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Abstract 

This study explores the link between the monotonic and cyclic undrained behaviour of sands using the 

discrete element method (DEM). It is shown that DEM can effectively capture the flow deformation of 

sands sheared under both monotonic and cyclic undrained loading conditions. When subjected to cyclic 

shearing, flow-type failure is observed for a loose sample, while cyclic mobility is observed for a dense 

sample. A strong correlation between the monotonic and cyclic loading behaviour that has been 

revealed experimentally is also confirmed in DEM simulations: a) flow deformation occurs in the 

compressive loading direction when the cyclic stress path intersects the monotonic compression stress 

path prior to the monotonic extension stress path, and vice versa; b) the onset of flow deformation in 

q-p’ space is located in the zone bounded by the critical state line and the instability line determined 

from monotonic simulations. Hill’s condition of instability is shown to be effective to describe the 

onset of flow failure. Micro-mechanical analyses reveal that flow deformation is initiated when the 

index of redundancy excluding floating particles drops to below 1.0 under both monotonic and cyclic 

loading conditions. Flow deformation induced by either monotonic or cyclic loading is characterized 

by abrupt change of structural fabric which is highly anisotropic. The reason why the dense sample 
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dilated during monotonic loading but showed cyclic mobility (temporary liquefaction) during cyclic 

loading is attributed to the repeating reversal of loading direction, which leads to the periodic change of 

microstructure. 

 

 

Keywords: Liquefaction; flow deformation; stability; monotonic; cyclic; fabric  
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1 Introduction 

It has been widely documented in the literature that sands, when sheared in an undrained state, may 

liquefy under both monotonic and cyclic loading conditions [1-6]. The mechanism triggering flow 

failure has been carefully considered by geotechnical researchers over the past decades. It is now 

commonly accepted that flow deformation is initiated when the instability state is reached, post which 

the effective stress decreases quickly and flow deformation is developed fastly to static liquefaction 

(q=p’=0). However, different opinions prevail on the initiation of flow deformation induced by cyclic 

loading. Vaid and Chern [7] observed in their triaxial tests on loose sands that flow deformation is 

triggered when the stress path reaches the critical stress ratio (CSR) line which is commonly termed the 

instability line (ISL) in monotonic undrained tests [4,8]. The ISL connects the peak and the origin in the 

deviatoric stress (q)-mean effective stress (p’) plane. Based on cyclic simple shear test data, 

Alarcon-Guzman et al. [9] proposed that flow deformation occurs when the effective cyclic loading 

stress path intersects the effective monotonic stress path, after which the two stress paths will essentially 

be the same.  Hyodo et al. [3] suggested that flow deformation is initiated when the peak of the cyclic 

loading stress path intersects the phase transformation (PT) line obtained in the monotonic undrained test 

and lies in the unstable region bounded by the CSR line and the critical state (CS) line. The experimental 

data of Yang and Sze [5-6] supported Vaid and Chern [7]. Yang and Sze [6] further pointed out that if 

the CSR line obtained in monotonic triaxial compression tests is reached by the cyclic stress path prior 

to that obtained in triaxial extension tests, flow deformation will be compressive; otherwise, flow 

deformation will be extensive. Despite discrepancies between explanations for the onset of cyclic flow 

failure, it is generally agreed that the static and cyclic responses of sands are interrelated. For example, 

Andrade et al. [10] proposed that the static and cyclic liquefaction can be unified by the concept of loss 

of controllability. Mital and Andrade [11] defined a flow liquefaction potential to explain the origin of 

liquefaction for loose sands and the origin of cyclic liquefaction for dense sands. 

The discrete element method (DEM) [12] has been widely adopted by geotechnical community to 

investigate the mechanical behaviour of granular materials subjected to various loading conditions [13]. 

Furthermore, the particle-scale information has been commonly exploited to explore the fundamental 

mechanisms underlying the macro-scale phenomena. DEM has also been employed to explore the 
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cyclic liquefaction behaviour of sands. Ng and Dobry [14] were amongst the earliest researchers to use 

DEM to investigate the undrained cyclic loading behaviour of sands. Sitharam [15] conducted 

comprehensive 2D DEM simulations to investigate the microstructure evolution of granular materials 

during undrained cyclic loading considering different influential factors. Kuhn et al. [16] performed 

undrained cyclic shearing simulations by inputting seismic shearing pulses with non-uniform 

amplitudes. Xu et al. [17] carried out a series of 3D constant-volume cyclic triaxial tests to link the 

liquefaction resistance to shear wave velocity. Wang and Wei [18] quantified the particle-void 

arrangement of granular soils in cyclic mobility and post-liquefaction stages based on 2D DEM 

simulations. Wang et al. [19] proposed a new micro-scale parameter, mean neighbouring particle 

distance (MNPD), to describe the development of shear strain post liquefaction. Despite these 

aforementioned applications of DEM to investigate the cyclic behaviour of sands, the link between the 

monotonic and cyclic loading behaviours of sands has not yet been discussed. Furthermore, flow-type 

failure and cyclic mobility were not considered separately in previous studies. 

