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Results

Condition 2: Condition 3:
Interview Speech — Same Mic Interview Speech = Different Mic
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*Front-End System
‘Feature extraction — speech signal Is o
transformed into feature vectors in which speaker- & Dsccioured) & Dsccioured)

*Physical differences: specific properties are emphasized
*\/ocal tract shape and size % i, P prop Input Specch P Input Specch With White

sLarynx shape and size @\l l Noise

*Manners of speaking:

*Accent and Dialect
*Rhythm

*Word Usage Figure 1: Mid-Sagittal View of Human Vocal Tract [1]

‘Uses: forensics, security, telephone services,
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*First and second delta T *Second delta operation after
*Most current speaker recognition systems use mel- o tormpora) lorares O e o normalizaton Lo | Lo |
frequency cepstral coefficients in conjunction with cton cc i T e T T e T
delta/double-delta cepstral coefficients (MFCC +

DCC’s) as front-ends — these features are not robust

to noise, reverberation, and channel effects [2]

*Recently, it has been shown that delta-spectral
cepstral coefficients (DSCC’s) are more robust than
DCC'’s for speech recognition [3]

+Log operation — compresses
signal Logarithmic Nonlinearity

Gaussianization Nonlinearity

Figure 4: Feature extraction process: DCC vs. DSCC (with Gaussianization) [3]

Back-End System
*Training and testing data from NIST 2008 SRE
Plan: 8 different conditions [4]
sLarge set of background speakers is used to train
universal background model (UBM) [2]
Data from specific speaker and UBM is used to
train target/speaker model [2]
*Models are trained using Gaussian mixture
models (GMM’s) [2]
*Test data is compared to UBM and target model,
categorized as “speaker” or “not the speaker” [2]

Figure 6: Equal Error Rates for Different Evaluation Conditions and Test Noise Types

Conclusions

In general, MFCC+DSCC's are more robust to white
noise and reverberation than MFCC+DCC’s when
training and test data are recorded on same channel
type

When there is a channel mismatch between training
and test data, MFCC+DSCC'’s show no improvement
over MFCC+DCC'’s in all conditions

‘MFCC+DSCC’s show no improvement over
MFCC+DCC'’s in babble noise

*DCC'’s (with logarithmic nonlinearity) may be more
robust to channel mismatch than DSCC’s (with
Gaussianization nonlinearity)

O b i eCt i V e *Figure 4 illustrates process behind 1-4

*Test whether MFCC + DSCC’s are more robust than
MFCC + DCC'’s for speaker recognition

Clean Speech Speech in 0 dB White Noise
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