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Abstract. The Riemann problem for the changed form of the chromatography system

is considered here. It can be shown that the delta shock wave appears in the Riemann

solution for exactly specified initial states. The generalized Rankine-Hugoniot relation

of the delta shock wave is derived in detail. The existence and uniqueness of solutions

involving the delta shock wave for the Riemann problem is proven by employing the

self-similar viscosity vanishing approach.

1. Introduction. In this paper, we are concerned with the Riemann problem for⎧⎨
⎩

∂tv + ∂x(
v

1 + v ) = 0,

∂tw + ∂x(
w

1 + v ) = 0,
(1.1)

with initial data

(v, w)(x, 0) = (v±, w±), ±x > 0, (1.2)

where v± and w± are all given constants.

The equations (1.1) can be derived directly from the chromatography equations⎧⎨
⎩

∂tu1 + ∂x(
u1

1 + u1 + u2
) = 0,

∂tu2 + ∂x(
u2

1 + u1 + u2
) = 0,

(1.3)

by introducing the change of variables

v = u1 + u2, w = u1 − u2. (1.4)
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426 M. SUN

Here u1, u2 are the nonnegative functions of the variables (x, t) ∈ R×R+, which express

transformations of the concentrations of two solutes.

The system (1.3) belongs to the Temple class and arises in the study of two-component

chromatography; i.e., the shock curves coincide with the rarefaction curves in the phase

plane due to the special form Yt + (uY )x = 0 [29], where Y = (u1, u2)
T and u =

1
1 + u1 + u2

. Thanks to the above feature, well-posed results for Temple systems are

available for a much larger class of initial data compared with general systems of con-

servation laws. Furthermore, the Riemann problem for these equations can be explicitly

solved in the large, and wave interactions have a simplified structure. For the related

results about Temple systems, we can refer to [3, 27] and the references cited therein.

Recently, Ambrosio et al. [2] introduced the change of variables (1.4) and then studied

the equations (1.1) as an example by employing new well-posedness results for continuity

and transport equations. Their method is mainly to split the chromatography system

in the coupling between a scalar conservation law and a transport equation, and then

the transport equation techniques [1] can be heavily exploited. A different change of

variables v = u1 + u2 and θ = u2/u1 was adopted by Bressan and Shen [5], where they

are mainly concerned with the study of ODEs with discontinuous vector fields.

In the present paper, we only consider the Riemann problem (1.1) and (1.2) and make

a further step to assume that the functions (v, w) ∈ R+ × R from the mathematical

viewpoint. We discover that no classical weak solutions appear when the Riemann initial

data satisfy v− = 0 and the delta shock waves should be used as parts in the Riemann

solutions. The motivation of this study comes from the fact that the delta shock wave was

captured numerically and experimentally by Mazzotti et al. [20, 21, 22] in the Riemann

solutions for the local equilibrium model of two-component nonlinear chromatography as

follows: ⎧⎨
⎩

∂t(u1 +
a1u1

1− u1 + u2
) + ∂xu1 = 0,

∂t(u2 +
a2u2

1− u1 + u2
) + ∂xu2 = 0,

(1.5)

with certain Riemann initial data, in which u1 and u2 are the concentrations of the two

absorbing species, and u1, u2 ≥ 0, 1 − u1 + u2 > 0, a2 > a1 > 0. This paper is a

theoretical foundation for making a further step to study the Riemann problem of (1.5)

in the future.

Furthermore, we show rigorously that the Riemann solution including the delta shock

wave is the weak star limit of (vε, wε) as ε → 0+, where (vε, wε) is the self-similar solution

for the corresponding Riemann problem of the perturbed system⎧⎨
⎩

∂tv + ∂x(
v

1 + v ) = εt∂xxv,

∂tw + ∂x(
w

1 + v ) = 0.
(1.6)

Here our viscosity appears only in the first equation in (1.6) and our main interest is the

weak convergence of the viscosity solutions for the delta shock wave. Thus the process

of proof is given in detail for the case v− = 0 in which the delta shock wave occurs in the

Riemann solution of (1.1) and (1.2). We can see that the structure of the delta shock

wave is stable under the self-similar viscosity perturbation, which guarantees the delta

shock wave be a unique entropy solution.
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The approach through self-similar viscosity limits was proposed by Dafermos [7] and

used in Dafermos and Diperna [9] to construct solutions for broad classes of 2×2 systems

that include the equations of isentropic, Lagrangian, gas dynamics. This method was

widely used in [26, 30] for the admissibility of weak solutions of the Riemann problem

for hyperbolic systems of conservation laws and the admissibility criterion was called

the wave-fan criterion in [8]. Special attention was also paid in [12, 14, 25, 28, 31] to

the formation of the delta shock waves in the Riemann solutions for some systems of

hyperbolic conservation laws.

For knowledge of the delta shock wave, which was introduced into the classical weak

solution by Korchinski when he studied the Riemann problem for

⎧⎨
⎩

ut + ( 12u
2)x = 0,

vt + ( 12uv)x = 0,
(1.7)

see [17]. In fact, the concept of the δ-shock solution and the corresponding Rankine-

Hugoniot condition were also presented by Zeldovich and Myshkis [32] in the case of the

continuity equation earlier. Tan, Zhang and Zheng [28] considered the reduced system,

which has the trivial difference u → u
2 with (1.7), and discovered that the form of the

Dirac delta functions supported on shocks was used as parts in their Riemann solutions

for certain initial data. Another well-known example is the transport equations (also

called the pressureless Euler equations)

⎧⎨
⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0,
(1.8)

in which the delta shocks also appear in their Riemann solutions for certain initial data.

The equations (1.8) have been studied extensively since 1994; for examples, we can see

[4, 6, 11, 13, 15, 18, 19] and the related references therein.

The paper is organized in the following way. In section 2, the Riemann problem of

(1.1) and (1.2) is constructed completely by employing the characteristic analysis method.

