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Delta-radiomics features for the 
prediction of patient outcomes in 
non–small cell lung cancer
Xenia Fave  1,2, Lifei Zhang1, Jinzhong Yang  1, Dennis Mackin1, Peter Balter1, Daniel 
Gomez3, David Followill1, Aaron Kyle Jones4, Francesco Stingo  5, Zhongxing Liao3, Radhe 
Mohan1 & Laurence Court1,2

Radiomics is the use of quantitative imaging features extracted from medical images to characterize 
tumor pathology or heterogeneity. Features measured at pretreatment have successfully predicted 
patient outcomes in numerous cancer sites. This project was designed to determine whether radiomics 
features measured from non–small cell lung cancer (NSCLC) change during therapy and whether those 
features (delta-radiomics features) can improve prognostic models. Features were calculated from 
pretreatment and weekly intra-treatment computed tomography images for 107 patients with stage 
III NSCLC. Pretreatment images were used to determine feature-specific image preprocessing. Linear 
mixed-effects models were used to identify features that changed significantly with dose-fraction. 
Multivariate models were built for overall survival, distant metastases, and local recurrence using only 
clinical factors, clinical factors and pretreatment radiomics features, and clinical factors, pretreatment 
radiomics features, and delta-radiomics features. All of the radiomics features changed significantly 
during radiation therapy. For overall survival and distant metastases, pretreatment compactness 
improved the c-index. For local recurrence, pretreatment imaging features were not prognostic, while 
texture-strength measured at the end of treatment significantly stratified high- and low-risk patients. 
These results suggest radiomics features change due to radiation therapy and their values at the end of 
treatment may be indicators of tumor response.

Lung cancer is responsible for the largest number of cancer deaths in both men and women in the United States1. 
Over 85% of lung cancer cases are non-small cell lung cancers (NSCLC)1, 2. Predicting a particular NSCLC 
patient’s response to treatment, even compared to patients in the same disease stage group, is extremely di�cult. 
A model that could e�ectively identify patients whose tumors are not responding to treatment would be bene�cial 
and could be used to recommend patients for adjuvant chemotherapy or a radiation boost.

Radiomics is the extraction of quantitative imaging features from medical images. �ese quantitative values 
can be used to develop models for cancer diagnosis, patient prognosis, or relative tumor heterogeneity that can 
then guide clinical decisions3, 4. �is process is similar to the current application of tumor stage or genetic infor-
mation derived from tumor biopsy specimens for clinical decision making. Radiomics has the combined advan-
tages of being highly patient-speci�c and non-invasive. Additionally, unlike biopsy specimens, radiomics allows 
for sampling the heterogeneity over the entire tumor. In recent years, numerous studies have examined the poten-
tial clinical utility of radiomics features calculated from computed tomography (CT) images of NSCLC. �ese 
studies have identi�ed features that are linked to tumor histology5, 6, tumor stage7, patient overall survival8–15, and 
genetic mutations16–18.

Changes in radiomics features, called delta-radiomics features, have also been studied for their prognos-
tic potential in cancer. Delta-radiomics features have been successful in predicting the response of colorectal 
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cancer liver metastases19 and metastatic renal cell cancer20 to chemotherapies. Delta-radiomics features have 
also been used to identify patients with esophageal cancer who would develop radiation pneumonitis during 
treatment21. Delta-radiomics features calculated from PET images were shown to be predictive of overall survival 
for NSCLC patients22. To our knowledge, however, no published reports have investigated the possibility of using 
delta-radiomics features calculated from CT images for determining prognosis in NSCLC patients. Currently, 
NSCLC tumor response is analyzed with the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines23–25.  
�ese guidelines depend on changes in tumor size to evaluate tumor response. Tumor size is widely known to be 
correlated with survival and probability for distant metastases in NSCLC. However, it does not re�ect changes in 
tumor heterogeneity or genetic pro�les, both of which may be more indicative of individual tumor biology. By 
sampling the entire tumor and analyzing changes in the spatial variations in intensity, delta-radiomics features 
may �ll this gap and provide better patient-speci�c outcome predictions.

