
•Speaker Recognition - recognizing a person from 

his/her unique voice characteristics (physical 

differences and manner of speaking)

•Uses: forensics, security, telephone services, 

information searching
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•Most current speaker recognition systems use mel-

frequency cepstral coefficients in conjunction with 

delta/double-delta cepstral coefficients (MFCC + 

DCC’s) as front-ends – these features are not robust 

to noise, reverberation, and channel effects [2]

•Recently, it has been shown that delta-spectral 

cepstral coefficients (DSCC’s) are more robust than 

DCC’s for speech recognition [3]

•Test whether MFCC + DSCC’s are more robust than 

MFCC + DCC’s for speaker recognition

•Front-End System

•Feature extraction – speech signal is 

transformed into feature vectors in which speaker-

specific properties are emphasized

•Back-End System

•Training and testing data from NIST 2008 SRE 

Plan: 8 different conditions [4]

•Large set of background speakers is used to train 

universal background model (UBM) [2]

•Data from specific speaker and UBM is used to 

train target/speaker model [2]

•Models are trained using Gaussian mixture 

models (GMM’s) [2]

•Test data is compared to UBM and target model, 

categorized as “speaker” or “not the speaker” [2]

•Performance Evaluation

•Detection error tradeoff (DET) curve – the 

probability of false acceptance vs. the probability 

of false alarm [2]

•Equal error rate (EER) – accuracy at decision 

threshold for which probability of false acceptance 

and false alarm are equal [2]
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•Physical differences: 
•Vocal tract shape and size

•Larynx shape and size

•Manners of speaking:
•Accent and Dialect

•Rhythm

•Word Usage

Introduction

•In general, MFCC+DSCC’s are more robust to white 

noise and reverberation than MFCC+DCC’s when 

training and test data are recorded on same channel 

type

•When there is a channel mismatch between training 

and test data, MFCC+DSCC’s show no improvement 

over MFCC+DCC’s in all conditions

•MFCC+DSCC’s show no improvement over 

MFCC+DCC’s in babble noise 

•DCC’s (with logarithmic nonlinearity) may be more 

robust to channel mismatch than DSCC’s (with 

Gaussianization nonlinearity)

3

2

1

4

2

43

* w/ Delta 

Operation 

Clean Speech Speech in 0 dB White Noise 

1

Figure 5: GMM Target Model Training Using MAP Adaptation [2]

Figure 4: Feature extraction process: DCC vs. DSCC (with Gaussianization) [3]

Figure 2: Speaker Identification vs. Speaker Verification [1]

*Figure 3 illustrates features from 1-4

•First delta operation 

immediately after mel filter 

integration

•Gaussianization operation –

less mismatch between 

clean and noisy features 

than log operation

•Log operation – compresses 

signal

•Second delta operation after 

normalization 

•First and second delta 

operations – incorporate 

spectro-temporal features

•Mel filter integration – warps 

signal to reflect perception of 

pitch
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Figure 3: Spectrograms and Short-Time Power Plots of Speech Signal

Figure 6: Equal Error Rates for Different Evaluation Conditions and Test Noise Types

Figure 1: Mid-Sagittal View of Human Vocal Tract [1]
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*Figure 4 illustrates process behind 1-4


