
Delta-Confluent Drawings�

David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng

School of Information and Computer Science,
University of California, Irvine,

Irvine, CA 92697, USA
{eppstein, goodrich, ymeng}@ics.uci.edu

Abstract. We generalize the tree-confluent graphs to a broader class
of graphs called ∆-confluent graphs. This class of graphs and distance-
hereditary graphs, a well-known class of graphs, coincide. Some results
about the visualization of ∆-confluent graphs are also given.

1 Introduction

Confluent Drawing is an approach to visualize non-planar graphs in a planar
way [10]. The idea is simple: we allow groups of edges to be merged together
and drawn as tracks (similar to train tracks). This method allows us to draw, in
a crossing-free manner, graphs that would have many crossings in their normal
drawings. Two examples are shown in Figure. 1. In a confluent drawing, two
nodes are connected if and only if there is a smooth curve path from one to the
other without making sharp turns or double backs, although multiple realizations
of a graph edge in the drawing is allowed.

More formally, a curve is locally-monotone if it contains no self intersections
and no sharp turns, that is, it contains no point with left and right tangents that
form an angle less than or equal to 90 degrees. Intuitively, a locally-monotone
curve is like a single train track, which can make no sharp turns. Confluent
drawings are a way to draw graphs in a planar manner by merging edges together
into tracks, which are the unions of locally-monotone curves.

An undirected graph G is confluent if and only if there exists a drawing A
such that:

– There is a one-to-one mapping between the vertices in G and A, so that, for
each vertex v ∈ V (G), there is a corresponding vertex v′ ∈ A, which has a
unique point placement in the plane.

– There is an edge (vi, vj) in E(G) if and only if there is a locally-monotone
curve e′ connecting v′i and v′j in A.

– A is planar. That is, while locally-monotone curves in A can share overlap-
ping portions, no two can cross.

� Work by the first author is supported by NSF grant CCR-9912338. Work by the sec-
ond and the third author is supported by NSF grants CCR-0098068, CCR-0225642,
and DUE-0231467.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 165–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

166 D. Eppstein, M.T. Goodrich, and J.Y. Meng

Fig. 1. Confluent drawings of K5 and K3,3

We assume readers have basic knowledge about graph theory and we will use
conventional terms and notations of graph theory without defining them. All
graphs considered in this paper are simple graphs, i.e., without loop or multi-
edge. Confluent graphs are closely related to planar graphs. It is, however, very
hard to check whether a given graph can be drawn confluently. The complexity
of recognizing confluent graphs is still open and the problem is expected to be
hard. Hui, Schaefer and Štefankovič [21] define the notion of strong confluency
and show that strong confluency can be recognized in NP. It is then of interest
to study classes of graphs that can or can not be drawn confluently. Several
classes of confluent graphs, as well as several classes of non-confluent graphs,
have been listed [10].

In this paper we continue in the positive direction of this route. We describe
∆-confluent graphs, a generalization of tree-confluent graphs [21]. We discuss
problems of embedding trees with internal degree three, including embeddings on
the hexagonal grid, which is related to ∆-confluent drawings with large angular
resolution, and show that O(n log n) area is enough for a ∆-confluent drawing
of a ∆-confluent graph with n vertices on the hexagonal grid.

Note that although the method of merging groups of edges is also used to
reduce crossings in confluent layered drawings [14], edge crossings are allowed to
exist in a confluent layered drawing.

2 ∆-Confluent Graphs

Hui, Schaefer and Štefankovič [21] introduce the idea of tree-confluent graphs.
A graph is tree-confluent if and only if it is represented by a planar train track
system which is topologically a tree. It is also shown in their paper that the class
of tree-confluent graphs are equivalent to the class of chordal bipartite graphs.

The class of tree-confluent graphs can be extended into a wider class of graphs
if we allow one more powerful type of junctions.

A ∆-junction is a structure where three paths are allowed to meet in a three-
way complete junction. The connecting point is call a port of the junction. A
Λ-junction is a broken ∆-junction where two of the three ports are disconnected
from each other (exactly same as the track defined in the tree-confluent draw-
ing [21]). The two disconnected paths are called tails of the Λ-junction and the
remaining one is called head.

Delta-Confluent Drawings 167

Fig. 2. ∆-junction and Λ-junction

A ∆-confluent drawing is a confluent drawing in which every junction in the
drawing is either a ∆-junction, or a Λ-junction, and if we replce every junction
in the drawing with a new vertex, we get a tree. A graph G is ∆-confluent if and
only if it has a ∆-confluent drawing.