�e main objective of this work was to determine whether therapy-induced changes in radiomics features, 
called delta-radiomics features, can improve models for predicting patient outcome when used in conjunction 
with clinical factors and radiomics features measured prior to treatment.

Methods
Patient data. For this study, we retrospectively reviewed the images and medical records for 137 NSCLC 
patients with a waiver of informed consent from the Institutional Review Board (IRB) at the University of Texas 
MD Anderson Cancer center. �ese patients were selected because they had been enrolled on an IRB approved 
clinical trial at the University of Texas MD Anderson Cancer Center where they were imaged weekly with a 
four-dimensional CT (4DCT) during their treatment26. Informed consent had been obtained from each study 
participant. All methods for the trial were performed in accordance with the University of Texas MD Anderson 
Cancer Center IRB guidelines and regulations and all experimental protocols were approved by the same IRB. 
Inclusion criteria for the trial were pathologically proven advanced NSCLC, Karnofsky performance status (KPS) 
≥70 or ECOG score 0–1, forced expiratory volume ≥1 liter, and age between 18 and 85 years26. Exclusion criteria 
included small cell histology, prior radiotherapy to the planned radiation therapy �elds, pregnancy, or oxygen 
dependence due to pre-existing lung disease26. �e patients were treated with radiation therapy and concurrent 
chemotherapy. �ey had been randomized to receive treatment with either photons or protons to 66 or 74 Gy. Full 
trial details are available online26. In this retrospective analysis, treatment modality was not considered for clas-
si�cation purposes. For this retrospective analysis, the medical records of these patients were reviewed to deter-
mine their clinical factors: sex, age, smoking status, pack years, tumor histology, overall disease stage, T stage, N 
stage, KPS, and total prescribed radiation dose (Table 1). �e primary endpoints for this retrospective analysis of 
the trial data were overall survival, freedom from distant metastases, and local-regional control.

Landmark analysis. Survival studies using measures of response that are calculated at multiple time points, 
such as the radiomics features measured at weekly intervals in this study, require a landmark time point to be used 
for calculating the time until the endpoint is reached27, 28. Otherwise a bias can be introduced by responders since 
they must have already survived to the time of treatment to be classi�ed as responders27, 28. In this study, patients 
were classi�ed as high or low risk using multivariate models that included clinical factors (recorded at the time 
of entrance to the study), pre-treatment radiomics features (measured from the treatment planning images), and 
delta-radiomics features (measured from the di�erent weekly images through treatment). Because a variable 
number of days occurred for each patient between when they entered the trial and when their pre-treatment 
images were acquired and between their pre-treatment images and last weekly images, a landmark time point was 
required to measure survival. For this study, endpoints were de�ned from a landmark time point of 90 days from 
the day the patient was entered on the clinical trial until one of the endpoints of death, presence of distant metas-
tases, or local-regional failure was met. Patients not reaching the endpoint were censored at their last follow-up 
date. �e landmark point was calculated by determining the total number of days from entering the trial to end of 
treatment for each patient. �e maximum interval (by which all measures of response had been determined) was 
83 days, which was rounded to 90 days for simplicity. �is ensures that the time until the endpoint is reached or 
the patient is censored is uniformly measured across all patients and not biased by the number of days they have 
already survived to reach the end of treatment.

