

cially for E–S classification, although a relatively high

average classification rate of 77% was achieved. For that

combination of movements (E–S), there were many fea-

tures in the higher gamma range (Fig. 4c). A large number

of features in the theta and gamma range can also be

noticed for F–S classification, resulting in a peak in the

temporal distribution (Fig. 4d).

Regarding the temporal distribution of the features, a clear

maximum could be noticed in the period at 240–480 ms after

the cue onset (Fig. 4a, c–f), which would correspond to

movement preparation and initialisation (based on EMG, a

movement started 390 ± 90 ms after the cue onset for

extension, and 420 ± 120 ms for flexion). However, for

classification of extension versus other types of movements,

and for classification of supination versus pronation, the

overall largest number of features was during the 2nd second,

i.e., while the hand was in a required sustained position.

There was also a clear peak during the 2nd second for F–P

and a peak at the end of the 3rd second for S–P.

3.4 An example of spatial distribution

of the independent components

Figure 5a, b shows spatial distributions of 3 ICA compo-

nents with the overall largest number of relevant features,

for classification of real and imaginary combinations of

movements extension versus flexion, in subject 4. In this

subject, both for imaginary and real movements, the best

classification results were achieved for classification of
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extension versus other types of movements. ICA compo-

nents were chosen because when classification was

performed with as few as 10 features, they typically

belonged to no more than 3 different ICs. The pictures

were generated in EEGLab by calculating for each IC the

relative projection weight at each electrode [21].

The same transformation matrix was used to calculate

ICs for all four movements (separately for real and imag-

inary movements). Therefore, calculated ICs have the same

relative projection to each electrode, i.e. the same spatial

location for all four movements. Therefore in some cases,

the components with the same spatial location were used

for classification of two different groups of movements.

That is however not surprising because in all cases exten-

sion was included as one type of a movement. For

imaginary movements, the ICs were not clearly localized in

the sensory-motor area of the right hand. For example, the

first component for the EF is located bilaterally over rep-

resentation area of the both hands, while the third

component for the EF is located over the ipsilateral hand

area and over a larger ipsilateral parietal area. Because

most of features belonged to the delta band, Fig. 5a vir-

tually shows the distribution of delta band features.

For the real movements, ICA components seem to be

much more localized and corresponded to electrodes

position Cz and CF3 and in the frontal area around AF4.

4 Discussion

This study presents results for two class separation of real

and imaginary movements of the same wrist. Experiments
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were performed on naive subjects. For most of the classi-

fication examples in this study, 2/3 of data were used for

training and 1/3 for testing, with training data preceding in

time the testing data, which is a prerequisite for future on-

line BCI applications [30].

A recent study on classification of imaginary movements

of different limbs showed that applying ICA does not sig-

nificantly improve the classification accuracy, compared to

a Laplacian derivation [16]. In our study, a classification

rate was not much higher than 50% (i.e. by chance) based

on EEG signals with Laplacian derivation. When using

ICA, the highest classification rate for the imaginary

movements, around 80% was achieved for classification of

extension versus any other type of imaginary movements

(flexion, supination, pronation). In the case of high classi-

fication accuracy ([80%) the largest number of relevant

features belonged to the delta range. This was a somewhat

surprising result because that frequency range has not been

considered in most of the studies based on motor imagery.

However, Kauhanen et al. [14] achieved the best classifi-

cation accuracy of right versus left imaginary hand

movement in tetraplegics using EEG signals in the 0.5–

3 Hz range. In an EEG-based study on influence of practice

on motor imagination [17], even related desynchronisation/

synchronisation (ERD/ERS) was noticed in the delta and

theta band before training and a significant increase of

ERD/ERS in these two frequency bands was noticed after

training. In an ECoG study on finger tapping in subjects

with no motor disorders, Graiman et al. [9] showed a clear

correlation between the normalized band power changes in

the delta, beta and gamma range and movement execution.

