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We investigate whether the volatility risk premium is negative by examining the statis-
tical properties of delta-hedged option portfolios (buy the option and hedge with stock).
Within a stochastic volatility framework, we demonstrate a correspondence between the
sign and magnitude of the volatility risk premium and the mean delta-hedged portfolio
returns. Using a sample of S&P 500 index options, we provide empirical tests that have
the following general results. First, the delta-hedged strategy underperforms zero. Sec-
ond, the documented underperformance is less for options away from the money. Third,
the underperformance is greater at times of higher volatility. Fourth, the volatility risk
premium significantly affects delta-hedged gains, even after accounting for jump fears.
Our evidence is supportive of a negative market volatility risk premium.

The notion that volatility of equity returns is stochastic has a firm foot-
ing in financial economics. However, a less than understood phenomenon
is whether volatility risk is compensated, and whether this compensation is
higher or lower than the risk-free rate. Is the risk from changes in market
volatility positively correlated with the economy-wide pricing kernel pro-
cess? If so, how does it affect the equity and option markets? Evidence that
market volatility risk premium may be nonzero can be motivated by three
empirical findings:

Purchased options are hedges against significant market declines. This
is because increased realized volatility coincides with downward market
moves [French, Schwert, and Stambaugh (1987) and Glosten, Jagannathan,
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and Runkle (1993)]. One economic interpretation is that buyers of mar-
ket volatility are willing to pay a premium for downside protection. The
hedging motive is indicative of a negative volatility risk premium.

At-the-money Black–Scholes implied volatilities are systematically and
consistently higher than realized volatilities [Jackwerth and Rubinstein
(1996)]. A potential explanation for this puzzling empirical regularity is
that the volatility risk premium is negative. Ceteris paribus, a negative
volatility risk premium increases the risk-neutral drift of the volatility pro-
cess and thus raises equity option prices.

Equity index options are nonredundant securities [Bakshi, Cao, and Chen
(2000) and Buraschi and Jackwerth (2001)]. Index option models omitting
the economic impact of a market volatility risk premium may be inconsis-
tent with observed option pricing dynamics.

This article investigates, both theoretically and empirically, whether the
volatility risk premium is negative in index option markets. This is done with-
out imposing any prior structure on the pricing kernel and without parame-
terizing the evolution of the volatility process. The setup is a portfolio of a
long call position, hedged by a short position in the stock, such that the net
investment earns the risk-free interest rate. The central idea underlying our
analysis is that if option prices incorporate a nonzero volatility risk premium,
then we can infer its existence from the returns of an option portfolio that
has dynamically hedged all risks except volatility risk.

If volatility is constant, or the price process follows a one-dimensional
Markov diffusion, then our theoretical analysis implies that the net gain,
henceforth “delta-hedged gains,” on the delta-hedged portfolio is precisely
zero. A similar conclusion obtains when volatility is stochastic, but volatility
risk is unpriced. In this particular case, we show that the distribution of the
delta-hedged gains has an expected value of zero. However, if volatility risk
is priced, then the sign and magnitude of average delta-hedged gains are
determined by the volatility risk premium.

Our theoretical characterizations point to empirical implications that can
be tested using discrete delta-hedged gains. First, in the time series, the
at-the-money delta-hedged gains must be related to the volatility risk pre-
mium. Second, cross-sectional variations in delta-hedged gains (in the strike
dimension) are restricted by the sensitivity of the option to volatility (i.e., the
vega). Our framework allows us to differentiate between the volatility risk
premium and the jump-fear underpinnings of delta-hedged gains.

We test model implications using options written on the S&P 500
index. Our empirical specifications are supportive of the following general
results:

• The delta-neutral, positive vega strategy that buys calls and hedges with
the underlying stock significantly underperforms zero. On average, over
all strike and maturity combinations, the strategy loses about 0.05% of

528



Delta-Hedged Gains

the market index, and about 0.13% for at-the-money calls. This under-
performance is also economically large; for at-the-money options, this
amounts to 8% of the option value.

• Cross-sectional regression results indicate that delta-hedged gains are
negatively related to vega, after controlling for volatility and option
maturity. Consistent with our predictions, the hedged gains are maxi-
mized for at-the-money options. Controlling for moneyness, the under-
performance is greater when the hedging horizon is extended. These
results are robust across time, and to the inclusion of put options.

• At times of higher volatility, this underperformance is even more neg-
ative. The losses on long call positions persist throughout the sam-
ple period and cannot be reconciled by a downward trending market
volatility.

Both the cross-sectional and time-series tests provide evidence that support
the hypothesis of a nonzero volatility risk premium.1 In particular, the results
suggest that option prices reflect a negative market volatility risk premium. To
confirm the hedging rationale underlying a negative volatility risk premium,
we empirically estimate the option vega, and verify that it is strictly positive.
Moreover, we show that options become more expensive (as measured by
implied volatility) after extreme market declines.

Negative delta-hedged gains could be consistent with jump risk. This
hypothesis is explored in three ways. First, we examine whether measures
of asymmetry and peakedness of the risk-neutral distribution (jump-fear sur-
rogates) are linked to losses on delta-hedged strategies. We find that, while
risk-neutral skewness helps explain some portion of delta-hedged gains for
short-dated options, the volatility risk premium is the predominant explana-
tory factor for delta-hedged gains at all maturities. Second, we investigate
delta-hedged gains in a precrash sample, and again find that the average
excess return on delta-hedged portfolio is negative for both calls and puts.
Finally, we observe that delta-hedged gains for options bought immediately
after a tail event are not substantially different for negative versus positive
returns. In summary, the jump-fear explanation, although plausible, cannot be
the sole economic justification for systematic losses incurred on delta-hedged

1 Coval and Shumway (2001) and Buraschi and Jackwerth (2001) provide additional evidence on the possible
existence of a nonzero volatility risk premium. For instance, the statistical examination in Buraschi and
Jackwerth supports stochastic models with multiple priced factors. Our article differs from existing treatments
in several respects. First, we provide an analytical characterization that links the distribution of the gains
on a delta-hedged option portfolio to the underlying risk sources. Specifically we show a correspondence
between the sign of the mean delta-hedged gains and the sign of the volatility risk premium. Economically
the magnitude of the market volatility risk premium is connected to the value of the option as a hedge. Second,
our modeling framework provides an explicit set of hypotheses for testing whether the market volatility risk
premium is negative. Instrumental to this thrust is whether priced volatility risks or jumps are the primary
source of the underperformance of delta-hedged portfolios. For related innovations, we refer the reader to Jack-
werth and Rubinstein (1996), Bakshi, Cao and Chen (1997), Dumas, Fleming, and Whaley (1998), Poteshman
(1998), Benzoni (1999), Bates (2000), Chernov and Ghysels (2000), Heston and Nandi (2000), Buraschi and
Jackwerth (2001), Anderson, Benzoni, and Lund (2002), Chernov et al. (2002), Duan, Popova, and Ritchken
(2002), Jones (2002), Pan (2002), and Eraker, Johannes, and Polson (2003).
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portfolios. However, stochastic volatility models with a negative volatility
risk premium show promise in reconciling this observation.

The rest of the article is organized as follows. Section 1 formulates our
theoretical analysis of delta-hedged gains in a stochastic volatility and jump
setting. Section 2 discusses the data and variable definitions. The statisti-
cal properties of delta-hedged gains are described in Section 3. Sections 4
and 5, respectively, examine the cross-sectional and time-series implications
between delta-hedged gains and the volatility risk premium. Section 6 inves-
tigates whether volatility risk premium explains delta-hedged gains in the
presence of jump factors. Section 7 concludes. All technical details are in
the appendix.

1. Delta-Hedged Gains and the Volatility Risk Premium

This section describes the distribution of the gain on a portfolio of a long
position in an option, hedged by a short position in the underlying stock,
such that the net investment earns the risk-free interest rate. We call the
gain on the hedged portfolio the “delta-hedged gains.” We first develop the
relevant theory in Section 1.1, assuming that volatility of equity returns is
constant, and then relax this assumption in Section 1.2 by allowing volatility
to be stochastic. The theoretical implications are then used in Section 1.3
to motivate empirical tests about the negative volatility risk premium. Our
analysis also shows how the presence of jumps can contribute to the under-
performance of delta-hedged equity portfolios.

To formalize main ideas, let C�t� ��K� represent the price of a European
call maturing in � periods from time t, with strike price K. Denote the cor-
responding option delta by ��t� ��K�. Define the delta-hedged gains, �t� t+� ,
as the gain or loss on a delta-hedged option position, where the net (cash)
investment earns the risk-free rate

�t� t+� ≡ Ct+� −Ct −
∫ t+�

t
�u dSu−

∫ t+�

t
r�Cu−�uSu�du� (1)

where St is the time t price of the underlying (nondividend paying) stock
and r is the constant risk-free interest rate. In Equation (1), we have used the
shorthand notation Ct ≡C�t� �� and �t ≡��t� ��= �Ct/�St for compactness.
The expected �t� t+� can be interpreted as the excess rate of return on the
delta-hedged option portfolio. Relating delta-hedged gains to the volatility
risk premium is our primary objective throughout.

1.1 Delta-hedged gains under constant volatility
Let the stock price follow a geometric Brownian motion under the physical
probability measure (with constant drift, 	, and constant volatility, 
):

dSt
St

= 	dt+
 dW 1
t � (2)

530



Delta-Hedged Gains

By Itô’s lemma, we can write the call price as

Ct+� = Ct +
∫ t+�

t
�u dSu+

∫ t+�

t

(
�Cu

�u
+ 1

2

2S2

u

�2Cu

�S2
u

)
du� (3)

Standard assumptions also show that the call option price is a solution to the
Black–Scholes valuation equation,

1
2

2S2 �

2C

�S2
+ rS

�C

�S
+ �C

�t
− rC = 0� (4)

Using Equations (3) and (4), it follows that

Ct+� = Ct +
∫ t+�

t
�u dSu+

∫ t+�

t
r�Cu−�uSu�du� (5)

which is the statement that the call option can be replicated by trading a
stock and a bond. Combining Equation (5) with the definition of delta-hedged
gains in Equation (1), it is apparent that, with continuous trading, �t� t+� = 0
over every horizon � . More generally, it can be verified that �t� t+� = 0 is a
property common to all one-dimensional Markov Itô price processes: dSt

St
=

	t�St
 dt+
t�St
 dW
1
t .

When the hedge is rebalanced discretely, �t� t+� will not necessarily be
zero. However, Bertsimas, Kogan, and Lo (2000) show that the delta-hedged
gains have an asymptotic distribution that is symmetric with zero mean.
Consider a portfolio of an option that is hedged discretely N times over
the life of the option, where the hedge is rebalanced at each of the dates tn,
n= 0�1� � � � N −1 (where we define t0 = t, tN = t+�) and kept in place over
the period tn+1 − tn = �/N . Define the discrete delta-hedged gains, �t� t+� , as

�t� t+� ≡ Ct+� −Ct −
N−1∑
n=0

�tn

(
Stn+1

−Stn
)− N−1∑

n=0

r
(
Ct −�tn

Stn
) �
N
� (6)

where �tn
≡ �Ctn

/�Stn . From Bertsimas, Kogan, and Lo (2000),
√
N� ⇒

1√
2

∫ t+�

t

2S2

u
�2Cu

�S2
u
dWu, where Wu is a Wiener process, independent of W 1

u .
Thus the asymptotic distribution of the discretely hedged option portfolio has
a mean of zero and is symmetric. Simulation results in Bertsimas, Kogan, and
Lo as well as those reported in Figlewski (1989) suggest that the distribution
of �t� t+� is centered around zero for a wide range of parameters and for low
values of N (about 10).

We show next that if we relax the geometric Brownian motion assumption
for the stock price and allow for stochastic volatility outside of the one-
dimensional Markov diffusion context, then �t� t+� is centered around zero
unless volatility risk is priced. Therefore this setting allows us to construct a
test to examine whether the volatility risk premium is negative.
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1.2 Delta-hedged gains under stochastic volatility
Consider a (two-dimensional) price process that allows stock return volatility
to be stochastic (under the physical probability measure),

dSt
St

= 	t�St�
t
 dt+
t dW
1
t � (7)

d
t = �t�
t
 dt+�t�
t
 dW
2
t � (8)

where the correlation between the two Weiner processes, W 1
t and W 2

t , is �.
It may be noted that volatility, 
t , follows an autonomous stochastic pro-
cess; the drift coefficient, �t�
t
, and the diffusion coefficient, �t�
t
, are
functionally independent of St . Therefore by Itô’s lemma,

Ct+� = Ct +
∫ t+�

t

�Cu

�Su
dSu+

∫ t+�

t

�Cu

�
u

d
u+
∫ t+�

t
bu du� (9)

where defining bu ≡ �Cu

�u
+ 1

2

2
uS

2
u
�2Cu

�S2
u
+ 1

2�
2
u
�2Cu

�
2
u
+��u
uSu

�2Cu

�Su�
u
. The valua-

tion equation that determines the price of the call option is

1
2

2
t S

2 �
2C

�S2
+ 1

2
�2
t

�2C

�
2
+��t
tS

�2C

�S�

+ rS

�C

�S

+ ��t −�t�

�
�C

�

+ �C

�t
− rC = 0� (10)

where �t�
t
 ≡ − covt�
dmt

mt
� d
t� represents the price of volatility risk, for a

pricing kernel process mt , and covt�� �� is a conditional covariance operator
divided by dt. In general, the volatility risk premium will be related to risk
aversion and to the factors driving the pricing kernel process. Rearranging
Equation (10), it follows that bu is also equal to

bu = r

(
Cu−Su

�Cu

�Su

)
− ��u�
u
−�u�
u
�

�Cu

�
u

� (11)

Substituting for bu in the stochastic differential equation [Equation (9)], we
obtain

Ct+� = Ct +
∫ t+�

t

�Cu

�Su
dSu+

∫ t+�

t

�Cu

�
u

d
u

+
∫ t+�

t

(
r

(
Cu−Su

�Cu

�Su

)
− ��u�

−�u�

�

�Cu

�
u

)
du� (12)
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This equation can be further simplified by substituting for d
u in the second
integral to give

Ct+� = Ct +
∫ t+�

t

�Cu

�Su
dSu+

∫ t+�

t
r

(
Cu−

�Cu

�Su
Su

)
du

+
∫ t+�

t
�u

�Cu

�
u

du+
∫ t+�

t
�u

�Cu

�
u

dW 2
u � (13)

We are now ready to prove the following relationships between delta-hedged
gains, the volatility risk premium, and the option vega.