Imaging parameters. �e pretreatment and weekly 4DCTs were acquired on either a GE Discovery ST 
or GE LightSpeed RT16 (GE Medical, Waukesha, WI) with a peak tube voltage of 120 kVp, tube current of 100 
or 200 mA, and rotation times of 0.5 or 0.8 second. Axial images were reconstructed in a 512 × 512 matrix at an 
in-plane resolution of 0.98 mm and image thickness of 2.5 mm. �ese acquisition and reconstruction parameters 
are our institutional standards for CT imaging. For this study, the features were calculated from the end-of-exhale 
phase images for each scan. �is phase was selected because it was considered the most stable and has been used 
in other radiomics studies15, 29, 30. �e three-dimensional gross tumor volume contoured from the treatment plan 
was used as the region of interest (ROI) for feature extraction. �e gross tumor volume contour from the treat-
ment plan was deformably registered to each subsequent weekly 4DCT scan using clinical so�ware developed 
in-house31–33. During this step, only the contour is deformed, the images themselves are not changed. All con-
tours were visually inspected by the same person to ensure consistency and modi�ed if necessary to remove any 
non-tumor regions. Furthermore, to ensure that normal lung and bone were excluded from the �nal ROI used for 
feature calculation, a thresholding step was also applied to each image with a lower threshold of −100 Houns�eld 
Units (HU) and upper threshold of 200 HU.

Exclusion criteria. Patients were excluded from this dataset for any of the following reasons: (i) a small ROI 
volume (<5 cm3) (n = 18); (ii) imaging using a di�erent protocol, such as breath hold instead of 4DCT (n = 9); or 
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(iii) occurrence of an endpoint, e.g. death, before the landmark point used for calculating survival times (n = 3). 
A�er exclusion, 107 patients were included in the �nal data analysis.

Feature extraction and selection. Feature calculation was performed using the IBEX so�ware34, 35. �is 
so�ware allowed for customization of feature parameters and image preprocessing. Extracted features included 
shape features (n = 16), intensity histogram features (n = 11), co-occurrence matrix (COM) features (n = 22)36, 37, 
neighborhood gray-tone di�erence matrix (NGTDM) features (n = 5)38, and run-length matrix (RLM) features 
(n = 11)39. To determine the best parameters for the features, each feature was calculated four times: (1) once with 
no image preprocessing other than thresholding, (2) once with thresholding and smoothing using a Butterworth 
�lter with an order of 2 and a cuto� of 125, (3) once with thresholding and an 8-bit depth resample, and (4) 
once with thresholding, Butterworth smoothing, and an 8-bit depth resample40. �e Butterworth smoothing acts 
to remove Gaussian noise from the images, which may obscure the lower frequency biological variations that 
radiomics features are designed to measure. �e 8-bit depth resample is used as an alternative to modifying the 
binning parameter for the histogram and radiomics matrices. Using 8-bit depth images results in a bin width of 
16 HU and thus is more likely to re�ect actual density changes in neighboring pixels than bins with a width of 1 
HU, which largely re�ect image noise.

Optimal image pre-processing was determined on a feature-speci�c basis using the following steps which are 
also illustrated in Fig. 1. First a univariate Cox regression model for overall survival was �tted for each preproc-
essed version of each feature using only the pretreatment images for each patient. �e signi�cance of the feature 
in the model was calculated to determine whether a model built on only this feature was a better �t than the null 
model. �is step identi�ed radiomics features that were predictive and therefore might be useful for calculating 
delta-radiomics features. �e correlation between each feature and the gross tumor volume was calculated using 

Clinical Factors Number of Patients (n = 107)