In particular, the delta shock wave does occur in the Riemann solution when one of the

Riemann initial data takes the special form v− = 0. In section 3, the generalized Rankine-

Hugoniot relation of the delta shock wave is derived in detail, which describes the exact

relationship among the location, propagation speed, weight and the assignment of v on

its discontinuity. In section 4, we consider the existence of the Riemann solutions to the

viscous system (1.6) for each fixed ε > 0 in the special case v+ > v− = 0. In addition, the

solutions have the special form that vε(ξ) is smooth and monotone increasing and that

wε(ξ) is smooth and monotone except for a unique singular point which is the unique

fixed point of ξ = 1
1 + vε(ξ)

. Finally we study the limit of the Riemann solution to (1.6)

by letting ε → 0 and prove that it is exactly the corresponding Riemann solution to (1.1)

in the special case v+ > v− = 0 in section 5.
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428 M. SUN

2. The Riemann problem for (1.1) and (1.2). In this section, we discuss the

Riemann problem for (1.1) and (1.2). The characteristic roots of the equations (1.1) are

λ1 =
1

(1 + v)2
, λ2 =

1

1 + v
. (2.1)

Therefore (1.1) is strictly hyperbolic in the half-plane of the phase space v > 0 and

nonstrictly hyperbolic on the borderline v = 0.

The corresponding right characteristic vector of λi (i = 1, 2) is

−→r1 = (v, w)T , −→r2 = (0, 1)T . (2.2)

Obviously, we have ∇λ1 · −→r1 �= 0 for v �= 0 and ∇λ2 · −→r2 ≡ 0, which implies that λ1

is genuinely nonlinear for v �= 0 and λ2 is always linearly degenerate. Therefore, the

associated waves are rarefaction waves or shock waves for the first family and contact

discontinuities for the second family.

The Riemann invariants along the characteristic fields are

r =
w

v
, s = v. (2.3)

Since both (1.1) and (1.2) are invariant under the transformation (x, t) → (αx, αt)

(α is constant), the solution of the Riemann problem must be a function of the single

variable x/t. Thus, we seek the self-similar solution

(v, w)(x, t) = (v, w)(ξ), ξ = x/t. (2.4)

Then the Riemann problem of (1.1) and (1.2) is reduced to the boundary value problem

of the ordinary differential equations:⎧⎨
⎩

−ξvξ + ( v
1 + v )ξ = 0,

−ξwξ + ( w
1 + v )ξ = 0,

(2.5)

with (v, w)(±∞) = (v±, w±).

For smooth solutions, let us denote U = (v, w)T . Then (2.5) can be rewritten as

A(U)Uξ = 0, (2.6)

where

A(v, w) =

⎛
⎝ −ξ + 1

(1 + v)2
0

− w
(1 + v)2

−ξ + 1
1 + v

⎞
⎠ .

Besides the constant state solution, it provides a rarefaction wave which is a continuous

solution of (1.1) in the form (v, w)(ξ). Then, for a given left state (v−, w−), the rarefaction

wave curves in the phase plane, which are the sets of states that can be connected on

the right by a 1-rarefaction wave, are as follows:

R(v−, w−) :

⎧⎨
⎩

ξ = λ1 =
1

(1 + v)2
,

w
v =

w−
v− , v < v−.

(2.7)
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For a bounded discontinuity at ξ = σ, the Rankine-Hugoniot condition holds:⎧⎨
⎩

−σ[v] + [ v
1 + v ] = 0,

−σ[w] + [ w
1 + v ] = 0,

(2.8)

where here and below, we use the usual notation [v] = vr − vl with vl and vr the values

of the function v on the left-hand and right-hand sides of the discontinuity, etc.

If vr �= vl, we have σ1 = 1
(1 + vr)(1 + vl)

from the first equation in (2.8) and the Lax

entropy conditions imply that vl < vr. Furthermore, we have the relation wr
vr = wl

vl from

the second equation in (2.8).

So for a given left state (v−, w−), the sets of states which can be connected to (v−, w−)

by a 1-shock wave on the right are as follows:

S(v−, w−) :

⎧⎨
⎩

σ1 =
1

(1 + v)(1 + v−)
,

w
v =

w−
v− , v > v−.

(2.9)

It is noted that the shock curves coincide with the rarefaction curves in the phase plane

for (1.1) belongs to the Temple class.

If vr = vl, we can conclude that σ2 = 1
1 + vl

= 1
1 + vr

, which exactly corresponds to

a contact discontinuity of the second family. Since λ2 is linearly degenerate, the sets of

states can be connected to a given left state (v−, w−) by a contact discontinuity J on

the right if and only if v = v−.

Thus, we can summarize that the sets of states connected on the right consist of the 1-

rarefaction wave curve R(v−, w−), the 1-shock wave curve S(v−, w−) and the 2-contact

discontinuity J(v−, w−) for a given left state (v−, w−). These curves divide the half

phase plane v > 0 into two regions I = {(v, w)|0 < v < v−} and II = {(v, w)|v > v−} (see

Fig. 1). According to the right state (v+, w+) in the different region, one can construct

the unique global Riemann solution connecting two constant states (v±, w±).

w

Fig. 1

x0

�0

�

v

� (v−, w−)

R

SJ

�

�
t

(v−, w−)

(v∗, w∗)

(v+, w+)

S

J�

�

Clearly the Riemann solution is R + J if v+ < v−; otherwise the Riemann solution

should be S + J if v+ > v− > 0. For the case v+ > v− = 0, we should consider

the limit of solutions (v, w)(ξ) when v+, w−, w+ are fixed, v+ > 0 and v− → 0+. When

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



430 M. SUN

v+ > v− > 0, the solution is shown in Fig. 1 and the intermediate state can be calculated

by (v∗, w∗) = (v+,
w−v+
v− ). When v− → 0+, it is obvious to see that w∗ =

w−v+
v− → ∞.