Proposition 1. Let the stock price process follow the dynamics given in
Equations (7) and (8). Moreover, suppose the volatility risk premium is of
the general form �t�
t
. Then,

1. The delta-hedged gains, �t� t+� , is given by

�t� t+� =
∫ t+�

t
�u�
u


�Cu

�
u

du+
∫ t+�

t
�u�
u


�Cu

�
u

dW 2
u � (14)

and from the martingale property of the Itô integral

Et��t� t+� �=
∫ t+�

t
Et

(
�u�
u


�Cu

�
u

)
du� (15)

where �Ct

�
t
represents the vega of the call option, and Et��� is the

expectation operator under the physical probability measure.
2. If volatility risk is not priced in equilibrium, that is, �t�
t
≡ 0, then

Et��t� t+� �= O�1/N�� (16)

where the discrete delta-hedged gain, �t� t+� , is as defined previously
in Equation (6).

The proposition states that, with continuous trading, if volatility risk is not
priced, the delta-hedged gains are, on average, zero. In practice, the hedge is
rebalanced discretely over time, and this may bias the average �t� t+� away
from zero. However, in Equation (16), we show that this bias is small. That is,
even if we allow for discrete trading, for both the Black–Scholes model
and the stochastic volatility model, the mean delta-hedged gain is zero, up
to terms of O�1/N�.2 If volatility risk is priced, Equation (15) shows that
Et��t� t+� � is determined by the price of volatility risk, �t , and the vega of

2 The distribution of the delta-hedged gains can be described in terms of single and multiple Itô integrals. It is
difficult to represent multiple Itô integrals in increments of their component Wiener processes [Milstein
(1995)]. Therefore, unlike the Black–Scholes case, the asymptotic distribution of

√
N�t� t+� cannot be

described succinctly.
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the option, �Ct/�
t . The statistical tests in Buraschi and Jackwerth (2001)
support a nonzero volatility risk premium.

There are two specific testable implications that follow from Equation (15).
First, as the vega is positive, a negative (positive) �t implies that Et��t� t+� �
will be negative (positive). In particular, a negative volatility risk premium is
consistent with the notion that market volatility often rises when the market
return drops. To see this, consider a Lucas–Rubinstein investor that is long
the market portfolio and has a coefficient of relative risk aversion �. Under
this particular assumption, the pricing kernel mt = S

−�
t . An application of

Itô’s lemma yields �t�
t
 = � covt�
dSt
St
� d
t�, so that a negative correlation

between the stock return and the volatility process implies a negative �t . In
our modeling paradigm, there is a one-to-one correspondence between the
sign of �t and the sign of mean delta-hedged gains.

Economically, purchased options are hedges against market declines
because increased realized volatility tends to occur when market falls
significantly. Consequently, in the stochastic volatility setting, the underper-
formance of the delta-hedged portfolio is tantamount to the existence of a
negative volatility risk premium. Our framework allows one to determine the
sign of the volatility risk premium without imposing any strong restrictions
on the pricing kernel process, and it also does not rely on the identification or
the estimation of the volatility process. The quantitative strategy of Equation
(6) is relatively easy to implement in option markets.

Second, as the option vega is largest for near-the-money options, the abso-
lute value of Et��t� t+� ) is also largest for near-the-money options. If, in
addition, the volatility risk premium is negative, as we have hypothesized, the
underperformance of the delta-hedged portfolio should decrease for strikes
away from at-the-money. We may note that, as option vega’s are negligi-
ble, especially for deep in-the-money options, these options have little to say
about the nature of the volatility risk premium. Although our focus has been
on calls, all the results also apply to puts.

1.3 Testable predictions
Before we can derive precise empirical implications from Equation (15), we
need to simplify the right-hand side, Et

∫ t+�

t
�u�Cu/�
u du, in terms of the

contemporaneous stock price and the level of volatility. To streamline dis-
cussion, define g�St�
t�≡ �t�
t


�Ct

�
t
, and consider the Itô–Taylor expansion

of
∫ t+�

t
g�Su�
u�du [Milstein (1995)]:∫ t+�

t
g�Su�
u�du

= g�St�
t�
∫ t+�

t
du+

∫ t+�

t

∫ u

t
��g�Su′ �
u′�
du

′ du

+
∫ t+�

t

[∫ u

t
�1�g�Su′ �
u′�
dW

1 +
∫ u

t
�2�g�Su′ �
u′�
dW

2

]
du�
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where the (infinitesimal) operators are defined as ���
= �
�t
��
+	tSt

�
�St

��
+
�t

�
�
t

��
+ 1
2


2
t S

2
t

�2

�S2
t
��
+ 1

2�
2
t

�2

�
2
t
��
+ 
tSt�t

�2

�St�
t
��
, �1��
 = 
tSt

�
�St

��
, and
�2��
 = �t

�
�
t

��
. Using the martingale property of the Itô integral and
Equation (15), we therefore have

Et��t� t+� � = g�St�
t��+Et

∫ t+�

t

∫ u

t
��g�Su′ �
u′�
du

′ du� (17)

=
�∑
n=0

�1+n

�1+n�!�
n

[
�t

�Ct

�
t

]
� (18)

by a recursive application of the Itô–Taylor expansion. Observe that
Et��t� t+� � is abstractly related to the current stock price and volatility,
and the parameters of the option price, especially the maturity and money-
ness. To develop testable empirical specifications, we now exploit certain
option properties and derive the functional form of each term in Equation
(18). In the discussions that follow, we assume that all parameters of the
option price are held fixed.

For a broad class of option models, the call price is homogeneous of
degree one in the stock price and the strike price [Merton (1973)]. So for
a fixed moneyness, the call price scales with the price of the underlying
asset St . In this case the option vega, �Ct/�
t , also scales with St . We may
therefore separate g�St�
t� = �t�
t� �� y�St , for option moneyness y, and
�t��� independent of St . If �Ct/�
t , and therefore g�St�
t� scales with St
and volatility risk is priced, then we assert that �t� t+� also scales with St ,
where the scaling factor is a function of 
t (and other parameters of the
option contract). To prove this we make use of Equation (18), the standard
assumption that the stock price, St , follows a proportional stochastic process
and the following property of � as it operates on a function g:

Lemma 1. Consider g�St�
t� = �t�
t� �� y�S
�, for any � ∈ �, where �t

is at most a function of maturity and volatility. If St obeys a proportional
stochastic process, then �n�g�S�
�
 is also proportional to S

�
t , for all n ∈

�1�2�3� � � �.

The lemma, which is proved in the appendix, shows that if g�St�
t� scales
with St , so does �n�g
. It follows from Equation (18) that �t� t+� is also
proportional to St . Thus we can represent Et��t� t+� ) as

Et��t� t+� �= St × ft�
t� �� y
� (19)

for some ft�·
 that is determined by the functional dependence of �t and
�Ct/�
t on 
t , and the parameters of the option price, in particular, the
option moneyness and maturity. That Et��t� t+� �/St varies in the time series
with physical volatility, 
t , and in the cross section (for a fixed 
t) with the
option moneyness, y, forms the basis of the empirical tests.
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To derive the cross-sectional test, we keep 
t as fixed, and write Et��
i
t� t+� �/

St = ft��� yi� t
, for moneyness corresponding to strike price Ki. It is impor-
tant to keep 
t as fixed, as the option price is nonlinear in 
t for away-from-
the-money strikes. In the absence of any information regarding the form
of the nonlinearity, it is difficult to specify a model and the correspond-
ing econometric test that allows both 
t and yi� t to vary simultaneously.
Given a suitable model for ft��� y
, we can then test the relation between
Et��

i
t� t+� �/St and yi� t . Because the vega of the option and thus the absolute

value of Et��
i
t� � � is, ceteris paribus, maximized for at-the-money options,

and decreases for strikes away from at-the-money, it follows that ft�y
 must
also be of such a functional form (controlling for volatility). We can reject
the hypothesis of a nonzero volatility risk premium if we do not find this
hypothesized relation between Et��

i
t� t+� �/St and yi� t . Thus the cross section

of delta-hedged gains contains information about the volatility risk premium.
Next, to develop the time-series relation between E��t� t+� �/St and 
t ,

consider Equation (19) applied to at-the-money options. It has been noted
elsewhere [Stein (1989)] that the short-term at-the-money call is almost linear
in volatility. If Ct is linear in 
t , �Ct/�
t will be independent of 
t , and
the functional dependence of �t� t+� on 
t will be determined only by �t

and the underlying stochastic volatility process. Given the functional form
of �t�
t
 and the underlying volatility process, we can infer the functional
form of �t� t+� . For at-the-money options, we may specialize ft�
t� �� y
 =
f̄t�y� �
f̂t�
t
. To make this point precise, we develop the functional form of
at-the-money �t� t+� for the Heston (1993) model. In his model, the volatility
risk premium is linear in volatility [see also the set of assumptions in Bates
(2000), Pan (2000), and Eraker, Johannes, and Polson (2003)].

Proposition 2. Consider the special case of the stock price process in Equa-
tions (7) and (8), where ��
t
=−�
t and ��
t
= �. Specifically,

dSt
St

= 	t�St�
t
 dt+
t dW
1
t � (20)

d
t =−�
t dt+� dW 2
t � (21)

and the volatility risk premium is linear in volatility, as in �t�
t
 = �
t .
Let the call option vega be proportional to St and independent of 
t , as
in �Ct/�
t = �t��� y�St . Then the delta-hedged gains for near-the-money
options must be

Et��t� t+� �= ��t���St
t� (22)

where �t��� > 0 is defined in the appendix. At-the-money delta-hedged gains
are negative only if � < 0.
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Specifically for at-the-money options, Proposition 2 shows that if �t is pro-
portional to 
t , so is the scaled delta-hedged gains, Et��t� t+� �/St . Although
not done here, it is straightforward to extend the analysis to other models, in
which case, more generally, Et��t� t+� �/St may be a polynomial in 
t [i.e.,
Hull and White (1987)]. We can thus construct a time-series test relating
the scaled at-the-money delta-hedged gains to physical return volatility (or
equivalently the volatility risk premium). We can reject the hypothesis of
a zero-volatility risk premium if we find a relation between at-the-money
Et��t� t+� �/St and any function of physical volatility.

In summary, our theoretical results indicate that the bias in �t� t+� from
discrete hedging is small relative to the impact of a volatility risk premium
(as suggested by Proposition 1). Moreover, the mean at-the-money delta-
hedged gain (normalized by the stock price) is approximately linear in the
level of physical volatility. We verified both these results via simulations.
More exactly, the delta-hedged strategy typically underperforms (overper-
forms) zero with negative (positive) volatility risk premium. In addition, the
negative bias is related to the change that occurs because a negative volatility
risk premium increases the option price. In large part, the level of under-
performance is greater with higher volatility. The details are provided in
appendix B.

Before we operationalize and implement the cross-sectional and time-
series tests using options data, one question remains unresolved: How is the
performance of delta-hedged strategies affected by jumps? To address this
question, we appeal to a jump-diffusion model for the equity price [Bates
(2000), Merton (1976), and Pan (2000)]. Consider

dSt
St

= 	t�St�
t
 dt+
t dW
1
t + �ex −1�dqt −	J�J
t dt� (23)

where the volatility dynamics are as displayed in Equation (8). This frame-
work allows for both stochastic volatility as well as random jumps to affect
delta-hedged gains. The setup is briefly as follows. First, in Equation (23),
the variable qt represents a Poisson jump counter with volatility-dependent
intensity �J
t . Denote the physical density of the jump size, x, by q�x
. Sec-
ond, we posit that x and qt are orthogonal to each other and to all sources
of uncertainty. In addition, if we assume that the mean of ex − 1 is 	J , the
compensator is 	J�J
t dt, which is the final term in Equation (23). Lastly,
to isolate the impact of jump size and jump intensity on delta-hedged gains,
for now we assume that only jump size is priced. The jump risk premium
will therefore introduce a wedge between the physical density, q�x
, and the
risk-neutral density, q∗�x
. Specifically, assume that the risk-neutral mean of
ex −1 is 	∗

J .

537



The Review of Financial Studies / v 16 n 2 2003

In the stochastic environment of Equation (23), the delta-hedged gains are
equal to (see the appendix):

Et��t� t+� � =
∫ t+�

t
Et

(
�u�
u


�Cu

�
u

)
du+	∗

J�J

∫ t+�

t
Et

(
�Cu

�Su

uSu

)
du

−�J

∫ t+�

t

u du

{∫ �

−�
Cu�Sue

x�q∗�x
dx

−
∫ �

−�
Cu�Sue

x�q�x
dx

}
� (24)

The first term is a consequence of the volatility risk premium and the other
two terms are a consequence of jumps. When �u = 0, Equation (24) imparts
the intuition that delta-hedged gains are negative provided the mean jump
size is negative (i.e., 	∗

J < 0), and there are occasional price discontinuities
(i.e., �J > 0). In theory, the fatter left tails of the equity price distribution
can lead to the underperformance of delta-hedged portfolios (the sign of
return skewness is determined by the sign of the mean jump size and �J

controls excess kurtosis). Equation (24) suggests the effect of jumps on delta-
hedged gains is most pronounced for in-the-money options. In our extended
framework, the bias in delta-hedged gains is partly due to price volatility risk
and partly due to jump exposures.