Sex

 F 45

 M 62

Age

 <65 45

 >=65 62

T stage

 T1 or T2 49

 T3 or T4 58

N stage

 N0 or N1 24

 N2 or N3 83

Overall disease stage

 II 12

 IIIa 44

 IIIb 49

 IV 2

Tumor histology

 Squamous cell carcinoma 46

 Adenocarcinoma or other 61

Smoking status

 Current 34

 Former 64

 Never 9

Pack years

 0–24 20

 25–49 37

 50–74 28

 75+ 22

Karnofsky performance status

 90–100 52

 70–80 55

Total radiation dose

 >70 Gy 72

 <70 Gy 35

Table 1. Clinical characteristics of the NSCLC patient population used for modeling in this analysis.
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Spearman’s rank correlation coe�cient. �e feature values and gross tumor volumes were calculated from the pre-
treatment images for this step. Next a Wilcoxon rank sum test was performed for each feature and pre-processing 
combination to determine if the feature values were signi�cantly di�erent when images were acquired on the GE 
Discovery ST versus the GE Lightspeed RT16, as CT scanner model has been demonstrated to be an important 
factor in feature reproducibility41. A patient subset that had images available from the �rst week of treatment was 
used for this test because at this time point the patients were roughly split between the two CT scanners used in 
this study (37 patients imaged with the GE Discovery ST and 44 patients imaged with the GE Lightspeed RT16) 
and their tumors would not yet have shown any therapy-induced changes. For each feature, the pre-processed 
version that was signi�cant in univariate analysis for survival (p-value < 0.10) and did not have a signi�cant 
value (p-value > 0.05) for the Wilcoxon rank sum test between CT scanners was included in the �nal feature set. 
Features that never met these two criteria regardless of the image pre-processing used were excluded from the fea-
ture set. If a feature met both criteria for more than one image pre-processing type, the version of the feature that 
had the smallest correlation with volume was selected. A p-value of 0.10 was used as the threshold for signi�cance 

Figure 1. Work�ow for the selection of feature speci�c image preprocessing. �e images are all processed in 
four ways: no extra processing, smoothing with a Butterworth �lter, resampling to an 8 bit depth, and both 
smoothing with a Butterworth �lter and resampling with an 8 bit depth. Each feature is calculated from the 
four sets of processed images. �en the best processing is determined on a feature speci�c basis by evaluating 
the univariate signi�cance, dependence on the CT model used to acquire the images, and volume dependence. 
Based on the results of these tests, one image preprocessing is selected for that feature. �en the process is 
repeated for the next feature. If no image preprocessing for a feature allows it to pass the tests, then the feature is 
removed entirely.
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in this pre-analysis because the p-values were used only for feature selection, not hypothesis testing, and thus the 
�ltering need not be overly stringent. �is choice was balanced against the need to remain conservative so that 
the feature dimensionality is decreased during this step. For the same reason, no multiplicity correction was used 
at this stage.

Delta-radiomics features. Two tests were conducted to determine which of the optimized features changed 
during treatment and thus might be useful indicators of tumor response. First a linear mixed e�ects model with 
random intercepts for each patient was built for each feature in the form equation (1),

∆ ∼ ∆ +Feature Dose 1 PatID( ) (1)

Here, ∆Feature was the feature value measured from each weekly 4DCT, ∆Dose was the total dose delivered to 
the tumor at that point in treatment, and PatID was a patient-speci�c identi�er that allows the model to account 
for the fact that we had multiple, longitudinal measurements of each feature for each patient by assigning each 
patient their own intercept. �e p-value of the log-likelihood ratio for each model was calculated. P-values were 
corrected for multiple comparisons using the Benjamini-Hochberg method42. If the corrected p-value was less 
than 0.05, the model was considered signi�cant and indicated that the changes in the feature were signi�cantly 
associated with the dose delivered to the tumor. For each feature with a signi�cant p-value in this test, simpli�ed 
measures of the overall change were calculated and de�ned as delta-radiomics features. �e delta-radiomics fea-
tures were de�ned as the relative net change, equation (2), the linear regression slope, and the value of the feature 
at the last week of treatment for each patient.

= −relativeNetChange Feature Feature Feature( )/ (2)WeekFinal Week Week1 1

Here, FeatureWeekFinal was the value of the feature at the end of treatment and FeatureWeek1 was the value at the �rst 
weekly 4DCT for each patient. A one-sample, two-tailed t-test was conducted for each of the delta-radiomics fea-
tures to determine whether the overall changes for the group were signi�cantly di�erent from 0, and values were 
again corrected using the Benjamini-Hochberg method. Features that passed both the linear mixed e�ects and 
t-test analyses (corrected p-value < 0.05) were considered to signi�cantly demonstrate radiation therapy-induced 
changes and were included as potential covariates in model building.