At the same time, the speed of the shock wave σ1 = 1
(1 + v+)(1 + v−)

tends to that of

the contact discontinuity σ2 = 1
1 + v+

as v− → 0+, which means that S and J coincide

to form a new type of nonlinear hyperbolic wave, which is called the delta shock wave in

[28].

Now, let us calculate the total quantity of w between S and J as v− → 0+ as follows:

lim
v−→0

∫ σ2+0

σ1−0

w∗dξ = lim
v−→0+

∫ 1
(1+v+)

1
(1+v+)(1+v−)

w−v+
v−

dξ. (2.10)

Integrating the second equation in (2.5) with respect to ξ from σ1 − 0 to σ2 + 0, we

have

0 =

∫ σ2+0

σ1−0

−ξdw + d
w

1 + v

= −ξw
∣∣∣σ2+0

σ1−0
+

∫ σ2+0

σ1−0

wdξ +
w

1 + v

∣∣∣σ2+0

σ1−0
.

(2.11)

An easy computation leads to

lim
v−→0

∫ σ2+0

σ1−0

w∗dξ = lim
v−→0+

w−v+
(1 + v−)(1 + v+)

=
w−v+
1 + v+

, (2.12)

which means that w(ξ) has the same singularity as a weighted Dirac delta function at

ξ = 1
1 + v+

when v− = 0. Motivated by [28], we should seek the Riemann solutions of

(1.1) and (1.2) including the delta shock wave in the special case v− = 0.

3. The generalized Rankine-Hugoniot relations of the delta shock wave. In

the case v− = 0, from [19, 25, 28], we know that the singularity is impossible to be a jump

with finite amplitude, which implies that there is no solution which is piecewise smooth

and bounded. Hence the Riemann solution containing a weighted δ-measure supported

on a line should be constructed.

In order to define the measure solutions, the two-dimensional weighted δ-measure

β(s)δΓ supported on a smooth curve Γ = {(x(s), t(s)) : a < s < b} can be defined by

〈β(s)δΓ, ψ(x, t)〉 =
∫ b

a

β(s)ψ(x(s), t(s))ds, (3.1)

for any test function ψ(x, t) ∈ C∞
0 (R×R+).

With the above definition, a family of δ-measure solutions (v, w) of (1.1) and (1.2)

with the parameter σ in the case v+ > v− = 0 can be expressed as

v(x, t) = v+H(x− σt), w(x, t) = w− + [w]H(x− σt) + β(t)δΓ, (3.2)

in which Γ = {(σt, t) : 0 ≤ t < +∞}, β(t) = (σ[w]− [ w
1 + v ])t and H(x) is the Heaviside

function.
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According to [6, 25], the δ-measure solutions (v, w) constructed above should satisfy

⎧⎨
⎩

〈v, ψt〉+ 〈 v
1 + v , ψx〉 = 0,

〈w,ψt〉+ 〈 w
1 + v , ψx〉 = 0,

(3.3)

for all test functions ψ(x, t) ∈ C∞
0 (R×R+), in which

〈w,ψ〉 =
∫ ∞

0

∫ ∞

−∞
w0ψdxdt+ 〈β(t)δΓ, ψ〉, (3.4)

〈 w

1 + v
, ψ

〉
=

∫ ∞

0

∫ ∞

−∞

w0ψ

1 + v0
dxdt+

〈
σβ(t)δΓ, ψ

〉
. (3.5)

Here v0 = v+H(x− σt) and w0
1 + v0

= w− + [ w
1 + v ]H(x− σt).

Theorem 3.1. For the case v+ > v− = 0, the Riemann solution of (1.1) and (1.2) is

piecewise smooth in the form

(v, w)(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, w−), x < σt,

(vδ, β(t)δ(x− σt)), x = σt,

(v+, w+), x > σt,

(3.6)

where

vδ = v+, σ =
1

1 + v+
, β(t) =

w−v+t

1 + v+
. (3.7)

The measure solution (3.6) together with (3.7) also satisfies the generalized Rankine-

Hugoniot condition as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt

= σ,

dβ(t)
dt

= [w]σ − [ w
1 + v ],

[v]σ = [ v
1 + v ],

(3.8)

and

σ = 1
1 + vδ

. (3.9)

Proof. At first we should check that the above constructed δ-measure solution (3.6)

with (3.7) should satisfy the equations (1.1) in the sense of distributions. Based on the

definition of the Schwarz distribution, this is equivalent to proving that (3.6) and (3.7)

should satisfy ⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

∫ ∞

−∞
(vψt +

v

1 + v
ψx)dxdt = 0,

∫ ∞

0

∫ ∞

−∞
(wψt +

w

1 + v
ψx)dxdt = 0.

(3.10)
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Actually, we have
∫ ∞

0

∫ ∞

−∞

(
vψt +

v

1 + v
ψx

)
dxdt

=

∫ ∞

0

∫ x(t)

−∞

(
v−ψt +

v−
1 + v−

ψx

)
dxdt+

∫ ∞

0

∫ ∞

x(t)

(
v+ψt +

v+
1 + v+

ψx

)
dxdt

=

∫ ∞

0

∫ t(x)

0

v+ψtdtdx−
∫ ∞

0

v+
1 + v+

ψ(
t

1 + v+
, t)dt

=

∫ ∞

0

v+ψ(x, (1 + v+)x)dx−
∫ ∞

0

v+
1 + v+

ψ(
t

1 + v+
, t)dt = 0.