In this study, a series of monotonic and cyclic constant-volume triaxial simulations are performed on 

DEM samples with different initial void ratios. Different cyclic deviatoric stress amplitudes are applied 

during cyclic loading. The condition of onset of flow deformation was discussed by linking the cyclic 

responses with the monotonic responses from both macro- and micro-mechanical perspectives. The 

different behaviour of sands subjected to monotonic and cyclic loading were explored through 

micro-mechanical analyses. 

2 Overview of DEM simulations 

DEM simulations were performed using the PFC3D software [20]. The grading curve of Toyoura sand 

was approximated in the DEM simulations (Fig. 1). Particles with a diameter below 0.1156 mm were 

ignored because their contribution to the overall mass-based particle size distribution (PSD) is 

negligible. A simplified Hertz-Mindlin contact model was adopted with a particle shear modulus of 29 

GPa and Poisson’s ratio of 0.12, which are in the ranges of the properties of quartz [21]. Gravitational 

force was neglected. A local damping coefficient of 0.1 was used throughout the simulations. A small 

amount of damping force is needed to delay the occurrence of flow failure and avoid obvious 



5 

 

oscillation in stress-strain responses post flow failure. 19,449 non-contacting spherical particles were 

created at half of their target diameters within a cylindrical space enclosed by two frictionless flat rigid 

walls on the top and bottom, and a frictionless cylindrical rigid wall in the circumferential direction. 

The particles were then expanded to their target sizes and allowed to equilibrate. The assembly was 

then subjected to isotropic compression under a confining pressure of 500 kPa. Different inter-particle 

friction coefficients (μ) were used to obtain samples with different initial void ratios. After isotropic 

compression, μ was set to be 0.5 and the samples were again equilibrated. In the next stage, both 

monotonic and cyclic constant-volume triaxial simulations were performed to simulate the monotonic 

and cyclic undrained triaxial tests, respectively. During the cyclic loading simulations, the positions of 

the rigid walls were adjusted continuously so that the deviatoric stress q (= σ’1  – σ’3) followed a 

sinusoidal form (Eq. 1) while the sample volume remained constant. 

q = q cycsin(ωt)                             (1) 

in which q cyc is the cyclic deviatoric stress, ω is the cyclic loading angular frequency, and t is the 

running time. A parametric study revealed that when ω is below 10π rad/s, the simulation results are 

not obviously sensitive to the strain rate. Therefore, a ω value of 10π rad/s was used in all the 

simulations, which corresponds to a cyclic loading period T of 0.2s. 

Two series of cyclic loading simulations were carried out. In the first series of simulations (C1), 

constant-volume cyclic loading simulations were performed on a dense sample with a void ratio e0  = 

0.658 and σ’3,0  = 500 kPa. Three cyclic deviatoric stress amplitudes (q cyc = 200 kPa, 300 kPa and 400 

kPa) were applied during cyclic loading. These cyclic deviatoric stress amplitudes correspond to cyclic 

stress ratios (CSR = qcyc/2/σ’3,0) of 0.2, 0.3 and 0.4. The second series (C2) comprises four simulations 

on loose samples, each of which has the same initial state (e0=0.692, σ’3,0  = 500 kPa) but is subjected 

to constant-volume cyclic shearing with different cyclic deviatoric stress amplitudes (q cyc = 150 kPa, 

180 kPa, 200 kPa and 300 kPa) corresponding to CSR of 0.15, 0.18, 0.2 and 0.3. These q cyc values were 

selected to yield flow deformation within affordable computation costs. The details of the cyclic 

simulations are given in Table 1. Furthermore, to establish a link between the cyclic and monotonic 
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responses, both strain-controlled monotonic compression and extension simulations were carried out 

with a strain rate of 1s-1 on the two samples.  
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Table 1 Simulation details of constant-volume cyclic loading 

 
ID e0 

σ3,0  

(kPa) 

qcyc 

(kPa) 

CSR: 

qcyc/2/p’0 

μ during isotropic 

compression 

Number of loading cycles to initial 

flow deformation 

C1 

① 0.658 500 200 0.2 0.25 12.5 

② 0.658 500 300 0.3 0.25 1.52 

③ 0.658 500 400 0.4 0.25 1.01 

C2 

① 0.692 500 150 0.15 0.30 15.72 

② 0.692 500 180 0.18 0.30 4.15 

③ 0.692 500 200 0.2 0.30 2.06 

④ 0.692 500 300 0.3 0.30 0.15 

 

3 Simulation Results 

3.1 Stress-strain Responses 

3.1.1 Monotonic loading simulations 

Figure 2 shows the stress-strain behaviour of the loose sample when sheared under constant-volume 

monotonic loading conditions. As shown in Figure 2(a), in both compression and extension cases, the 

magnitude of deviatoric stress reaches a peak value and then drops sharply to zero, i.e., complete 

liquefaction occurs. The inter-particle friction we applied during isotropic compression is smaller than 

the final value we used during shearing. As noted by Bernhardt et al. [22], this will lead to almost no 

contact sliding at the beginning of shearing. Therefore, the response at the initial stage of loading is 

much stiffer and more dilative than that of a real soil. The peak state marks the onset of flow 

liquefaction and is termed the instability state [4,23-24]. The stress paths in q-p’ space are presented in 

Figure 2(b). The instability lines which connect the origin and the instability states under both 

compression and extension loading conditions are overlaid in Figure 2(b), and are denoted as ISL-C 

and ISL-E respectively.  