The class of cographs in [10] and the class of tree-confluent graphs in [21] are
both included in the class of ∆-confluent graphs. We observe that the class of
∆-confluent graphs are equivalent to the class of distance-hereditary graphs.

2.1 Distance-Hereditary Graphs

A distance-hereditary graph is a connected graph in which every induced path is
isometric. That is, the distance of any two vertices in an induced path equals their
distance in the graph [2]. Other characterizations have been found for distance-
hereditary graphs: forbidden subgraphs, properties of cycles, etc. Among them,
the following one is most interesting to us:

Theorem 1. [2] Let G be a finite graph with at least two vertices. Then G is
distance-hereditary if and only if G is obtained from K2 by a sequence of one-
vertex extensions: attaching pendant vertices and splitting vertices.

Here attaching a pendant vertex to x means adding a new vertex x′ to G and
making it adjacent to x so x′ has degree one; and splitting x means adding a
new vertex x′ to G and making it adjacent to either x and all neighbors of x,
or just all neighbors of x. Vertices x and x′ forming a split pair are called true
twins (or strong siblings) if they are adjacent, or false twins (or weak siblings)
otherwise.

By reversing the above extension procedure, every finite distance-hereditary
graph G can be reduced to K2 in a sequence of one-vertex operations: either
delete a pendant vertex or identify a pair of twins x′ and x. Such a sequence is
called an elimination sequence (or a pruning sequence).

In the example distance-hereditary graph G of Figure. 3, the vertices are
labelled reversely according to an elimination sequence of G:

17 merged into 16, 16 merged into 15, 15 cut from 3, 14 cut from 2, 13 merged
into 5, 12 merged into 6, 10 merged into 8, 11 merged into 7, 9 cut from 8, 8
merged into 7, 7 cut from 6, 6 merged into 0, 5 cut from 0, 4 merged into 1, 3
cut from 1, 2 merged into 1.

The following theorem states that the class of distance hereditary graphs and
the class of ∆-confluent graphs are equivalent.

168 D. Eppstein, M.T. Goodrich, and J.Y. Meng

0

1
2

3

45

6

7

8
9

10

11

12

13

14

15

16

17

Fig. 3. A distance-hereditary graph G

Theorem 2. A graph G is distance hereditary if and only if it is ∆-confluent.

Proof sketch. Assume G is distance hereditary. We can compute the elimination
sequence of G, then apply an algorithm, which will be described in Section 2.2,
to get a ∆-confluent drawing of G. Thus G is ∆-confluent.

On the other hand, given a ∆-confluent graph G in form of its ∆-confluent
drawing A, we can apply the following operations on the drawing A:

1. contraction. If two vertices y and y′ in A are connected to two ports of
a ∆-junction, or y and y′ are connected to the two tails of a Λ-junction
respectively, then contract y and y′ into a new single vertex, and replace the
junction with this new vertex.

2. deletion. If two vertices y and y′ in A are connected by a Λ-junction, y is
connected to the head and y′ to one tail, remove y′ and replace the junction
with y.

It is easy to observe that contraction in the drawing A corresponds to iden-
tifying a pair of twins in G; and deletion corresponds to removing a pendant
vertex in G.

It is always possible to apply an operation on two vertices connected by a junc-
tion because the underlying graph is a tree. During each operation one junction is
replaced. Since the drawing is finite, the number of junctions is finite. Therefore,
we will reach a point at which the last junction is replaced. After that the draw-
ing reduces to a pair of vertices connected by an edge, and the corresponding G
reduces to a K2. Therefore G is a distance-hereditary graph.

This completes the proof of the equivalence between ∆-confluent graphs and
distance-hereditary graphs. ��

2.2 Elimination Sequence to ∆-Confluent Tree

The recognition problem of distance-hereditary graphs is solvable in linear time
(see [2, 20]). The elimination sequence (ordering) can also be computed in linear

Delta-Confluent Drawings 169

time. Using the method of, for example, Damiand et al. [9] we can obtain an
elimination sequence L for G of Figure. 3:

By using the elimination sequence reversely, we construct a tree structure of
the ∆-confluent drawing of G. This tree structure has n leaves and n−1 internal
nodes. Every internal node has degree of three. The internal nodes represent our
∆- and Λ-junctions. The construction is as follows.