For the real movements, classification accuracy higher

than 80% (up to 100%), was achieved for any of the six

combinations of movements in the current study. However,

for each subject there were typically only 2–3 combina-

tions of movements that could be classified with high

accuracy. For classification of the real movements, there

was a large number of relevant features in the delta band

but some relevant features were found in other frequency

bands as well.

Surprisingly, there was more consistency regarding the

best classifiable type of movement and relevant frequency

range for the imaginary than for the real movements. One

possible explanation is that wrist extension was the easiest

movement to imagine. However, further evidence is nee-

ded. In the current study, the spatial distribution of ICA

components with the largest number of relevant features

was more obviously concentrated around the contralateral

motor area for the real movements than for the imaginary

movements. A possible reason for this is that the subjects

might have combined visual and motor imagery, as maxi-

mum EEG activity can be outside the sensory-motor area in

visual imagery [20]. It is also interesting to note that rel-

evant ICA components were sometimes distributed over

the ipsilateral hand area for imaginary movements.

We performed another study on the same set of data but

on averaged EEG signals instead on single-trial based ICA

[33]. In that study, we calculated regions of significant

ERD/ERS based on [35] and then looked at significant

differences between ERD/ERS of two imaginary or real

movements [33]. We calculated the energy based on the

Gabor transformation in 240 ms and 2 Hz time–frequency

windows, called resels as in [35]. The region of the largest

differences between two movements in general was on Cp3

in the 12–30 Hz. Yet, for both real and imaginary move-

ments, regions of significant differences were also found in

Fig. 5 Spatial distribution of

three dominant ICs for

classification of extension

versus flexion, a imaginary and

b real movements
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the theta and the delta band. Although significant resels in

low frequency bands were found on all electrode locations,

their number was the largest in the frontal region (premotor

area coronal lines F and FC, and more frontal areas) and to

a lesser degree in the parietal region, corresponding to the

coronal line of P electrodes. It is hard to say whether

activation of the frontal areas of the cortex corresponded to

movement planning, visual processing of the cue on the

screen (and would not appear in a self-paced BCI para-

digm) or to a non-kinaesthetic movement imagination [20].

Similar to the current study, there was no clear time

distribution of low-frequency resels in [33]. However, the

total number of significant resels was larger than the total

number of features used for classification in the current

study, and it is difficult to determine whether features in

12–30 Hz band would be more significant than those in the

delta and theta bands.

The classification rate was lower than for classification

of imaginary right versus left hand movement presented in

the literature [26] but the task in the present study was

more complex as there was little spatial selectivity.

In the present study a sustained 3 s long, rather than

repetitive or single fast movement was performed. For the

imaginary movements, the largest number of features was

found in the first second and for the real movements a clear

peak could be noticed in a period 240–480 m after the cue

onset, that corresponded to movement preparation and

initialisation.

Combining different movements of the same hand with

movements of different hands (or different parts of the

body in general) would lead to an increased number of

separable classes. Classification of the left versus right

hand can be already achieved with high accuracy even

online and would not significantly increase the classifi-

cation error [4, 31]. Combining 3 or 4 types of

movements would increase the number of separable

classes, but would decrease classification accuracy [32].

When choosing an optimum number of classes for a BCI

system, a compromise should be made between the pos-

sible degrees of freedom and a classification accuracy

[15]. Combination of classification of two different

movements of the same hand and movements of different

hands would give a reasonably high classification accu-

racy. In addition it would be more intuitive in

applications that include neural prosthesis and upper

limbs therapy, compared to BCI systems that classify

imaginary movements of hands, legs and tongue.

5 Conclusion

This paper shows that it is possible to separate two dif-

ferent movements of the same wrist with an average

classification accuracy of 80%. This true positive rate was

achieved for both real and imaginary movements. Further,

most of the relevant features selected for classification of

the imaginary movements belonged to the delta range.
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