On the other hand, we can also calculate
∫ ∞

0

∫ ∞

−∞

(
wψt +

w

1 + v
ψx

)
dxdt

=

∫ ∞

0

∫ x(t)

−∞

(
w−ψt +

w−
1 + v−

ψx

)
dxdt+

∫ ∞

0

∫ ∞

x(t)

(
w+ψt +

w+

1 + v+
ψx

)
dxdt

+

∫ ∞

0

β(t)
(
ψt(

t

1 + v+
, t) +

1

1 + vδ
ψx(

t

1 + v+
, t)

)
dt

=

∫ ∞

0

−w−ψ(x, (1 + v+)x)dx+

∫ ∞

0

w−ψ(
t

1 + v+
, t)dt+

∫ ∞

0

w+ψ(x, (1 + v+)x)dx

−
∫ ∞

0

w+

1 + v+
ψ(

t

1 + v+
, t)dt+

∫ ∞

0

β(t)dψ(
t

1 + v+
, t)

=
( −w−
1 + v+

+ w− +
w+

1 + v+
− w+

1 + v+
− w−v+

1 + v+

)∫ ∞

0

ψ(
t

1 + v+
, t)dt = 0.

From the above, we can see that (3.6) and (3.7) is indeed the piecewise smooth Rie-

mann solution of (1.1) and (1.2) in the sense of distributions. It is clear to see that the

generalized Rankine-Hugoniot conditions (3.8) with (3.9) hold by substituting (3.6) and

(3.7) into (3.8) and (3.9) to clarify.

The left-hand side of the second equation in (3.8) is called the Rankine-Hugoniot deficit

in [16]. The second integral equality in (3.10) differs from the classical situation by the

additional term
∫∞
0

β(t)dψ( t
1 + v+

, t) due to the Rankine-Hugoniot deficit. The relation

(3.8) together with (3.9) is called the generalized Rankine-Hugoniot relation of the delta

shock wave, which reflects the exact relationship among the location, propagation speed,

weight and the assignment of v on its discontinuity.

In order to ensure the uniqueness, the δ-entropy condition

λ1+ < λ2+ = σ < λ1− = λ2− (3.11)

should be proposed, which means that none of the four characteristic lines on both sides

of the δ-shock wave curve is outgoing here. More precisely, the entropy condition for
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DELTA SHOCK WAVES FOR THE CHROMATOGRAPHY EQUATIONS 433

the δ-shock wave here is that three characteristic lines enter the discontinuity while the

remaining one is tangent to the discontinuity.

Now, we employ the generalized Rankine-Hugoniot relations (3.8) and (3.9) to solve

the Riemann problem of (1.1) and (1.2) with v− = 0 and the initial data become t =

0 : x(0) = 0, β(0) = 0, vδ(0) = 0. In view of our knowledge about delta shock waves,

we know that σ, vδ are constants and β(t) is a linear function of t. Under the δ-entropy

condition (3.11), it is easy to check that σ, vδ and β(t) can be determined uniquely. �
Motivated by [10, 23, 24], we simply consider here the geometrical and physical sense

of the generalized Rankine-Hugoniot condition of the delta shock wave for (1.1). It is

well known that if a pair of compactly supported functions v(x, t), w(x, t) ∈ L∞(R×R+)

with respective to x is a generalized solution of (1.1), then we have∫ +∞

−∞
v(x, t)dx =

∫ +∞

−∞
v0(x)dx,

∫ +∞

−∞
w(x, t)dx =

∫ +∞

−∞
w0(x)dx, (3.12)

which are independent of time and here (v0(x), w0(x)) is the initial state.

However this fact does not hold for a δ−shock wave type solution. Suppose that

(v(x, t), w(x, t)) is a generalized δ−shock wave type solution of the Cauchy problem

for (1.1) with δ−shock wave type initial data. Here w(x, t) = W (x, t) + β(t)δ(Γ),

Γ : {(x, t)|x = φ(t)} is the discontinuity and v(x, t),W (x, t) are compactly supported

functions with respect to x. Let us denote

Sv(t) =

∫ φ(t)

−∞
v(x, t)dx+

∫ +∞

φ(t)

v(x, t)dx, Sw(t) =

∫ φ(t)

−∞
w(x, t)dx+

∫ +∞

φ(t)

w(x, t)dx.

(3.13)

Then we have the following balance relations:

Ṡv(t) = 0, Ṡw(t) = −β̇(t) = −[w]σ + [ w
1 + v ]. (3.14)

It is clear from (3.14) that the sense of strength β(t) of the delta shock wave is the “area”

of the discontinuity line and the “total area” Sw(t) + β(t) is independent of time t.

4. Existence of solutions for the viscous system (1.6). In this section, we

mainly consider the existence of the Riemann solutions of (1.6) and (1.2). For convenience

and conciseness, we only consider the case v+ > v− = 0. By performing the self-similar

transformation ξ = x/t, it can be transferred into the boundary value problem:⎧⎨
⎩

−ξvξ + ( v
1 + v )ξ = εvξξ,

−ξwξ + ( w
1 + v )ξ = 0,

(4.1)

with the boundary conditions

(v, w)(±∞) = (v±, w±). (4.2)

Since the first equation in (4.1) does not depend on the solution of the second one, let

us first consider the first equation in (4.1), i.e., let us solve⎧⎨
⎩

−ξvξ + ( v
1 + v )ξ = εvξξ,

v(±∞) = v±.
(4.3)
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Now we can show the existence, uniqueness and monotonicity for the smooth solution

of (4.3) in the following theorem, which is a special version of the case m = 1 in [7].

Theorem 4.1. For each fixed ε > 0, there exists a unique and monotonic smooth solution

of the boundary value problem (4.3) for v+ > v− = 0.

Proof. In order to investigate the monotonicity and existence, we adopt the Dafermos

technique and start with the following altered problem:⎧⎨
⎩

−ξvξ + μ( v
1 + v )ξ = εvξξ,

v(±R) = μv±,
(4.4)

where μ ∈ [0, 1] and R is a sufficiently large real number.

Integrating (4.4) with respect to ξ from ξ0 to ξ, where [ξ0, ξ] ⊆ [−R,R], we have

v̇ε(ξ) = v̇ε(ξ0) exp
(
1
ε

∫ ξ

ξ0

[ μ

(1 + v(s))2
− s

]
ds
)
. (4.5)

From (4.5), it is clear that v̇ε(ξ)/v̇ε(ξ0) > 0 for arbitrary [ξ0, ξ] ⊆ [−R,R]. Thus the

solution of (4.4) is monotonically increasing in the interval [−R,R] based on v+ > v− = 0.