Multivariate analysis. Multivariate Cox regression models were built for each of the primary endpoints 
using leave-one-out cross validation (LOOCV) and Akaike Information Criterion (AIC) with the following pro-
cedure, which is also illustrated in Fig. 2. First, one patient was removed from the dataset and a Cox proportional 
hazards model was built using all of the clinical factors and the remaining patients. �e covariates were reduced 
using stepwise AIC in both directions. Next, all of the pretreatment radiomics features were added to this model 
and stepwise AIC was repeated in both directions with forced nesting of the clinical covariates. �en, all of the 
delta-radiomics features were added to this model with forced nesting of the clinical and pretreatment radiomics 
covariates. �e delta-radiomics versions of the features were identi�ed by the su�xes “netPercentChange”, “Slope”, 
or “WeekLast”, while the pretreatment radiomics features are indicated by the su�x “Week0”. �is process was 
repeated with each patient le� out in turn so that at the end there were three models for each le�-out patient: one 
with only clinical factors, one with clinical factors and pretreatment radiomics features, and one with clinical 
factors, pretreatment radiomics features, and delta-radiomics features. �e total number of times each covariate 
was selected for the three models over all of the LOOCV iterations was calculated. Covariates that were selected in 
more than half of the iterations were retained and considered high-performing. Final versions of the three models 
using only these frequently selected covariates were then calculated and compared using the log-likelihood ratio 

Figure 2. Work�ow for building of multivariate models. A LOOCV loop is used to generate 3 models on each 
iteration: (1) Only clinical factors, (2) clinical factors and pre-treatment (TX) features, and (3) clinical factors, 
pre-TX features, and delta-radiomics features. A�er the three models have been built with each patient le� out 
once, the number of times each covariate was selected is tabulated. �en those covariates that are selected in 
greater than 50% of the iterations are kept. �ese are then used to �t �nal versions of the 3 models.
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to determine whether the radiomics and/or delta-radiomics features signi�cantly (p-value < 0.05) improved the 
�t of the model to the data. If no feature was selected in more than half of the iterations for a particular model, 
then the null model or the nested model from the previous iteration was used.

To evaluate the prognostic potential of these features, a new LOOCV was performed. For this analysis, the 
three models were built on each iteration using only the high-performing clinical, radiomics, and delta-radiomics 
covariates from the original LOOCV. No covariate reduction was performed, but the coe�cients were re�t on 
each iteration. On each iteration of the loop, a prediction for the le�-out patient was calculated using each of the 
three models. Because the patient was le� out of the coe�cient �tting process, predictions generated for the le� 
out patient were unbiased. Once the loop was complete, and each patient had a prediction for each model, the 
Harrel concordance index43 (c-index) was calculated for each model. �e c-index is analogous to the area under 
the curve but is designed for survival data instead of binary data. Values of the c-index can range from 0 to 1 with 
a value of 1 indicating perfect prediction and a value ≤ 0.5 indicating that a model performs no better or worse 
than a random guess. �us the c-indices allowed for the comparison of the predictive accuracy of models that 
included radiomics and delta-radiomics features to models incorporating only clinical factors. Finally, patients 
were strati�ed as high or low risk based on whether their prediction was above or below the median prediction 
for each model. Kaplan-Meier curves were plotted using this patient strati�cation, and the log-rank test was used 
to determine whether the strati�cations were signi�cant (p-value < 0.05).

All statistical analyses were performed in R language44 using the survival45, lme446, MASS47, and ggplot248 
analysis packages.

