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Delta inulin-based adjuvants 
promote the generation of 
polyfunctional CD4+ T cell 
responses and protection against 
Mycobacterium tuberculosis 
infection
Claudio Counoupas1,2, Rachel Pinto1,2, Gayathri Nagalingam1,2, Warwick J. Britton1,2, Nikolai 
Petrovsky3,4 & James A. Triccas1,2

There is an urgent need for the rational design of safe and effective vaccines to protect against 
chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based 

on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has 
entered human trials to protect against viral pathogens. In this report we determined if Advax displays 
broad applicability against important human pathogens by assessing protective immunity against 

infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens 

Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the 
lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-
specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG 
oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. 
Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, 
CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with 
pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an 
excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further 

preclinical evaluation for progression to human trials.

Vaccines are the most e�cient tool for preventing diseases caused by infectious pathogens. Tuberculosis (TB) 
remains a major world health problem, with over 10 million new cases and 1.4 million deaths per year world-
wide1. �e current vaccine, M. bovis BCG displays variable protection in humans and new TB vaccines are 
urgently required2. Although genetic engineering has allowed the development of recombinant proteins in large 
scale, vaccination with such antigens alone is generally insu�cient to elicit a protective immune response and 
adjuvants are required to enhance antigen-speci�c immune responses, although in many cases the mechanism of 
adjuvant action is still not well de�ned3. A major challenge is how to achieve a potent adjuvant e�ect while avoid-
ing reactogenicity and toxicity. Unfortunately, the most potent adjuvants are typically associated with the greatest 
local and systemic toxicity (e.g. complete Freund’s adjuvant4), thereby largely precluding their use particularly in 
a prophylactic vaccine setting. Ideally, in addition to being safe and well tolerated, adjuvants should promote an 
appropriate (humoral and/or cellular) immune response, have a long shelf-life, and be stable, biodegradable and 
cheap to produce.
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A limited number of adjuvant formulations have been tested in clinical trials of TB subunit vaccine candidates. 
�ese adjuvants are typically complex, multicomponent formulations that have been selected for their ability to 
induce a �1 response (usually measured as IFN-γ production by antigen-speci�c T cells) and are similar in their 
proposed mode of action. For example the immunomodulatory molecule MPL (Monophosphoryl Lipid A) in 
AS01 adjuvant5 or the MPL synthetic analogue glucopyranosyl lipid adjuvant (GLA)6 and the mycobacterial cell 
wall component trehalose dimycolate (TDM) as part of the CAF01 adjuvant7 are in�ammatory adjuvants that 
initiate responses through pattern recognition receptors such as Toll-like receptor (TLR)-4 (MPL and derivatives) 
or macrophage inducible Ca2+-dependent lectin (Mincle) for TDM. Oligonucleotide as a component of IC31 
adjuvant acts through TLR9 to similarly activate NF-kB and resultant pro-in�ammatory cytokine release8.

In the current study the adjuvanticity of a novel polysaccharide adjuvant called Advax™ was assessed in a 
murine model of virulent M. tuberculosis infection. Advax is made up of semicrystalline, delta inulin polysaccha-
ride particles approximately 1–2 microns in diameter9. Advax has been shown in a wide range of animal models 
to enhance vaccine immunogenicity and protection against pathogens including Japanese encephalitis virus10, 11,  
West Nile virus12, hepatitis B virus13, in�uenza14, HIV15, SARS coronavirus16, Listeria monocytogenes17, and 
Bacillus anthracis18, as well as non-infectious diseases such as Alzheimer’s disease19. In mice Advax generates pro-
tective immunity with a reduced localized in�ammation compared to Alum formulations18. Importantly, Advax 
adjuvant has been shown to be safe and e�ective in human trials of in�uenza20, hepatitis B21 and allergy22 vaccines 
thereby signi�cantly de-risking use for TB vaccine development. In this study formulations of Advax adjuvant 
alone or combined with CpG oligonucleotide was combined with CysVac2 fusion protein24 and assessed for abil-
ity to protect against virulent M. tuberculosis infection, together with mechanistic studies on the impact of the 
Advax-containing vaccines on innate and adaptive immune responses.

