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Delving Into Deep Walkers: A Convergence
Analysis of Random-Walk-Based Vertex

Embeddings

Dominik Kloepfer, Angelica I. Aviles-Rivero and Daniel Heydecker

Abstract—Graph vertex embeddings based on random walks have become increasingly influential in recent years, showing good

performance in several tasks as they efficiently transform a graph into a more computationally digestible format while preserving relevant

information. However, the theoretical properties of such algorithms, in particular the influence of hyperparameters and of the graph

structure on their convergence behaviour, have so far not been well-understood. In this work, we provide a theoretical analysis for

random-walks based embeddings techniques. Firstly, we prove that, under some weak assumptions, vertex embeddings derived from

random walks do indeed converge both in the single limit of the number of random walks N → ∞ and in the double limit of both N and

the length of each random walk L → ∞. Secondly, we derive concentration bounds quantifying the converge rate of the corpora for the

single and double limits. Thirdly, we use these results to derive a heuristic for choosing the hyperparameters N and L. We validate and

illustrate the practical importance of our findings with a range of numerical and visual experiments on several graphs drawn from

real-world applications.

Index Terms—Machine Learning, Graph Embeddings, Vertex Embedding, Convergence, Random Walk, Markov Chain, DeepWalk.

✦

1 INTRODUCTION

G RAPHS naturally represent data arising in several real-
world scenarios; important examples include social

networks, medical records, protein networks and the web.
In many tasks, using graph embeddings that meaningfully
encode relevant information about the graph structure has
enabled outstanding performance on downstream tasks,
for example in node classification [1], link prediction [2],
anomaly detection [3], and node clustering [4], [5].

This has motivated the development of several techniques
which generate embeddings by digesting the graph in
different ways. One set of techniques is based on matrix fac-
torisation, e.g. [6], [7], [8], [9], [10], in which the connections
between nodes (graph properties) are represented in matrix
form to obtain the embeddings. Other bodies of research
have explored approaches including generative models [11],
[12], [13] and hybrid (i.e. a combination of) techniques [14],
[15], [16], to name a few.

Of particular interest for this paper are random-walk-
based techniques, e.g. [18], [20], [21], [22], who have become
popular due to their good performance. The core idea is
to create a context for each vertex by generating sequences
of vertices using random walks on the graph before gen-
erating vertex embeddings from these contexts. Motivated
by the success of neural language models, starting with the
seminal DeepWalk [18] and followed by others including
node2vec [20] and DNGR [22], a variety of algorithms
view individual random walks as “sentences” consisting
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Fig. 1. Input-output of a random walk based vertex em-
beddings technique from one of our experiments. (a) Input
graph from the Wiki dataset [17]. (b) Learned latent vertex
representation generated by DeepWalk [18]. Colors indicate
ground-truth classes in the dataset, and the high-dimensional
embeddings have been visualised using t-SNE [19].

of individual “words” (individual vertices); a collection
of random walks then corresponds to a “text corpus”. A
corpus of random walks derived from a graph during a first
stage can then be analysed in a second stage using language
models such as SkipGram [23], which creates word (vertex)
embeddings that allow one to predict a word’s context from
its embedding. This process is illustrated in Fig. 1 using one
of our experiments, where the graph input and the latent
vertex representation are displayed.

Contributions. Despite their wide-spread usage, not
much effort has been spent on developing a firm theoretical
understanding of these algorithms. In particular, the study
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of the convergence of random-walk based algorithms is
relatively new and incomplete. While there are several works
that slightly vary the graph sampling procedure in the first
stage, e.g. [20] and [24], in this paper we mainly consider
algorithms that share the sampling strategy of DeepWalk [18]
due to this strategy’s practical advantages (requiring, for
example, fewer hyperparameters than node2vec [20]) and
because it continues to be the backbone for many new
techniques and applications, e.g. [25], [26], [27], [28]. Our
contributions are:

• After formally describing DeepWalk-related tech-
niques (Section 3), we provide a theoretical analysis
for random-walk based embedding algorithms. (Sec-
tion 4)

– In Section 4.1, we formalise the random-walk
sampling strategy used by DeepWalk [18] in
its first stage and derive the asymptotic limit
of the corpora generated. We show that as the
number of random walks N goes to ∞ this
convergence is almost sure both in the single
limit N →∞ and the double limit N,L→∞
where L is the length of each random walk.
(Theorem 1, Corollary 1.1)

– In Section 4.2, we derive concentration bounds
that quantify the convergence rate of the cor-
pora in both these cases. (Theorem 2, The-
orem 6)

– We apply the results of this analysis to derive
a heuristic that gives optimal values for the
hyperparameters N and L for a fixed computa-
tional cost. (Corollary 6.1)

• We validate our theoretical results through a set
of experiments using medium-sized and large real-
world graphs consisting of thousands to millions
vertices / edges. (Section 5)

2 RELATED WORK

This paper is interested in random-walk-based techniques for
vertex embeddings, which have demonstrated outstanding
performance. We first briefly review existing such techniques.

Random-Walk Based Vertex Embeddings. The seminal
work of Perozzi et al. [18] introduced the DeepWalk tech-
nique, which learns embeddings in two stages. In the
first stage, a given graph is sampled using random walks,
followed by an application of the SkipGram model to then
generate vertex embeddings that allow one to predict the
vertices that appear within a window around the vertex in the
random walks. The promising performance of the DeepWalk
motivated the developments of subsequent techniques that
follow the principles of the DeepWalk.

Grover et al. [20] introduce an additional parameter to
control the random walks by allowing the user to interpol-
ate between breadth-first and depth-first graph searches.
Another modification of the first stage called Walklets was
introduced in [24], where authors skipped over steps in each
random walk. The HARP model introduced in [29] improves
the initialisation of the SkipGram stage. Slightly improved
performance of these models compared to DeepWalk how-
ever comes at the cost of increased computational costs.

Another set of techniques modified DeepWalk by introducing
different sampling techniques for the random walks (e.g. [21],
[30]), and enforcing preservation of some graph properties
(e.g. [31], [32], [33]). Other variants of the such family of
techniques are the works of [9], [22], [34], [35]. There exist also
techniques that aim to create similar network embeddings
without (explicitly) sampling any random walks, for example
[36].