– While L is non-empty do:
• Get the last item from L

• If item is “b merged into a”
∗ If edge (a, b) ∈ E(G), then replace a with a ∆ conjunction using any

of its three connectors, connect a and b to the other two connectors
of the ∆ conjunction; otherwise replace a with a Λ conjunction using
its head and connect a and b to its two tails.

• Otherwise item is “b cut from a”, replace a with a Λ conjunction using
one of its tails, connect a to the head and b to the other tail left.

Clearly the structure we obtain is indeed a tree. Once the tree structure is
constructed, the ∆-confluent drawing can be computed by visualizing this tree
structure with its internal nodes replaced by ∆- and Λ-junctions.

3 Visualizing the ∆-Confluent Graphs

There are many methods to visualize the underlying topological tree of a ∆-
confluent drawing. Algorithms for drawing trees have been studied extensively
(see [4, 8, 12, 13, 18, 19, 22, 26, 27, 28, 29, 31, 32] for examples). Theoretically all
the tree visualization methods can be used to lay out the underlying tree of
a ∆-confluent drawing, although free tree drawing techniques might be more
suitable. We choose the following two tree drawing approaches that both yield
large angular resolution (≥ π/2), because in drawings with large angular reso-
lution, each junction lies in a center-like position among the nodes connected to
it, so junctions are easy to perceive and paths are easy to follow.

3.1 Orthogonal Straight-Line ∆-Confluent Drawings

The first tree drawing method is the orthogonal straight-line tree drawing
method. In the drawings by this method, every edge is drawn as a straight-line
segment and every node is drawn at a grid position.

Pick an arbitrary leaf node l of the underlying tree as root and make this free
tree a rooted tree T (alternatively one can adopt the elimination hierarchy tree
of a distance-hereditary graph for use here.) It is easy to see that T is a binary
tree because every internal node of the underlying tree has degree three. We
can then apply any known orthogonal straight-line drawing algorithm for trees
([e.g.[4, 6, 7, 24, 25, 30]]) on T to obtain a layout. After that, replace drawings of
internal nodesz with their corresponding junction drawings.

170 D. Eppstein, M.T. Goodrich, and J.Y. Meng

3.2 Hexagonal ∆-Confluent Drawings

Since all the internal nodes of underlying trees of ∆-confluent graphs have degree
three, if uniform-length edges and large angular resolution are desirable, it is then
natural to consider the problem of embedding these trees on the hexagonal grid
where each grid point has three neighboring grid points and every cell of the
grid is a regular hexagon.

Some researchers have studied the problem of hexagonal grid drawing of
graphs. Kant [23] presents a linear-time algorithm to draw tri-connected planar
graphs of degree three planar on a n/2×n/2 hexagonal grid. Aziza and Biedl [1]
focus on keeping the number of bends small. They give algorithms that achieve
3.5n+3.5 bends for all simple graphs, prove optimal lower bounds on number of
bends for K7, and provide asymptotic lower bounds for graph classes of various
connectivity. We are not aware of any other result on hexagonal graph drawing,
where the grid consists of regular hexagon cells.

In the ∆-confluent drawings on the hexagonal grid, any segment of an edge
must lie on one side of a hexagon sub-cell. Thus the slope of any segment is
1/2, ∞, or −1/2. An example drawing for the graph from Figure. 3 is shown in
Figure. 4.

0

1

2

3
4

5

6

7

8

9

10

11
12

13

1415

16

17

Fig. 4. A hexagonal grid ∆-confluent drawing example

Readers might notice that there are edge bends in the drawing of Figure. 4.
Some trees may require a non-constant number of bends per edge to be embedded
on a hexagonal grid. Thus it is impossible to embed the tree without edge crossing
or edge overlapping, when the bends are limited per edge. However, if unlimited
bends are allowed, we show next that ∆-confluent graphs can be embedded in
the hexagonal grid of O(n log n) area in linear time.

The method is to transform an orthogonal straight-line tree embedding into an
embedding on the hexagonal grid. We use the results of Chan et al. [6] to obtain
an orthogonal straight-line tree drawing. In their paper, a simple “recursive
winding” approach is presented for drawing arbitrary binary trees in small area
with good aspect ratio. They consider both upward and non-upward cases of

Delta-Confluent Drawings 171

orthogonal straight-line drawings. We show that an upward orthogonal straight-
line drawing of any binary tree can be easily transformed into a drawing of the
same tree on the hexagonal grid.