For the dense sample, as Figure 3 shows, the stress-strain responses are persistently dilative. The 

deviatoric stress increases continuously until the axial strain reaches about 35% in the compression 

simulation and 38% in the extension simulation, after which the deviatoric stress remains more or less 

constant, i.e., the critical state is attained. The attained strengths at the critical state are over 30 MPa. In 
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a real case, such a highly dilative response may be counteracted by the contractive trend due to grain 

crushing. This mechanism is not considered in the current study. 

3.1.2 Cyclic loading simulations 

Figure 4 presents the stress-strain responses of the loose sample subjected to cyclic constant-volume 

shearing. The excess pore water pressure is calculated as the difference between the mean effective 

stress at the initial state and that at the current state. The solid circles in Figure 4 mark the instants 

when flow deformation is triggered and are denoted as IFD i.e., the pore water pressure firstly 

approximates the initial mean effective stress or the axial strain firstly exceeds 5%. In some cases (i.e., 

q cyc = 150 kPa and 300 kPa for the loose sample), although the axial strain has exceeded 5% axial strain, 

the effective stress is still decreasing. For these simulations, we took the instant when the minimal 

effective stress is reached as the onset of flow deformation. As Figures 4(b)-(c) show, following IFD, 

the axial strain develops sharply without an obvious change in the deviatoric stress, showing 

runaway-type deformation typical for loose sands. When q cyc ≥ 180 kPa, flow deformation occurs in 

the compression side, while flow deformation occurs in the extension side when qcyc = 150 kPa. This is 

because, as Figure 4(d) shows, the stress paths of the three simulations with q cyc  ≥ 180 kPa cross the 

ISL-C before intersecting the ISL-E whereas the stress path of the simulation with q cyc = 150 kPa 

intersects the ISL-E before reaching the ISL-C. This supports the hypothesis of Yang and Sze [6] that 

the failure direction in cyclic flow liquefaction depends on the spatial relationship between the cyclic 

stress path and the monotonic flow liquefaction lines. As shown in the inset of Figure 4(d), the IDF 

states of the four simulations lie close to the zone bounded by the critical state line and the instability 

line, which is the failure zone defined by Hyodo et al.[3]. Note that the critical state line was 

determined based on Fig. 3(b) and some other supplemental drained simulations which are not shown 

for conciseness. 

For the three simulations in C1, as Figure 5(a) shows, the excess pore water pressure increases 

gradually as the cyclic loading proceeds before reaching around the 12th, 1.11th and 0.54th loading 

cycles for simulations with q cyc = 200 kPa, 300 kPa and 400 kPa, respectively. At these instants 

(marked by solid diamonds) the excess pore water pressure jumps abruptly to a considerably large 
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value, after which the sample response changes from contractive to dilative, marking the phase 

transformation (PT) state in cyclic loading. Immediately after the PT state, the pore water pressure 

decreases due to dilation and then increases again due to contraction, momentarily reaching the mean 

effective stress at around the 12.5th, 1.52th and 1.01th loading cycles for simulations with q cyc = 200 kPa, 

300 kPa and 400 kPa, respectively. The change from the dilative to the contractive response is caused 

by the reversal of loading direction. These instants (the solid circles) are determined as the onset of 

flow deformation. This process is repeated in the following loading cycles and the axial strain is 

developed in a double-amplitude manner (Figure 5(b)). As Figure 5(c) shows, the axial strain increases 

substantially after the PT state. A butterfly-shape stress path is identified for the dense sample (Figure 

5(d)). The double-amplitude axial strain and butterfly-shape stress path represents the typical features 

of cyclic mobility. Similar to the loose sample, the stress paths of the three simulations of C1 are 

bounded by the monotonic CSLs obtained in triaxial compression and triaxial extension simulations. 

As noted by Idriss and Boulanger [25] and Sze [26] the relationship between the cyclic stress ratio 

(CSR) and the number of loading cycles to initial flow deformation (NIF) can be represented by a 

power-law function, 

CSR = mNIF
n                           (2) 

in which m and n are fitting parameters. Figure 6 plots the CSR-NIF  relationship for the dataset 

presented in the current study. The data for Toyoura sand at the same initial confining pressure 

obtained in experiments conducted by Sze [26] are overlaid for comparison. The DEM simulation 

data can be well represented by Eq. 2 with the fitting parameters m = 0.3703 and n = -0.251for C1 

simulations and m = 0.2237 and n = -0.148 for C2 simulations. The number of loading cycles to 

initial flow deformation increases as packing density increases. The CSR-NIF  relationship obtained 

in DEM simulations lies between the experimental data with a relative density Dr = 50% and that 

with a relative density of Dr = 25%. 
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3.2 Conditions of onset of flow failure 

3.2.1 Hill’s condition of instability 

Hill [27] proposed using the second-order work d2
W (Eq. 3) to evaluate the stability of granular materials, 

i.e., a granular material is stable only when d2
W > 0.  

d
2
W=dεvdp’ + dεqdq                             (3) 

in which dεv and dεq  are respectively the volumetric strain and deviatoric strain increments. For the 

constant-volume simulations, Eq. 3 can be reduced to d2
W= dεqdq. Hill’s condition of instability has 

been shown to be effective to describe the instability of sands subjected to constant shear stress loading 

conditions in both laboratory tests [28] and DEM simulations [29]. 

