

Delta-Spectral Cepstral Coefficients for Robust Speaker Recognition

MERIT FAIR BIEN 2011

Jonathan Deutsche, Xinhui Zhou, Carol Espy-Wilson

Introduction

•Speaker Recognition - recognizing a person from his/her unique voice characteristics (physical differences and manner of speaking)

- Physical differences:
 - Vocal tract shape and size
 - •Larynx shape and size
- •Manners of speaking:
 - Accent and Dialect
 - Word Usage

•Rhythm

Figure 1: Mid-Sagittal View of Human Vocal Tract [1]

•Uses: forensics, security, telephone services, information searching

Figure 2: Speaker Identification vs. Speaker Verification [1]

Motivation

•Most current speaker recognition systems use melfrequency cepstral coefficients in conjunction with delta/double-delta cepstral coefficients (**MFCC** + **DCC's**) as front-ends – these features are not robust to noise, reverberation, and channel effects [2] •Recently, it has been shown that delta-spectral cepstral coefficients (**DSCC's**) are more robust than DCC's for speech recognition [3]

Objective *Figure 4 illustrates process behind 1-4

•Test whether MFCC + DSCC's are more robust than MFCC + DCC's for speaker recognition

Methods *Figure 3 illustrates features from 1-4

Front-End System

•Feature extraction – speech signal is transformed into feature vectors in which speaker-specific properties are emphasized

Figure 4: Feature extraction process: DCC vs. DSCC (with Gaussianization) [3]

Back-End System

- •Training and testing data from **NIST 2008 SRE Plan**: 8 different conditions [4]
- •Large set of background speakers is used to train universal background model (UBM) [2]
- •Data from specific speaker and UBM is used to train target/speaker model [2]
- Models are trained using Gaussian mixture models (GMM's) [2]
- •Test data is compared to UBM and target model, categorized as "speaker" or "not the speaker" [2]

Figure 5: GMM Target Model Training Using MAP Adaptation [2]

Performance Evaluation

- •Detection error tradeoff (DET) curve the probability of false acceptance vs. the probability of false alarm [2]
- •Equal error rate (EER) accuracy at decision threshold for which probability of false acceptance and false alarm are equal [2]

Results

Figure 6: Equal Error Rates for Different Evaluation Conditions and Test Noise Types

Conclusions

- •In general, MFCC+DSCC's are more robust to white noise and reverberation than MFCC+DCC's when training and test data are recorded on same channel type
- •When there is a channel mismatch between training and test data, MFCC+DSCC's show no improvement over MFCC+DCC's in all conditions
- •MFCC+DSCC's show no improvement over MFCC+DCC's in babble noise
- •DCC's (with logarithmic nonlinearity) may be more robust to channel mismatch than DSCC's (with Gaussianization nonlinearity)

Acknowledgments

- National Science Foundation OCI award #1063035
- Daniel Garcia-Romero
- •Tarun Pruthi

References

- [1] Garcia-Romero, Daniel. "Speaker Recognition Using Gaussian Mixture Models (GMM's)." Powerpoint Presentation. 2006.
- [2] Kinnunen, Tomi, and Haizhou Li. "An Overview of Text-independent Speaker Recognition: From Features to Supervectors." *Speech Communication* 52.1 (2010): 12-40
- [3] Kumar, Kshitiz, Chanwoo Kim, and Richard M. Stern. "Delta-Spectral Cepstral Coefficients for Robust Speech Recognition." *IEEE International Conference on Acoustics, Speech, and Signal Processing* (2011): 4784-787.
 [4] "The NIST Year 2008 Speaker Recognition Evaluation Plan."
- http://www.itl.nist.gov/iad/mig/tests/sre/2008/sre08_evalplan_release4.pdf. (2008)