Results
Advax-formulated vaccines induce polyfunctional CD4+ T cells. CysVac2, a fusion protein compris-
ing the M. tuberculosis Ag85B and CysD antigens, was previously found to provide protective immunity against 
pulmonary M. tuberculosis challenge in mice when formulated with MPL combined with dimethyldioctadec-
ylammonium (DDA)23. Because of its high adjuvanticity, MPL is reported to be highly reactogenic24 and does 
not adequately stimulate long-term T cell memory25. As concerns of MPL-DDA toxicity make the combination 
unsuitable for human use, there was a necessity to identify an alternative safe and e�ective human adjuvant for 
CysVac2 to advance to human trials. Advax adjuvant has proved safe and well tolerated in human in�uenza vac-
cines20 and hence we sought to test its ability to enhance CysVac2-induced protective immunity. Mice were vac-
cinated intramuscularly (i.m.) with 3 doses of CysVac2/Advax or CysVac2/Advax incorporating CpG (AdvaxCpG) 
and immunogenicity was assessed by examining CysVac2-speci�c responses in the peripheral blood mononu-
clear cells (PBMCs) 4 weeks a�er the last vaccination. �e CysVac2/AdvaxCpG group showed a high frequency of 
triple positive IFN-γ+IL-2+TNF+ and double positive IFN-γ+IL-2+ producing CD4+ T cells in antigen-stimu-
lated PBMCs (Fig. 1A,B). By contrast, the levels of these poly-functional T cells induced by CysVac2/Advax were 
much lower (Fig. 1B). Examination of the frequency of IFN-γ-secreting cells by ELISPOT demonstrated that both 
CysVac2/Advax and CysVac2/AdvaxCpG induced comparable IFN-γ responses (Fig. 1C). No IL-17A production 
was detectable from PBMCs from mice vaccinated with either CysVac2/Advax formulation (data not shown). 
Together, these results show that vaccination with CysVac2/AdvaxCpG, and to a lesser extent CysVac2/Advax, 
induces a vaccine-speci�c �1-like response.

Protection afforded by CysVac2/Advax against aerosol M. tuberculosis infection. Considering 
the �1 response elicited by the Advax-adjuvanted vaccines, we next determined if they could a�ord protec-
tion against low dose aerosol challenge with virulent M. tuberculosis. Vaccination of C57BL/6 mice with BCG, 
CysVac2/Advax or CysVac2/AdvaxCpG resulted in an approximate 1 Log10 reduction in lung M. tuberculosis 
CFU counts compared to unvaccinated mice, and this di�erence was statistically signi�cant (Fig. 2A). CysVac2/
AdvaxCpG induced the greatest level of protection, although this was not signi�cantly greater than that seen in 
CysVac2/Advax-vaccinated mice. �e protection a�orded by CysVac2/AdvaxCpG was equivalent to that observed 
with BCG (Fig. 2). �e lungs of unvaccinated mice were characterised by large unorganised areas of in�ammatory 
in�ltrate mostly composed of cells with large amounts of cytoplasm, most likely macrophages (see Supplementary 
Fig. S1). In the lungs of BCG-vaccinated mice there was generally less tissue involvement with smaller lesions 
of macrophage-like cells and high numbers of lymphocytes. Lungs of both CysVac2/Advax- and CysVac2/
AdvacCpG-vaccinated animals demonstrated reduced cellular in�ltration with more organisation and were char-
acterised by the presence of higher number of lymphocytes compared to the unvaccinated group. �ese results 
indicate that CysVac2 when formulated with Advax adjuvant formulations can reduce pulmonary bacterial load 
and infection-induced pathology in mice challenged with aerosolised M. tuberculosis.

Post-challenge immune response induced by Advax-formulated vaccines. We next looked for the 
pattern of post-challenge immune responses that correlated with protection in Advax-vaccinated mice, initially 
by the determination of cytokine-release by cells taken from mice 28 days post-challenge and stimulated ex vivo 
with CysVac2 or its individual protein components (Ag85B or CysD). �e highest level of IFN-γ production was 
observed upon CysVac2 or Ag85B re-stimulation of cells from CysVac2/AdvaxCpG-vaccinated animals (Fig. 3A). 
IFN-γ responses were next highest in cells from CysVac2/Advax-vaccinated animals, which were higher than 
the levels for unvaccinated mice (Fig. 3A), correlating with the general pattern observed in the pre-challenge 
cytokine pro�les (Fig. 2). Re-stimulation with CysD protein induced lower levels of IFN-γ release, with the high-
est response measured in the CysVac2/Advax vaccinated group (Fig. 3A). While TNF release was low (pg/ml 
range) in all groups, nevertheless it was increased for CysVac2/Advax and CysVac2/AdvaxCpG–immunised mice 
(Fig. 3B). No increase in IL-17A production was detected for any group (Fig. 3C).