Figure 7(a) shows the evolution of d
2
W for the loose sample subjected to triaxial compression. In 

accordance to Figure 2(a), the solid diamond marks the instability state. In order to clearly show the 

d
2
W curve adjacent to the instability state, only the data within 0-2.0% axial strain are presented. d2

W 

surges to a peak value immediately after loading is commenced, after which d2
W drops rapidly and 

approaches zero at the instability state. After the instability state has been reached, the d2
W curve 

oscillates around the x axis, indicative of instability. The variation of d2
W during cyclic loading for the 

dense sample subjected to qcyc =200 kPa is shown in Figure 7(b). d2
W is small and positive before 

reaching the phase transformation state (solid diamond). From the inset, it can be seen that d
2
W 

oscillates slightly after the phase transformation state and becomes small and positive again until 

reaching the initial flow deformation instant (solid circle), after which d2
W oscillates quite significantly, 

indicating a highly instable state. d2
W becomes positive again after a short period of severe fluctuation. 

The procedure is repeated in the following loading cycles. Figure 7 clearly shows that Hill’s condition 

of instability can also be used to evaluate the onset of flow failure for sands under both monotonic and 

cyclic undrained loading conditions.  

3.2.2 Mechanical stability 

Kruyt & Rothenburg [30] used an index of redundancy which is defined as the ratio of the total number 

of constraints at contacts to the total number of degrees of freedom to quantify the mechanical 
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redundancy within a discrete granular system. Here, mechanical redundancy means the total number of 

constraints provided by the contacts is larger than the total number of degrees of freedom within the 

system. For a three-dimensional problem, considering constraints on three translational motion 

directions for elastic contacts (at which |f t| < µfn , where f t and fn  are the tangential and normal contact 

forces, respectively) and only one constraint along the normal direction for plastic contacts at which the 

sliding force limit is reached, i.e., |f t| = µfn . The total number of constraints provided by the contacts can 

be quantified as 3 ∙ (1−𝑓𝑓) ∙ 𝑁𝑁𝑐𝑐 + 𝑓𝑓 ∙ 𝑁𝑁𝑐𝑐 = (3− 2𝑓𝑓)𝑁𝑁𝑐𝑐 , in which f is the sliding fraction and Nc is the 

total number of contacts. In total there are 6Np  degrees of freedom for a 3D system where Np  is the total 

number of particles and thus the index of redundancy IR  can be expressed as: 

𝐼𝐼𝑅𝑅 =
(3−2𝑓𝑓)𝑁𝑁𝑐𝑐6𝑁𝑁𝑝𝑝                                     (4) 

If IR  is smaller than 1, the total number of constraints provided by the contacts will be smaller than the 

total number of degrees of freedom within the sample. In such cases, the particle may lose its stability 

and the sample may flow subjected to shearing. Kruyt & Rothenburg [30] proposed to substract the 

number of particles with zero contacts from Np considering that these particles are unlikely to participate 

in force transmission. According to this principle, the corresponding index of redundancy 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 becomes: 

𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 =
(3−2𝑓𝑓)𝑁𝑁𝑐𝑐6(𝑁𝑁𝑝𝑝−𝑁𝑁𝑃𝑃0)

                                  (5) 

where 𝑁𝑁𝑃𝑃0 denotes the number of floating particles (rattlers) with zero contacts. If IR  (𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅) is greater 

than or equal to 1.0, the system is mechanically stable; otherwise, the system is mechanically unstable.  

Figure 8 presents the variation of indexes of redundancy defined in Eq. (4) and Eq. (5) during 

monotonic compression shearing on the loose and the dense samples. The variations of indexes of 

redundancy during monotonic extension shearing are similar to Figure 8 and thus are not shown for 

conciseness. For the loose sample, as Figure 8(a) shows, IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 show a similar trend, i.e., they 

are the largest after isotropic compression (IR  = 1.047, 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 = 1.262), but drop abruptly at the initial 

stage of loading reaching the minimal values at about 2.5% axial strain (IR  = 0.232, 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 = 0.614) 

which corresponds to the instant when the sample completely liquefies (see Figure 2(a)). Both IR  and  𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 recover thereafter and reach constant values at the critical state. For the dense sample, IR  = 
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1.086 and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅=1.293 at the beginning of shearing. IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅initially drop slightly to a minimal 

value when the axial strain reaches 1%, and gradually increase thereafter until a constant value is 

approached at around 30% axial strain. For the loose sample, both IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 are below 1.0 after 

liquefaction has occurred, indicating that it is in a mechanically unstable state. For the dense sample, 

IR  is below 1.0 between 0.5% axial strain and 6% axial strain, which according to the definition of IR  

indicates that the dense sample should be in an unstable state during this loading period. This is 

contradictory to the stress-strain curves presented in Figure 3 which show that the dense sample 

behaves consistently dilative. For 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 of the dense sample, it is consistently larger than 1.0 during 

the entire loading procedure, which agrees with the stress-strain curves shown in Figure 3. 