Observe that the final double integral term in Equation (24) is typically
negative. This is because the option price evaluated at the risk-neutral
density of the jump size is generally higher than under the physical density.
Moreover, when the jump risk premium is volatility dependent, as is the
case here, the component of delta-hedged gains due to jump risk is related
to variations in volatility. In particular, the higher the physical volatility,
the more negative are the total delta-hedged gains. Now, if one addition-
ally assumes that jump intensity is priced (�J gets altered to �∗

J ), the
expression for Et��t� t+� � must be modified. Specifically the last two terms
must be replaced by 	∗

J�
∗
J

∫ t+�

t
Et�

�Cu

�Su

uSu�du−�∗

J

∫ t+�

t

u

∫�
−��Cu�Sue

x�−
Cu�Su��q

∗�x
dx du + �J

∫ t+�

t

u

∫�
−��Cu�Sue

x� − Cu�Su��q�x
dx du. This
analysis suggests that both forms of jump risk will lead to the underperfor-
mance of delta-hedged portfolios. As we will see, Equation (24) provides the
impetus for empirically differentiating between the negative volatility risk
premium and the jump fear explanations for negative delta-hedged portfolio
returns.

2. Description of Option Data and Variable Definitions

All empirical tests employ daily observations on S&P 500 index options.
The option prices consist of time-stamped calls and puts, and correspond
to the last bid-ask quote reported before 3:00 pm CST. Rubinstein (1994)
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and Jackwerth and Rubinstein (1996) have suggested that the precrash and
postcrash index distributions differ considerably. The initial sample date was
accordingly chosen to begin from January 1, 1988, to avoid mixing precrash
and postcrash options [see also Christensen and Prabhala (1998)]. Our option
sample ends on December 30, 1995.

The option universe is constructed in the following way. First, the option
data is screened to eliminate option prices that violated arbitrage bounds.
Specifically, we exclude call options whose price is outside of the range
�Se−z� −e−r�K�Se−z� � for dividend yield z. Second, to minimize the impact
of recording errors, we discard all options that have Black–Scholes implied
volatilites exceeding 100%, or less than 1%. Third, we deleted options with
maturity less than 14 days.

In addition, all options with maturities longer than 60 days are elimi-
nated. Our present focus on short-term options allows us to reduce the impact
of stochastic interest rates. Finally, deep in-the-money option prices can be
unreliable due to the lack of trading volume. As in Jackwerth and Rubin-
stein (1996) and Buraschi and Jackwerth (2001), deep away-from-the-money
options are omitted. Our option sampling procedure results in 36,237 calls
and 35,030 puts.

We require a series for dividends, interest rates, and index return volatil-
ity. First, following a prevalent practice, we assume that daily dividends are
known over the life of the option contract. That is, we take the actual divi-
dends from the S&P 500 bulletin and subtract the present discounted value
of dividends from the contemporaneous stock price. The adjusted stock price
is employed in our empirical tests throughout.

The interest rates are computed using the procedure outlined in Jackwerth
and Rubinstein (1996) and Buraschi and Jackwerth (2001). Each day we infer
the interest rate using the put-call parity. Specifically we use strike price and
maturity-matched pairs of puts and calls, quoted within a 1-minute interval.
The borrowing rate is computed as rb = −�1/�� log��Se−z� −Ca+Pb�/K�.
Likewise, the lending rate is rl =−�1/�� log��Se−z� −Cb+Pa�/K� for each
pair of bid-ask call and put quotes, �Cb�Ca� and �Pb�Pa�. The daily rate
used in the tests is the midpoint of rb and rl, averaged across all strikes of a
specific maturity.

For robustness, we adopt two measures of return volatility. One, we esti-
mate a GARCH(1,1) model using daily S&P 500 returns over the entire
period:

Rt−1� t = �R+ �t� (25)


2
t = a0 +a1�

2
t−1 +a2


2
t−1� and� (26)

�t = 
t t�  t ∼ i.i.d. � �0�1�� (27)
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where the �-period return is defined as Rt� t+� ≡ log�St+�/St� and 
t is the
conditional volatility. Relying on the GARCH model estimates, the �-period
GARCH volatility estimate is

VOLg
t ≡

√
252
�

t∑
n=t−�


̂2
n � (28)

where 
̂n is the fitted value obtained from the GARCH estimation. We exper-
imented with other GARCH specifications and obtained similar volatility
estimates. The GARCH volatility measure also allows us to construct a daily
volatility series for estimating the hedge ratio in Equation (6).

The other volatility measure is the estimate of the sample standard devia-
tion, as in

VOLh
t =

√
252
�

t∑
n=t−�

�Rn−1� n−�R�2� (29)

where �R is now the average daily return. This rolling estimation proce-
dure produces volatility estimates, with estimation error serially uncorrelated
through time for nonoverlapping periods.

To construct an empirical test design that limits overlapping observations,
we will sometimes appeal to a sample of options with constant maturity (e.g.,
30 days and 44 days). Over our sample period, the S&P 500 index options
have continual option quotes available only for the two near months. Thus,
to build as large a series as possible and yet limit overlap, we employ options
of maturity no more than 60 days.

Define the option moneyness as y ≡ Se�r−z��/K. Consequently a call (put)
option is classified as out-of-the-money if it has moneyness corresponding to
y < 1�y > 1�. For reasons already discussed, our empirical work is restricted
to the ±10% moneyness range. To maintain tractability, much of our analysis
centers on calls.

3. Statistical Properties of Delta-Hedged Gains

We compute the discrete delta-hedged gains for each call option in two steps:
First, at time t, one call is bought at the closing price, Ct . Second, the call is
hedged discretely until expiration, t+� , with the hedge ratio, �t , recomputed
daily at the close of the day price. The total delta-hedged gain for each option
up to the maturity date is then calculated as

�t�t+� =max�St+�−K�0�−Ct−
N−1∑
n=0

�tn

(
Stn+1

−Stn
)−N−1∑

n=0

rn
(
Ct−�tn

Stn
) �
N
�

where t0 = t� tN = t+� is the maturity date, and �tn
is the hedge ratio at tn.

In our implementation procedure, the interest rate is updated on a daily basis.
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For tractability, �tn
is computed as the Black–Scholes hedge ratio, �tn

=
� �d1�Stn � tn�
, where � �·
 is the cumulative normal distribution and

d1 ≡
1


t� t+�

√
�n

log�yn�+
1
2

t� t+�

√
�n� (30)

All our delta-hedged calculations allow for time-varying volatility, as
reflected by the use of GARCH volatility in Equation (30). Although the
Black–Scholes hedge ratio is a reasonable estimate of the true hedge ratio
when volatility is not correlated with the stock return process, it will
be biased otherwise. In a later section we will examine the impact of a
misspecified delta.

Panel A of Table 1 provides descriptive statistics for delta-hedged gains
grouped over maturity and moneyness combinations. Specifically, we report
the averages for (i) dollar delta-hedged gains �t� t+� , (ii) delta-hedged gains
scaled by the index level �t� t+�/St (in percent), and (iii) delta-hedged gains
scaled by the call price �t� t+�/Ct (in percent). For at-the-money calls, and
for each maturity, the delta-hedging strategy loses money. On average, over
all moneyness and maturities, the strategy loses about 0.05% of the index
level, and for at-the-money calls (i.e., y ∈ �−2�5%�2�5%
), the strategy loses
about 0.10%. Moreover, the mean �t� t+�/Ct over the full eight-year sample
is −12�18%. It may be noted that the reported standard errors, computed as
the sample standard deviation divided by the square root of the number of
options, are relatively small. The delta-hedged gains are statistically signifi-
cant in all moneyness and maturity categories.

The average loss on the delta-hedged strategy of about $0.43 for at-the-
money options also appears high compared with the mean bid-ask spread of
$0.375. This finding implies that the buyer of the call (“long” volatility) is
paying the seller of the call (“short” volatility) a premium of about $0.43
per call. The economic impact of this premium is substantial, given the large
volume of S&P 500 contracts traded. The S&P 500 trading volume in 1991
was about 11 million contracts, so that the dollar impact of this premium
could be as high as $500 million. The cumulative impact over the eight-year
period is on the order of several billion dollars.

We can make two additional empirical observations that appear broadly
consistent with a volatility risk premium. First, the mean delta-hedged gains
for away-from-the-money strikes are mostly negative, and less so relative to
at-the-money calls. Consider options with moneyness y ∈ �−7�50%�−5%�
versus options with moneyness y ∈ �−2�50%�0%�. In the “All” category,
we can observe that the dollar delta-hedged gains is $−0�28 versus $−0�42.
Because the vega for away-from-the-money options is small, the impact of
the volatility risk premium should be small. Second, the losses on delta-
hedged portfolios generally deepen when the hedging horizon is extended
from 14–30 days to 31–60 days. For at-the-money options, the dollar loss
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Table 1
Delta-hedged gains for S&P 500 index calls

Panel A: Full sample period
� (in $) �/S (in %) �/C (in %)Moneyness 1�<0

y−1 � 14–30 31–60 All 14–30 31–60 All 14–30 31–60 All %

−10% to −7�5% 1284 −0�18 −0�37 −0�31 −0�06 −0�13 −0�11 −97�37 −56�34 −68�30 87
�0�02� �0�03� �0�02� �0�01� �0�01� �0�01� �3�81� �3�50� �2�80�

−7�5% to −5% 3619 −0�19 −0�32 −0�28 −0�06 −0�10 −0�09 −70�71 −38�13 −48�05 78
�0�01� �0�02� �0�01� �0�00� �0�01� �0�00� �3�81� �2�08� �1�87�

−5% to −2�5% 5684 −0�21 −0�38 −0�32 −0�06 −0�11 −0�09 −34�43 −11�88 −20�19 72
�0�02� �0�02� �0�02� �0�01� �0�01� �0�00� �2�57� �1�54� �1�36�

−2�5% to −0% 5903 −0�26 −0�52 −0�42 −0�06 −0�13 −0�10 −6�98 −7�95 −7�59 68
�0�04� �0�03� �0�02� �0�01� �0�01� �0�01� �1�54� �0�72� �0�73�

0% to 2.5% 5752 −0�29 −0�55 −0�45 −0�07 −0�13 −0�11 −2�93 −4�44 −3�88 68
�0�04� �0�03� �0�02� �0�01� �0�01� �0�01� �0�51� �0�31� �0�27�

2.5% to 5% 5530 −0�05 −0�26 −0�19 −0�01 −0�07 −0�05 −0�31 −1�34 −0�96 60
�0�03� �0�02� �0�02� �0�01� �0�01� �0�01� �0�19� �0�15� �0�12�

5% to 7.5% 4811 0�24 0�18 0�20 0�05 0�03 0�04 0�93 0�62 0�74 41
�0�02� �0�02� �0�02� �0�01� �0�01� �0�00� �0�10� �0�09� �0�07�

7.5% to 10% 3647 0�36 0�54 0�47 0�08 0�12 0�11 1�03 1�51 1�33 26
�0�02� �0�02� �0�02� �0�01� �0�01� �0�00� �0�07� �0�07� �0�05�

Panel B: Delta-hedged gains across the 88:01–91:12 and 92:01–95:12 subsamples
� (in $) �/S (in %) �/C (in %)Moneyness 1�<0

y−1 Sample � 14–30 31–60 All 14–30 31–60 All 14–30 31–60 All %

−10% to −7�5% Set 1 989 −0�18 −0�47 −0�36 −0�06 −0�17 −0�13 −97�34 −46�83 −65�01 86
Set 2 295 −0�10 −0�14 −0�13 −0�02 −0�03 −0�03 −97�82 −77�86 −76�73 92

−7�5% to −5% Set 1 1930 −0�22 −0�45 −0�36 −0�07 −0�16 −0�12 −68�44 −18�98 −38�60 78
Set 2 1688 −0�11 −0�20 −0�18 −0�03 −0�05 −0�04 −75�88 −54�62 −58�85 79

−5% to −2�5% Set 1 2308 −0�29 −0�45 −0�39 −0�09 −0�15 −0�13 −19�96 −7�39 −12�19 70
Set 2 3375 −0�16 −0�34 −0�28 −0�03 −0�08 −0�06 −44�94 −14�84 −25�66 73

−2�5% to −0% Set 1 2240 −0�18 −0�26 −0�23 −0�06 −0�09 −0�08 −2�39 −0�93 −1�48 63
Set 2 3668 −0�31 −0�67 −0�54 −0�07 −0�15 −0�12 −9�84 −12�17 −11�31 70

0 to 2.5% Set 1 2211 −0�08 −0�28 −0�20 −0�03 −0�09 −0�07 −0�10 −1�46 −0�96 63
Set 2 3540 −0�42 −0�72 −0�61 −0�09 −0�16 −0�13 −4�69 −6�31 −5�71 71

2.5 to 5% Set 1 2119 −0�02 −0�19 −0�12 −0�01 −0�06 −0�04 0�02 −0�83 −0�51 59
Set 2 3410 −0�08 −0�31 −0�22 −0�02 −0�07 −0�05 −0�52 −1�65 −1�24 60

5 to 7.5% Set 1 1882 0�14 0�02 0�06 0�04 0�00 0�02 0�68 0�21 0�39 50
Set 2 2928 0�31 0�27 0�29 0�07 0�05 0�06 1�10 0�88 0�96 35

7.5 to 10% Set 1 1523 0�19 0�30 0�26 0�06 0�09 0�07 0�71 1�12 0�95 38
Set 2 2123 0�50 0�69 0�62 0�10 0�14 0�13 1�30 1�76 1�60 16

We compute the gain on a portfolio of a long position in a call option, hedged by a short position in the underlying stock, such
that the net investment earns the risk-free interest rate. The discretely rebalanced delta-hedged gains, �t� t+� , are computed as

�t� t+� = max�St+� −K�0�−Ct −
N−1∑
n=0

�tn

(
Stn+1

−Stn

)−N−1∑
n=0

rn
(
Ct −�tn

Stn

) �
N

�

where the interest rate, rn , and the option delta, �tn
, are updated on a daily basis. The option delta is computed as the Black–

Scholes hedge ratio evaluated at the GARCH volatility. The rebalancing frequency, �/N , is set to 1 day. We report (i) the dollar
delta-hedged gains (�t� t+� ), (ii) the delta-hedged gains normalized by the index level (�t� t+� /St �, and (iii) the delta-hedged
gains normalized by the option price (�t� t+� /Ct ). All delta-hedged gains are averaged over their respective moneyness and
maturity category. The moneyness of the option is defined as y ≡ Se�r−z�� /K. The standard error, shown in parentheses, is
computed as the sample standard deviation divided by the square root of the number of observations. 1�<0 is the proportion of
delta-hedged gains with � < 0, and � is the number of options. Results are shown separately for options with maturity 14–30
days and 31–60 days; “All" combines the delta-hedged gains from both maturities. There are 36,237 call option observations
on the S&P 500 index. Subsample results are displayed in panel B: Set 1 corresponds to 1988:01–1991:12; Set 2 corresponds
to 1992:01–1995:12 (standard errors are small and omitted in panel B).
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over the 31–60 days maturity is almost twice the loss in the 14- to 30-day
maturity. This empirical finding tallies with the theoretical prediction that
delta-hedged gains should become more negative with maturity (because the
vega is increasing with maturity). Overall the delta-hedged gains are neg-
ative except for deep in-the-money options. That deep in-the-money calls
have positive delta-hedged gains is anomalous. We will reconcile this result
shortly.