Now we consider the existence of the solution of (4.4). Since the solution of (4.4) is

monotonically increasing in the interval [−R,R], we have

sup
ξ∈[−R,R]

‖vε(ξ)‖L∞ = sup
ξ∈[−R,R]

|vε(ξ)| ≤ v+, (4.6)

which is obviously independent of μ and R. From Theorem 3.1 in [7], we know that there

exists a solution of (4.3) which is monotonically increasing in (−∞,+∞).

Eventually, we consider the uniqueness of the solutions of (4.3) and assume that vε1(ξ)

and vε2(ξ) are two smooth solutions of (4.3). Let us denote h(ξ) = vε2(ξ)− vε1(ξ), which

should satisfy the following boundary value problem:⎧⎨
⎩

−ξhξ + (hg)ξ = εhξξ,

h(±∞) = 0.
(4.7)

Here we denote f(v) = v
1 + v and g(ξ) can be calculated by

g(ξ) =
f(vε2(ξ))− f(vε1(ξ))

vε2(ξ)− vε1(ξ)
= 1

(1 + vε1(ξ))(1 + vε2(ξ))
. (4.8)

Let us suppose that h(ξ) is not the null function and let α and β be the two consecutive

zero points of h(ξ) with −∞ ≤ α < β ≤ +∞. In order to integrate (4.7) by parts, we

should prove that lim
ξ→α−

ξh(ξ) = 0 (or/and lim
ξ→β+

ξh(ξ) = 0) if α = −∞ (or/and β = +∞).

Multiplying the first equation in (4.1) by exp
ξ2

2ε , we have

d
dξ

(
v̇ exp ξ2

2ε

)
= 1

(1 + v)2

(
v̇ exp ξ2

2ε

)
. (4.9)

Keeping 0 ≤ vε(ξ) ≤ v+ and v̇(ξ) ≥ 0 in mind, it follows that

v̇ε(ξ) ≤ v̇ε(0) exp
(
2|ξ| − ξ2

2ε

)
. (4.10)
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Since both vε1(ξ) and vε2(ξ) are smooth solutions of (4.3), we have

|ḣ(ξ)| = |v̇ε2(ξ)− v̇ε1(ξ)| ≤ (v̇ε1(0) + v̇ε2(0)) exp
(
2|ξ| − ξ2

2ε

)
, (4.11)

which implies that ḣ(ξ) decays rapidly to zero when |ξ| → ∞ for each fixed ε > 0. Thus

we have lim
ξ→±∞

ξh(ξ) = 0 if lim
ξ→±∞

h(ξ) = 0.

Noting that g(ξ) is bounded, integrating (4.7) by parts in the interval (α, β), we can

obtain ∫ β

α

h(ξ)dξ = ε(ḣ(β)− ḣ(α)). (4.12)

If h(ξ) > 0 in (α, β), it is easy to get ḣ(β) ≤ 0 ≤ ḣ(α) and
∫ β

α
h(ξ)dξ > 0, which

obviously contradicts (4.12). We have the same contradiction if h(ξ) < 0 in (α, β); thus

we arrive at h(ξ) = 0. �
Now, we consider the existence of the solutions w(ξ) for the second equation in (4.1)

based on Theorem 4.1 and have the following theorem.

Theorem 4.2. For each fixed ε > 0, assume that w(ξ) is a weak solution of the following

boundary value problem: ⎧⎨
⎩

−ξwξ + ( w
1 + vε

)ξ = 0,

w(±∞) = w±,
(4.13)

where vε(ξ) is the solution of (4.3).

Then, we have wε(ξ) ∈ L1(−∞,+∞), which can be expressed as

wε(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

w− exp
(∫ ξ

−∞

v̇ε(s)

1 + vε(s)− s(1 + vε(s))2

)
ds, for ξ < ξεα,

w+ exp
(∫ ∞

ξ

−v̇ε(s)

1 + vε(s)− s(1 + vε(s))2

)
ds, for ξ > ξεα,

(4.14)

where ξεα is the unique fixed point of ξ = 1
1 + vε(ξ)

.

Proof. Since vε(ξ) is monotonically increasing, the singularity point of (4.13) is unique

and can be given by the solution of ξ = 1
1 + vε(ξ)

; here we denote it with ξεα. The formula

(4.14) can be obtained through integrating the equation (4.13) from −∞ to ξ for ξ < ξεα
and from ξ to ∞ for ξ > ξεα, respectively. From (4.14), it is easy to see that wε(ξ) is

monotone increasing (w− > 0) or monotone decreasing (w− < 0) in the interval (−∞, ξεα),

and is monotone decreasing (w+ > 0) or monotone increasing (w+ < 0) in the interval

(ξεα,+∞). Furthermore, we have

lim
ξ→ξεα−

wε(ξ) = ±∞ (w− ≷ 0), (4.15)

lim
ξ→ξεα+

wε(ξ) = ±∞ (w+ ≷ 0). (4.16)

Thus, the solution of (4.13) can be obtained by pasting together the two solutions in the

intervals (−∞, ξεα) and (ξεα,∞).
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Now we proceed to prove that wε(ξ) is a weak solution of (4.13). Integrating the

equation (4.13) on [−R, ξ] for −R < ξ < ξεα, we have

∫ ξ

−R

w(s)ds+ w(ξ)
( 1

1 + vε(ξ)
− ξ

)
= w(−R)

( 1

1 + vε(−R)
+R

)
. (4.17)

Let us denote

p(ξ) =

∫ ξ

−R

w(s)ds, a(ξ) =
1

1 + vε(ξ)
− ξ, A = w(−R)

( 1

1 + vε(−R)
+R

)
.