Figure. 5 (a) exhibits an upward orthogonal straight-line drawing for the
underlying tree of G in Figure. 3, with node 15 being removed temporarily in
order to get a binary tree.

We cover the segments of the hex cell sides with two set of curves: u-curves
and v-curves (Figure. 5 (b)). The u-curves (solid) are waving horizontally and
the v-curves (dashed) along one of the other two slopes. These two sets of curves
are not direct mapping of the lines parallel to x-axis or y-axis in an orthogonal
straight-line drawing settings, because the intersection between a u-curve and a
v-curve is not a grid point, but a side of the grid cell and it contains two grid
points. However this does not matter very much. We choose the lower one of the
two grid points in the intersection (overlapping) as our primary point and the

12

g

2

9

11

c i

k

5

o

e16

0

1

a b

l

m

p 7

j

13

8

10

h

14

6

n

17

f

3 4

d15

(a) (b)

15 a b c d f h i 13

17 16 3 e 4 g 14 5

1 2

0 j

kmo9

l12n10

68

7p

11

(c)

Fig. 5. From upward straight-line orthogonal drawing to hexagonal grid drawing. In-
ternal nodes are labelled with letters and leaves with numbers. (a) orthogonal drawing,
generated by Graph Drawing Server (GDS) [5]. (b) u-curves and v-curves. (c) unad-
justed result of transformation (mirrored upside-down for a change).

172 D. Eppstein, M.T. Goodrich, and J.Y. Meng

other one as our backup point. So the primary point is at the bottom of a grid
cell and its backup is above it to the left. As we can see later, the backup points
allow us to do a final adjustment of the node positions.

When doing the transformation from an orthogonal straight-line drawing to
a hexagonal grid drawing, we are using only the primary points. So there is a
one-to-one mapping between node positions in the orthogonal drawing and the
hexagonal grid drawing. However, there are edges overlapping each other in the
resultant hexagonal grid drawing of such a direct transformation (e.g. edge (a, b)
and edge (a, 16) in Figure. 5 (c)). Now the backup points are used to remove
those overlapping portion of edges. Just move a node from a primary point to
the point’s backup when overlapping happens.

1315

17 16 3 4 14 5

1 2

0

9

1210

68

7

11

Fig. 6. Final drawing after adjustment

Figure. 6 shows the ∆-confluent drawing of G after overlapping is removed.
The drawing does not look compact because the orthogonal drawing from which
it is obtained is not tidy in order to have the subtree separation property.

It is not hard to see that backup points are enough for removing all the
overlapping portions while the tree structure is still maintained. If wanted, the
backup points can be also used to reduce the bends along the edges connecting
the tree leaves (e.g. edge connecting node 1). Some bends can be removed as
well after junctions are moved (e.g. the subtree of node 8 and 10).

Theorem 3. Any ∆-confluent graph can be embedded on a grid of size
O(n log n). The representation of its ∆-confluent drawing can be computed in
linear time and can be stored using linear space.

Proof sketch. First the underlying tree of a ∆-confluent graph can be computed
in linear time. The transformation runs in linear time as well. It then remains to
show that the orthogonal tree drawing can be obtained in linear time. Chan et al.

Delta-Confluent Drawings 173

[6] can realize a upward orthogonal straight-line grid drawing of an arbitrary n-
node binary tree T with O(n log n) area and O(1) aspect ratio. The drawing
achieves subtree separation and can be produced in O(n) time.

By using the transformation, we can build a description of the drawing in
linear time, which includes the placement of each vertex and representation of
each edge. It is straightforward that the drawing has an area of O(n log n) size.
Since the edges are either along u-curves, or along v-curves, we just need to store
the two end points for each edge. Note that although some edge might contain
O(

√
n log n) bends (from the “recursive winding” method), constant amount of

space is enough to describe each edge. Thus the total space complexity of the
representation is O(n). ��

In the hexagonal grid drawings for trees, the subtree separation property is
retained if the subtree separation in hexagonal grid drawings is defined using u, v
area. If different methods of visualizing binary trees on the orthogonal grid are
used, various time complexities, area requirements, and other drawing properties
for the hexagonal grid ∆-confluent drawing can be derived as well.

4 More About ∆-Confluent Graphs

In this section we discuss a ∆-confluent subgraph problem, and list some topics
of possible future work about ∆-confluent graphs.