While DeepWalk and its variants have been widely
explored in the literature from a practical point of view,
the analysis of the theoretical properties of such techniques is
still relatively new. There are only few works that discussed
the theoretical properties of this family of techniques. In the
following, we discuss them and note the differences with the
present work.

Theoretical Analyses of DeepWalk & Comparison to
Our Work. The first theoretical analysis of random-walk
based vertex embedding techniques is due to Qiu et al. [26],
who demonstrated a relationship between DeepWalk and
a particular matrix factorisation problem. In the notation
of Section 3, that work identifies the limiting behaviour
as the length of the walk L → ∞, but does not prove a
quantitative rate, and keeps the number of trials N fixed
rather than identifying the convergence as N → ∞ or the
convergence of the joint limit as done here. The behaviour
of DeepWalk in the limit of many shorter (instead of fewer
long) random walks as investigated in our work arguably
has greater practical relevance as it allows for much easier
parallelisation of the algorithm. Additionally, the proof in
[26] only applies to undirected, non-bipartite graphs whereas
our Theorem 1 and Corollaries 1.1 and 1.2 apply to directed
and undirected graphs, both periodic and aperiodic.

More recently, another work [37] proved a concentration
bound in terms of L for arbitrary N for the convergence
of a corpus of random walks generated from an aperiodic
graph. In contrast, we derive concentration bounds in terms
of N for arbitrary L (Theorem 2) and in terms of N and
L for the joint limit (Theorem 6) for both periodic and
aperiodic graphs. Furthermore, our bounds do not depend
on the size of the graph, a factor that while of constant
order can be very significant in real-world graphs with
vertices and edges potentially numbering in the millions
(cf. Table 1). In this paper, we also consider the assumptions
necessary for convergence of the co-occurrence matrix to
imply convergence of the extracted vertex representations
(Theorem 7), a question that [37] does not address.

Most recently, [38] considers random graphs, in either the
sparse or dense regimes, in the asymptotic where the size |V |
and the number of sampled paths N → ∞ on a fixed time
interval. While also investigating the theoretical properties
of random-walk based graph embedding algorithms, the
setting that they consider is different to the one considered
in this paper or, in fact, in [37].

Moreover and in contrast to the works above, we illustrate
the practical relevance of our analysis in Corollary 6.1 by
combining our results to derive a rule for the optimal choice
of the hyperparameters N and L. Qiu et al. [37] also derive
a heuristic for choosing L, but they assume implicitly that
N = 1, which as our experiments in Section 5 show yields
worse task-performance than our heuristic.
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3 FORMAL DESCRIPTION OF THE DEEPWALK AL-

GORITHM

The DeepWalk algorithm consists of two phases: in the first
phase it generates a corpus of vertex pairs, and in the second
phase it executes the SkipGram algorithm (with negative
sampling) on this corpus to generate vertex embeddings.

3.1 Generation of Corpus

Informally, in the first phase the corpus D is populated with
all pairs of vertices that are within a given window size T
of each other in random walks generated on the graph. For
each vertex, the vertices at most T removed in the random
walk are viewed as that vertex’s “context” vertices, and each
(vertex, context vertex) pair is added to the corpus.

We take a graph G = (V,E), equipped with a weight
function w : E → [0,∞). Consider a random walk (Vt)t≥0

on G, with a given starting distribution fV0
and transition

matrix P with elements Pij = wij/
∑

j wij , where wij is the
weight of edge (vi, vj). We write MARKOV(fV0

, P, L) for the
joint law of the first L steps (V0, ...., VL−1) and, if fV0

= δv0
is a one-hot distribution, write MARKOV(v0, P, L) instead.
The stationary distribution of this random walk is denoted
as π ∈ R

|V |, which is given explicitly by π(vi) ∝
∑

j wij .
We define a corpus D on graph G = (V,E) to be a tuple

(D,m) consisting of the set of pairs D = V × V and the
multiplicity function m : D → N. Its cardinality is the total
multiplicity |D| = ∑

d∈D m(d). Since |D| is finite, we may
identify m with the vector of its values, and write m ∈
R
|V |×|V |
≥0 , and we denote its elements as m(i, j) = m((vi, vj))

for all vi, vj ∈ V , so for all (vi, vj) ∈ D. This matrix m is
also called the co-occurrence matrix, as it encodes the number
of co-occurrences of two vertices (the number of times the
appear within T random walk steps of each other) in the
random walks performed. Note that once we have specified
a graph, different corpora only differ in their multiplicity
functions.

In the first phase of DeepWalk, an initially empty corpus
is populated by repeatedly updating the multiplicity function.
Formally, the algorithm with objective to populate the corpus
D is given in Algorithm 1, taking as parameters the number
of walks N , the walk length L and window size T .

In the second loop in line 5, we follow [26] in having j
take on L− T different values to avoid edge effects (when
j + r > L− 1). This simplifies the derivation in Section 4.1
while only removing constant order terms (depending only
on the fixed length T ) from the equations.

3.2 Generation of Vertex Representation

Having obtained a corpus in the first stage, in the second
phase the vertex representations are calculated from the cor-
pus. Traditionally using either the SkipGram algorithm [23]
or SkipGram with Negative Sampling [39] (though in
principle other methods can be used as well), the vertex
representations {zi}i: vi∈V are obtained by maximising an
objective function of the form

F (Z,D) =
∑

(vi,vc)∈D

m((vi, vc)) · gic(Z) (3.1)

with respect to the d × |V | matrix Z. Here, Z is the matrix
of vertex embeddings whose columns are the individual

Algorithm 1 Generating Corpus D on graph G = (V,E)

1: m← 0|V |×|V |

2: for n← 1 to N do
3: vn0 ← V0 ∼ fV0

4: (vn0 , v
n
1 , . . . , v

n
L−1)← MARKOV(v0, P, L)

5: for j ← 0 to L− T − 1 do
6: for r ← 1 to T do
7: m(vnj , v

n
j+r)← m(vnj , v

n
j+r) + 1

8: m(vnj+r, v
n
j )← m(vnj+r, v

n
j ) + 1

9: end for
10: end for
11: end for
12: return D = (V × V,m)

zi, d is the dimension of each embedding, and gic is some
gic : R

d×|V | → R.

In the following, we will use f = F (·,D ∈ D) to refer
to the partial application of an objective function where the
corpus has been fixed. This partial application of F yields a
function f : X → R that calculates the objective value for a
certain vertex embedding; different corpora now correspond
to different f for the same objective function F .