http://S1


www.nature.com/scientificreports/

3SCIENTIFIC REPORTS | 7: 8582  | DOI:10.1038/s41598-017-09119-y

To further characterise immunity post-challenge, the frequencies of antigen-speci�c, multi-cytokine-secreting 
CD4+ T cells were compared between groups. CysVac2/AdvaxCpG-vaccinated mice had the highest frequency 
of multifunctional IFN-γ+IL-2+TNF+ and IL2+TNF+ CD4+ T cells (Fig. 3D). A similar pro�le was observed 
for CysVac2/Advax-vaccinated mice, albeit at a lower frequency. �is expansion of multi-functional cells was 

Figure 1. Vaccination with Advax-formulated vaccines induce polyfunctional vaccine-speci�c CD4+ T cells. 
C57BL/6 mice (n = 5) were vaccinated 3 times i.m. with 3 µg CysVac2 formulated in either Advax or AdvaxCpG. 
Control mice were le� unvaccinated (Unv). Four weeks a�er the last vaccination, PBMCs were isolated from 
peripheral blood, re-stimulated with CysVac2 and cytokine-secreting CD4+ T cells identi�ed. Representative 
dot plots of PBMCs of cytokine-expressing cells are shown in (A), with the frequency of triple-cytokine 
expressing cells (IFN-γ, TNF, IL-2) or cell expressing single or double cytokines or each group depicted in (B). 
�e number of IFN-γ producing cells a�er CysVac2 re-stimulation was determined by ELISPOT (C). Data 
(average ± SEM) is representative of two independent experiments. Statistical signi�cance between the groups 
was determined by ANOVA (*P < 0.05, **p < 0.01; **p < 0.001).

Figure 2. Advax-formulated vaccines provide protection against aerosol M. tuberculosis infection. C57BL/6 
mice (n = 5) were vaccinated with BCG (s.c. 5 × 105 CFU) or 3 times i.m. with 3 µg CysVac2 formulated in 
either Advax or AdvaxCpG. Control mice were le� unvaccinated (Unv), Advax or AdvaxCpG alone. Twelve weeks 
a�er the �rst vaccination, the mice were challenged with approximately 100 CFU of M. tuberculosis by aerosol 
route and the bacterial load was assessed 4 weeks later in the lung. �e data is representative of two independent 
experiments and are presented as Log10 CFU ± SEM. Statistical signi�cance between the groups was determined 
by ANOVA (**p < 0.01; **p < 0.001).
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statistically di�erent from that observed in unvaccinated and BCG-vaccinated mice, where the frequency of 
single-cytokine-secreting CD4+ T cells, particularly those secreting IFN-γ, was most pronounced (Fig. 3D). 
�ese results demonstrate that CysVac2/AdvaxCpG and, to a lesser extent, CysVac2/Advax elicit the generation of 

Figure 3. Vaccine-speci�c CD4+ T cell response post-M. tuberculosis challenge. C57BL/6 mice (n = 5) were 
vaccinated as in Fig. 2 and 12 weeks a�er the �rst vaccination mice were challenged with approximately 
100 CFU of M. tuberculosis. Four weeks a�er infection splenocytes were re-stimulated with CysVac2 or its 
singular components (Ag85B and CysD) and the levels of IFN-γ (A), TNF (C) or IL-17 (C) production in the 
supernatants were measured by ELISA. Splenocytes were re-stimulated in vitro with CysVac2 in the presence 
of brefeldin A and the frequency of CysVac2-speci�c cytokine secreting CD4+ T cells determined by �ow 
cytometry (D). Data (average ± SEM) is representative of two independent experiments. Statistical signi�cance 
between the groups was determined by ANOVA (*P < 0.05, **p < 0.01; **p < 0.001).
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multifunctional CD4+ T cells, the frequency of which correlates with the level of protection a�orded against M. 
tuberculosis challenge.

Cell recruitment and early T cell priming induced by Advax adjuvant formulations. We next 
investigated the possibility that Advax adjuvants may potentiate vaccine protection by enhancing the recruit-
ment of immune cells to the site of immunisation. Mice were injected i.d. in the ear with Advax formulations or 
a PBS control without antigen to allow quanti�cation of cell recruitment to the site of injection26. �is route of 
vaccination was shown to induce similar immunogenicity post-challenge with M. tuberculosis and equivalent 
level of protection to that previously observed with the i.m. route (see Supplementary Fig. 2A). �e leukocyte 
composition in the skin at the site of injection was determined a�er 2 days using the gating strategy shown in 
Supplementary Fig. S3. Local accumulation of neutrophils (CD45+ CD11b+ Ly6G+ cells, Fig. 4A,D) and CD64+ 
macrophages/monocytes (CD45+ CD64+ CD11b+ Ly6G−, Fig. 4B,E) was observed 2 days a�er injection of Advax 
or AdvaxCpG. AdvaxCpG induced the greatest chemotaxis with ~2-fold higher frequency of neutrophils and mac-
rophages/monocytes compared to Advax alone (Fig. 4D,E). Interestingly, most of the increase observed within 
the CD64+ population was within the Ly6Chi subset, which is the in�ammatory subset that may di�erentiate into 
in�ammatory DCs27. However, no apparent di�erence in the frequencies of conventional DCs between groups 
was observed at the time point examined (CD45+ Ly6G−CD11c+ MHCIIhi, Fig. 4C,F).