Evolutions of indexes of redundancy during cyclic loading on the loose and dense samples are 

shown in Figure 9. For both the loose and the dense samples, evolutions of IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 show a 

saw-type trend: both IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 decrease at the start of each loading cycle and reach a local 

minimum value each time when the loading direction is reversed, i.e., when the number of loading 

cycles (N=t/T) equals to an odd number of times that of 1/4; immediately after reversal of the 

loading direction IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 go up sharply to a local peak and decrease thereafter until the next 

valley point is reached. This procedure is repeated until initial flow deformation occurs. IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 

are overall in a decreasing trend. After initial flow deformation has been triggered, IR  and 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 

temporarily drops to very small values at each liquefaction instant but recover immediately and 

dramatically thereafter due to change of loading direction. As Figure 8 shows, IR  drops below 1.0 

before the onset of flow deformation, while 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 drops below 1.0 only at the instants when flow 

failure occurs. Therefore, 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 defined excluding floating particles is a better index to evaluate the 

stability of granular materials subjected to both monotonic and cyclic loading conditions. This is 

sensible as IR  considers all the particles within a granular system while 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 only reflects the 

stability of the force transmission network. 
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3.2.3 Structural anisotropy 

The macro stress-strain behaviour of granular materials is related to the variation of the microstructures. 

Satake [31] proposed an expression of fabric tensor to describe the microstructure of a discrete granular 

system: 

Φ𝑖𝑖𝑖𝑖 =
1𝑁𝑁𝑐𝑐 ∑ 𝑛𝑛𝑖𝑖𝑘𝑘𝑛𝑛𝑖𝑖𝑘𝑘 (𝑘𝑘 = 1,2,3)

𝑁𝑁𝑐𝑐𝑘𝑘=1                             (6) 

where 𝑛𝑛𝑖𝑖𝑘𝑘 denotes the unit contact normal component in the ith direction. The principal values of Eq. 

6 quantify the clustering degree of contacts in each principal stress direction. In particular, the 

deviatoric fabric, Φd= Φ1- Φ3 , i.e., the difference between the major (Φ1) and minor (Φ3) principal 

values of the fabric tensor, has been widely used to quantify the structural anisotropy of granular 

assemblies [32-34]. Wang et al. [19] used the difference between the principal values in the 

horizontal and vertical directions to quantify the internal structure change during cyclic loading. 

Figure 10(a) shows the evolution of the three principal fabrics of the loose sample during monotonic 

loading. The intermediate (Φ2) and minor (Φ3) principal fabrics are close to each other as a σ’2  = σ’3 

condition is prescribed in the servo control scheme while the major principal fabric (Φ1) remains the 

largest throughout shearing. Φ1  increases sharply while Φ2  and Φ3  experience a dramatic fall at 

about 1.5% axial strain. Similar to Φ1 , Φd  also experiences a sudden jump prior to complete 

liquefaction. Wang et al. [19] also observed more severe change of fabric anisotropy after 

liquefaction. Figure 10 indicates that as the number of contacts within the system decreases due to 

complete liquefaction, the remaining contacts have to align more closely in the major principal stress 

direction to resist as much external loading as possible, which leads to the sharp increase in the 

structural anisotropy. It should be noted that the inflection points in Figures 10(a) and (b) appear 

before complete liquefaction, which indicates that the macro-scale responses lag the structural 

adjustment. 

Evolutions of the three principal fabrics and the deviatoric fabric of the dense sample during 

monotonic compression loading are presented in Figure 11. The major principal fabric increases 

while the intermediate and minor principal fabrics decrease at the initial stage of loading. Φ1 reaches 
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a peak value, while Φ2 and Φ3  attain a minimal value at about 10% axial strain, after which Φ1  

decreases and Φ2 and Φ3  increase until approximately constant values are reached respectively at the 

critical state. Φd  increases initially as loading commences, reaching a peak value at about 10% axial 

strain, after which Φd  decreases and tends to become almost constant after around 35% axial strain 

has been attained.  