The second stage obtains the vertex embeddings by fixing
the corpus D generated in the first stage from Algorithm 1
in the objective function F to create a partial application
f : X → R which then is optimised with respect to the vertex
embeddings by an optimisation procedure A. To keep our
discussion as general as possible, we view the optimisation
procedure as a deterministic function A : f 7→ X which
maps an objective function (with the corpus fixed) onto the
space of vertex embeddings (the remaining argument of f );
stochastic components can be incorporated by fixing the
random seed of a pseudo-random number generator.

4 THEORETICAL ANALYSIS

We can now give our main theoretical results. We first
prove convergence of the vertex co-occurrences as N →∞
and in the joint limit N,L → ∞ in Section 4.1. We then
quantify the rate of these convergences and show how they
lead to a heuristic for choosing the hyperparameters N,L
in Section 4.2. We finally show in Section 4.3 that, under
relatively weak assumptions, convergence of the vertex co-
occurrences implies the convergence of the learned vertex
representation.

4.1 Convergence of Vertex Co-Occurrences

In this section, we derive the limit of the vertex co-
occurrences (the frequencies with which a given vertex pair
appears in the corpus) as the number of random walks N
and then also their length L become infinite.

Theorem 1 (Occurrence Vertex Co-Occurrences). Let D be a
corpus generated by Algorithm 1. Retaining the notation from that
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algorithm, the expected relative frequency of occurrence of the pair
(v, c) in the corpus is

E

[

m(v, c)

|D|

]

=

Es∼fV0

[

1

L− T

L−T−1
∑

j=0

1

2T

T
∑

r=1

(P j)sv(P
r)vc

+ (P j)sc(P
r)cv

]

.

Furthermore,

m(v, c)

|D| − E

[

m(v, c)

|D|

]

−→ 0 almost surely as N →∞.

Proof: A corpus D generated from N random walks is
the union of N independent sub-corpora {Dn}1≤n≤N , which
are each generated from just a single random walk. Thus the

expected value of
m(v,c)
|D| is the expected value of

mn(v,c)
|Dn|

(the

relative occurrence frequency in sub-corpus Dn), averaged
over all n. Since the sub-corpora are independent, we have

E
mn(v, c)

|Dn|
= E

mm(v, c)

|Dm|
∀n,m (4.1)

and hence

E
m(v, c)

|D| = E
mn(v, c)

|Dn|
∀n. (4.2)

In the remainder of the proof we can therefore focus on
a corpus Dn generated by just a single random walk. We
again denote with vj the jth vertex in this random walk
generating Dn.

The corpus Dn contains all the pairs (w, c) such that for
0 ≤ j ≤ L− T − 1 and 1 ≤ r ≤ T either (w = vj , c = vj+r)
or (w = vj+r, c = vj) (cf. Algorithm 1).

E
mn(w,c)

|Dn|
is the probability with which we would draw

the pair (w, c) from the corpus Dn. Since Dn consists of the
pairs from just a single (realisation of the) random walk
(vi)0≤i≤L−1,

P(draw (w, c) from Dn) =

P(draw (w, c) from (vi)0≤i≤L−1).
(4.3)

The number of pairs (vi, vj) in the corpus with i > j
is the same as the number of pairs with i < j. For a fixed
start-vertex s, fixed j, and fixed r, the probability of drawing
the vertex pair (w, c) from the random walk therefore is

P(draw (w, c) | s, j, r) =
1

2
[P(w = vj , c = vj+r | s, j, r)

+ P(w = vj+r, c = vj | s, j, r)].
(4.4)

Also,

P(w = vj , c =vj+r | s, j, r) (4.5)

= P(w = vj | s = v0)

· P(c = vj+r | w = vj , s = v0) (4.6)

= P(w = vj | s = v0)

· P(c = vj+r | w = vj) (4.7)

= (P j)sw · (P r)wc (4.8)

where in going from (4.6) to (4.7) we used the Markov
Property for the random walk vi. We similarly obtain

P(w = vj+r, c = vj | s, j, r) = (P j)sc · (P r)cw . (4.9)

The distributions of j and r are uniform (the number
of pairs with some j, r in Dn is the same for all i, j), so
to evaluate the expectation values with respect to j and r
we take the arithmetic mean. From Algorithm 1 we see that
the distribution of s is fV0

, so the first part of the theorem
follows.

For the second part, note that
m(v,c)
|D| is exactly the mean of

the independent and identially distribution random variables
mn(v,c)
|Dn|

, which take values in [0, 1]. The law of large numbers

therefore applies to show the almost sure convergence
claimed.

Corollary 1.1 (Effect of Longer Random Walks). Using the
ergodic theorem (cf. Theorem 1.10.2 in [40]), we can evaluate first
the sum over j, and then the expectation value with respect to s,
as L→∞.

E

[

m(v, c)

|D|

]

a.s.−−→ 1

2T

T
∑

r=1

πv(P
r)vc + πc(P

r)cv. (1.1.1)

Hence, as N,L→∞,

m(v, c)

|D|
a.s.−−→ 1

2T

T
∑

r=1

πv(P
r)vc + πc(P

r)cv. (1.1.2)

Remark. This almost sure convergence is stronger than the
convergence in probability established in [26]. This is due to
the fact that they do not let N →∞.

Corollary 1.2 (Effect of Starting Distribution). From the
definition of the stationary distribution we see that if fV0

= π,

Es∼fV0
(P j)sv = πv. (1.2.3)

In that case, (1.1.1) holds as an equality for arbitrary L > T , and
(1.1.2) holds for arbitrary fixed L as N →∞.

The results from this section, together with Theorem 7,
guarantee that if the DeepWalk algorithm performs enough
and long enough random walks, the learned vertex repres-
entations converge in the sense of Theorem 7.

4.2 Convergence Rates

Let us first investigate the convergence rate as N →∞ for
arbitrary L.

Theorem 2 (Convergence Rate as N →∞). The convergence
of Theorem 1 satisfies the concentration bound

P(

∣

∣

∣

∣

m(v, c)

|D| − E

[

m(v, c)

|D|

]
∣

∣

∣

∣

> ε) < 2 exp(−2Nε2) (2.1)

for ε > 0.