To investigate what were the possible immune mediators of this immune cells recruitment, we measured the 
levels of cytokines/chemokines in ear cells cultures. Cells from mice vaccinated with Advax or AdvaxCpG exhibited 
higher levels of the neutrophil attractant CXCL1 compared to PBS-injected mice (Fig. 4G). Cellular recruitment 
also correlated with higher levels of CCL3 (Fig. 4H), TNF (Fig. 4I), and IL-6 (data not shown), which were more 
pronounced in the AdvaxCpG-injected mice. By contrast no CCL2, CCL4, CCL5, IL-1β or IL-12p40 were detected.

Considering the potent ability of AdvaxCpG to recruit immune cell subsets to the injection site, the ability 
of CysVac2/AdvaxCpG to drive the priming of antigen-speci�c T cells was next assessed. CFSE-labelled spleno-
cytes from p25-TgTCR mice, whose T cells recognise M. tuberculosis Ag85B protein, were adoptively trans-
ferred into naïve C57BL/6 mice, which were then vaccinated i.d. with CysVac2 alone or with AdvaxCpG. At 2 days 
post-immunisation, CFSE-labelled p25-TgTCR CD4+ T cells had started to proliferate in the auricular lymph 
nodes (aLN) in both CysVac2 and CysVac2/AdvaxCpG groups, with proliferation more pronounced in the mice 
immunised with CysVac2/AdvaxCpG (Fig. 5A). At this early timepoint, the total number of p25-TgTCR CD4+ 
T cells was signi�cantly greater in CysVac2/AdvaxCpG compared to PBS-vaccinated mice (Fig. 5B). By 4 days 
post-immunisation, division of CFSE-labelled p25-TgTCR CD4+ T cells in the aLN started to be seen in the 
CysVac2 alone group (Fig. 4A), but with ~3-fold higher numbers of proliferating p25-TgTCR cells in the CysVac2/
AdvaxCpG group (Fig. 5C). Furthermore, analysis of cytokine release by CD4+ T cells a�er Ag85B240-254 peptide 
re-stimulation revealed that a high proportion of p25-TgTCR CD4+ T cells from CysVac2+ AdvaxCpG-vaccinated 
animals displayed a triple positive phenotype (IFN-γ+IL-2+TNF+), followed by double-positive cells producing 
either IFN-γ+TNF+ or IL-2+TNF+ (Fig. 5D). By contrast, mice vaccinated with CysVac2 alone, AdvaxCpG alone 
or PBS exhibited mainly TNF+ CD4+ T cells, although the CysVac2 alone group also exhibited a signi�cant pro-
portion of double positive IL-2+TNF+-secreting CD4+ T cells (Fig. 5D). �us, AdvaxCpG is a potent chemotactic 
agent that stimulates the early priming and expansion of antigen-speci�c CD4+ T cells at the immunisation site 
with promotion of multi-potent CD4+ T cells subsets.

Discussion
�e limited number of adjuvants currently licensed for use in human vaccines (e.g. aluminum-based salts and 
squalene-based emulsions) are relatively poor inducers of �1 type responses28, 29. Consequently, the identi�ca-
tion of adjuvants for use in TB vaccines for humans is a major unresolved challenge critical for progression of 
vaccine candidates30. �is study assessed the capacity of Advax delta inulin-based adjuvants to induce protective 
cellular immunity against M. tuberculosis infection. Advax adjuvants have been used to induce protective immu-
nity against a wide range of pathogens across multiple animal species and, most importantly, have already been 
shown to be well-tolerated and immunogenic in human subjects20–22, 31. �is report demonstrates for the �rst time 
that Advax adjuvants, when formulated with CysVac2 fusion protein, confer protection against aerosol challenge 
with M. tuberculosis (Fig. 2). �e level of protection induced by Advax-adjuvanted vaccines (ranging from 0.6 to 
1 Log10 CFU reduction compared to unvaccinated mice) is similar to that seen in preclinical studies of other TB 
vaccine candidates that have entered clinical trials, for example H56/CAF0132, ID93/GLA-SE33 or M72/AS0234. 
Notably, Advax alone, as a single component adjuvant, could provide signi�cant protection against M. tubercu-
losis, while the adjuvants used above are more complex and require multiple components to achieve a protective 
e�ect. �e identi�cation of Advax as a novel antigen that protects against a broad array of pathogens, including 
TB, complements the recent report demonstrating that di�erent adjuvants display distinct immunological signa-
tures that is independent of the vaccine antigen35.