Next, to ensure that the documented results are not driven by extremes,
we also examine the relative outcomes of positive and negative delta-hedged
gains. The last column displays the 1�<0 statistic which measures the fre-
quency of negative delta-hedged gains (consolidated over all maturities).
For at-the-money (out-of-the money) options, it is assuring that 68% (76%)
of the observations have negative gains. Therefore the observation that the
mean delta-hedged gains are negative, on average, appears robust. Moreover,
the frequency of negative delta-hedged gains rise (fall) monotonically when
options go progressively out of the money (in the money). If deep in-the-
money calls are excluded, then as much as 72% of the remaining call sample
have negative delta-hedged gains.

As seen from Panel B of Table 1, the results are robust across subsamples
(the standard errors are small and suppressed). In the rows marked Set 1 and
Set 2, we report the mean delta-hedged gains over the 88:01–91:12 and the
92:01–95:12 sample periods, respectively. Clearly the underperformance of
the delta-hedged strategy is more pronounced over the second subsample. In
yet another exercise, we examined the sensitivity of our conclusions to any
unexpected declines in index volatility (the delta-hedged portfolios suffer
losses when volatility declines). The delta-hedged gains for at-the-money
options are negative in seven of eight years. Therefore the persistent losses
on the delta-hedged portfolios cannot be attributable to any secular declines in
index volatility. Finally, to verify the results from a different options market,
we examined delta-hedged gains using options on the S&P 100 index (the
details were reported in an earlier version). Reassuringly, the mean delta-
hedged gains are also negative for S&P 100 index options. Our conclusions
are robust across sample periods as well as across both index option contracts.

Although the conventional estimates of the cross-sectional standard errors
are small in both the full sample and the subsamples, these standard errors
may not account for the fact that the theoretical distribution of �t� t+� depends
on option moneyness and maturity. We attack this problem on two fronts.
First, we construct representative option time series that are homogeneous
with respect to moneyness and maturity. Specifically we take at-the-money
call options with a fixed maturity of 30 days, 44 days, and 58 days, and delta-
hedged them until maturity. For 30-day calls we get a mean � = −$0�47
with a t-statistic of −2�34. Similarly the mean � for 44-(58-) day options
is −0�53�−0�63�, with a t-statistic of −2�90 �−2�80�. Therefore, inferences
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based on a homogeneous time series of delta-hedged gains (and standard
t-tests) also reject the null hypothesis of zero mean delta-hedged gains.

Second, the standard deviation of discrete delta-hedged gains in the con-
text of one-dimensional diffusions is known from Bertsimas, Kogan, and Lo
(2000). For Black–Scholes (see their Theorems 1 and 3), this standard devia-
tion equals K


2
√
�
�
∫ 1

0 �1−u2�−1/2 exp� �	u−
2/2+log�St/K�


2�1+u�
� du
1/2. Even though ana-

lytical, the above expression requires estimates of the expected rate of return,
	, and the volatility, 
 . We set 	= 11�6% and 
 = 11% to match the aver-
age annual index return and volatility in our sample. For a given strike K, we
compute the standard deviation of �t� t+� at each date t. Standardizing each
�t� t+� by the corresponding standard deviation results in a variable with unit
variance. Adhering to a standard practice, we then compute the t-statistic
as the average standardized � multiplied by the square root of the number
of observations. The resulting t-statistics are −5�29 for 30-day options and
−7�30 �−9�32� for 44-day (58-day) options. That the standard deviation of
the distribution of �t� t+� decreases with maturity when the hedge ratio is
updated daily is to be expected [see the simulations in Table 1 of Bertsimas,
Kogan, and Lo (2000)]. Reinforcing our earlier results, under Black–Scholes,
we can easily reject the hypothesis that Et��t� t+� �= 0. We tried other com-
binations of 	 and 
 , and obtained similar results. It would be of interest to
extend this analysis by theoretically characterizing the distribution of delta-
hedged gains under stochastic volatility.

Now return to the result that the delta-hedged gains are typically positive
for deep in-the-money options, with moneyness greater than 5%. The relative
illiquidity for in-the-money calls may upwardly bias the mean delta-hedged
gains. Because there is not much trading activity, the market makers often
choose not to update in-the-money call prices in response to small changes in
the index level [Bakshi, Cao, and Chen (2000)]. It is possible that illiquidity
of in-the-money options contribute to positive delta-hedged portfolio returns.
To verify this conjecture, and to understand the sources of this phenomena,
in Table 2 we examine delta-hedged gains for out-of-money puts, which are
equivalent to in-the-money calls. Relative to in-the-money calls, the out-of-
money puts are more actively traded. Supportive of our conjecture, and in
contrast to the empirical results from in-the-money calls, the out-of-money
put delta-hedged gains are now strongly negative:

• The average delta-hedged gains are −$1�03 and −$0�82 for put options
with moneyness y ∈ �5%�7�5%� and y ∈ �7�5%�10�0%�, respectively. It
is evident that the losses on the delta-hedged put portfolios is robust to
samples restricted by strikes, maturity, and time periods;

• When deep in-the-money calls (beyond 5%) are combined with deep
out-of-the-money puts, the mean dollar delta-hedged gains are $−0�14,
and of absolute magnitude less than that for all at-the-money calls and
puts.
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Table 2
Delta-hedged gains for out-of-the-money puts

� (in $) �/P (in %)Moneyness 1�<0

y−1 Sample � 14–30 30–60 All 14–30 31–60 All %

0–2.5% Full 5342 −0�55 −0�77 −0�69 −16�95 −13�01 −14�47 74
Set 1 2116 −0�16 0�10 0�00 0�06 4�82 3�03 62
Set 2 3226 −0�79 −1�27 −1�09 −27�10 −23�27 −24�68 81

2.5–5% Full 5695 −0�80 −1�37 −1�16 −55�40 −41�72 −46�82 89
Set 1 2011 −0�66 −0�80 −0�75 −23�83 −13�95 −17�63 81
Set 2 3684 −0�88 −1�68 −1�38 −72�61 −56�89 −62�75 94

5–7.5% Full 5364 −0�60 −1�30 −1�03 −73�57 −66�82 −69�41 94
Set 1 2042 −0�66 −1�18 −0�97 −45�06 −39�23 −41�56 88
Set 2 3322 −0�56 −1�38 −1�07 −92�25 −83�11 −86�53 98

7.5–10% Full 3815 −0�43 −1�06 −0�82 −91�59 −82�66 −86�14 97
Set 1 1568 −0�57 −1�12 −0�90 −81�72 −60�90 −69�17 94
Set 2 2247 −0�33 −1�02 −0�76 −98�71 −97�54 −97�99 99

This table reports the delta-hedged gains for out-of-the-money puts on the S&P 500 index. Put options correspond to moneyness,
y, greater than 1. We compute the gain on a portfolio of a long position in a put option, hedged by a short position in the
underlying stock, such that the net investment earns the risk-free interest rate. As before, the discretely rebalanced delta-hedged
gains, �t� t+� , are computed as

�t� t+� = max�K−St+� �0�−Pt −
N−1∑
n=0

�̂tn

(
Stn+1

−Stn

)−N−1∑
n=0

rn
(
Pt − �̂tn

Stn

) �
N

�

where �̂tn
is the Black–Scholes put option delta evaluated at GARCH volatility, and rn is the nominal interest rate. The

rebalancing frequency, �/N , is set to 1 day. Reported are (i) dollar delta-hedged gains (�t� t+� ) and (ii) delta-hedged gains
normalized by the put price (�t� t+� /Pt ). All delta-hedged gains are averaged over their respective moneyness and maturity
categories. 1�<0 is the proportion of delta-hedged gains with � < 0. � represents the number of put options. There are 20,216
out-of-money puts. Set 1 refers to the 1988:01–1991:12 subsample; Set 2 refers to the 1992:01–1995:12 subsample. Standard
errors are small and omitted.

To sum up, when we combine the results from calls and puts for the vast
majority of the options that are actively traded, the delta-hedged gains are
overwhelmingly negative. This evidence on the underperformance of delta-
hedged portfolios among calls and puts is strongly supportive of a negative
volatility risk premium. In a spirit similar to ours, Coval and Shumway (2000)
corroborate that (long volatility) at-the-money S&P 500 straddles produce
average losses of about 3% per week. That the sign of the market volatil-
ity risk premium is negative is in agreement with the parametric approach
adopted in Eraker, Johannes, and Polson (2003) and Pan (2002) (i.e., the
negative volatility risk premium increases the risk-neutral drift of the volatil-
ity process). Exploiting the spanning properties of options, the results in
Buraschi and Jackwerth (2001) suggest the possibility of a nonzero volatility
risk premium. Although stochastic volatility option models have been shown
to reduce fitting errors [Bakshi, Cao, and Chen (1997)], a negative volatility
risk premium offers the further potential for reconciling option prices.

Under the premise that higher volatility implies a more negative volatil-
ity risk premium, is it empirically true that higher volatility translates into
greater underperformance of delta-hedged portfolios? To investigate this issue
we constructed the two measures of volatility outlined in Equations (28)
and (29), and binned the at-the-money delta-hedged gains into seven volatil-
ity groups (<8%, 8–10%, 10–12%, 12–14%, 14–16%, 16–18%, and >18%).

545



The Review of Financial Studies / v 16 n 2 2003

Table 3
Delta-hedged gains for near-the-money calls, by volatility regimes

y ∈ �−2�5%�0
 y ∈ �0�2�5%


VOLh � �/S �/C � �/S �/C
(%) T ($) (%) (%) ($) (%) (%)

<8 428 Mean 0�11 0�04 5�64 −0�25 −0�04 −1�69
Median −0�21 −0�04 −7�81 −0�38 −0�08 −3�87

8–10 399 Mean −0�54 −0�10 −13�52 −0�37 −0�06 −3�03
Median −0�72 −0�16 −19�63 −0�57 −0�13 −5�92

10–12 450 Mean −0�35 −0�07 −6�68 −0�38 −0�08 −3�02
Median −0�54 −0�14 −13�18 −0�51 −0�13 −4�92

12–14 295 Mean −0�44 −0�11 −8�52 −0�22 −0�06 −1�78
Median −0�50 −0�14 −11�28 −0�41 −0�11 −4�27

14–16 147 Mean −1�01 −0�29 −20�90 −1�14 −0�32 −11�97
Median −1�12 −0�31 −21�84 −1�13 −0�32 −12�33

16–18 99 Mean −1�32 −0�41 −24�93 −1�31 −0�40 −12�87
Median −1�38 −0�42 −27�36 −1�28 −0�38 −12�34

>18 125 Mean −1�57 −0�51 −22�90 −1�51 −0�47 −13�41
Median −1�42 −0�48 −25�53 −1�62 −0�51 −14�58

Each date is classified into one of seven different volatility regimes based on the annualized estimate of historical volatility
(i.e., VOLh). Delta-hedged gains are computed as described in the note to Table 1. We report (i) the dollar delta-hedged gains,
(ii) delta-hedged gains normalized by the index price, and (iii) the delta-hedged gains normalized by the call price, averaged
over each volatility regime. Both the mean and the median are displayed. The results are reported for two near-the-money
categories: −2�5% to 0% and 0 to 2.5%. The standard errors are small and therefore omitted. T represents the number of days
in each volatility classification.

To save on space, we maintain focus on the conventional measure of volatil-
ity displayed in Equation (29). The pattern of average delta-hedged gains in
Table 3 validates several results of economic relevance. First, consistent with
a volatility risk premium, the returns on delta-hedged portfolios are inversely
proportional to volatility: during times of higher return volatility, the delta-
hedged gains get even more negative. This is true irrespective of whether
the underperformance is measured in dollar terms or as a fraction of the
index level. Second, the findings are invariant to outliers. In most volatility
groups, the median delta-hedged gain is more negative than the mean delta-
hedged gain, and generally declines with increases in volatility. Volatility is
an important source of the underperformance of delta-hedged portfolios.

4. Delta-Hedged Gains and Option Vega in the Cross Section

We consider next the cross-sectional implication of the volatility risk pre-
mium. Following Section 1.2 [Equation (19)], for a fixed 
t��t� t+�/St must
be related to the option vega, such that mean delta-hedged gains decrease in
absolute magnitude for strikes away from at-the-money. We test this impli-
cation by adopting the econometric specification

GAINSi
t =!0 +!1VEGAi

t + eit� i = 1� � � � � I� (31)

where GAINSi
t ≡ �t� t+�/St and VEGAi

t is the option vega (indexed by mon-
eyness i = 1� � � � � I). While controlling for volatility and option maturity,
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Equation (31) models the proportionality of delta-hedged gains in the option
vega. The null hypothesis that volatility risk is not priced corresponds to
!1 = 0.