Proof: Let again mn(v, c) be the multiplicity function
of the corpus Dn generated from the nth random walk. Each
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random walk has the same length, so N · |Dn| = |D|∀n < N .
Since 0 ≤ mn(v, c) ≤ |Dn|, Hoeffding’s inequality gives

P

(
∣

∣

∣

∣

∣

N
∑

n=1

mn(v, c)− E[
N
∑

n=1

mn(v, c)]

∣

∣

∣

∣

∣

> ε

)

< 2 exp

(

− 2ε2

N |Dn|2
)

.

(4.10)

Dividing by |D| = N |Dn| and using
∑N

n=1 mn(v, c) =
m(v, c) then yields

P

(
∣

∣

∣

∣

m(v, c)

|D| − E

[

m(v, c)

|D|

]
∣

∣

∣

∣

>
ε

N |Dn|

)

< 2 exp

(

− 2ε2

N |Dn|2
)

.

(4.11)

Re-scaling ε→ N |Dn|ε then yields the theorem.
To derive a concentration bound for the joint limit, we first

need to prove two lemmas that quantify the convergence rate

of E
[

m(v,c)
|D|

]

as L→∞ for undirected and directed graphs.

For notational simplicity, define

ω(v, c) :=
1

2T

T
∑

r=1

πv(P
r)vc + πc(P

r)cv

as the value that E
[

m(v,c)
|D|

]

converges to (Theorem 1).

Lemma 3 (Convergence Rate for Undirected Graphs). Given
an undirected graph, let di =

∑

j wij be the out-degrees and D =
diag(di). Let {λk} be the ordered eigenvalues of the symmetric
normalised graph Laplacian

Lnorm = I −D1/2PD−1/2.

Then we have the convergence estimate
∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

≤ 1

L− T

1− φL−T
⋆

1− φ⋆
Es∼fV0

[

d
− 1

2
s

]

· 1

2T

T
∑

r=1

√

dv(P
r)vc +

√

dc(P
r)cv = O

(

1

L

)

where φ⋆ ≡ µ⋆ = sup{|1 − λ2|, |1 − λ|V ||} for non-bipartite
graphs and φ⋆ ≡ ν⋆ = sup{|1− λ2|, |1− λ|V |−1|} for bipartite
graphs and even L− T .

Proof: For a general undirected graph, we get by

substituting for ω(v, c) and from Theorem 1 for E
[

m(v,c)
|D|

]

∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

=
1

2T
|Es∼fV0

Ej

T
∑

r=1

[(P j)sv − πv](P
r)vc

+ [(P j)sc − πc](P
r)cv| (4.12)

≤ 1

2T
Es∼fV0

T
∑

r=1

∣

∣Ej(P
j)sv − πv

∣

∣ (P r)vc

+
∣

∣Ej(P
j)sc − πc

∣

∣ (P r)cv (4.13)

by Jensen’s inequality. For non-bipartite graphs, we again
apply Jensen’s inequality and use Theorem 5.1 in [41] to
obtain

LHS ≤ 1

2T
Es∼fV0

Ej

T
∑

r=1

√

dv
ds

µj
⋆(P

r)vc

+

√

dc
ds

µj
⋆(P

r)cv (4.14)

≤ 1

L− T

1− µL−T
⋆

1− µ⋆
Es∼fV0

[

d
− 1

2
s

]

· 1

2T

T
∑

r=1

√

dv(P
r)vc +

√

dc(P
r)cv (4.15)

For L− T even (so that Ej contains an even number of
terms) for bipartite graphs, we replace µ⋆ with ν⋆, where
the difference between the two stems from the fact that
1 − λ|V | = −1, so in the derivation of Theorem 5.1 in [41]
successive terms involving (1 − λ|V |)

t cancel. The Lemma
then follows.

Lemma 4 (Convergence Rate for Directed Graphs). For a
directed graph G with period Θ ≥ 1,

∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

= O

(

1

L

)

. (4.1)

Furthermore, if G is aperiodic (Θ = 1), with constants C and
α ∈ (0, 1) as in Theorem 4.9 in [42],

∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

≤ C

L− T

1− αL−T

1− α

1

2T

T
∑

r=1

(P r)vc + (P r)cv. (4.2)

To prove this for both aperiodic and periodic graphs, we
need the following intermediate result.

Proposition 5. Let P be the transition matrix of a Markov
chain {Xt}t≥0 with period Θ and stationary distribution π. Let
{Si}1≤i≤Θ be the disjoint subsets of the state space S such that
P(Xt+1 ∈ S(i+1) mod Θ|Xt ∈ Si). If vertices s, v ∈ Si for some
i, then there exist (explicitable) constants α ∈ (0, 1), C > 0 such
that

∣

∣

∣(PΘ·t)sv −Θ · πv

∣

∣

∣ ≤ Cαt.

Proof: A similar observation is well-known for Markov
chains in general (Theorem 4.9, [42]); in the present context,
it suffices to observe that PΘ|Si

is an aperiodic stochastic
matrix on the block Si, for which Θπ|Si

is an invariant
probability measure, and the lemma follows from the cited
result.

With this proposition in hand, we are now in a position
to prove the Lemma.

Proof of Lemma 4: Substituting for ω(v, c) and from

Theorem 1 for E
[

m(v,c)
|D|

]

and using Jensen’s inequality as in

the proof for Lemma 3 again leads to (4.13).
We prove the first part of the theorem by showing that

for a general periodic graph
∣

∣Ej(P
j)sv − πv

∣

∣ = O
(

1
L

)

.
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Let again {Si}1≤i≤Θ be disjoint subsets of the state
space S as in Proposition 5. Without loss of generality, take
s ∈ Si and v ∈ Sk with k ≥ i, and let a = k − i so that
∑

s′∈Sk
(P a)ss′ = 1. We decompose the path from s to v in

j steps, (P j)sv , into a part from s ∈ Si to an s′ ∈ Sk and a
part from s′ ∈ Sk to v ∈ Sk:

Ej(P
j)sv =

1

L− T

L−T−1
∑

j=0

(P j)sv (4.16)

=
1

L− T

L−T−1
∑

j=a

∑

s′∈Sk

(P a)ss′(P
j−a)s′v (4.17)

=
1

L− T

⌊L−T−a−1

Θ
⌋

∑

n=0

(PΘ·n)s′v (4.18)

since if j < a then (P j)sv = 0, and if (j − a) mod Θ 6= 0
then (P j−a)s′v = 0, and since