Results
Feature selection. �e initial feature set had 49 texture features measured before treatment, with four di�er-
ent image preprocessing types and 16 shape features, for a total of 212 feature and preprocessing combinations. Of 
these, 75 were signi�cant in univariate analysis (p < 0.10), and 123 were not signi�cantly di�erent between di�er-
ent CT scanners (p < 0.05). �ese results are shown in Supplementary Figures S1–S3. Using the feature selection 
process, this feature set was reduced to 31 features. Of these, 9 were calculated with no extra preprocessing, 15 
were calculated with Butterworth smoothing, and 7 were calculated with Butterworth smoothing and 8-bit depth 
resampling (Supplementary Figure S4). At least one feature from every feature category was represented in this 
�nal feature set.

All 31 features had signi�cant p-values for the log-likelihood ratio of their linear mixed e�ects model, with 
dose as the covariate and random intercepts for each patient, even a�er Benjamini-Hochberg correction for mul-
tiplicity. �e net changes and slope in each feature were also signi�cant in t-tests comparing their means to 0 
a�er multiplicity correction for every feature. �us a total of 31 features were available for feature selection in the 
multivariate model building.

Multivariate analysis. For overall survival, 67 of the 107 patients reached the endpoint of death. �e median 
survival time was 638 days. 50 patients had a distant metastases with a median time until reaching the endpoint 
or censoring of 311 days. 23 patients had a local recurrence with a median time until reaching the endpoint or 
censoring of 420 days. �e �nal results of the multivariate analysis are summarized in Table 2 for all three out-
comes and all three models. �e number of times each clinical factor and radiomics feature was selected in the 
�rst LOOCV is tabulated in Supplementary Table S1 for each outcome.

Adding the single selected pretreatment feature compactness2 increased the c-index from 0.597 to 0.672 for 
overall survival. �e log-likelihood ratio between these two models was signi�cant. However, further addition 
of delta-radiomics features made a negligible di�erence to the c-index and did not substantially a�ect the patient 
strati�cation by the Kaplan-Meier curves (Fig. 3). �e log-likelihood ratio between model 2 (with clinical factors 
and pretreatment radiomics features) and model 3 (with clinical factors, pretreatment radiomics features, and 
delta-radiomics features) was signi�cant, indicating an improved �t. �e clinical factors included in the �nal 
model were T stage, patient sex, tumor histology, and total radiation dose. �e pretreatment feature that was 
included was compactness2 from the shape category. �e delta-radiomics features that were included were the 
slopes in grey-level non-uniformity from the RLM and texture strength calculated from the NGTDM.

For distant metastases, no delta-radiomics features were included in the �nal model. �e �nal clinical factors 
included in the model were tumor T stage, overall disease stage, and patient age, sex, and smoking status. Adding 
a pretreatment feature, compactness2 from the shape category, did result in an increase in the c-index from 
0.539 to 0.632. �e log-likelihood ratio between model 1 (clinical factors only) and model 2 (clinical factors and 
pretreatment radiomics features) was highly signi�cant. Furthermore, patient strati�cation was signi�cant when 
the pretreatment radiomics feature was added, while it was not signi�cant for the purely clinical model (Fig. 4).

For local-regional recurrence, no clinical factors or pretreatment radiomics features were selected in more 
than half of the LOOCV iterations. As a result, none were considered high-performing or were available for use 
in the �nal models for local recurrence. However, the delta-radiomics feature texture strength from the NGTDM 
measured at the end of treatment was selected in a majority of the LOOCV iterations. As a result, only the model 
including delta-radiomics features was built. �is univariate model resulted in a low value for the c-index (0.558) 
but a statistically signi�cant strati�cation of the patients (p-value = 0.0269; Fig. 5). In lieu of calculating the 
log-likelihood ratio between this model and model 1 (clinical features only) or model 3 (clinical, pretreatment 
radiomics, and delta-radiomics factors), the log-likelihood ratio between this model and the null model was 
calculated (p-value = 0.0725).