For estimating Equation (31), we require a proxy for VEGAi
t , and a

procedure for controlling for volatility. To demonstrate robustness of the
cross-sectional regression estimates, the option vega is approximated in two
different ways:

VEGA =
{

exp�−d2
1/2� Black–Scholes vega�


y−1
 Absolute moneyness,
(32)

where d1 is as presented in Equation (30). Two points are worth empha-
sizing about Equations (31) and (32). First, because exp�−d2

1/2� reaches a
maximum when the strike is at-the-money, a negative (positive) volatility
risk premium corresponds to !1 < 0 �!1 > 0�. Furthermore, the magnitude
of !0 +!1 is approximately the mean delta-hedged gains for at-the-money
options. Note that the average volatility embedded in d1 serves simply as
a scaling factor for log�y� and governs the rate of change in exp�−d2

1/2�,
as the option moneyness moves away from the money. For example, for a
30-day option evaluated at 12% volatility, the impact of the risk premium
on a 4% away-from-the-money option is half that for at-the-money options.
This rate of decrease is slower for higher levels of volatility.

Second, the function 
y−1
 reaches a minimum for at-the-money options.
In this case the hypothesis of a negative (positive) volatility risk premium
corresponds to !0 < 0 and !1 > 0 �!0 > 0 and !1 < 0). In this model
the mean delta-hedged gains for at-the-money options is precisely !0. Both
approximations, exp�−d2

1/2� and 
y−1
, plausibly characterize the behavior
of the option vega.

It is necessary that the sample for each estimation of Equation (31) consists
of a panel of delta-hedged gains where the historically measured volatility
is approximately constant. To achieve this we divide the sample period into
intervals of 2%; within each sample we include all dates where the volatil-
ity is within one of these intervals. Therefore we assume the constancy of
the volatility risk premium within a volatility classification. To increase the
power of the test, and because the sensitivity of the vega (and thus the delta-
hedged gains) to moneyness is more pronounced at shorter maturities, we
estimate Equation (31) for 30- and 44-day options. With two vega surrogates,
we thus have 28 distinct panels, with volatility ranging from approximately
6% to 20%, and with panel size ranging from 46 to 283 observations.

When implementing Equation (31), one econometric issue arises. As there
are multiple observations of option prices on each date within a volatility
sample, it is possible that there is a date-specific component in �t� t+� that
needs to be explicitly modeled. We follow standard econometric theory [see,
e.g., Greene (1997)] and allow for either a date-specific fixed effect or a
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date-specific random effect. In the fixed effects model, we replace !0 in
Equation (31) with !0� t . In the random effects model, we allow for a com-
ponent of the disturbance to be date specific, as modeled by eit = ut + vit .
We conduct specification tests on our samples, and in the majority of the
samples, the Hausman test of fixed versus random effects and a Lagrange
multiplier test of random effects versus ordinary least squares (OLS) favors
the random effects specification. As a consequence, all reported results are
based on the random effects model, where the coefficients are estimated by
feasible generalized least squares panel regression (hereafter FGLS).

Table 4 supports the central implication that the volatility risk premium is
negative. Consider first 30-day options and vega measured by exp�−d2

1/2�.
In this case, as hypothesized, the coefficient !1 is persistently negative. The
regression coefficient !1 ranges between −0�67 and −0�06, and implies a
negative volatility risk premium. For five of seven volatility levels, the coef-
ficient is statistically significant with a minimum (absolute) z-statistic of 2.95
(shown in square brackets). The estimate of !0 +!1 is roughly in line with
the findings in Tables 1 and 3: the mean delta-hedged gains are more neg-
ative for higher-volatility versus lower-volatility regimes. For instance, the

Table 4
Delta-hedged gains and option vega: cross-sectional tests

30-day option 44-days option

Vega is exp�−d2
1/2� Vega is 
y−1
 Vega is exp�−d2

1/2� Vega is 
y−1

VOLh � !0 !1 !0 !1 � !0 !1 !0 !1

<8 241 0�057 −0�10 −0�068 2�68 300 0�067 −0�03 −0�001 1�69
�1�65� �−2�95
 �−1�81
 �7�35
 �1�72
 �−0�86
 �−0�23
 �3�49


8–10 212 0�046 −0�18 −0�142 2�73 247 0�195 −0�36 −0�182 4�84
�1�22� �−4�15
 �−3�32
 �4�60
 �2�38
 �−10�57
 �−2�21
 �11�17


10–12 283 0�018 −0�06 −0�054 1�02 219 0�070 −0�14 −0�079 1�65
�0�26� �−1�02
 �−0�75
 �1�27
 �0�75
 �−2�05
 �−0�87
 �1�98


12–14 177 0�029 −0�19 −0�179 2�44 125 0�062 −0�41 −0�387 4�46
�0�53� �−3�94
 �−3�25
 �4�16
 �0�81
 �−8�35
 �−5�27
 �8�52


14–16 83 0�129 −0�53 −0�450 6�00 55 0�025 −0�29 −0�292 2�70
�1�61� �−10�83
 �−5�67
 �10�83
 �0�13
 �−1�38
 �−2�04
 �1�34


16–18 49 0�029 −0�67 −0�704 6�78 65 0�283 −0�66 −0�443 5�64
�0�47� �−8�69
 �−12�66
 �8�21
 �1�95
 �−5�90
 �−3�45
 �6�01


>18 46 −0�052 −0�47 −0�586 3�88 78 0�421 −0�86 −0�522 5�22
�−0�17� �−1�69
 �−2�27
 �1�79
 �1�96
 �−4�15
 �−3�59
 �4�29


We estimate an FGLS random effect panel regression of delta-hedged gains on the VEGA:

GAINSit = !0 +!1VEGAi
t + �it �

�it = ut +"i
t �

where GAINSit ≡ �i
t� t+� /St (for strike Ki , i� � � � � I). We use two proxies for the option vega. First, VEGA is defined as

exp�−d2
1 �, where d1 ≡ 1



√
�

log�y�+ 1
2 


√
� , where yi is option moneyness corresponding to strike Ki . Second, VEGA is

the absolute level of moneyness, 
y− 1
. The data consists of monthly observations of calls over the period January 1988–
December 1996. We focus on options with maturity of 30 and 44 days. The sample is chosen such that the volatility is within
a predefined interval, VOLh . � is the number of observations. Since the estimation method is not least squares, the coefficient
of determination is omitted. Numbers in square brackets show the z-statistics [Greene (1997)].
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estimate of !0 +!1 is −0�13% in the 8–10% volatility grouping in compar-
ison to −0�41% in the 14–16% volatility grouping. Based on the Wald test,
the hypothesis !0+!1 = 0 is rejected at the usual significance level (for most
groups). Since the R2 is not particularly instructive for panel regressions, it
has been excluded. The results for the 44-day options are comparable with
five of seven significantly negative !1 coefficients. Therefore, for both matu-
rities, the absolute value of delta-hedged gains is maximized for at-the-money
options and decrease with the option vega.

When vega is proxied by 
y− 1
, there is evidence for the joint hypoth-
esis that !0 < 0 and !1 > 0. For 30-day options, !1 varies from a low of
1.02 to a high of 6.78, and is statistically significant in five of seven esti-
mations. The estimated !0 coefficient and the associated t-statistics allow
us to reject the hypothesis that Et��t� t+�/St�= 0 (in five of seven volatility
groups). As before, the results for 44-day options are consistent with those
for 30-day options. Both sets of estimations verify that mean delta-hedged
gains decrease in absolute magnitude for strikes away from at-the-money.
Our evidence supports the cross-sectional implication of a negative market
volatility risk premium.

In Table 5 we provide additional confirmatory evidence for 30-day options.
First, in panel A, we report the results from a panel regression when Equa-
tion (31) is altered to GAINSi

t =!0 +!1 VOLh
t ×VEGAi

t+eit�i= 1� � � � � I�.
In this specification test we also allow the mean delta-hedged gains to vary
with volatility. For example, the time t at-the-money delta-hedged gains
are now represented by !0 +!1 VOLt . As observed, the results reported
in panel A of Table 5 and those reported in Table 4 are mutually consistent.
Second, panel B of Table 5 substantiates that similar results can be found in
the subsamples. Therefore our key findings are robust across subsamples and
to modifications in the test specifications.

To summarize, the cross-sectional regressions support three main empirical
results. The first conclusion that emerges is that we can formally reject the
hypothesis that Et��t� t+�/St
= 0. Moreover, the signs of the estimated coef-
ficients are compatible with a negative volatility risk premium. Finally, the
delta-hedged gains are maximized for at-the-money options, and decrease in
absolute value for moneyness levels away from at-the-money. Each finding
is consistent with the theoretical predictions.

A negative market volatility risk premium has the interpretation that
investors are willing to pay a premium to hold options in their portfolio, or
that a long position in an index option acts as a hedge to a long position
in the market portfolio. We illustrate this point from two different angles.
First, we directly examine how option prices react to volatility. For a fixed
option maturity, we build a monthly time series of at-the-money call option
prices (divided by the index level) and regress it on historical volatility [as
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Table 5
Robustness results, delta-hedged gains, and option vega (30-day calls)

Panel A: The specification is GAINSi
t =!0 +!1 VOLh

t ×VEGAi
t + �it

VEGA is exp�−d2
1� VEGA is 
y−1


VOLh(%) � !0 !1 !0 !1

<8 158 0�087 −0�22 −0�073 4�30
�2�08
 �−3�93
 �−1�58
 �5�86


8–10 212 0�040 −0�18 −0�136 2�81
�1�04
 �−3�77
 �−3�30
 �4�35


10–12 283 0�26 −0�07 −0�060 1�09
�0�37
 �−1�27
 �−0�85
 �1�48


12–14 177 0�026 −0�14 −0�177 1�86
�0�47
 �−3�82
 �−3�22
 �4�07


14–16 83 0�129 −0�36 −0�450 4�02
�1�60
 �−10�97
 �−5�70
 �10�98


16–18 49 0�024 −0�39 −0�701 3�89
�0�34
 �−8�60
 �−13�24
 �8�18


>18 44 −0�061 −0�21 −0�589 1�82
�−0�20
 �−1�63
 �−2�33
 �1�85


Panel B: Subsample results for 1992:01–1995:12

VEGA is exp�−d2
1� VEGA is 
y−1


VOLh(%) � !0 !1 !0 !1

<8 158 0�084 −0�13 −0�071 2�82
�1�97
 �−3�55
 �−1�55
 �5�60


8–10 184 0�049 −0�26 −0�210 3�73
�1�43
 �−4�15
 �−5�78
 �8�85


10–12 148 −0�013 −0�27 −0�293 3�60
�−0�28
 �−7�02
 �−6�24
 �7�01


12–14 177 0�029 −0�19 −0�179 2�44
�0�53
 �−3�94
 �−3�25
 �4�16


In panel A, we report the results from the following FGLS random effect panel regression: GAINSit = !0 +!1 VOLh
t ×

VEGAi
t+�it , and �it = ut+"i

t . The dependent variable is GAINSit ≡�i
t�t+� /St (i� � � � � I). VEGA is defined as either exp�−d2

1 �

or 
y−1
, where d1 = 1


√
�

log�y�+ 1
2 


√
� . As before, y is the option moneyness. The data consist of monthly observations

of calls over the period January 1988–December 1995. � is the number of observations. Numbers in square brackets show
z-statistics [Greene (1997)]. In panel B we repeat the analysis of Table 4 for the 1992:01–1995:12 subsample. All results are
for 30-day calls.

estimated in Equation (29) for � = 30 days]:

30 days: Ct/St

= 0�004+0�05 VOLh
t +0�44Ct−1/St−1 + et� R2 = 43�16%� DW = 2�01�

�3�36
 �3�23
 �4�12


44 days: Ct/St

= 0�003+0�06 VOLh
t +0�52Ct−1/St−1 + et� R2 = 65�23%� DW = 2�28�

�2�26
 �3�89
 �5�18


Controlling for movements in the index level through time, these regressions
show, as would be expected, that call prices respond positively to volatility.
To put the estimated slope coefficient in perspective, we note that, in our
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sample, the average C/S is 1.70% and the average volatility is 11%. An
increase in the level of volatility from 11% to 12% will increase C/S from
1.70% to 1.79%. This increase is the order of magnitude as that implied by
the 30-day at-the-money Black–Scholes vega. Given the extensive evidence
on the negative correlation between stock returns and volatility, the positive
estimate of the empirical vega confirms the hedging role of options.

To highlight the value of the option as a hedge during significant market
declines, we contrast the change in the relative value of index options for
the largest 20 negative and positive daily returns (roughly a 3 standard devi-
ation event). On the day prior to a tail event, we buy a nearest-to-the-money
short-term call option and compute the Black–Scholes implied volatility. Pro-
ceeding to the day after the tail event, we recompute the Black–Scholes
implied volatility for the prevailing nearest-to-the-money calls. For each of
the largest extreme movements, Table 6 reports (i) the (annualized) implied
volatilities and (ii) the corresponding change in implied volatility as a fraction
of the implied volatility of the option bought. We can observe that the aver-
age change (relative change) in the implied volatility is 1.71% (10.58%) to
a downward movement versus −0�84%�−1�53%� to an upward movement.