∑

s′∈Sk
(P a)ss′ = 1. We can

use Proposition 5 to obtain upper and lower bounds for
(PΘ·n)s′v

Θ · πv − Cαn ≤ (PΘ·n)s′v ≤ Θ · πv + Cαn (4.19)

for some constants C and α ∈ (0, 1). If Ej(P
j)sv−πv ≥ 0, we

use the upper bound on (PΘ·n)s′v , and if Ej(P
j)sv −πv ≤ 0

we use the lower bound to obtain:

LHS ≤

∣

∣

∣

∣

∣

∣

1

L− T

⌊L−T−a−1

Θ
⌋

∑

n=0

(Θ · πv)− πv

∣

∣

∣

∣

∣

∣

+
1

L− T

⌊L−T−a−1

Θ
⌋

∑

n=0

(Cαn). (4.20)

Using the fact that
⌊

x
y

⌋

= x
y −

x mod y
y to evaluate the

prefactor of πv , we continue

LHS ≤
∣

∣

∣

∣

Θ

L− T

(⌊

L− T − a− 1

Θ

⌋

+ 1

)

− 1

∣

∣

∣

∣

πv

+
1

L− T

⌊L−T−a−1

Θ
⌋

∑

n=0

Cαn (4.21)

≤
∣

∣

∣

∣

Θ− a− 1− (L− T − a− 1) mod Θ

L− T

∣

∣

∣

∣

· πv

+
1

L− T

⌊L−T−a−1

Θ
⌋

∑

n=0

Cαn (4.22)

= O

(

1

L

)

(4.23)

since the remaining geometric sum is bounded by a constant.
To prove the second part of the theorem, note that for

aperiodic graphs, Θ = 1 and i = k ⇒ a = 0. For aperiodic
graphs, C and α still have the same meaning as before.

Therefore, in (4.22) the prefactor of πv vanishes for
aperiodic graphs. The upper bound on

∣

∣Ej(P
j)sv − πv

∣

∣

therefore evaluates to

∣

∣Ej(P
j)sv − πv

∣

∣ ≤ C

L− T

L−T−1
∑

n=0

αn (4.24)

≤ C

L− T

1− αL−T

1− α
. (4.25)

Substituting into (4.13), the theorem follows.
Finally we state and prove our theorem for the conver-

gence rate in the joint limit N,L→∞:

Theorem 6 (Convergence Rate as N,L → ∞). The conver-
gence of Corollary 1.1 satisfies the concentration bound

P

(
∣

∣

∣

∣

m(v, c)

|D| − ω(v, c)

∣

∣

∣

∣

> ε

)

< 2 exp(−2N(ε− U)2) (6.1)

for ε > U > 0, and where U is the appropriate upper bound for
∣

∣

∣

∣

E

[

m(v,c)
|D|

]

− ω(v, c)

∣

∣

∣

∣

as derived in lemmas 3 and 4 and depends

only on L, T , and graph-specific constants.

Proof: We have by the triangle inequality

∣

∣

∣

∣

m(v, c)

|D| − E

[

m(v, c)

|D|

]
∣

∣

∣

∣

≥
∣

∣

∣

∣

m(v, c)

|D| − ω(v, c)

∣

∣

∣

∣

−
∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

.

Therefore,

P

(∣

∣

∣

∣

m(v, c)

|D| − E

[

m(v, c)

|D|

]
∣

∣

∣

∣

> ε

)

≥ P

(
∣

∣

∣

∣

m(v, c)

|D| − ω(v, c)

∣

∣

∣

∣

−
∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

> ε

)

= P

(∣

∣

∣

∣

m(v, c)

|D| − ω(v, c)

∣

∣

∣

∣

> ε+

∣

∣

∣

∣

E

[

m(v, c)

|D|

]

− ω(v, c)

∣

∣

∣

∣

)

≥ P

(
∣

∣

∣

∣

m(v, c)

|D| − ω(v, c)

∣

∣

∣

∣

> ε+ U

)

.

Substituting ε→ ε− U and using Theorem 2 then yields
the result.

We can use Theorem 6 to obtain a rough heuristic for
an ”optimal” choice of the parameters N and L given a
fixed computational cost; the window size T determines the
size of the local structures which the vertex embeddings
encode and is therefore usually fixed for a given application.
The total computational cost of computing the co-occurrence
matrix scales linearly with the number of random-walk steps
N ·L, but since L ≥ T we define the excess computational cost
K = N · L−N · T = N · (L− T ).

For notational simplicity we also denote the upper
bound for the failure probability in Theorem 6 as δ =
2 exp(−2N(ε−U)2) and absorb all terms in U that are inde-
pendent of N,L into a constant g for notational simplicity.
Then we have:

Corollary 6.1. Assuming that K ≫ N so that φK/N ≈ 0
and αK/N ≈ 0 in U , the value for N that minimises the error

ε = U +
√

1
2N log 2

δ given K, δ fixed is

N ≈ 1

2
3

√

K2

g2
log

2

δ
. (6.1.2)

This heuristic minimises the error ε given an excess
computational cost K and an upper bound for the failure
probability δ, which both can be freely chosen. We see

that under the heuristic, N = O
(

K
2

3

)

, which justifies

the assumption K ≫ N . Even without this assumption,
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we still have an upper bound, as the neglected terms
−φK/N ,−αK/N can only make ε smaller. In practice, one
could use g ≈ 1 as a first approximation to the remaining
constant g, which depends on the graph structure through
the spectrum or through α. If a more precise estimate for
g is needed, let us remark that this proof (and the results
recalled in the Appendix) produce a constructable g, in that
one can follow the steps of the proofs to explicitly find g
for a given example. In the case where we use Lemma 3,
let us remark that many techniques are known ( [43], and
references therein) for bounding spectral gaps, which would
lead to a constructable upper bound for g.

4.3 Convergence of Vertex Representations

We finally show that convergence of the corpora, suitably
normalised, is indeed sufficient to show convergence of the
vertex representations.

We first remark that, if two corporaDi = (D(i),m(i)), i =
1, 2 differ only by a constant multiple so that

D(1) = D(2); m(1) = c ·m(2)

for some c > 0, then the respective partial applications
of the objective function also differ only up to a constant
multiple: f (1) = cf (2), and it follows that the derived vertex
embeddings

{z(1)i }i: vi∈V = {z(2)i }i: vi∈V (4.26)

also agree. To remove this redundancy, we define normalised
objective functions

fnorm =
1

|D| · f. (4.27)

By (4.26) this normalisation does not change the learned
representations.