One way to visualize a non-planar graph is to find a maximum planar sub-
graph of the original graph, compute a planar drawing of the subgraph, and
add the rest of the original graph back on the drawing. An analogous method
to visualize a non-∆-confluent graph would be to find a maximum ∆-confluent
subgraph, compute a ∆-confluent drawing, and add the rest back. However, just
like the maximum planar subgraph problem, the maximum ∆-confluent sub-
graph problem is difficult. The problem is defined below, and its complexity is
given in Theorem 4.

Maximum ∆-confluent Subgraph Problem:
Instance: A graph G = (V, E), an integer K ≤ |V |.
Question: Is there a V ′ ⊂ V with |V ′| ≥ K such that the subgraph of
G induced by V ′ is a ∆-confluent?

Theorem 4. Maximum ∆-confluent subgraph problem is NP-complete.

Proof. The proof can be derived easily from Garey and Johnson [17, GT21].

[GT21] Induced Subgraph with Property Π :
Instance: A graph G = (V, E), an integer K ≤ |V |.
Question: Is there a V ′ ⊂ V with |V ′| ≥ K such that the subgraph of
G induced by V ′ has property Π?

It is NP-hard for any property Π that holds for arbitrarily large graphs, does
not hold for all graphs, and is hereditary (holds for all induced subgraphs of G
whenever it holds for G). If it can be determined in polynomial time whether

174 D. Eppstein, M.T. Goodrich, and J.Y. Meng

Π holds for a graph, then the problem is NP-complete. Examples include “G is
a clique”, “G is an independent set”, “G is planar”, “G is bipartite”, “G is
chordal.”

∆-confluency is a property that holds for arbitrarily large graphs, does not
holds for all graphs, and is hereditary (every induced subgraph of a ∆-confluent
graph is ∆-confluent.) It can be determined in linear time whether a graph is
∆-confluent. Thus the maximum ∆-confluent subgraph problem is NP-complete.

��

Instead of drawing the maximum subgraph ∆-confluently and adding the
rest back, We could compute a ∆-confluent subgraph cover of the input graph,
visualize each subgraph as a ∆-confluent drawing, and overlay them together.
This leads to the ∆-confluent Subgraph Covering Problem. Like the
maximum ∆-confluent subgraph problem, we expect this problem to be hard as
well.

This alternative way is related to the concept of simultaneous embedding
(see [3, 11, 15, 16]). To visualize an overlay of ∆-confluent subgraph drawings
is to draw trees simultaneously. However simultaneously embedding draws only
two graphs that share the same vertex set V , while a ∆-confluent subgraph
cover could have a cardinality larger than two. Furthermore, the problem of
simultaneously embedding (two) trees hasn’t been solved.

Other interesting problems include:

– How to compute the drawing with optimum area (or number of bends, etc.)
for a ∆-confluent graph?
Generally hexagonal grid drawings by transforming orthogonal drawings are
not area (number of bends, etc.) optimal. If subtree separation is not re-
quired, hexagonal grid drawings with more compact area or smaller number
of bends can be achieved. Maybe a simple incremental algorithm would work.

– The underlying track system here is topologically a tree. What classes of
graphs can we get if other structures are allowed?

References

[1] S. Aziza and T. Biedl. Hexagonal grid drawings: Algorithms and lower bounds.
In J. Pach, editor, Graph Drawing (Proc. GD ’04), volume 3383 of Lecture Notes
Comput. Sci., pages 18–24. Springer-Verlag, 2005.

[2] H. Bandelt and H. M. Mulder. Distance-hereditrary graphs. J. Combin. Theory
Ser. B, 41:182–208, 1986.

[3] P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous graph embedding.
In 8th Workshop on Algorithms and Data Structures, pages 243–255, 2003.

[4] R. P. Brent and H. T. Kung. On the area of binary tree layouts. Inform. Process.
Lett., 11:521–534, 1980.

[5] S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service
on the WWW. In S. C. North, editor, Graph Drawing (Proc. GD ’96), volume
1190 of Lecture Notes Comput. Sci., pages 45–52. Springer-Verlag, 1997.

Delta-Confluent Drawings 175

[6] T. M. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Optimizing area
and aspect ratio in straight-line orthogonal tree drawings. In S. North, editor,
Graph Drawing (Proc. GD ’96), volume 1190 of Lecture Notes Comput. Sci., pages
63–75. Springer-Verlag, 1997.