Table 6
Changes in valuation of index options during large moves

Largest negative price movements Largest positive price movements

Price Prior Subs. Relative Price Prior Subs. Relative
Date move IMPL IMPL change Date move IMPL IMPL change

880108 −7�00 26�69 28�90 8�26 910117 3�66 27�69 21�29 −23�11
891013 −6�32 13�23 11�87 −10�32 880531 3�41 19�21 19�25 0�22
880414 −4�44 20�05 21�02 4�84 900827 3�18 28�96 24�21 −16�40
911115 −3�73 12�31 15�90 29�16 901001 2�90 23�27 21�61 −7�15
900823 −3�04 25�90 28�96 11�83 910821 2�90 16�04 13�05 −18�67
900806 −3�00 20�84 23�01 10�37 891016 2�75 11�87 20�48 72�60
880120 −2�72 24�14 25�71 6�51 880406 2�66 20�16 19�36 −3�98
901009 −2�70 24�83 24�15 −2�75 910211 2�58 19�07 19�58 2�69
900122 −2�61 17�16 19�61 14�26 911223 2�50 13�99 12�80 −8�49
900112 −2�48 17�00 18�02 6�00 880115 2�49 29�03 25�38 −12�59
930216 −2�41 11�20 15�41 37�57 880728 2�39 17�27 18�79 8�80
910819 −2�37 13�55 16�04 18�42 880608 2�37 20�45 21�17 3�57
890317 −2�27 14�22 15�69 10�30 880902 2�37 19�06 17�40 −8�69
900816 −2�26 19�76 24�11 21�98 900511 2�37 16�60 16�93 1�96
940204 −2�24 9�14 11�10 21�50 880125 2�31 25�10 25�38 1�10
900924 −2�14 24�37 23�70 −2�77 901018 2�31 25�18 24�26 −3�65
881111 −2�13 18�15 18�61 2�50 880729 2�24 17�58 17�48 −0�59
880324 −2�09 21�35 23�69 10�94 890512 2�22 14�30 14�27 −0�16
900821 −2�03 24�21 25�90 6�99 910402 2�19 16�24 16�43 1�22
910510 −1�96 14�02 14�86 6�01 901019 2�18 25�25 20�40 −19�19

Avg. −3�00 18�61 20�31 10�58 Avg. 2�60 20�32 19�48 −1�53

We proxy valuation changes in index calls by the corresponding change in Black–Scholes implied volatility. This is done in
two steps. First, on the day prior to a large daily move, we buy a call option and compute the Black–Scholes implied volatility.
Second, proceeding to the day after the large move, we recompute the Black–Scholes implied volatility. We report four sets of
numbers: (i) the price movement (in %), (ii) the prior-day implied volatility (denoted as “Prior IMPL”), (iii) the subsequent-day
implied volatility (denoted as “Subs. IMPL”), and (iv) the corresponding change in implied volatility as a fraction of the implied
volatility of the option bought (i.e., the relative change). The sample period is 1988–1995. In each implied volatility calculation,
the index level is adjusted by the present discounted value of dividends. Only short-term call options with strikes that are closest
to at-the-money are considered. We display the results from the largest 20 percentage price movements.
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Holding everything else constant, the index options become more expen-
sive during stock market declines (in 18 of 20 moves the implied volatility
increases). On the other hand, when the market has a strong positive return,
the effect on option values is not as striking. These findings further support
our assertion that equity index options are desirable hedging instruments.

5. Delta-Hedged Gains and the Volatility Risk Premium:
Time-Series Evidence

Following Proposition 2, we now consider the time-series implications of the
volatility risk premium for at-the-money options. Fixing option maturity, we
estimate the time-series regression

GAINSt =#0 +#1 VOLt +#2 GAINSt−1 + �t� (33)

where GAINSt represents the dollar delta-hedged gains for at-the-money
options divided by the index level, and VOLt is the estimate of historical
volatility computed over the 30 calendar day period prior to t [see Equa-
tion (28) for VOLg

t , and Equation (29) for VOLh
t ]. In the time-series setting

of Equation (33), testing whether volatility risk is not priced is equivalent to
testing the null hypothesis #1 = 0. Observe that we have added a lagged value
of GAINS to correct for the serial correlation of the residuals. The estimation
is done using OLS and the reported t-statistics are based on the Newey–West
procedure (with a lag length of 12). As a check, we also estimate the model
using the Cochrane–Orcutt procedure for first-order autocorrelation. Since
the results are virtually the same, they are omitted to avoid duplication.

To ensure that the regression results are not an artifact of option maturity,
we perform regressions at the monthly frequency using delta-hedged gains
realized over (i) 30 days, (ii) 44 days, and (iii) 58 days. Although the 30-day
series for delta-hedged gains is nonoverlapping, a partial overlap exists with
the 44-day and 58-day series. To begin, consider the 30-day series for VOLh

t .
The results in Table 7 show that the OLS estimates of the volatility coeffi-
cient, #1, are negative and statistically significant in all the samples. Over
the full sample, the estimated #1 is −0�032 with a t-statistic of −4�39. In
addition, the serial correlation coefficient, #2, is negative with a t-statistic of
−3�47. The inclusion of GAINSt−1 leads to residuals that show little auto-
correlation, as is evident from the Box–Pierce statistic with six lags (denoted
as Q6). The coefficient #1 is comparable across maturities and is significantly
negative throughout.

The empirical fit of the regressions is reasonable, with the adjusted R2

higher for each of the two subsamples. Furthermore, the magnitude of the
coefficient #0 is an order smaller than that of #1. Overall, our results seem
to indicate that variations in at-the-money delta-hedged gains are related to
variations in historical volatility. This result also holds when volatility is
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Table 7
Delta-hedged gains and volatility risk premium: time-series regressions

Historical volatility, VOLh
t GARCH volatility, VOLg

t

#0 R2 #0 R2

� Sample (×10−2� #1 #2 (%) Q6 (×10−2) #1 #2 (%) Q6

30 Full 0�22 −0�032 −0�199 10�80 1�78 0�05 −0�017 −0�282 6�74 2�34
days �2�00
 �−4�39
 �−3�47
 �0�94� �0�41
 �−1�71
 �−6�04
 �0�88�

Set 1 0�87 −0�073 −0�137 15�35 1�10 1�36 −0�101 −0�361 12�55 1�91
�2�09
 �−2�66
 �−1�36
 �0�98� �2�04
 �−1�07
 �−7�77
 �0�93�

Set 2 0�32 −0�051 0�058 14�70 4�45 0�69 −0�089 −0�067 3�81 4�20
�2�45
 �−3�92
 �0�55
 �0�62� �1�62
 �−1�97
 �−0�71
 �0�65�

44 Full 0�38 −0�045 0�125 13�87 1�68 0�15 −0�023 0�073 0�01 3�37
days �2�53
 �−4�27
 �1�70
 �0�95� �1�13
 �−2�23
 �1�09
 �0�76�

Set 1 1�01 −0�080 0�077 24�75 3�06 1�91 −0�135 −0�093 13�00 5�43
�4�37
 �−5�34
 �0�96
 �0�80� �4�03
 �−4�49
 �−1�23
 �0�49�

Set 2 0�52 −0�070 0�422 36�22 6�52 0�99 −0�118 0�317 24�21 9�34
�4�31
 �−5�23
 �7�04
 �0�37� �4�40
 �−4�97
 �7�21
 �0�16�

58 Full 0�40 −0�048 0�217 11�81 2�81 0�03 −0�013 0�199 2�49 3�09
days �1�92
 �−3�50
 �1�45
 �0�83� �0�17
 �−0�89
 �1�49
 �0�80�

Set 1 1�24 −0�099 0�132 19�00 2�31 1�82 −0�131 0�022 14�65 2�98
�3�07
 �−4�21
 �0�71
 �0�89� �2�40
 �−2�76
 �0�15
 �0�81�

Set 2 0�49 −0�066 0�510 36�56 2�18 1�06 −0�126 0�311 24�79 2�30
�4�69
 �−6�57
 �10�12
 �0�90� �2�83
 �−3�18
 �9�59
 �0�88�

The regression results are based on the following specification for delta-hedged gains and realized volatility:

GAINSt = #0 +#1 VOLt +#2 GAINSt−1 + et �

where GAINSt ≡ �t�t+�
St

. VOLt represents the prior month realized volatility. The null hypothesis is that #1 = 0. We include
a lagged dependent variable to correct for the serial correlation of the residuals (the Cochrane–Orcutt procedure yields similar
inferences). The table reports the coefficient estimate, the t-statistic (in square brackets), the adjusted R2, and the Box–Pierce
statistic with six lags (denoted Q6). The p-values for Q6 are in parentheses. The t-statistics are based on the Newey–West
procedure with a lag length of 12. Full refers to the entire sample period of 1988:01–1995:12; Set 1 corresponds to the
subsample of 88:1–91:12; and Set 2 corresponds to the subsample of 92:01–95:12. The results are reported for closest to at-
the-money calls (with average moneyness of 1.004). For comparison, the regressions are performed using both the historical
volatility, VOLh

t , and the GARCH volatility, VOLg
t . The GARCH parameters are updated annually, using 1 year of daily return

observations. All regressions use call options sampled monthly, with a constant maturity of 30 days, 44 days, and 58 days,
respectively.

measured by VOLg
t . However, the adjusted R2’s are consistently higher with

VOLh
t . This indicates that a measure of volatility that puts more weight on the

recent return history has greater explanatory power and is more informative
about delta-hedged portfolio returns. Our repeated finding that #1 < 0 has
the implication that the market volatility risk premium is negative.

Is the magnitude of the risk premium indicated by #1 economically signif-
icant? Consider again the 30-day series for VOLh

t . Evaluating Equation (33)
at the estimated parameter values, we estimate the effect of the volatility
risk premium as measured by the implied dollar delta-hedged gains (at three
representative volatility levels):

1. On August 19, 1992, the volatility level was 8.05% with at-the-money
call price and index level of $5.44 and 418.67, respectively. The
volatility risk premium is −3�63% of the call option value.

2. Now consider July 19, 1989, where the volatility level was 12.04% with
at-the-money call price and index level of $6.19 and 334.92, respec-
tively. The volatility risk premium is −11�18% of the call option value.
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3. Finally, on November 20, 1991, the volatility level was 15.86% with
at-the-money call price and index level of $6.94 and 378.80, respec-
tively. In this case, the volatility risk premium is −19�60% of the value
of the call.

Overall, the magnitudes of the volatility risk premium embedded in at-the-
money delta-hedged gains are plausible and economically large. The impact
of the volatility risk premium is more prominent during times of greater stock
market uncertainty. As emphasized in the previous section, this effect may
be related to demand for options as hedging instruments.

5.1 Robustness of findings
Several diagnostic tests are performed to examine the stability of #1. First,
we reestimated the regression using the variance as an explanatory variable,
with no material change in the results. This last conclusion is not surprising,
as the standard deviation and variance are highly correlated. In fact, a model
with both variables included performs worse than a model with either of these
variables. This suggests that not much can be gained by modeling �t� t+�/St
as a polynomial in volatility.

Second, to evaluate whether the results are sensitive to a trending stock
market, we reestimated the model using dollar delta-hedged gains, �t� t+� .
Again, the results were invariant to this change in specification. Third, we
explored the possibility that volatility may be nonstationary. To investigate
the impact of nonstationarity on the parameter estimates, we performed an
OLS estimation in first differences rather than in levels. This extended specifi-
cation again points to a negative #1 (these results are available upon request).
The principal finding that the market volatility risk premium is negative is
robust under alternative specifications.

A natural question that arises is: How sensitive are the results to the mis-
measurement of the hedge ratio? Extant theoretical work suggests that the
Black–Scholes hedge ratio can depart from the stochastic volatility counter-
part when volatility and stock returns are correlated. Guided by this presump-
tion, we now examine (i) whether a negative correlation biases the estimate
of �t� t+� , and, if so, (ii) whether our conclusions about the negative volatil-
ity risk premium are robust. For each maturity we assemble a time-series of
at-the-money calls where the return, Rt� t+� , is positive. For this sample, it is
likely that underhedging (overhedging) results in higher (lower) delta-hedged
gains.3

3 The logic behind this exercise can be explained as follows. Suppose that the difference between the true hedge
ratio and the Black–Scholes hedge ratio is $t�
t� y�, where $ > 0 if Black–Scholes underhedges and negative
otherwise. From the definition of delta-hedged gains, it immediately follows that the bias in its estimate is
equal to �t� t+� =

∫ t+�
t $u dSu−

∫ t+�
t r$u Sudu, which has an expected value of

∫ t+�
t $�	− r�Sudu, where 	

is the drift of the price process and $̄ represents the expectation of $ (assuming $ is independent of the entire
path of Su). Thus the expected delta-hedged gain is on the order of the market risk premium. If 	− r > 0,
and Black–Scholes underhedges the call, then the estimated delta-hedged gain is biased upward.
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We estimate the regression GAINSt = #0 +#1 VOLh
t +#2 GAINSt−1 +

#3 Rt� t+� + �t , with the additional variable added to capture the effect of
systematic mishedging. In a trending market, we expect #3 > 0, if the call
is consistently underhedged, and #3 < 0, if it is overhedged. Although not
reported in a table, two findings are worth documenting. First, even when
we explicitly account for the impact of under- or overhedging, the coeffi-
cient #1 is significantly negative. Second, the coefficient #3 is positive, and
hence �t� t+� is upwardly biased. However, in none of the regressions is #3

statistically significant. That #1 is significantly negative appears robust to
errors in hedging arising from a correlation between the stock return process
and the volatility process. One interpretation is that the hedge ratio takes into
consideration time-varying GARCH volatility and is therefore less misspec-
ified. That a misspecified hedge ratio cannot account for the large negative
delta-hedged gains that are observed for at-the-money options is also the
conclusion of our simulation results below.

One final cause of concern is that the theoretical distribution of delta-
hedged gains may vary across the sample set in a complex manner. There-
fore standard procedures adopted in estimating Equation (33) may not fully
account for changes in the covariance matrix of �t� t+�/St . To explore this,
we repeated our estimation using generalized method of moments [Hansen
(1982)]. The instrumental variables are a constant and three lags of volatility.
For 30-day maturity options, the estimated #1 is −0�045 with a t-statistic
of −5�08 (using Newey–West with 12 lags). The minimized value of the
GMM criterion function, which is distributed %2�2�, has a value of 2.77 and
a p-value of 0.24. The results are similar for options of 44 and 58 days. Thus
we do not reject the empirical specification in Equation (33). The volatility
risk premium coefficient, #1, is significantly negative, in line with our earlier
findings.

5.2 Simulation evidence
Since the empirical tests reject the null hypothesis that volatility risk is
unpriced, we pose two additional questions using simulated data: (i) How
severe is the small sample bias? and (ii) What is the impact of using Black–
Scholes hedge ratio as the approximation for the true hedge ratio? For this
artificial economy exercise, our null hypothesis is that volatility is stochas-
tic, but not priced. Therefore we set ��
t
 = 0, so that the dynamics of 
t

require no measure change conversions. We simulate the paths of ��St�
t� &
t = 1� � � � � T �, according to Equations (50) and (51). To be consistent with
our empirical work, the simulated sample path is taken to be 8 years (2880
days).