Discussion
While the inclusion of delta-radiomics features had a statistically signi�cant impact on the overall likelihood 
of a model for overall survival compared to a model with only clinical and pretreatment radiomics features, the 
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impact on the model’s prognostic abilities was generally negligible. For distant metastases, no delta-radiomics 
features were selected in the �nal round of model building. �is suggests that delta-radiomics features do not 
o�er substantially new prognostic information for these outcomes though they were still prognostic for over-
all survival. �e same pretreatment radiomics feature, compactness2, was selected for both the overall survival 
and time to distant metastases models and improved their prognostic potential. For both overall survival and 
distant metastases, the coe�cient for this feature was positive, meaning a patient had a higher predicted risk 
of experiencing the outcome if the value for compactness2 from their ROI was relatively large. �is feature was 
related to the volume and shape of the tumor ROI, i.e. how spiculated it may appear. �e feature values were also 
a�ected by the tumor location, since a tumor attached to the chest wall was contoured with at least one smooth 
side compared to a tumor surrounded by lung which ranged anywhere between fully smooth or fully spiculated. 
Compactness 2 was also found to be predictive in a radiomics study by Aerts et al. where it was included as part 
of a four feature radiomics signature11. �is study is unique in that it demonstrated that compactness 2 added 
signi�cant new information to a variety of clinical factors already routinely obtained, as opposed to only TNM 
staging and tumor volume. In this study, the clinical model was built �rst and then radiomics features were added 
to it rather than building a purely radiomics model and assessing its capabilities. �is is important because the 
introduction of radiomics features into a routine clinical work�ow is unlikely to be accepted unless models built 
using radiomics features outperform models built using only routinely acquired clinical factors.

Interestingly, in the models for local-regional recurrence, the only covariate that was predictive for outcomes 
was a radiomics feature, texture strength from the NGTDM, measured from images acquired during the last week 
of treatment. �is feature was designed to quantify whether an image has clear, perceivable characteristics that 
can be considered as texture and the overall strength of that signal38. Further work is needed to identify what this 
feature may represent in the context of NSCLC tumor analysis. �is result may be evidence that, although it is not 
possible to predict local-regional recurrence prior to treatment, the state of the tumor at the end of the treatment 
can be assessed using radiomics.

One possible cause of the poor selection of delta-radiomics features in the models may be due to the initial 
feature preselection process. �e full feature set was �rst reduced to features whose pretreatment values were at 
least prognostic in univariate models for overall survival. It is possible that the results would di�er if this require-
ment was changed to instead select for delta-radiomics features that are signi�cant in univariate models. �e 
original requirement was chosen for two reasons: �rst, because several publications have shown that pretreatment 
radiomics features have informative value and thus changes in the features that are already prognostic may re�ect 
actual biological changes in the tumor, and second, if model building was limited to delta-radiomics features that 
were signi�cant in univariate analyses the results could be biased and overly optimistic.

One limitation of this study was the lack of a dataset for independent model validation due to the fact that 
patients are not routinely imaged weekly during their treatment. �is limitation was mitigated by using cross val-
idation, which has been shown to be an e�ective method for creating unbiased patient-speci�c predictions49, 50.  
Another limitation of this study was that the median predicted value was used as the cut-o� point for high- and 
low-risk patients. �is is not an optimized approach, and it is very likely that a di�erent model-speci�c value would 