Then, the equation (4.17) can be rewritten as

⎧⎨
⎩

a(ξ)p′(ξ) + p(ξ) = A,

p(−R) = 0,
(4.18)

and an easy computation leads to

p(ξ) = A
[
1− exp

(
−
∫ ξ

−R

ds

a(s)

)]
. (4.19)

Noting that a(ξ) = O(|ξ − ξεα|) as ξ → ξεα−, we have

lim
ξ→ξεα−0

∫ ξ

−R

ds

a(s)
= +∞. (4.20)

Hence, passing to the limit ξ → ξεα− in (4.19), it follows that

lim
ξ→ξεα−0

∫ ξ

−R

w(s)ds = lim
ξ→ξεα−0

p(ξ) = A. (4.21)

In view of (4.17), it is easy to see that

lim
ξ→ξεα−0

w(ξ)
( 1

1 + vε(ξ)
− ξ

)
= 0. (4.22)

With the same reason as before, we also have

lim
ξ→ξεα+0

∫ R

ξ

w(s)ds = w(R)
(
R− 1

1 + vε(R)

)
, (4.23)

lim
ξ→ξεα+0

w(ξ)
(
ξ − 1

1 + vε(ξ)

)
= 0. (4.24)

The equalities (4.21) and (4.23) mean that wε(ξ) ∈ L1[−R,+R].

Now, for an arbitrary test function ψ ∈ C∞
0 [−R,R], let us prove

〈−ξwξ + ( w
1 + vε

)ξ, ψ〉 = 0. (4.25)
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Indeed, for arbitrary ξ1, ξ2 satisfying −R < ξ1 < ξεα < ξ2 < R, we have

I =

∫ R

−R

(
w(ξ)

(
ξ − 1

1 + vε(ξ)

)
ψ′(ξ) + w(ξ)ψ(ξ)

)
dξ

=
{∫ ξ1

−R

+

∫ ξ2

ξ1

+

∫ R

ξ2

}(
w(ξ)

(
ξ − 1

1 + vε(ξ)

)
ψ′(ξ) + w(ξ)ψ(ξ)

)
dξ

= I1 + I2 + I3.

Noting that

−
(
w(ξ)

(
ξ − 1

1 + vε(ξ)

))
ξ
+ w(ξ) = −ξwξ + (

w

1 + vε
)ξ = 0,

through integrating by parts, from (4.22) and (4.24), we can estimate as follows:

|I1| =
∣∣∣w(ξ1)

(
ξ1 −

1

1 + vε(ξ1)

)
ψ(ξ1)

∣∣∣ → 0 as ξ1 → ξεα−,

|I3| =
∣∣∣w(ξ2)

(
ξ2 −

1

1 + vε(ξ2)

)
ψ(ξ2)

∣∣∣ → 0 as ξ2 → ξεα + .

For w(ξ) ∈ L1[−R,+R], we have

|I2| ≤
∫ ξ2

ξ1

|w(ξ)| ·
∣∣∣
(
ξ − 1

1 + vε(ξ)

)
ψ′(ξ) + ψ(ξ)

∣∣∣dξ → 0,

as ξ1 → ξεα− and ξ2 → ξεα+.

Thus I = 0 is independent of ξ1 and ξ2 in the sense of distributions; namely (4.25) is

true. Since R is arbitrarily a sufficiently large real number, wε(ξ) defined in (4.14) is the

unique weak solution of (4.13). �

5. Convergence of the viscous solutions. Let us denote ξα to express the limit

of the unique fixed point ξεα satisfying ξεα = (1+vε(ξεα))
−1 in section 4 and let ξβ express

the limit of the unique fixed point ξεβ satisfying ξεβ = (1 + vε(ξεβ))
−2 as ε → 0+. These

points will play a very important role in the following discussion.

Lemma 5.1. For arbitrary η > 0, we can conclude that

lim
ε→0+

vε(ξ) =

⎧⎨
⎩

0, for ξ < ξβ − η,

v+, for ξ > ξβ + η,
(5.1)

uniformly in the above intervals.

Proof. Let us take ξ1 = ξβ + η/2 and ε > 0 sufficiently small so that ξεβ < ξ1 − η/4.

Integrating (4.3) over (ξ1, ξ) yields

v̇ε(ξ) = v̇ε(ξ1) exp

∫ ξ

ξ1

1

ε

(
− s+

1

(1 + vε(s))2

)
ds. (5.2)
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Integrating (5.2) over (ξ1,+∞) again, we have

v+ − vε(ξ1) = v̇ε(ξ1)

∫ +∞

ξ1

(
exp

∫ ξ

ξ1

1

ε

(
− s+

1

(1 + vε(s))2

)
ds
)
dξ. (5.3)

Since vε(ξ) is monotonically increasing in the real axis, we have v̇ε(ξ1) ≥ 0 and

0 ≤ vε(s) ≤ v+. Now we can estimate that

v+ ≥ v̇ε(ξ1)

∫ +∞

ξ1

(
exp

∫ ξ

ξ1

1

ε

(
− s+

1

(1 + v+)
2

)
ds
)
dξ

= v̇ε(ξ1)

∫ +∞

ξ1

exp
1

ε

(
− 1

2
(ξ − ξ1)

2 +
ξ − ξ1

(1 + v+)
2

)
dξ

= v̇ε(ξ1)

∫ +∞

0

exp
1

ε

(
− 1

2
ξ2 +

ξ

(1 + v+)
2

)
dξ

≥ v̇ε(ξ1) · εC

for 0 < ε < 1 and C is a constant independent of ε. Thus we have 0 ≤ v̇ε(ξ1) ≤ v+
εC , and

together with (5.2), we can estimate that

v̇ε(ξ) ≤ v+
εC exp

∫ ξ

ξ1

1

ε

(
− s+

1

(1 + vε(s))2

)
ds. (5.4)

Furthermore, we have

−s+ 1
(1 + vε(s))2

= 1
(1 + vε(s))2

− 1
(1 + vε(ξεβ))

2 − (s− ξεβ). (5.5)

Noting that ξεβ+η/4 < ξ1 < s, in view of the mean value theorem, there exists ξ2 ∈ (ξεβ, s)

such that

−s+ 1
(1 + vε(s))2

= (
−2v̇ε(ξ2)

(1 + vε(ξ2))
3 − 1)(s− ξεβ) < −η

4 . (5.6)

Combining (5.4) with (5.6), we deduce

v̇ε(ξ) ≤ v+
εC exp(− η

4ε (ξ − ξ1)), (5.7)

which implies that v̇ε(ξ) → 0 uniformly on ξ > ξβ + η.