Evolution of structural fabrics of the loose sample during cyclic loading is shown in Figure 12. As 

Figure 12(a) shows, prior to initial flow deformation, evolution of principal fabrics within a loading 

cycle can  be divided into four distinct stages: 1) from 0 to 1/4 of a loading cycle (compression 

loading), Φ1 increases to a local peak point but Φ2  and Φ3  decrease to a local valley point at 1/4 of a 

loading cycle (loading direction is reversed from compression to extension); 2) from 1/4 to 1/2 of a 

loading cycle (compression unloading), Φ1 decreases but Φ2  and Φ3  increase, and Φ1 ≈ Φ2  ≈ Φ3  at 1/2 

of a loading cycle (q = 0); 3) from 1/2 to 3/4 of a loading cycle (extension loading), Φ1 and Φ2  increase 

to a local peak value but Φ3  decreases to a local valley point at 3/4 of a loading cycle (loading direction 

is reversed from extension to compression); 4) from 3/4 of a loading cycle to one loading cycle 

(extension unloading), Φ1 and Φ2  decrease but Φ3  increases, and Φ1 ≈ Φ2  ≈ Φ3  at the end of each 

loading cycle (q=0). These four stages are repeated until flow deformation occurs. After flow 

deformation has been triggered: when flow occurs at instants close to the onset of a loading cycle (0th, 

1st , ….), Φ1 rises almost vertically to a local peak value while Φ2  and Φ3  drop abruptly to a local 

minimal value; when flow happens close to half of a loading cycle, Φ1 and Φ2 increase almost 

vertically to a local peak value while Φ3 drops abruptly to a local minimal value. Φ1 always decreases 

and Φ3 always increases between two neighbouring instants of flow deformation, while Φ2  is close to 

Φ3 during compression loading and extension unloading, and is similar to Φ1 during compression 

unloading and extension loading.   

The abrupt changes in principal fabrics mark remarkable changes in structural anisotropy. As Figure 

12(b) shows, before reaching flow deformation, similar to the principal fabrics, evolution of the 

deviatoric fabric can also be characterized into four stages: 1) Φd  increases during the first quarter of a 

loading cycle, reaching a local peak value at a quarter of a loading cycle (loading direction is reversed 

from compression to extension); 2) Φd  drops thereafter and reaches a local minimal value at half of a 
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loading cycle (q = 0); 3) Φd  increases again reaching a local peak at 3/4 of a loading cycle (loading 

direction is reversed from extension to compression); 4) Φd  drops again from 3/4 of a loading cycle to 

the end of a loading cycle (q = 0). This procedure is repeated until flow deformation occurs. After flow 

deformation has been triggered, the deviatoric fabric jumps suddenly to a local peak and decreases 

thereafter, temporarily reaching a local minimal value at the next instant of flow failure. Evolutions of 

structural fabrics of the dense sample presented in Figure 13 are similar to those of the loose sample 

presented in Figure 12 and thus are not elucidated herein in detail. The more severe change in 

deviatoric fabric post liquefaction in comparison to that before liquefaction was also observed by 

Wang et al. [19]. 

As noted in Section 3.1, the dense sample behaves consistently dilatively during monotonic loading 

(see Figure 3), while it liquefies in a form of cyclic mobility when subjected to cyclic loading (see 

Figure 5). This may be due to the difference in structural fabric evolutions during monotonic and 

cyclic loading. As Figure 11 shows, evolution of structural fabric of the dense sample during 

monotonic loading is also monotonic, while evolution of structural fabric of the dense sample during 

cyclic loading shows a repeating decrease-and-increase trend. This kind of periodic change in 

structural fabric may likely yield ‘fatigue’ of the soil skeleton accumulating more plastic strain at the 

contacts, which finally leads flow deformation during cyclic loading. 

Figure 14 presents the variation of deviatoric fabric Φd  with time ratio t/T (time divided by the cyclic 

period) normalized by the number of loading cycles to initial flow (NIF) at four critical loading 

instants: 1) q = 0, approached by loading extension (LE); 2) q = 0, approached from unloading 

compression (UC); 3) q = q cyc, when loading direction is reversed from compression to extension; 4) 

q = -q cyc, when loading direction is reversed from extension to compression. The sample is in an 

isotropic stress state at instants 1) and 2), and is close to its most anisotropic state at instants 3) and 

4). For both the loose and the dense samples, the values of Φd  at q = 0 are small and remain almost 

constant until (t/T)/NIF  reaches a critical value (0.98 and 0.96 for the loose and the dense samples, 

respectively), after which Φd  increases dramatically and jumps abruptly to a peak value at the onset 

of flow deformation ((t/T)/NIF  =1). Figure 14 also shows that after the onset of flow deformation Φd  

experiences a steep jump each time when liquefaction takes place. Regarding Φd  at q = q cyc, it is 
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consistently larger than Φd  at q = 0 before the onset of flow deformation. For the loose sample, Φd  at 

q = q cyc is initially small but starts to increase when (t/T)/NIF  reaches 0.36. After flow failure has 

occurred, Φd  at q = q cyc is larger at the instants when loading direction is reversed from extension to 

compression than that at the instants when loading direction is reversed from compression to 

extension.  

Evolution of Φd  at q = q cyc between (t/T)/NIF  = 0 and 0.9 for the dense sample is enlarged in the 

inset of Figure 14(b). Three distinct stages can be identified:  

Stage I: before (t/T)/NIF  reaches 0.78, evolution of Φd  at q = q cyc is saw-type. Within each loading 

cycle, Φd  at the compression-to-extension transition instants is always larger than that at the 

extension-to-compression transition instants. Φd  values at both transition instants show an overall 

increasing trend. At this stage, the micro structure is elastic. 