At the beginning of the month, an at-the-money call option is bought and
delta-hedged discretely over its lifetime. Proceeding to the next month, we
repeat this delta-hedging procedure. The option price is given by the stochas-
tic volatility model of Heston (1993). For comparison, the delta-hedged gains
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are computed using the hedge ratio from the true stochastic volatility option
model as well as using the Black–Scholes model. Across each simulation
run we generate 96 observations on delta-hedged gains and the prior 30-days
volatility. Using the simulated sample, we estimate Equation (33). In Table 8
we report the sample distribution of estimated coefficients over 1000 simu-
lations for two option maturities, 30 days and 44 days (the mean, and the
mean absolute deviation in curly brackets). The first point to note is that
with unpriced volatility risk, the mean delta-hedged gains are virtually zero.
Under the stochastic volatility model, the magnitude of �/S is several orders
lower than those depicted in Table 1. Second, the use of Black–Scholes delta
imparts a negligible bias. For example, for 30-day options, the mean �/S

is −0�0018% with the stochastic volatility hedge ratio versus 0.0022% with
the Black–Scholes hedge ratio. In conclusion, the simulations show that the
use of the Black–Scholes hedge ratio does not perversely bias the magnitude
of delta-hedged gains.

Now shift attention to the sample rejection level of the estimated coeffi-
cients from the simulated data. First, given the theoretical p-value benchmark
of 5%, the null hypothesis #1 = 0 should be rejected only occasionally. Again
consider the stochastic volatility model with option maturity of 30 days.
Inspection of Table 8 shows that the frequency of t�#1� < −2 is 3.94%.
Moreover, the frequency of t�#1� > 2 is 1.21%. Therefore, when combined,
there is only a small overrejection of the null hypothesis. If the hedge ratio is

Table 8
Properties of delta-hedged gains in simulated economies

Simulated coefficient values
Simulated delta-hedged gains GAINSt =#0 +#1 VOLt +#2 GAINSt−1 + et

Hedge � �/S �/C Freq. for Freq. for
� ratio ($) (%) (%) #0 #1 #2 R2 t�#1� > 2 t�#1� <−2

30 days SV −0�0024 −0�0018 −0�1641 0�046 −0�519 −0�019 2�43% 0�0121 0�0394
�0�0235� �0�0015� �0�1358� �0�170� �1�412� �0�093� �1�74�

BS 0�0036 0�0022 0�2039 0�055 −0�555 −0�020 2�44% 0�0120 0�0420
�0�0233� �0�0015� �0�1346� �0�171� �1�407� �0�093� �1�73�

44 days SV 0�0022 0�0017 0�1372 0�077 −0�616 0�149 4�90% 0�0050 0�0710
�0�0305� �0�0021� �0�1629� �0�137� �0�922� �0�092� �3�17�

BS 0�0089 0�0021 0�5151 0�077 −0�615 0�149 4�90% 0�0050 0�0710
�0�0297� �0�0015� �0�1576� �0�136� �0�923� �0�093� �3�17�

We simulate delta-hedged gains in an economy where volatility is stochastic, but not priced. The simulation experiment (see
Appendix B for more details) is based on the following discretization of stock returns and volatility: St+h = St +	St h+

t St �

1
t

√
h and 
2

t+h = 
2
t +���−
2

t �h+� 
t �
2
t

√
h, where h is set equal to 1 day. For the simulation S0 = 100, 
0 = 10%,

� = 2, � = 0�01, � = −0�5, and � = 0�1. In each simulation run, the theoretical call option values are generated according to
the stochastic volatility option pricing model of Heston (1993). Throughout we assume that the interest rate and dividend yield
are zero, and ��
t 
= 0. The delta–hedged gains are computed in two different ways. First, we use the hedge ratio given by the
stochastic volatility model (denoted as “SV”), and second using the Black–Scholes model (denoted as “BS”). We consider at-
the-money options with a maturity of 30 days (and 44 days). Every 30 (44) days, the option is bought and delta hedged. Over 8
years (2880 days), this produces 96 monthly observations on delta-hedged gains and prior 30 days volatility. For each simulation,
we perform the time-series regression GAINSt =#0 +#1 VOLt +#2 GAINSt−1 +et . The reported #0, #1, #2, and adjusted
R2 are averages over 1000 simulations. The mean absolute deviation of the estimate is shown in curly brackets. We report the
frequency of significant #1 (i.e., t�#1� > 2 and t�#1� <−2). We also show the mean delta-hedged gains across all simulations
for both the SV model and the BS model.
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replaced with the BS delta, the simulated rejection frequency is again close
to the theoretical 5%.

Because the 44-day options allow for some overlap in the data, we expect
to see autocorrelation and therefore poorer small sample properties. The sim-
ulations confirm that the frequency of the rejection of the hypothesis of
#1 = 0 is slightly higher, at 7.1%. However, the overlap does not affect
the estimate of the mean �/S (which is 0.0017%); neither does it worsen
the fit with the Black–Scholes hedge ratio. Overall the simulation evidence
suggests that small sample biases are not large, and that the use of the Black–
Scholes hedge ratio has a negligible effect on the estimations. Having said
this, we can now proceed to examine the jump-fear foundations of negative
delta-hedged portfolio returns.

6. Delta-Hedged Gains and Jump Exposures

While the body of evidence presented so far appears consistent with a volatil-
ity risk premium, the losses on the delta-hedged portfolios may also be rec-
onciled by the fear of stock market crashes. The underlying motivation is that
option prices not only reflect the physical volatility process and the volatil-
ity risk premium, but also the potential for unforeseen tail events [Jackwerth
and Rubinstein (1996)]. Jump fears can therefore dichotomize the risk-neutral
index distribution from the physical index distribution, even in the absence
of a volatility risk premium. Indeed, empirical evidence indicates that the
risk-neutral index distribution is (i) more volatile, (ii) more left skewed, and
(iii) more leptokurtotic relative to the physical index distribution [Rubinstein
(1994), Jackwerth (2000), and Bakshi, Kapadia, and Madan (2003)]. As our
characterization of delta-hedged gains shows in Equation (24), these distri-
butional features can induce underperformance of the delta-hedged option
strategies. If, in addition, the jump risk premium surfaces more prominently
during volatile markets [Bates (2000), Pan (2002), Eraker, Johannes, and
Polson (2003)], then it can account for the accompanying greater delta-
hedged losses.

To empirically distinguish between the effects of stochastic volatility and
jumps on delta-hedged gains, two decisions are made at the outset. One, in
the tradition of Jackwerth and Rubinstein (1996), Bates (2000), and Bakshi,
Kapadia, and Madan (2003), we assume that jump fears can be surrogated
through the skewness and kurtosis of the risk-neutral index distribution. In
the modeling framework of Equation (23), the mean jump size governs the
risk-neutral skew, and the jump intensity is linked to kurtosis. For instance,
the fear of market crashes can impart a left skew and shift more probability
mass toward low-probability events. Two, the risk-neutral skews and kur-
tosis are recovered using the model-free approach of Bakshi, Kapadia, and
Madan (2003). They show that the higher-order risk-neutral moments can
be spanned and priced using a positioning in out-of-money calls and puts.
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In what follows, the relative impact of jump fears on delta-hedged gains is
gauged from three perspectives.

First, we modify the time-series specification of Equation (33) to include
a role for risk-neutral skew and kurtosis, as shown below:

GAINSt = #∗
0 +#∗

1 VOLh
t +#∗

2 GAINSt−1 +#∗
3 SKEW∗

t

+#∗
4 KURT∗

t + �∗t � (34)

where VOLh
t is the historical volatility, SKEW∗

t is the risk-neutral index
skewness, and KURT∗

t is the risk-neutral index kurtosis. For convenience,
the exact expressions for skew and kurtosis are displayed in Equations (45)
and (46) of the appendix. Specifically the risk-neutral skewness and kurtosis
reflect the price of the cubic contract and the kurtic contract, respectively.
As before, we include a lagged value of delta-hedged gains to correct for
serially correlated residuals. The estimation is by OLS and the t-statistics
are computed using the Newey–West procedure with 12 lags. The main idea
behind the empirical specification of Equation (34) is to investigate whether
physical volatility loses its significance in the presence of such jump-fear
proxies as risk-neutral skews and kurtosis. We also employed the slope of
the volatility smile and the Bates skewness premium measure as alternative
proxies for jump fear and obtained similar conclusions (details are available
from the authors). To maintain the scope of the investigation, these extended
measures are excluded from the main body of the article.

Before we discuss the estimation results presented in Table 9, it must be
stressed that there is substantial evidence of jump fear in the postcrash risk-
neutral distributions. Over the entire sample period, the average risk-neutral
skewness is −1�38 and the risk-neutral kurtosis is 7.86 for 30-day distribu-
tions. These numbers are roughly comparable to those reported in Jackwerth
and Rubinstein (1996) for longer-term options and in Bakshi, Kapadia, and
Madan (2003) for the S&P 100 index options. The most important point
that emerges from Table 9 is that historical volatility continues to signif-
icantly affect variations in delta-hedged gains. The coefficient on volatility
ranges between −0�111 and −0�041, and is statistically significant in all nine
estimations. The evidence on the role of skew and kurtosis is less conclu-
sive. Although skew enters the regression with the correct sign, it is only
marginally significant. The positive estimate of #∗

3 indicates that a more
negatively skewed risk-neutral distribution makes delta-hedged gains more
negative from one month to the next. In addition, the sign of kurtosis is con-
trary to what one might expect. While not reported, skewness (kurtosis) is not
individually significant when volatility and kurtosis (skewness) are omitted
as explanatory variables in Equation (34). Finally, comparing the empirical
fit between Tables 7 and 9, the inclusion of skew and kurtosis only modestly
improves the adjusted R2 (by about 3%). In summary, this exercise suggests
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Table 9
Effect of jumps on delta-hedged gains

#∗
0 #∗

3 #∗
4

� Sample (×10−2� #∗
1 #∗

2 (×10−2) (×10−3) R2 Q6

30 Full 0�51 −0�041 −0�16 0�31 0�28 13�98 1�26
days �2�86
 �−3�44
 �−2�84
 �1�82
 �1�73
 �0�97�

Set 1 1�18 −0�082 −0�10 0�21 0�13 15�46 1�27
�1�97
 �−1�99
 �−0�94
 �0�90
 �0�58
 �0�97�

Set 2 0�63 −0�064 0�04 0�17 0�05 17�31 4�52
�3�55
 �−4�74
 �0�47
 �1�40
 �0�28
 �0�61�

44 Full 0�45 −0�046 0�19 0�23 0�32 17�26 2�41
days �2�03
 �−4�09
 �3�31
 �1�51
 �2�24
 �0�91�

Set 1 1�11 −0�085 0�118 0�04 0�05 23�47 3�36
�2�84
 �−3�70
 �1�43
 �0�23
 �0�28
 �0�76�

Set 2 0�55 −0�068 0�42 0�12 0�17 34�13 6�41
�3�34
 �−3�95
 �7�01
 �0�70
 �0�59
 �0�38�

58 Full 0�60 −0�055 0�22 0�34 0�41 12�42 1�82
days �1�85
 �−3�08
 �1�30
 �1�46
 �1�79
 �0�94�

Set 1 1�71 −0�111 0�10 0�50 0�44 19�03 2�55
�3�30
 �−3�35
 �0�53
 �3�14
 �4�25
 �0�86�

Set 2 0�46 −0�064 0�50 −0�05 −0�08 35�41 3�71
�3�88
 �−6�88
 �7�04
 �−0�43
 �−0�55
 �0�72�

We employ skewness and kurtosis of the risk-neutral distribution as proxies for jump fear. The regression results are based on
the following specification between delta-hedged gains, historical volatility, and the higher-order moments of the risk-neutral
return distribution:

GAINSt =#∗
0 +#∗

1 VOLh
t +#∗

2 GAINSt−1 +#∗
3 SKEW∗

t +#∗
4 KURT∗

t + et �

where GAINSt ≡ �t� t+�
St

. VOLh
t represents the historical volatility. To correct for the serial correlation of the residuals, we

have included a lagged dependent variable (the Cochrane–Orcutt procedure yields similar inferences). We record the coefficient
estimate, the t-statistic (in square brackets), the adjusted R2, and the Box–Pierce statistic with six lags (denoted Q6). The
p-values for Q6 are in parentheses. The t-statistics are based on the Newey–West procedure with a lag length of 12. Full refers
to the entire sample period of 1988:01–1995:12; Set 1 corresponds to the subsample of 88:1–91:12; and Set 2 corresponds to the
subsample of 92:01–95:12. The results are reported for closest to at-the-money calls. All regressions use call options sampled
monthly, with a constant maturity of 30 days, 44 days, and 58 days, respectively. The model-free estimate of risk-neutral
skewness, SKEW∗

t , and the risk-neutral kurtosis, KURT∗
t , are constructed as described in the appendix.

that volatility may be of first-order importance in explaining negative delta-
hedged gains.