For any ξ > ξβ + η, we have

v+ − vε(ξ) =

∫ +∞

ξ

v̇ε(s)ds. (5.8)

Obviously we can see that lim
ε→0+

vε(ξ) = v+ uniformly on ξ > ξβ + η by virtue of (5.7).

Similarly, we have lim
ε→0+

vε(ξ) = 0 uniformly on ξ < ξβ − η. �

Lemma 5.2. Let ξα and ξβ be defined as above. Then we have the relation

ξα = ξβ = 1
1 + v+

. (5.9)
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Proof. Let us take φ(ξ) ∈ C∞
0 (ξ1, ξ2), where ξ1 < ξβ < ξ2. From (4.3), this yields

∫ ξ2

ξ1

εvξξ · φ(ξ)dξ =

∫ ξ2

ξ1

(
− ξvξ + (

v

1 + v
)ξ

)
φ(ξ)dξ; (5.10)

namely, ∫ ξ2

ξ1

εvφ′′(ξ)dξ =

∫ ξ2

ξ1

(
v(ξφ′(ξ) + φ(ξ))− v

1 + v
φ′(ξ)

)
dξ. (5.11)

Passing to the limit ε → 0 in (5.11) and taking notice of v− = 0, it can be derived from

Lemma 1 that ∫ ξ2

ξβ

(
v+(ξφ

′(ξ) + φ(ξ))− v+
1 + v+

φ′(ξ)
)
dξ = 0. (5.12)

Therefore

−(v+ξβ − v+
1 + v+

) · φ(ξβ) = 0, (5.13)

which yields ξβ = 1
1 + v+

for φ(ξ) is arbitrary.

Obviously, we have

ξα = lim
ε→0+

ξεα = lim
ε→0+

1

1 + vε(ξεα)
≥ 1

1 + v+
= ξβ. (5.14)

If ξα > ξβ , then we have lim
ε→0+

vε(ξεα) = v+ from Lemma 5.1. On the other hand, it

follows that lim
ε→0+

vε(ξεα) < v+ from (5.14). This is a contradiction, which implies that

ξα = ξβ. �

Lemma 5.3. For arbitrary η > 0, we have

lim
ε→0+

wε(ξ) =

⎧⎨
⎩

w−, for ξ < ξα − η,

w+, for ξ > ξα + η,
(5.15)

uniformly in the above intervals.

Proof. Let us suppose that w± > 0 without loss of generality; otherwise the conclusion

can be drawn similarly. Take ε > 0 sufficiently small such that |ξεα − ξα| < η/2 and

|ξεβ − ξβ| < η/2. For any ξ1 ≤ ξα − η, we have ξ1 ≤ ξεα − η/2 for ε sufficiently small.

Integration of (4.13) over (−∞, ξ1) gives

wε(ξ1) = w− exp

∫ ξ1

−∞

v̇ε(s)

1 + vε(s)− s(1 + vε(s))2
ds. (5.16)

For s ∈ (−∞, ξ1) and 0 ≤ vε(s) ≤ v+, there exists ξ2 ∈ (−∞, ξ1) such that

1 + vε(s)− s(1 + vε(s))2 = (1 + vε(s))2
( 1

1 + vε(s)
− s− 1

1 + vε(ξεα)
+ ξεα

)

≥
( v̇ε(ξ2)

(1 + vε(ξ2))
2 + 1

)
· (ξεα − s)

≥ η/2.
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Thus, from (5.16), we conclude that

wε(ξ1) ≤ w− exp

∫ ξ1

−∞

2v̇ε(s)

η
ds = w− exp

(2vε(ξ1)
η

)
. (5.17)

According to Lemma 5.1, we know that lim
ε→0+

vε(ξ1) = 0 uniformly for ξ1 < ξβ − η =

ξα − η. Thus, we can see that wε(ξ) ≤ w− for any ξ < ξα − η. On the other hand, it

is obvious to see that wε(ξ) is monotonically increasing in the interval (−∞, ξα), so we

have wε(ξ) ≥ w− for any ξ < ξα − η. Hence, we obtain lim
ε→0+

wε(ξ) = w− uniformly for

ξ < ξα − η.

Finally, for any ξ3 ≥ ξα + η, it is easy to see that ξ3 ≥ ξεα + η/2 for sufficiently small

ε > 0. Integrating (4.13) from ξ3 to +∞ again, we have

wε(ξ3) = w+ exp

∫ +∞

ξ3

v̇ε(s)

s(1 + vε(s))2 − 1− vε(s)
ds. (5.18)

Also for s ∈ (ξ3,+∞), we have s(1 + vε(s))2 − 1− vε(s) ≥ η/2, which implies that

wε(ξ3) ≤ w+ exp

∫ +∞

ξ3

2v̇ε(s)

η
ds = w+ exp

(2(v+ − vε(ξ3))

η

)
. (5.19)

Obviously we have lim
ε→0+

vε(ξ3) = v+ uniformly for ξ3 > ξβ + η = ξα + η; thus it follows

that wε(ξ) ≤ w+ holds for any ξ > ξα + η. On the other hand, wε(ξ) is monotonically

decreasing in the interval (ξα,+∞), so we have wε(ξ) ≥ w+ for any ξ > ξα + η. Hence,

we obtain lim
ε→0+

wε(ξ) = w+ uniformly for ξ > ξα + η. �

Theorem 5.4. Suppose that v+ > v− = 0 and that (vε(ξ), wε(ξ)) is the solution of (4.1)

and (4.2). Then the limit of (vε(ξ), wε(ξ)) as ε → 0 is (3.6) together with (3.7), which is

exactly the corresponding Riemann solution of (1.1) and (1.2).