Stage II: between (t/T)/NIF  = 0.78 and (t/T)/NIF  = 1.0 (initial flow failure), Φd  at q = q cyc increases 

monotonically.  

Stage III: after initial flow failure, the evolution of Φd  returns to a saw-type. In contrast to Stage I, 

Φd  at the compression-to-extension transition instants is smaller than that at the 

extension-to-compression transition instants. 

The gradual increase of structural fabric at Stage I and Stage II may reflect the fatigue and 

degradation of the soil skeleton caused by periodic shearing with constant amplitude. Referring to 

Figure 14(a), Stage II and Stage III are also obvious for the loose sample; whereas Stage I is absent 

for the loose sample. The absence of an elastic stage for the loose sample accounts for its lower 

resistance to flow failure. Figure 14 also indicates that the structural anisotropy at the loading 

direction reversal states (q = q cyc) experiences obvious change earlier than the structural anisotropy 

at q = 0 state does. 

Discussion and Conclusions 

DEM simulations were carried out to investigate the onset of initial flow failure of sands. These include 

two monotonic triaxial compression simulations, two monotonic triaxial extension simulations and 
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seven constant-volume cyclic loading simulations. The influences of initial packing density and cyclic 

deviatoric stress amplitude on the onset of flow failure were investigated. The link between monotonic 

and cyclic behaviour was explored. Both the flow-type failure typical for loose sands and the cyclic 

mobility typical for dense sands under undrained cyclic loading conditions were captured. For the loose 

sample, DEM simulation results support the experimental observations of Vaid & Chern [7] and Yang 

& Sze [5-6]. The cyclic loading responses were shown to be related to the monotonic responses. The 

onset of flow failure lies in the failure zone bounded by the critical state line and instability line 

determined from monotonic simulations. Failure occurs in the compression loading direction when the 

stress path of the cyclic loading intersects the stress path of monotonic compression prior to the stress 

path of monotonic extension, and vice versa. The number of loading cycles to failure decreases as the 

cyclic deviatoric stress increases. However, for the dense sample, despite its persistently dilative 

response during monotonic shearing, cyclic mobility is observed with the effective stress dropping 

temporarily to zero and the axial strain developing in a double-amplitude manner. This agrees with 

Yang and Sze [5] who show that even a Toyoura sand sample with a relative density as high as 70% 

may still liquefy in a form of cyclic mobility.  

The second-order work proposed by Hill [27] is used to evaluate the stability of the sample. The 

second-order work drops to below zero when the sample becomes unstable under both monotonic and 

cyclic loading conditions. Thus, Hill’s condition of instability can be viewed as the macro-scale 

condition for the onset of flow failure. Two indexes of redundancy were used to evaluate the 

mechanical stability during both monotonic and cyclic shearing for the loose and the dense samples. 

DEM data revealed that the index of redundancy 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 excluding rattlers with zero contacts is a better 

indicator of the mechanical stability of a granular system than the index of redundancy including 

rattlers. Under both monotonic and cyclic loading conditions, 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 was greater than 1.0 before the 

onset of flow failure but decreased to less than 1.0 after flow. Therefore, 𝐼𝐼𝑅𝑅𝑁𝑁𝑅𝑅 < 1 can be taken as the 

micro-scale condition for the onset of flow failure.  

Analysis of structural fabric revealed that flow failure is characterized by an abrupt change in 

microstructures which leads to a highly anisotropic fabric. The periodic change of structural fabric 

during cyclic loading leads to ‘fatigue’ and degradation of the soil skeleton. This is characterized by 
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increasing structural anisotropy at instants of loading direction reversal, which may account for the 

observed macro-scale phenomenon that the dense sample liquefies during cyclic loading despite neither 

phase transformation state nor instability state being present during monotonic loading. Furthermore, 

when looking at the structural anisotropy at the isotropic stress state (q = 0) and that at the most 

anisotropic stress state (q = q cyc) separately, it is observed that the former is consistently smaller than 

the latter before initial flow but a converse trend is observed after flow deformation. The structural 

anisotropy at the states of loading direction reversal experiences obvious change earlier than the 

structural anisotropy at isotropic stress state (q = 0). 
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Notation 

CSR Cyclic stress ratio 

Dr Relative packing density 

d
2
W second-order work 

e0  Initial void ratio 

f Sliding fraction 

fn Normal contact force 

f t Shear/tangential contact force 

IR Index of redundancy 

𝑰𝑰𝑹𝑹𝑵𝑵𝑹𝑹 Index of redundancy excluding rattlers 

m,n Fitting parameters of the CSR-NIL relationship 

N Number of loading cycles 

Nc Total number of contacts 

NIF Number of loading cycles to flow failure 

Np  Total number of particles 

p’ Mean effective stress 

q Deviatoric stress 

qcyc Cyclic deviatoric stress 

t Running time 

μ Inter-particle friction coefficient 
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dεv volumetric strain increment 

dεq  deviatoric strain increment 

σ’1 Major principal stress 

σ’3  Minor principal stress 

σ’3,0  Initial confining pressure 

Φ𝒅𝒅 Deviatoric fabric 

Φ𝒊𝒊𝒊𝒊 Fabric tensor 

Φ𝟏𝟏,𝟐𝟐,𝟑𝟑 Major, intermediate, minor principal fabrics 

ω Cyclic loading angular frequency 
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Fig. 1 Particle size distributions  