�e addition of CpG to Advax (AdvaxCpG) further improved protection, similar to results when CpG had been 
added to other TB candidates such as ID93/GLA-SE36. Enhanced protection through addition of CpG to Advax 
has previously been seen in vaccines against SARS in mice37, Japanese encephalitis and West Nile virus in mice12 
and horses38 and pandemic avian in�uenza in ferrets39. �is suggests the synergistic protection observed in the 
current study with these two adjuvant components is a widely generalizable phenomenon. Based on these bene-
�cial e�ects, human Phase I vaccine trials involving AdvaxCpG adjuvant are currently underway (Petrovsky et al., 
unpublished observations). �e mechanism whereby CpG synergises with the delta inulin component of Advax 
is currently under investigation. As shown here, use of AdvaxCpG was particularly associated with an increased 
frequency of triple-positive IFN-γ+IL-2+TNF+ cells and greater chemotaxis of immune cells to the injection site 
than Advax alone. �is suggests that the addition of CpG to Advax helps drive greater chemotaxis and a stronger 
e�ector memory T cell response.
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Figure 4. Advax-mediated leucocyte recruitment at the site of vaccination. C57BL/6 mice (n = 4) were injected 
i.d. in the ear with PBS, Advax or AdvaxCpG. Ears were harvested 48 hrs later and cell composition determined 
by �ow cytometry. (A) Representative plots showing the gating strategy to select single live immune cells. 
Subsequent hierarchical gates were used to identify neutrophils (Ly6G+ CD11b+), monocyte/macrophage 
(Mo/Mφ) populations (CD64+ Ly6Glo/hi), and dendritic cells (DC; CD11c+MHCIIhi), with the total number 
of each respective cell population shown in panels D, E and F. Supernatants from isolated cells were analysed 
by cytokine beads array for the secretion of CXCL1 (G), CCL3 (H) or TNF (I). Data (average ± SEM) is 
representative of two independent experiments. Statistical signi�cance between groups was determined by 
ANOVA (*p < 0.05; **p < 0.01, ***p < 0.01).
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Analysis of both the pre and post-infection immune response revealed that CysVac2 combined with either 
Advax formulations elicited a vaccine-speci�c �1 response greater than the one elicited by BCG vaccine (Figs 1 
and 3). �e ability of Advax to induce a strong IFN-γ recall response by antigen-speci�c T cells was also seen in 
in�uenza14 and hepatitis B13 immunisation models, amongst others. Analysis of cytokine secretion showed that 
Advax formulations successfully induced poly-functional CD4+ T cells; CysVac2/AdvaxCpG induced an appre-
ciable level of triple-positive IFN-γ+IL-2+TNF+ cells both pre- and post-challenge, higher than that induced 
by CysVac2/Advax, BCG or in unvaccinated mice40. Levels of poly-functional CD4+ T cells have been shown 
to correlate with better protection in numerous models of infection including TB41, 42. In particular, it has been 
suggested that optimal TB protection can be achieved by the generation of a pool of triple-positive multifunc-
tional T cells that can mediate rapid e�ector functions43. In CysVac2/AdvaxCpG vaccinated mice a double posi-
tive IL-2+TNF+ CD4+ T cell subset was observed, which are characteristic of central memory T cells with high 