Proof. In order to prove this theorem, we should study the limit behavior of wε(ξ)

in the neighborhood of ξ = σ = 1
1 + v+

in detail. To accomplish this, let us take

φ(ξ) ∈ C∞
0 [ξ1, ξ2] with ξ1 < σ < ξ2 such that φ(ξ) = φ(σ) for ξ in a neighborhood U of

ξ = σ (φ is called a sloping test function in [28]). Notice that σ = ξα = ξβ . Thus we

have ξεα ∈ U for sufficiently small ε > 0.

It follows from (4.13) that

∫ ξ2

ξ1

(
− ξwε

ξ + (
wε

1 + vε
)ξ

)
φ(ξ)dξ =

∫ ξ2

ξ1

(
wεφ+ wε(ξ − 1

1 + vε
)φ′

)
dξ = 0. (5.20)

Then for arbitrary α1, α2 ∈ U satisfying α1 < σ < α2, we have

∫ ξ2

ξ1

(
wε(ξ − 1

1 + vε
)φ′

)
dξ =

∫ α1

ξ1

(
wε(ξ − 1

1 + vε
)φ′

)
dξ +

∫ ξ2

α2

(
wε(ξ − 1

1 + vε
)φ′

)
dξ.

(5.21)
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According to Lemma 5.1 and Lemma 5.3, we have

lim
ε→0+

∫ ξ2

ξ1

(
wε(ξ − 1

1 + vε
)φ′

)
dξ

=

∫ α1

ξ1

(
w−(ξ − 1)φ′

)
dξ +

∫ ξ2

α2

(
w+(ξ −

1

1 + v+
)φ′

)
dξ

= w−(α1 − 1)φ(σ)− w−

∫ α1

ξ1

φdξ − w+(α2 −
1

1 + v+
)φ(σ)− w+

∫ ξ2

α2

φdξ.

Letting α1 → σ− and α2 → σ+ leads to

lim
ε→0+

∫ ξ2

ξ1

(
wε(ξ − 1

1 + vε
)φ′

)
dξ =

(
− σ[w] + [

w

1 + v
]
)
φ(σ)−

∫ ξ2

ξ1

H(ξ − σ)φ(ξ)dξ,

(5.22)

in which

H(ξ − σ) =

⎧⎨
⎩

w−, for ξ < σ,

w+, for ξ > σ.

Substituting (5.22) into (5.20), we have

lim
ε→0+

∫ ξ2

ξ1

(wε −H(ξ − σ))φ(ξ)dξ =
(
σ[w]− [

w

1 + v
]
)
φ(σ), (5.23)

for all sloping test functions φ(ξ) ∈ C∞
0 [ξ1, ξ2].

For any ψ(ξ) ∈ C0[ξ1, ξ2], we can select a sloping test function φ(ξ) such that

φ(σ) = ψ(σ) and max
ξ∈[ξ1,ξ2]

|ψ(ξ)− φ(ξ)| < μ.

Taking wε(ξ) ∈ L1[ξ1, ξ2] uniformly in mind, we have

lim
ε→0+

∫ ξ2

ξ1

(wε −H(ξ − σ))ψ(ξ)dξ = lim
ε→0+

∫ ξ2

ξ1

(wε −H(ξ − σ))φ(ξ)dξ +O(μ). (5.24)

Noting that φ(σ) = ψ(σ), substituting (5.23) into (5.24) and then passing to the limit

μ → 0, we can prove that

lim
ε→0+

∫ ξ2

ξ1

(wε −H(ξ − σ))ψ(ξ)dξ =
(
σ[w]− [

w

1 + v
]
)
ψ(σ) (5.25)

holds for all ψ(ξ) ∈ C0[ξ1, ξ2].

Letting ξ1 → σ− and ξ2 → σ+ in (5.25), we can obtain

w(ξ) = lim
ε→0+

wε(ξ) = H(ξ − σ) +
(
σ[w]− [

w

1 + v
]
)
δ(ξ − σ). (5.26)

Thus wε(ξ) converges in the weak star topology of C∞
0 (R) and the limit of wε(ξ) is a step

function plus a Dirac delta function with strength σ[w] − [ w
1 + v ] and is now no longer

self-similar, which is identical with (3.6) together with (3.7) constructed in section 3.
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In the end, we need to determine the value of v(ξ) at the discontinuity point ξ = σ.

It can be derived from (4.13) that∫ ξ2

ξ1

w ·
(
φ+ ξφ′ − φ′

1 + v

)
dξ = 0 (5.27)

holds for any φ(ξ) ∈ C∞
0 [ξ1, ξ2] with ξ1 < σ < ξ2.

Substituting (5.26) into (5.27) yields
∫ ξ2

ξ1

(
H(ξ − σ) + (σ[w]− [

w

1 + v
])δ(ξ − σ)

)
·
(
φ+ ξφ′ − φ′

1 + v

)
dξ = 0; (5.28)

namely

0 =

∫ σ−

ξ1

(
φ+ ξφ′ − φ′

1 + v

)
dξ +

∫ ξ2

σ+

(
φ+ ξφ′ − φ′

1 + v

)
dξ

+
(
σ[w]− [ w

1 + v ]
)(

φ(σ) + σφ′(σ)− φ′(σ)
1 + vδ

)
.

(5.29)

It follows from (5.29) that

w−(σ − 1)φ(σ)− w+(σ − 1

1 + v+
)φ(σ) +

(
σ[w]− [

w

1 + v
]
)(

φ(σ) + σφ′(σ)− φ′(σ)

1 + vδ

)

= 0,

(5.30)

which implies that vδ = v(σ) = v+ for φ is arbitrary. �
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