In the second exercise, we study the behavior of delta-hedged option port-
folios for a holdout sample when jump fears are much less pronounced. For
this purpose we selected the six-month interval from January 1987 through
June 1987 (option data provided by Bent Christensen). What is unique about
this precrash period is that risk-neutral index distributions are essentially
log normal. Especially suited for the task at hand, the jump fears are virtu-
ally lacking during this precrash sample [Jackwerth and Rubinstein (1996)].
Table 10 reports the mean delta-hedged gains for out-of-money calls and puts.
The average delta-hedged gains for near-the-money 14–30 day calls (puts) is
$−0�65 (−$0.82). In fact, the delta-hedged gains are strongly negative in all
the 16 moneyness and maturity categories. Furthermore, the majority of the
options have � < 0, as seen by the large 1�<0 statistics. The delta-hedged
gains are negative in both the precrash and postcrash periods. While not
displayed, the average implied volatility for at-the-money options is higher
than the historically realized volatility, suggesting that the well-known bias
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Table 10
Delta-hedged gains for a precrash period (January 1987–June 1987, calls and puts)

� (in $) �/S (in %)
Moneyness 1�<0

y−1 14–30 31–60 All 14–30 31–60 All �N�

Calls −10% to −7�5% −0�12 −1�16 −0�73 −0�04 −0�40 −0�26 86%
�0�08� �0�23� �0�18� �0�03� �0�08� �0�06� {21}

−7�5% to −5% −0�28 −0�77 −0�61 −0�10 −0�27 −0�22 69%
�0�10� �0�19� �0�14� �0�04� �0�07� �0�05� {85}

−5% to −2�5% −0�64 −1�11 −0�96 −0�22 −0�38 −0�33 73%
�0�11� �0�16� �0�11� �0�04� �0�06� �0�04� {238}

−2�5% to 0% −0�65 −0�81 −0�75 −0�22 −0�28 −0�25 67%
�0�12� �0�14� �0�10� �0�04� �0�05� �0�03� {276}

Puts 0 to 2.5% −0�82 −0�87 −0�85 −0�29 −0�31 −0�30 74%
�0�15� �0�14� �0�10� �0�05� �0�05� �0�03� {282}

2.5 to 5% −0�63 −1�03 −0�87 −0�22 −0�36 −0�31 84%
�0�11� �0�10� �0�08� �0�04� �0�03� �0�03� {274}

5 to 7.5% −0�23 −0�74 −0�53 −0�09 −0�26 −0�19 84%
�0�09� �0�07� �0�06� �0�03� �0�02� �0�02� {245}

7.5 to 10% −0�07 −0�67 −0�44 −0�03 −0�24 −0�16 92%
�0�07� �0�04� �0�04� �0�02� �0�01� �0�01� {150}

All −0�25 −0�44 −0�37 −0�09 −0�15 −0�13

For a selected precrash period, we display the delta-hedged gains for out-of-the-money calls (i.e., y < 1) and out-of-the-
money puts (i.e., y > 1). In the case of calls, the discretely rebalanced delta-hedged gains, �t� t+� , is computed as �t� t+� =
max�St+� −K�0�−Ct−

∑N−1
n=0 �tn �Stn+1

−Stn �−
∑N−1

n=0 rn�Ct−�tn Stn �
�
N , where the interest rate, rn , and the option delta,

�tn
, are updated on a daily basis. The option delta is computed as the Black–Scholes hedge ratio evaluated at the GARCH

volatility. The rebalancing frequency, �/N , is set to 1 day. Reported in the table are (i) dollar delta-hedged gains (�t� t+� ) and
the (ii) delta-hedged gains normalized by the index level (�t� t+� /St ). All delta-hedged gains are averaged over their respective
moneyness and maturity category. The standard errors, shown in parentheses, are computed as the sample standard deviation
divided by the square root of the number of observations. 1�<0 is the proportion of delta-hedged gains with � < 0, and �
is the number of options (in curly brackets). “All” combines the delta-hedged gains from maturities of 14–30 days and 31–60
days.

between the implied and the realized volatility predates crash fears and option
skews.

In the final evaluation exercise, we compute the average delta-hedged gains
for the largest downward and upward market movements. Intuitively, if fears
of negative jumps are the predominant driving factor in determining nega-
tive delta-hedged gains, then there should be a strong asymmetric effect [see
Equation (24)], with large positive index returns not necessarily resulting in
large negative delta-hedged gains. In contrast, it may be argued that a neg-
ative volatility risk premium would cause large negative delta-hedged gains,
irrespective of the sign of the market return. To briefly examine this rea-
soning, consider closest to at-the-money short-term calls bought on the day
subsequent to a tail event. Respectively for the largest 10 (20) tail events,
the average scaled delta-hedged gain, �t� t+�/St , is −0�52% (−0�43%) on
positive return dates, compared with −0�86% (−0�51%) on negative return
dates. The evidence indicates that delta-hedged gains become more nega-
tive for both extreme negative and positive returns. This evidence from the
extremes is largely consistent with the regression results.

One overall conclusion that can be drawn is that priced volatility risk is
a more plausible characterization for negative delta-hedged gains. It is pos-
sible that if some extremely low-probability event is included, the resulting
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large positive gain may wipe out all cumulative losses. However, this low-
probability event (of the required magnitude) has not yet occurred in our
sample. Our key finding that the market volatility risk premium is, on aver-
age, negative is mutually consistent with other evidence reported in Benzoni
(1999), Poteshman (1998), Jones (2002), and Pan (2002).

7. Final Remarks

Is volatility risk premium negative in equity index option markets? We argue
that the central implication of a nonzero volatility risk premium is that the
gains on a delta-neutral strategy that buys calls and hedges with the underly-
ing stock are nonzero and determined jointly by the volatility risk premium
and the option vega. Specifically we establish that the volatility risk premium
and the mean discrete delta-hedged gains share the same sign. It is shown
that this implication can be tested by relatively robust econometric specifica-
tions in either the cross section of option strikes or in the time series. These
tests do not require the identification of the pricing kernel, nor the correct
specification of the volatility process.

Using S&P 500 index options, our empirical results indicate that the delta-
hedged gains are nonzero, and consistent with a nonzero volatility risk pre-
mium. The main findings of our investigation are summarized below:

1. The delta-hedged call portfolios statistically underperform zero (across
most moneyness and maturity classifications). The losses are generally
most pronounced for at-the-money options.

2. The underperformance is economically significant and robust. When
out-of-money put options are delta-hedged, a similar pattern is doc-
umented. The documented underperformance of delta-hedged option
portfolios is consistent with a negative volatility risk premium.

3. Controlling for volatility, the cross-sectional regression specifications
provide support for the prediction that the absolute value of delta-
hedged gains are maximized for at-the-money options, and decrease
for out-of-the-money and in-the-money options.

4. During periods of higher volatility, the underperformance of the delta-
hedged portfolios worsens. As suggested by the hypothesis of a neg-
ative volatility risk premium, time variation in delta-hedged gains of
at-the-money options are negatively correlated with historical volatil-
ity. This finding is robust across subsamples, and to mismeasurement
of the hedge ratio.

5. Finally, volatility significantly affects delta-hedged gains even after
accounting for jump fears. Jump risk cannot fully explain the losses
on the delta-hedged option portfolios.

In economic terms, a negative volatility risk premium suggests an equilib-
rium where equity index options act as a hedge to the market portfolio, and
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is consistent with prevailing evidence that equity prices react negatively to
positive volatility shocks. Thus investors would be willing to pay a premium
to hold options in their portfolio, and this would make the option price higher
than its price when volatility is not priced. The empirical results of this article
strengthen the view that equity index options hedge downside risk.

There are two natural extensions to this article. First, given that volatilities
of individual stocks and the market index comove highly, one could examine
whether the volatility risk premium is negative in individual equity options.
The cross-sectional restrictions on delta-hedged gains and the volatility risk
premium can be tested in the cross section of individual equity options.
Second, volatility risk is of importance in almost every market. The analysis
conducted here can be directly applied to include other markets such as
foreign exchange and commodities. Much more remains to be learned about
how volatility risk is priced in financial markets.

Appendix A: Proof of Results

Proof of Proposition 1. We need to show that Et��t� t+� � = O�1/N�, when �t�
t
 ≡ 0. First,
without loss of generality, assume r = 0, �t ≡ �Ct/�St , and vt ≡ �t�Ct/�
t . Second, let the
period corresponding to the time to expiration, t = 0 to t = t+ � , be divided equally into N

periods, corresponding to dates, tn, n= 0�1� � � � �N , where t0 = 0, tN = t+� , and tn− tn−1 = h.
Consider the delta-hedged gains over one period, from tn to tn+1. If the volatility risk premium

is zero, then from Equation (13),

Cn+1 = Cn+
∫ n+1

n

�udSu+
∫ n+1

n

vudW
2
u � (35)

where, for brevity, we intend n to mean tn. Define the operators, ���
 = �
�t
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+	tSt
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. Appeal-

ing to an Itô–Taylor expansion,

Cn+1 = Cn+
∫ n+1

n

(
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0
���t
dt+
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�1��t
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dSu

+
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�vn+
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dt+
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�2�vt
d
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d
u� (36)

With an additional Ito–Taylor expansion to include all terms up to O�h�, we can rewrite this as,

Cn+1 = Cn+�n

∫ n+1

n

dSu+
 2
n S

2
n �1��n


∫ n+1

n

∫ u

n

dW 1
t dW

1
u +vn

∫ n+1

n

dW 2
u

+
n Sn �n �2��n

∫ n+1
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∫ u
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dW 2
t dW

1
u +�2
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∫ n+1
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∫ u
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dW 2
t dW

2
u

+
n Sn �n �2�vn

∫ n+1

n

∫ u

n

dW 1
t dW

2
u +A0� (37)

where A0 consists of terms such as
∫ n+1

n

∫ u

n
g�St�
t� t�dt du and

∫ n+1

n

∫ u

n
h�St�
t� t�dW

j
t ds�

j = S�
 . Under generally accepted regularity conditions [Lemma 2.2 of Milstein (1995)],
E�A0�= O�h2� and E�A2

0� = O�h3�. It follows from Theorem 1.1 in Milstein (1995) that the
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order of accuracy of the above discretization over the N steps in the interval, t = 0 to t = t+� ,
is h= �/N , so that it is of O�1/N�. Rearranging Equation (37), we can write �t� t+� as,

�t� t+� ≡
N−1∑
n=0

Cn+1 −Cn−�n�Sn+1 −Sn��

=
N−1∑
n=0

[

 2
tn
S2
tn
�1��tn
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tn
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dW 1
t dW
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Stn
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�2��tn
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∫ s
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dW 1
t dW

2
s

]
+O(1/N)� (38)

As the expected value of the Itô integrals is zero, the proposition is proved. �

Proof of Lemma 1. The proof is by induction. To fix ideas, we prove the case where �t���.
The extension to �t�
t� �� is straightforward. Consider ���t���S

�
,

������S�
 = − ��

��
S�+�	t S

�S�

�S
+ 1

2
�
 2

t S
2 �2S�

�S
(39)

=
(
− ��t/��+��t���	t +
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2
���−1��t���


2
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)
S� (40)

by assuming dSt = 	t St dt+
t St dW . This implies that �����t���S
�

 is again proportional

to S�. By induction, �n�g
, for any n ∈ �1�2�3� � � � �, is proportional to S�. �

Proof of Proposition 2. The proof relies on evaluating each term in the expansion of Equa-
tion (18). We have E��t� t+� �= g�St� 
t� �+ 1

2
�2��g�St�
t�
+ 1

6
�3�2�g�St�
t�
+· · · , where

g�St�
t�= �t �Ct/�
t . Here the vega is proportional to St , and so �Ct/�
t = �t��� y�St .
Under the maintained assumption that �t = �
t , g�St�
t�= ��t��� y�St 
t . From that,
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 = −����t/���St 
t +��t 	St��St/�St�
t +��t St �−�
t���
t/�
t�� (41)

= ��1 St 
t� (42)

where �1 ≡ −��/�� + �	− ��. From Lemma 1, successive �n�g
 inherit the same form
as Equation (42), as in ��n St 
t . Therefore, E��t� t+� � = ��t���St 
t , where �t��� ≡∑�

n=0
�1+n

�1+n�!�n. �

Proof of Equation (24). Using Equation (23) and applying Itô’s lemma, the call option satisfies
the dynamics
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The call price is a solution to the partial integro-differential equation,
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for risk-neutral density q∗�x
. Combining Equations (43) and (44) and using the definition of
�t� t+� , we get Equation (24). �

Expressions for risk-neutral skew and kurtosis used in Section 6
The model-free estimates of risk-neutral return skewness and kurtosis are based on Bakshi,
Kapadia, and Madan (2002). Specifically, the risk-neutral skewness, SKEW∗�t� ��, is given by

SKEW∗�t� �� ≡ E∗
t

{
�Rt� t+� −E∗

t �Rt� t+� 
�
3
}{
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3/2
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and the risk-neutral kurtosis, denoted KURT∗�t� ��, is
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and the price of the cubic and the quartic contracts are
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Each security price can be formulated through a portfolio of options indexed by their strikes. In
addition, 	�t� ��≈ er� −1− er�

2
V �t� ��− er�

6
W�t� ��− er�

24
X�t� ��. �

Appendix B: Simulation Experiment

To implement the simulation experiment, the stock return and volatility process are discretized
as (h is some small interval):

St+h = St +	St h+
t St �
1
t

√
h� (50)


 2
t+h = 
 2

t +�
(
�−
 2

t

)
h+� 
t �

2
t

√
h� (51)

Simulate a time series of two independent, standard normal processes: ��̄1
t � �̄

2
t �

′, where t =
1�2� � � � � T . Define

� =
(

1 �

� 1

)
�
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and generate a new vector: (
�1
t

�2
t

)
= �

1
2

(
�1
t

�̄2
t

)
�

The transformed vector is a bivariate normal process with zero mean and a variance-covariance
matrix of � , where �1

t and �2
t have a correlation of �. Construct the time series of St and 
t ,

t = 1�2� � � � � T , based on Equations (50) and (51) and using the simulated �1
t and �2

2 .
The initial stock price is set to be 100, and the initial value of volatility is chosen to be 10%.

We initially assume that �= 2�0, � = 0�01, � = 0�1, and �=−0�50.
For the calculations involving delta-hedged gains, the risk-neutralized variance process is


 2
t+h = 
 2

t +�∗��∗ −
 2
t �h+� 
t �

2
t

√
h� (52)

where �t�
t
 = �
 2
t , so that �∗ and �∗ are related to the physical parameters of the variance

process by the relations �∗ = �+�, and �∗ = ��/��+��.
Suppose we set � = 0�20, then each path corresponds to 73 observations of �St�
t�.

The delta-hedged gains, �t� t+� , over the period, � , is calculated using Equation (6),
for a call of strike 100 and initial maturity of 0.2 years. The call price is computed as

St�
1
2
+ 1

�

∫ �
0 Re� e

−iu ln�K�×f1�u�
i u


du�−K e−r� � 1
2
+ 1

�

∫ �
0 Re� e

−iu ln�K�×f2�u�
i u


 du�, where the charac-
teristic functions, f1 and f2, are displayed in Heston [1993, Equation (17)]. For simplicity, the
interest rate and the dividend yield are assumed to be zero. �
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