Figure 5. AdvaxCpG-adjuvanted vaccines induce early priming of antigen-speci�c CD4+ T cells. Five × 105 
CFSE-labelled p25-TgTCR splenocytes (CD45.1+) were i.v. transferred into C57BL/6 mice (CD45.2+) (n = 4). 
�e next day mice were injected i.d. in each ear with PBS, AdvaxCpG, CysVac2 protein alone, or CysVac2/
AdvaxCpG. p25-TgTCR CD4+ T cells CFSE dilution pro�les and proliferation index (±SEM) were calculated 
(A). Total cell numbers were evaluated by �ow cytometry at day 2 (B) or day 4 (C) in the auricular lymph node 
(aLN). Cells isolated from the aLN were re-stimulated over night in the presence of Ag85B240–254/brefeldin A 
and the frequency of p25-TgTCR CD4+ T cells producing IFN-γ, IL-2 or TNF was determined by intracellular 
staining and �ow cytometry (D). Data (average ± SEM) is representative of two independent experiments. 
Statistical signi�cance between groups was determined by ANOVA (**p < 0.01).
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proliferative capacity that correlate with protective e�cacy of TB vaccine candidates in mice44. However, in other 
studies, the presence of polyfunctional T cells in either MVA85A-vaccinated adults45 or BCG-vaccinated infants46 
did not correlate with protection against TB in humans, highlighting the incomplete understanding of immune 
correlates of vaccine-induced TB protection. �17 responses are thought to contribute to the protection against 
mycobacterial infection by triggering the expression of chemokines in the lung, which in turn may mediate the 
recruitment of protective T cells to the airways47, 48, However, Advax-adjuvanted vaccine formulations a�orded 
signi�cant protection against infection without inducing detectable levels of IL-17 (Fig. 3). Notably, IL-17 may be 
a double-edged sword as excessive IL-17 is associated with heightened in�ammation and tissue damage during 
mycobacterial infection49. Hence, adjuvants such as Advax that primarily induce multifunctional �1 responses, 
rather than IL-17 dominated responses, may represent safer candidates for human TB vaccine use.

�e local response induced by adjuvants at the site of injection represents the �rst series of events that leads 
to a protective immune response, and has been characterised for a number of experimental adjuvants includ-
ing MF5950, MPL/DDA51 and CAF0152. In this study we showed that injection of Advax formulations induced 
chemoattractants/cytokines, such as CXCL1, CCL3, IL-6 and TNF, which may be responsible for the observed 
rapid in�ux of neutrophils and monocytes/macrophages to the site of vaccination (Fig. 4). Innate cell populations 
interact in a very complex microenvironment and as such the distinct roles of each of these populations and their 
individual contribution to e�ective vaccine-induced immunity is not completely de�ned53. For example, neu-
trophils rapidly internalise mycobacteria and can participate in the initiation of adaptive immunity and supress 
the release of in�ammatory cytokines by �17 cells48, 49. �e suppression of neutrophil apoptosis appears to be a 
strategy used by M. tuberculosis to delay the activation of CD4+ T cells50. Adjuvant-induced neutrophils have been 
shown to regulate the level of antigen presentation by DCs to APCs50, 54, and hence neutrophils attracted to the 
site of immunization by Advax adjuvants may assist in enhancing antigen presentation and local T-cell activation. 
However, the role of neutrophils in protective immunity to TB is complex as excessive neutrophil in�ltration dur-
ing M. tuberculosis infection of the mouse is associated with increased lung pathology, which is more pronounced 
in susceptible hosts52, 53.

We also observed recruitment of large numbers of monocytes/macrophage (Fig. 4), in particular CD64+ 
Ly6Chi monocytes/macrophages, a subset shown to be able to di�erentiate into DCs and migrate to the draining 
LN to facilitate antigen presentation55. Indeed, we observed that a single dose of CysVac2 when formulated with 
AdvaxCpG induced signi�cant recruitment and local priming of vaccine-speci�c CD4+ T cells, resulting in gen-
eration of polyfunctional CD4+ T cells secreting multiple �1 e�ector cytokines in the draining LN (Fig. 5). �is 
supports a role for Advax adjuvants in inducing local injection site chemotactic signals, that recruit antigen pre-
senting cells to the site of immunisation, leading to enhanced antigen presentation and activation and expansion 
of memory T cells. Upon injection Advax particles are rapidly endocytosed by dendritic cells (DC), although the 
speci�c receptor(s) mediating this process is still unknown (Petrovsky et al., unpublished observations). Delta 
inulin retains its adjuvant action in MYD88/TRIF double knockout mice indicating that it does not require TLR 
signalling for its action (Petrovsky et al., unpublished observations). However, further studies are required to 
determine if these cell subsets are directly involved in Advax uptake and T cell priming; antigen-loaded APCs 
are refractory to T cell stimulation during mycobacterial infection56, while the timing of antigen and adjuvant 
delivery to APCs is critical for the induction of CD4+ T cell responses57. Like neutrophils, monocyte/macrophage 
accumulation can have a deleterious e�ect during mycobacterial infection56 and therefore the level of myeloid 
cell recruitment induced by vaccine recall responses may be critical for the balance between e�ective immu-
nity and immunopathology. Reassuringly, there was no evidence of any local or systemic toxicity either pre- or 
post-challenge in mice that received CysVac2/AdvaxCpG immunisation, which supports the safety and tolerability 
data on Advax adjuvants seen in recent human trials58.