We next assume the following:

Assumption 1. The objective function is of the same form as
in (3.1), with the gic bounded.

Assumption 2. The map

f 7→ f(A(f)) is continuous (4.28)

on some space of partial applications of objective functions,
with respect to the essential supremum distance ‖·‖∞, where
A is the optimisation procedure A : f 7→ X as before.

Informally, Assumption 2 means that if the partial ap-
plication of the objective function, f , changes slightly, the
optimisation procedure will find vertex embeddings that
have a similar objective value.

Theorem 7 (Convergence of Vertex Representations). Let
(Dn) be a sequence of corpora generated by Algorithm 1 from the
same graph such that the respective vertex pair occurrence frequen-

cies
(

mn

|Dn|

)

converge to the vertex pair occurrence frequencies
m
|D| in some corpus D generated from that graph. Let fn be the

partial application of an objective function given corpus Dn, and
fnorm
n the normalised objective function, and similarly define f

and fnorm; . Then

fnorm
n (A(fn)) −→ fnorm(A(f)).

Table 1: Characteristics of the datasets used in our experi-
ments.

DATASET
# OF

Classes
# OF NODES

|V |
# OF EDGES

|E|
CORA 7 2,708 5,429

BLOGCATALOG 39 10,312 333,983
WIKI 19 2,405 17,981

FACEBOOK LARGE 4 22,470 171,002
YOUTUBE 47 1.1M 4.9M

Fig. 2. Graph visual representation of some of the datasets
used in our experimental results.

Proof: The map
m(·)
D → fnorm is continuous with

respect to the uniform distance on functions, as the gic are
bounded.

By continuity of fnorm
n with respect to

(

mn

|Dn|

)

,
(

mn

|Dn|

)

→
m
|D| implies fnorm

n → fnorm.

By continuity of fnorm
n (A(fnorm

n )) with respect to fnorm
n ,

fnorm
n → fnorm implies fnorm

n (A(fnorm
n ))→ fnorm(A(fnorm)).

From (4.26) we know that A(fnorm
n ) = A(fn) and

A(fnorm) = A(f) and the theorem follows.
Theorem 7 means that if the vertex pair occurrence

frequencies of (vertex, context) pairs converge to those of
some corpus D, then the vertex representations converge to
values that have the same (normalised) objective function
value as the representations derived from corpus D and
should be similarly useful for downstream tasks.

5 EXPERIMENTAL RESULTS

In this section, we detail the set of experiments that we
conducted to illustrate our theoretical findings.

5.1 Datasets Description

We used five real-world datasets for our experiments.
Each is a graph whose vertices are grouped in a number
of classes. They vary in their number of nodes and edges (up
to the order of millions) and in their number of classes. The
dataset statistics are given in Table 1 along with a graphical
visualisation (see Fig. 2).

• The BLOGCATALOG [44] dataset is derived from a
blog-sharing website. The edges reflect the bloggers
(vertices) following each other. The classes in the
dataset are the bloggers’ interests.

• The CORA [45] dataset is a text classification dataset
for Machine Learning papers. Each vertex corres-
ponds to a paper with the edges representing citation
links. The classes are different areas in Machine
Learning. The dataset also supplies bag-of-word
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Fig. 3. Convergence of co-occurrence matrices as the trajectory
length L and the number of walks N approach infinity. The
error is the computed as ‖m−ω‖2, and we use N = 80 when
varying L and L = 40 when varying N .

Fig. 4. Computational cost in the x-axis expressed as K =
N · (L− T ) against the task performance, in terms of Micro-
F1, on the y-axis. The plots compare our derived heuristic
with two other cases where the parameters are not optimal.

Fig. 5. Performance on a classification task for different using embeddings generated with different hyperparameter choices
for the number of random walks N , the length of each random walk L, and the embedding dimension d. We use N = 80
when varying L and L = 40 when varying N , and fix d = 128 for plots (c)-(f).

representations for each vertex, though we did not
use these in our experiments.

• The WIKI [17] dataset, similarly to Cora, is a collection
of text documents (vertices) with edges representing
hyperlinks between them.

• The FACEBOOK LARGE [46] dataset is a page-page
graph of Facebook sites. The vertices refer to Facebook
pages while the edges denote mutual likes between
sites.

• The YOUTUBE [47] dataset is based on the online
video-sharing platform, with edges reflecting sub-
scription connections between users (vertices).

5.2 Results & Discussion

We support our theoretical analysis following a three-part
evaluation scheme.

(E1) Convergence of co-occurrence matrices. We begin
by directly validating our results about the speed of conver-
gence for the corpus generated by the first stage of DeepWalk
(Theorems 2 and 6).

To do this, we calculate the approximation error of the co-
occurrence matrix m as the Frobenius norm of the difference
between m and its asymptotic value ω, i.e. ‖m − ω‖2, for
different values of the random walk length L and the number
of random walks N .

More precisely, for all experiments run in this part we
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set the window size T = 10 and the embedding dimension
d = 128. To observe the effect of increasing the number of
walks, we set N = {101, 102, 103, 104, 105, 106} and fix L =
40 (see blue lines in Fig. 3). The effect of increasing the length
of the walk, we set L = {101, 102, 103, 104, 105, 106} and fix
N = 80 (see red lines in Fig. 3). We ran these experiments
using the BLOGCATALOG and CORA datasets. The results are
displayed in Fig. 3, where one can observe a convergence
rate consistent with our results for the limiting cases when
N →∞ and L→∞.

(E2) Heuristic for optimal values for N and L. We show
the practical application of our heuristic for optimal choices
of the hyperparameters N and L for a fixed computational
complexity K = N · (L− T ) and fixed failure probability δ
(Corollary 6.1). For our experiments, we plot the task per-
formance against the computational cost K when choosing
N and L using three different strategies. In the first strategy,
we set L = T + 1 and N = K to simulate the extreme of
the minimum random walk length (red line in Fig. 4). In the
second strategy, we set N = 1 and L = T + K, the case
of performing a single very long walk, which corresponds
to the hyperparameter choice suggested in [37] (green line
in Fig. 4). Finally, we select N and L using our heuristic,
approximating the constant g ≈ 1 and fixing δ = 0.01 (blue
line in Fig. 4).