Overall Survival
Distant 
Metastases

Local-
regional 
Recurrence

C-index

 Model 1 0.597 0.539 NA

 Model 2 0.672 0.632 NA

 Model 3 0.675 NA 0.558

Log-likelihood ratio p-value

 Between 
model 1 and 
model 2

4.20 × 10−5
*** 4.87 × 10−4

*** NA

 Between 
model 1 and 
model 3

2.10 × 10−5
*** NA NA

 Between 
model 2 and 
model 3

0.020* NA NA

Log-rank test p-value

 Model 1 5.27 × 10−3
*** 0.380 NA

 Model 2 2.40 × 10−6
*** 1.56 × 10−3

*** NA

 Model 3 1.30 × 10−5
*** NA 0.0269*

Table 2. Final comparison of the three models for each outcome. For the c-indices and log-rank test p-values, 
a value of NA indicates that no extra covariates were selected for this model and thus the value cannot be 
evaluated. Similarly, a value of NA for the log-likelihood ratio p-value implies that the two models being 
compared had the same covariates and thus the log-likelihood ratio cannot be computed. Model 1 is the model 
with only clinical factors. Model 2 is the model with clinical factors and pretreatment features. Model 3 is 
the model with clinical factors, pretreatment features, and delta-radiomics features. *Signi�cant at p < 0.05; 
**Signi�cant at p < 0.005; ***Signi�cant at p < 0.001.
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yield di�erent results. However, testing multiple cuto�s to �nd the best one without an independent validation 
dataset to test it in has been repeatedly shown to yield overly optimistic results51–53. By using the median, this source 
of bias is avoided and the conclusions remained conservative. Lastly, because the images used in this analysis were 
non-contrast CT images, vessels passing through the lesion could not be segmented from the contour. �us the 
contours for the tumor ROIs may contain vasculature along with the solid tumor component we are interested in. 
�e inclusion of vasculature in the tumor ROIs may a�ect the radiomics features and the calculated tumor volume.

Radiomics is in some ways fundamentally limited because the features are not inherently descriptive. �is is 
in contrast to clinical covariates which, when selected in prognostic models, lend themselves to hypotheses, e.g., 
age is likely to a�ect survival because a younger person is statistically likelier to live longer than an older person. 
For radiomics features, this type of reasoning is di�cult and instead new studies must be undertaken to correlate 
feature values with biological characteristics such as genetic mutations. Radiomics features also su�er from lack 
of robustness, as they have been demonstrated to vary with imaging equipment, ROI contouring, and imaging 
parameters. �us the implementation of radiomics features in a clinical setting would require substantial e�ort 
to standardize both imaging and measurement parameters. �is study identi�ed two features, compactness2 and 
texture strength, which may be of clinical signi�cance. �e �rst step in determining their robustness will be to 
examine the impact of segmentation on both features’ values and prognostic potentials. �is is especially critical 
for compactness2 since it is a shape based feature and thus could be substantially impacted by segmentation. In 
conclusion, this study found evidence that radiomics features change during the course of radiation therapy for 
NSCLC. However, these changes in features did not signi�cantly outperform features measured before treatment 
in multivariate models for overall survival and distant metastases. �us it may be more important to focus e�orts 
on improving the standardization of features measured before treatment and identifying a biological or molecular 
explanation for their predictive values. One radiomics feature measured at the end of treatment did outperform 
both clinical factors and pretreatment radiomics features for prediction of local-regional recurrence. �is feature, 
texture-strength, could become an indicator for tumor response since it was only prognostic when measured 

Figure 3. Comparison of Kaplan-Meier curves for overall survival using the three nested models with patients 
strati�ed by the median prediction value of each model. �e strati�cation was signi�cant for all three models. 
�e addition of a pretreatment radiomics feature, compactness2, to clinical factors alone had a small improving 
e�ect on the strati�cation, while the further addition of delta-radiomics features had almost no impact on the 
strati�cation.

Figure 4. Comparison of Kaplan-Meier curves for distant metastases using the two nested models with patients 
strati�ed by the median predicted value of each model. No delta-radiomics features were selected in the model-
building process for distant metastases, so only two models were available. For distant metastases, the addition 
of a pretreatment radiomics feature, compactness2, signi�cantly improved the strati�cation of the patients.
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at the end of treatment. Despite the fact that this study did not �nd strong evidence supporting the prognostic 
potential of delta-radiomics features, the results of this study are important because the potential of tracking radi-
omics features throughout treatment for NSCLC was investigated. Furthermore, while other studies have used 
delta-radiomics features for other treatment sites or for normal tissue toxicity, they have used only the relative 
net change in their models21, 22, 54. �is study included both the slope of a linear regression for the features of each 
patient, which may be less susceptible to noise than the relative net change, and the feature values at the end of 
treatment, which may re�ect tumor response.
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