In conclusion, the results presented here demonstrate that the Advax adjuvant can be incorporated into TB 
subunit vaccines to confer strong immunogenicity and protection against M. tuberculosis in the mouse model. Its 
e�ects are further enhanced by the addition of a CpG component which potentiates immune cell recruitment and 
the subsequent multifunctional e�ector T cell response. Considering the acceptable safety and tolerability pro�le 
of Advax in humans58, the CysVac2/AdvaxCpG combination is a strong candidate for further preclinical evaluation 
and progression to human trials.

Methods
Bacterial Strains and Growth Conditions. M. tuberculosis H37Rv and M. bovis BCG Pasteur were grown 
at 37 °C in Middlebrook 7H9 medium (BD) supplemented with 0.5% glycerol, 0.02% Tyloxapol, and 10% albu-
min-dextrose-catalase (ADC) or on solid Middlebrook 7H11 medium (BD) supplemented with oleic acid–ADC.

Antigens and adjuvants. Protein antigens Ag85B (Rv1886c), CysD (Rv1285), CysVac2 were produced in 
recombinant form from Eschericia coli as described previously23. Antigen purity was >90% as assessed by SDS 
PAGE analysis. �e absence of contaminant E. coli proteins in the CysVac2 vaccine was further demonstrated 
by the lack of cytokine release by cells from CysVac2-vaccinated mice a�er re-stimulation with an irrelevant 
recombinant mycobacterial protein produced by the same methodology (see Supplementary Fig. S4). Ag85B240-254 
peptide was synthetised by Genescript. Advax and AdvaxCpG were provided by Vaxine Pty Ltd (Adelaide, South 
Australia).

Vaccination and infection of mice. Female C57BL/6 (6–8 weeks of age) were purchased from the Animal 
Resources Centre (Perth, Australia). Mice were maintained in speci�c pathogen-free condition and experiments 
were performed with the approval of the Sydney Local Health District Animal Welfare Committee (approval 
number 2013/047C) in accordance with relevant guidelines and regulations. Animals were randomly assigned to 
experimental groups. For protection experiments, mice were vaccinated subcutaneously (s.c.) at the base of the 
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tail either once with 5 × 105 CFU of BCG Pasteur (200 µl in PBS), or i.m. 3 times at 2 weeks interval with 3 µg of 
recombinant protein formulated in Advax or AdvaxCpG (1 mg delta inulin per dose with or without 10 µg of 24 
mer type B oligonucleotide containing CpG-motif, 50 µl in each thigh).

For intradermal (i.d) experiments, mice were anaesthetised by intraperiteneal injection with Ketamine/
Xylazine (80/10 µg/kg). Four microliters of protein and/or adjuvants (1 µg and/or 150 µg, respectively), adjuvant 
alone or PBS were injected i.d. into each ear under a surgical Leica M651 microscope (Leica, Wetzlar, Germany) 
using an ultra�ne syringe (29G, BD Biosciences) as described by Lin et al.59. For M. tuberculosis challenge exper-
iments, six weeks a�er the �nal vaccination mice were infected with M. tuberculosis H37Rv via the aerosol route 
using a Middlebrook airborne infection apparatus (Glas-Col) with an infective dose of approximately 100 viable 
bacilli. Four weeks later the lung and spleen were harvested, homogenized and plated a�er serial dilution on 
supplemented Middlebrook 7H11 agar plates. Colonies forming units (CFU) were determined approximately 3 
weeks later and expressed as Log10 CFU.

Histology. For histological analysis, the middle right lobe of each infected mouse was perfused with a 10% 
bu�ered formalin solution. Tissue samples were embedded in para�n, and 5 µm thickness tissue sections were 
cut and stained with hematoxylin and eosin (H&E). Slides were observed with LeicaDM microscope (Leica 
Microsystems, North Ryde, Australia) with a magni�cation of 20x or 40x and acquired as a mosaic.