The task performance is the Micro-F1 score achieved
by the one-vs-rest logistic regression suggested by [18]
and also used in [26], [37]. For all strategies we again set
T = 10 and d = 128. We ran these experiments using
the BLOGCATALOG and the FACEBOOK LARGE datasets
for the values K = {210, 211, 212, 213, 214, 215}, so after
necessary rounding the values used to test the heuristic
were N = {88, 140, 224, 355, 563, 892} and L − T =
{12, 15, 18, 23, 29, 37}. The results are plotted in Fig. 4.

Choosing N and L using the heuristic consistently
outperforms the other two cases, illustrating the impact
that a better choice of the hyperparameters N and L can
have. The maximally-parallelisable choice of N = K and
L = T +1 performs a lot worse than the other two strategies,
which is likely due to the uniform starting distribution fV0

being too different to the stationary distribution on these
graphs, resulting in the vertex contexts generated from the
short walks not being very informative.

(E3) Convergence of task performance. In practice,
vertex embeddings are seldom the final goal of a machine
learning pipeline, and our notion of convergence in The-
orem 7 takes even two different sets of vertex embeddings
to be equivalent if they result in the same (normalised)
objective function value. We therefore use convergence of
the task performance of a down-stream algorithm as a
proxy for the convergence of the vertex embeddings; if the
downstream task performance has converged then the vertex
embeddings have very likely converged as well (in the sense
of Theorem 7).

We again use the standard protocol for network embed-
dings evaluation ( [18], [26], [37]) and compute the Micro-
F1 score of a one-vs-rest logistic regression. We again set
the window size T = 10. The results are plotted in Fig. 5.
For the experiments in Fig. 5 (a) and (b) we use varying
embedding dimensions of d = {16, 128, 256}, while we keep
the embedding dimension constant at d = 128 for the other

experiments in plots (c)-(f). When varying L, we set N = 80,
and when varying N , we set L = 40.

One observes that as the number of walks and the length
of each walk are tending to large values the performance
converges. This observation holds across all graph sizes and
dimensions, for both medium-sized graphs like the CORA

dataset and large graphs like the BLOGCATALOG dataset and
embedding dimensions ranging from d = 16 to d = 256.

6 CONCLUSION

We presented a convergence analysis for random-walk-based
vertex embeddings. Unlike existing theoretical works, we
investigated the convergence of vertex co-occurrences in the
generated corpus as the number of random walks N →∞
for arbitrary random walk lengths L as well as the simultan-
eous limit N,L→∞, proving almost sure convergence and
quantifying the convergence rates by deriving concentration
bounds for the two limits. We also proved that convergence of
vertex co-occurrences does indeed imply convergence of the
vertex embeddings themselves, a fact that to our knowledge
had not previously received formal theoretical treatment.
Moreover, we provided a heuristic for choosing optimal
values for the hyperparameters N and L. We supported our
theory with a set of experiments using several real-world
graphs, and demonstrate the practical implication of our
findings.

APPENDIX

EXTENDED MATHEMATICAL RESULTS

This appendix explicitly gives the mathematical results and
some proofs cited, following the notation used in the main
paper.

Theorem 8 (Ergodic Theorem; Theorem 1.10.2 in [40]). Let
P be an irreducible transition matrix and let λ be any distribution
on the state space V . If (Xt)t≥0 is a Markov chain with transition
matrix P , starting distribution λ, and invariant distribution π,
then

Ni(n)

n
→ 1

mi
almost surely as n→∞ (8.1)

where mi = E(Ti) = 1
πi

is the expected return time to state
i ∈ V and Ni is the number of visits to state i before time n.
Moreover, if P is finite then for any bounded function f : V → R

we have

1

n

n−1
∑

t=0

f(Xt) −→ f̄ =
∑

i∈S

πifi almost surely as n→∞.

Proof: If P is transient, then, with probability 1, the
total number of visits Ni to state i is finite, so

Ni(n)

n
≤ Ni

n
→ 0 =

1

mi
. (A.1)

Suppose then that P is recurrent and fix a state i. For T = Ti

the return time to state i we then have P(T < ∞) = 1 and
(XT+n)n≥0 is a Markov chain with starting distribution δi
and independent of X0, X1, . . . , XT by the strong Markov
property. The long-run proportion of time spent in i is
the same for (XT+n)n≥0 and for (Xn)n≥0, so it suffices
to consider the case λ = δi.
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Write S
(r)
i as the length of the rth excursion to i, i.e.

S
(r)
i = T

(r)
i − T

(r−1)
i where T

(r)
i is the rth return time

to i. The non-negative random variables S
(1)
i , S

(2)
i , . . . are

independent and identically distributed with E(S
(r)
i ) = mi

by the strong Markov property. Now

S
(1)
i + · · ·+ S

(Ni(n)−1)
i ≤ n− 1, (A.2)

the left-hand-side being the time of the last visit to i before
time n. Also,

S
(1)
i + · · ·+ S

(Ni(n))
i ≥ n, (A.3)

the left-hand side being the time of the first visit to i after
time n− 1. Hence,

S
(1)
i + · · ·+ S

(Ni(n)−1)
i

Ni(n)
≤ n

Ni(n)
(A.4)

and
n

Ni(n)
≤ S

(1)
i + · · ·+ S

(Ni(n))
i

Ni(n)
. (A.5)

By the strong law of large numbers

S
(1)
i + · · ·+ S

(n)
i

n
→ mi almost surely as n→∞ (A.6)

and, since P is recurrent,

Ni(n)→∞ almost surely as n→∞. (A.7)

So, letting n→∞ in (A.4) and (A.5), we get

n

Ni(n)
→ mi almost surely as n→∞ (A.8)

which implies

Ni(n)

n
→ 1

mi
almost surely as n→∞. (A.9)

Let f : V → R now be a bounded function and assume
without loss of generality that |f | ≤ 1. For any W ⊆ V we
have

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

f(Xk)− f̄

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈V

(

Ni(n)

n
− πi

)

fi

∣

∣

∣

∣

∣

≤
∑

i∈W

∣

∣

∣

∣

Ni(n)

n
− πi

∣

∣

∣

∣

+
∑

i/∈W

∣

∣

∣

∣

Ni(n)

n
− πi

∣

∣

∣

∣

≤
∑

i∈W

∣

∣

∣

∣

Ni(n)

n
− πi

∣

∣

∣

∣

+
∑

i/∈W

(

Ni(n)

n
+ πi

)

≤ 2
∑

i∈W

∣

∣

∣

∣

Ni(n)

n
− πi

∣

∣

∣

∣

+ 2
∑

i/∈W

πi.