  

(a) 

 

(b) 

Fig. 2 Stress-strain responses of a loose sample subjected to monotonic undrained simulations 

(e0 = 0.692, σ’3,0 = 500 kPa): (a) Deviatoric stress vs axial strain; (b) stress path in q-p’ space 

(ISL-C denotes instability line obtained from the monotonic triaxial compression simulation, 

ISL-E denotes instability line obtained from the monotonic triaxial extension simulation) 

  



 

(a) 

 

(b) 

Fig. 3 Stress-strain responses of a dense sample subjected to monotonic undrained 

simulations (e0 = 0.658, σ’3,0 = 500 kPa): (a) Deviatoric stress vs axial strain; (b) stress path in 

q-p’ space 

  



 

(a) Excess pore water pressure vs normalized time 

 

(b) Axial strain vs normalized time 



 

(c) Deviatoric stress vs Axial strain 

  

(d) q-p’ 

Fig. 4 Stress-strain responses of a loose sample subjected to cyclic undrained simulations (e0  

= 0.692, σ’3,0 = 500 kPa; solid circles mark the onset of flow deformation; CVC and CVE 

indicate monotonic triaxial compression and monotonic triaxial extension, respectively; IFD 

denotes initiation of flow deformation; ISL denotes instability line; CSL-C and ISL-C are the 

critical state line and instability line obtained from triaxial compression simulation; CSL-E 

and ISL-E are the critical state line and instability line obtained from triaxial extension 

simulation) 

  



 

(a) Excess pore water pressure vs number of loading cycles 

 

(b) Axial strain vs number of loading cycles 



 

(c) Deviatoric stress vs Axial strain 

 

(d) q-p’ 

Fig. 5 Stress-strain responses of dense sample subjected to cyclic undrained simulation (e0 = 

0.658, σ’3,0 = 500 kPa, solid diamonds show the phase transformation (PT) state, while solid 

circles mark the onset of flow deformation (IFD) ; CVC and CVE denote the constant-volume 

triaxial compression and constant-volume triaxial extension simulations, respectively; CSL-C 

and CSL-E are the critical state lines obtained in triaxial compression and triaxial extension 

simulations, respectively) 

  



 

Fig. 6 Cyclic stress ratio against the number of loading cycles to initial flow deformation 

(Solid symbols are DEM simulation data, while hollow symbols are experimental data of 

Toyoura sand digitised from Sze (2010)) 

  



 

(a)  

   

(b)  

Figure 7 Evolutions of second-order work: (a) monotonic compression simulation for the 

loose sample; (b) cyclic loading simulation for the dense sample subjected to qcyc = 200 kPa 

 

  



 

(a) loose sample (e0 = 0.692, σ’3,0 = 500 kPa)  

 

(b) dense sample (e0 = 0.658, σ’3,0 = 500 kPa) 

Figure 8 Evolution of indexes of redundancy during monotonic compression triaxial loading 

simulations 

  



  

(a) loose sample (e0 = 0.692, σ’3,0 = 500 kPa, qcyc = 200 kPa)  

 

(b) dense sample (e0 = 0.658, σ’3,0 = 500 kPa, qcyc = 200 kPa)  

Figure 9 Evolution of indexes of redundancy during cyclic triaxial loading simulations 

  

Onset of Liquefaction 



 

(a) principal fabrics 

 

(b) deviatoric fabric  

Figure 10 Evolution of structural fabric of the loose sample (e0 = 0.692, σ’3,0 = 500 kPa) 

during monotonic compression triaxial loading simulations   



 

 

(a) principal fabrics 

  

(b) deviatoric fabric  

Figure 11 Evolution of structural fabric of the dense sample (e0 = 0.658, σ’3,0 = 500 kPa) 

during monotonic compression triaxial loading simulations  



 

(a) principal fabrics 

 

(b) deviatoric fabric 

Figure 12 Evolution of structural fabric of loose sample (e0 = 0.692, σ’3,0 = 500 kPa, qcyc = 

200 kPa) during cyclic triaxial loading simulations 



 

(a) principal fabrics 

 

(b) deviatoric fabric 

Figure 13 Evolution of structural fabric of dense sample (e0 = 0.658, σ’3,0 = 500 kPa, qcyc = 

200 kPa) during cyclic triaxial loading simulations 

  



 

(a) loose sample (e0 = 0.692, σ’3,0 = 500 kPa, qcyc = 200 kPa) 

  

(b) dense sample (e0 = 0.658, σ’3,0 = 500 kPa, qcyc = 200 kPa)  

Figure 14 Structural anisotropy at selected characteristic instants (LE means loading 

extension; UC indicates unloading compression)  
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