[7] S. Y. Choi. Orthogonal straight line drawing of trees. M.Sc. thesis, Dept. Comput.
Sci., Univ. Brown, Providence, RI, 1999.

[8] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms
for upward drawings of binary trees. Comput. Geom. Theory Appl., 2:187–200,
1992.

[9] G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recognition:
Application to cographs and distance hereditary graphs. Theor. Comput. Sci.,
263(1–2):99–111, 2001.

[10] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent drawing:
Visualizing nonplanar diagrams in a planar way. In G. Liotta, editor, Graph
Drawing (Proc. GD ’03), volume 2912 of Lecture Notes Comput. Sci., pages 1–12.
Springer-Verlag, 2004.

[11] C. A. Duncan, D. Eppstein, and S. G. Kobourov. The geometric thickness of
low degree graphs. In 20th Annual ACM-SIAM Symposium on Computational
Geometry (SCG ’04), pages 340–346, 2004.

[12] P. Eades, T. Lin, and X. Lin. Two tree drawing conventions. Internat. J. Comput.
Geom. Appl., 3:133–153, 1993.

[13] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics and
its Applications, 5:10–36, 1992.

[14] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered drawings. In
J. Pach, editor, Graph Drawing (Proc. GD ’04), volume 3383 of Lecture Notes
Comput. Sci., pages 184–194. Springer-Verlag, 2005.

[15] C. Erten and S. G. Kobourov. Simultaneous embedding of a planar graph and its
dual on the grid. In M. Goodrich and S. Kobourov, editors, Graph Drawing (Proc.
GD ’02), volume 2518 of Lecture Notes Comput. Sci., pages 575–587. Springer-
Verlag, 2003.

[16] C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs with
few bends. In J. Pach, editor, Graph Drawing (Proc. GD ’04), volume 3383 of
Lecture Notes Comput. Sci., pages 195–205. Springer-Verlag, 2005.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[18] A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings.
In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 359–368, 1993.

[19] A. Gregori. Unit length embedding of binary trees on a square grid. Inform.
Process. Lett., 31:167–172, 1989.

[20] P. Hammer and F. Maffray. Completely separable graphs. Discrete Appl. Math.,
27:85–99, 1990.

[21] P. Hui, M. Schaefer, and D. Štefankovič. Train tracks and confluent drawings.
In J. Pach, editor, Graph Drawing (Proc. GD ’04), volume 3383 of Lecture Notes
Comput. Sci., pages 318–328. Springer-Verlag, 2005.

[22] P. J. Idicula. Drawing trees in grids. Master’s thesis, Department of Computer
Science, University of Auckland, 1990.

[23] G. Kant. Hexagonal grid drawings. In Proc. 18th Internat. Workshop Graph-
Theoret. Concepts Comput. Sci., 1992.

[24] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu.
IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.

176 D. Eppstein, M.T. Goodrich, and J.Y. Meng

[25] C. E. Leiserson. Area-efficient graph layouts (for VLSI). ACM Doctoral Disser-
tation Award Series. MIT Press, Cambridge, MA, 1983.

[26] P. T. Metaxas, G. E. Pantziou, and A. Symvonis. Parallel h-v drawings of binary
trees. In Proc. 5th Annu. Internat. Sympos. Algorithms Comput., volume 834 of
Lecture Notes Comput. Sci., pages 487–495. Springer-Verlag, 1994.

[27] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng.,
SE-7(2):223–228, 1981.

[28] K. J. Supowit and E. M. Reingold. The complexity of drawing trees nicely. Acta
Inform., 18:377–392, 1983.

[29] J. S. Tilford. Tree drawing algorithms. Technical Report UIUCDCS-R-81-1055,
Department of Computer Science, University of Illinois at Urbana-Champaign,
1981.

[30] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput.,
C-30(2):135–140, 1981.

[31] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. – Pract.
Exp., 20(7):685–705, 1990.

[32] C. Wetherell and A. Shannon. Tidy drawing of trees. IEEE Trans. Softw. Eng.,
SE-5(5):514–520, 1979.

	Introduction
	Δ-Confluent Graphs
	Distance-Hereditary Graphs
	Elimination Sequence to Δ-Confluent Tree

	Visualizing the Δ-Confluent Graphs
	Orthogonal Straight-Line Δ-Confluent Drawings
	Hexagonal Δ-Confluent Drawings

	More About Δ-Confluent Graphs