(A.10)

Given ε > 0, choose W finite such that
∑

i/∈W

πi < ε/4. (A.11)

We proved above that
Ni(n)

n → πi almost surely, so choose
an L such that for n ≥ L

∑

i∈W

∣

∣

∣

∣

Ni(n)

n
− πi

∣

∣

∣

∣

< ε/4. (A.12)

Then, for n ≥ L we have
∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

f(Xk)− f̄

∣

∣

∣

∣

∣

< ε, (A.13)

which establishes the desired convergence.

Proposition 9 (Equation 3.1 in [41]). Consider an undirected
graph with symmetric normalised Laplacian Lnorm = I −
D1/2PD−1/2, transition matrix P , and stationary distribution
π. Let the ordered eigenvalues {λk} of Lnorm have normalised
eigenvectors {v(k)}. Then

(P t)ij = πj +

|V |
∑

k=2

(1− λk)
tv

(k)
i v

(k)
j

√

dj
di

.

Proof: The eigenvectors of a symmetric matrix are
mutually orthogonal. We can thus write in spectral form

I − Lnorm =

|V |
∑

k=1

(1− λk)v
(k)v(k)T

From the definition of Lnorm, and using the fact that the

eigenvector v(1) with eigenvalue λ1 = 0 is v
(1)
i =

√
πi, we

get

P t = D− 1

2 (I − Lnorm)tD
1

2

=

|V |
∑

k=1

(1− λk)
tD− 1

2 v(k)v(k)TD
1

2

= Q+

|V |
∑

k=2

(1− λk)
tD− 1

2 v(k)v(k)TD
1

2 .

Using πi = di/
∑

k∈V dk we have

Qij = (1− λ1)(D
− 1

2 v(1)v(1)TD
1

2 )ij

=
1√
di

√
πi
√
πj

√

dj

= πj .

(A.14)

The proposition follows.

Theorem 10 (Mixing Rate of Random Walk on Undirected
Graph; Theorem 5.1 in [41]). For a random walk on an
undirected graph, with µ⋆ = sup{|1 − λ2|, |1 − λ|V ||} (again,
{λk} are the ordered eigenvalues of Lnorm),

|(P t)ij − πj | ≤
√

dj
di

µt
⋆.

Proof: Starting from Proposition 9, we have

|(P t)ij − πj | =

∣

∣

∣

∣

∣

∣

|V |
∑

k=2

(1− λk)
tv

(k)
i v

(k)
j

√

dj
di

∣

∣

∣

∣

∣

∣

≤
√

dj
di

µt
⋆ ·

∣

∣

∣

∣

∣

∣

|V |
∑

k=2

v
(k)
i v

(k)
j

∣

∣

∣

∣

∣

∣

≤
√

dj
di

µt
⋆

by normalisation of the v(k).
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Corollary 10.1 (Mixing Rate of Random Walk on Bipartite
Graph). For a random walk on a bipartite undirected graph, with
ν⋆ = sup{|1− λ2|, |1− λ|V |−1|}, denoting with 〈·〉t an average

over an even number of timesteps (〈f(t)〉t = 1
n+1

∑t
k=t−n f(k)

with n odd),

|〈(P t)ij〉t − πj | ≤
√

dj
di
〈νt⋆〉t. (10.1.1)

Proof: It is a fact that for a bipartite graph, 1− λ|V | =
−1. From Proposition 9, we then have

〈(P t)ij〉t = πj +

|V |−1
∑

k=2

〈(1− λk)
t〉t · v(k)i v

(k)
j

√

dj
di

,

since successive terms involving (1− λ|V |)
t = (−1)t cancel

when averaging over an even number of t.
The rest of the proof is analogous to the proof of

Theorem 10.

Theorem 11 (Convergence Theorem; Theorem 4.9 in [42]).
Suppose an irreducible and aperiodic Markov Chain with transition
matrix P ∈ R

|V |×|V | has stationary distribution π ∈ R
|V |. Then

there exist constants α ∈ (0, 1), C > 0 such that

sup
i∈S
‖(P t)i· − π‖TV ≤ Cαt,

where ‖ · ‖TV is the total variation distance of two distributions
µ, ν on S, ‖µ− ν‖TV = maxA⊆S |µ(A)− ν(A)|.

Proof: Since P is irreducible and aperiodic, there exists
an r such that P r has strictly positive entries. Let Π be the
|V | × |V | matrix whose rows are the stationary distribution
π. For sufficiently small δ > 0 we have

(P r)ij ≥ δπj (A.15)

for all i, j = 1, 2, . . . |V |. Let θ = 1− δ. Then the equation

P r = (1− θ)Π + θQ (A.16)

defines a stochastic matrix Q. It is a straightforward compu-
tation to check that MΠ = Π for any stochastic matrix M
and that ΠM = Π for any matrix M such that πM = π.

Next, we use induction to demonstrate that

P rk = (1− θk)Π + θkQk (A.17)

for k ≥ 1. If k = 1 this holds by (A.16). Assuming that (A.17)
holds for k = n,

P r(n+1) = P rnP r = [(1− θn)Π + θnQn]P r. (A.18)

Distributing and expanding P r in the second term, using
(A.16), gives

P r(n+1) = (1−θn)ΠP r+(1−θ)θnQnΠ+θn+1Qn+1. (A.19)

Since ΠP r = Π and QnΠ = Π, we have

P r(n+1) = (1− θn+1)Π + θn+1Qn+1 (A.20)

which establishes (A.17) for all k ≥ 1. Multiplying by P j and
rearranging terms now yields

P rk+j −Π = θk(QkP j −Π). (A.21)

To complete the proof, sum the absolute values of the
elements in row i on both sides and divide by 2. On the right-
hand-side, the second factor is at most the largest possible

total variation distance between distributions, which is 1.
Hence for any i, we have

‖(P rk+j)i· − π‖TV ≤ θk (A.22)

and the theorem follows.
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