Assays of cytokine production. PBMCs were isolated by gradient centrifugation of approximately 200 µl 
of blood per mouse on Histopaque1083 (Sigma) according to manufacturer’s instructions. Splenocytes and auric-
ular lymph nodes (MLN) were prepared from vaccinated or infected mice by passage through a cell strainer 
(BD). Dorsal and ventral pinnae were separated using tweezers, and cells from the ears were dissociated with 
Collagenase I (0.1 mg ml−1; Worthington, Lakewood, NJ) and DNase (10 U ml−1; Worthington) and then pas-
saged through a cell strainer. Cells were resuspended in bu�ered ammonium sulfate (ACK bu�er; 0.1 mM EDTA 
(Sigma), 10 mM KHCO3 (Sigma), 150 mM NH4Cl (Sigma) to lyse erythrocytes and then washed and resuspended 
in RPMI 1640 (Life Technologies) supplemented with 10% heat-inactivated fetal bovine serum (Scientifix, 
Cheltenham, Australia), 50 µM 2-mercaptoethanol (Sigma), and 100 U ml−1 Penicillin/Streptomycin (Sigma). 
Antigen speci�c IFN-γ producing cells were detected by ELISPOT assay as described previously60. All antigens 
were used at a concentration of 10 µg ml−1. For Cytokine ELISAs, cells were stimulated with antigens and super-
natants collected a�er 72 hours, and IFN-γ, TNF and IL-17 were detected as described previously60.

For cytokine assessment a�er i.d. vaccination, ear cell suspensions were cultured 12–16 hours in complete 
RPMI at 5 × 105 cells ml−1. Supernatants were frozen at −80 until use, and cytokine concentrations (CXCL1, 
CCL3, CCL4, CCL5, IL-1b, IL-6, IL-12p40, TNF) were determined using cytokine bead array (BD) following 
manufacturer’s instructions. �e data was acquired on a BD LSR-Fortessa �ow cytometer (BD) and then analyzed 
using the FCAP Array So�ware (BD, USA).

Adoptive transfer of T cells. For adoptive transfer studies, p25 transgenic TCR (p25-TgTCR) mice 
(expressing the TCR speci�c for residues 240–254 of the M. tuberculosis Ag85B protein)61 were bred in house 
under speci�c pathogen free conditions. Splenocytes were prepared and labelled with CFSE as described62. 
C57BL/6 mice (CD45.2) received i.v. 5 × 105 CFSE labelled p25-TgTCR splenocytes (CD45.1) and the next day 
were immunized i.d. as described previously. At selected timepoints ears or lymph nodes were harvested and 
single cell suspensions prepared and stained for �ow cytometry (see below).

Intracellular cytokine staining and flow cytometry. For intracellular cytokine staining, cells were 
stimulated for 3–4 hours in the presence of the CysVac2 fusion protein (10 µg ml−1) and then for up to 12 hours 
with brefeldin A (10 µg ml−1). Two million cells were incubated with 1.25 µg ml−1 anti-CD32/CD16 (eBiosci-
ence, San Diego, CA) in FACS wash bu�er (PBS/2% FCS/0.1%) for 30 min to block Fc receptors, then washed 
and incubated for 30 min with either anti-CD3-PerCPCy5.5 (clone 145-2C11), anti-CD4-Alexa�uor 700 (clone 
RM4-5), anti-CD8a-allophycocyanin (APC)-Cy7 (clone 53-6.7), or anti-CD44- �uorescein isothiocyanate (FITC) 
(clone IM7, BD). Fixable Blue Dead Cell Stain (Life Technologies) was added to allow dead cell discrimination. 
Cells were then �xed and permeabilized using the BD Cyto�x/CytopermTM kit according to the manufactur-
er’s protocol. Intracellular staining was performed using the following antibodies: anti-IFN-γ-phycoerythrin 
(PE)-Cy7 (clone XMG1.2), anti-TNF-APC (clone MP6-XT22, Biolegend, San Diego, CA), anti-IL-2-PE (clone 
JES6-5H4) (BD) or anti-IL-17A-Paci�c Blue (clone TC11-18H10, Biolegend). For surface staining of ear sam-
ples preparations, cells were stained with anti-CD64a&b-PE (clone × 54-5/7.1.1), anti-MHCII-AF700 (clone 
M5/114.15.2), anti-CD45.2-BV510 (clone 104), anti-CD11c-PECy7 (clone HL3), anti CD11b-APC-Cy7 (clone 
M1/70), anti-CD326-APC (clone G8.8), anti-Ly6G-PB (clone 1A8), Ly6C-PerCPCy5.5 (clone AL-21).

All samples were acquired on a BD LSR-Fortessa �ow cytometer (BD), and analyzed using FlowJoTM analysis 
so�ware (Treestar, Macintosh Version 9.8, Ashland, OR). A Boolean combination of gates was used to calculate 
the frequency of single-, double- and triple-positive CD3+CD4+ cell subsets. �e PBMC gating strategy for intra-
cellular cytokine staining is described in ref. 23.

Statistical Analysis. �e signi�cance of di�erences between experimental groups was evaluated by one- or 
two-way analysis of variance (ANOVA), with pairwise comparison of multi-grouped data sets achieved using 
Tukey or Dunnet post hoc test.
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