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Abstract

Discrete element modeling (DEM) of polydisperse granular materials is significantly more computationally expensive than

modeling of monodisperse materials as a larger number of particles are required to obtain a representative elementary volume,

and standard contact detection algorithms become progressively less efficient with polydispersity. This paper presents modified

contact detection and inter-processor communication schemes implemented in LAMMPS which account for particles of

different sizes separately, greatly improving efficiency. This new scheme is applied to the inertial number (I), which quantifies

the ratio of inertial to confining forces. This has been used to identify the quasi-static limit for shearing of granular materials,

which is often taken to be I � 10−3. However, the expression for the inertial number contains a particle diameter term and

therefore it is unclear how to apply this for polydisperse media. Results of DEM shearing tests on polydisperse granular

media are presented in order to determine whether I provides a unique quasi-static limit regardless of polydispersity and

which particle diameter term should be used to calculate I . The results show that the commonly used value of I � 10−3

can successfully locate the quasi-static limit for monodisperse media but not for polydisperse media, for which significant

variations of macroscopic stress ratio and microscopic force and contact networks are apparent down to at least I � 10−6. The

quasi-static limit could not be conclusively determined for the polydisperse samples. Based on these results, the quasi-staticity

of polydisperse samples should not be inferred from a low inertial number as currently formulated, irrespective of the particle

diameter used in its calculation.

Keywords DEM · Inertial number · Granular materials · Polydispersity · Contact detection

1 Introduction

Polydisperse granular materials (i.e., those containing a range

of particle sizes) occur in many physical and industrial

settings, such as geomaterials, avalanches and landslides,

crushing of mining ores and food processing. Often the range

of particle sizes in such systems covers several orders of

magnitude. For example, the granular filter material used

to construct the Bennett Dam in Canada contains particles

ranging from 0.08 to 75 mm [1]. Such a range of length
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scales presents significant computation challenges to the dis-

crete element method (DEM), typically used to model such

systems. These challenges reflect the fact that in polydis-

perse systems (i) a larger number of particles are required to

obtain a representative elementary volume (REV) than for a

monodisperse system and (ii) the standard contact detection

algorithms used in such modeling can become progressively

less effective with increasing particle size ratio.

While growing computational power has allowed effective

investigation of increasingly polydisperse systems [2–4], and

algorithmic enhancements in contact detection [5, 6] have

improved the efficiency of such simulations, there remain

challenges. This remains particularly true for simulations

requiring long timescales. Many physical processes and stan-

dard laboratory tests such as geomechanical element testing

involve extremely low strain rates imposed over a long time

period, and it can generally be assumed that quasi-static

shearing occurs. These conditions would be impractical to

replicate in a DEM simulation of reasonable computational
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cost, so the simulated strain rates are artificially increased

by orders of magnitude. Correspondence between the sim-

ulations and reality is maintained by loading the granular

material quasi-statically, i.e., the loading occurs sufficiently

slowly that inertial effects can be neglected. In order to

identify the boundary between the quasi-static and inertial

or dense-flow regimes, the dimensionless inertial number

I � ε̇d
√

ρ
p

is used, where ε̇ is the shear rate, d is particle

diameter, ρ is particle density and p is the mean confining

stress [2, 3]. The inertial number represents the ratio of iner-

tial to confining forces, and as I → 0, the flow regime tends

to the quasi-static limit. Radjai [4] states that “For a confining

pressure p (counted positive for compressive stresses) and

particles of average diameter d, the contact forces of static

origin are of the order of fs � pd2… At the same time, for

a shear strain rate ǫ̇q , the timescale of the flow is
−1

�t � ǫ̇
q

and

thus the order of magnitude of the impulsive forces is given

by the momentum per unit time fi � md ǫ̇q/�t , where m is

the average particle mass. In the quasi-static limit, the con-

dition fs ≫ fi implies I ≡ ǫ̇q

√

m
pd

≪ 1.” Andreotti et al.

[5] explain that I can be interpreted as the ratio between two

timescales: I � tmicro
tmacro

, where tmicro � d√
p/ρd

, representing

the rate of microscopic rearrangements of particles subject to

a pressure p, and tmacro � 1
ε̇
, representing the macroscopic

shear rate. In the quasi-static regime, macroscopic rearrange-

ments can be considered to occur very slowly in comparison

with the microscopic rearrangements.

Based on the empirical assessment of 2D DEM simulation

results of plane shear tests, da Cruz et al. [2] set the practical

limit of the quasi-static regime at I ≤ 10−3. Considering

conditions at the critical state in 3D DEM simulations of

geotechnical element testing, Perez et al. [3, 6] found the

limit at I ≤ 7.9 × 10−5.

The above work has been influential in improving the

quality of DEM simulations for granular materials under

quasi-static conditions in that it is now relatively common

to set shear rates so that I ≤ 10−3 or I ≤ 10−4. However,

the use of a single particle diameter, d, in the calculation of

I suggests a monodisperse material. In reality, many granu-

lar materials, including most geomaterials, are polydisperse.

An ideal definition of inertial number would be able to iden-

tify a unique quasi-static limit regardless of the particle size

distribution of the material under shear. The selection of an

appropriate diameter term for use in the calculation of inertial

number is required to define such an inertial number. Apart

from the work of Rognon et al. [7], who proposed a pack-

ing fraction-weighted inertial number to account for granular

flows involving disks of a different diameter to account for

segregation, there has been very little work to examine the

effectiveness of inertial number in defining the quasi-static

limit for polydisperse materials.

To provide access to the low strain rates and long

timescales required to address the question of where the

effective inertial regime lies in polydisperse systems, this

paper first addresses an improved contact detection method

implemented in the popular molecular dynamics code

LAMMPS [8]. A series of DEM triaxial compression tests is

then carried out at varying shear rates on materials with vary-

ing degrees of polydispersity using the new contact detection

method. Analysis of a selection of preliminary results allows

the validity of the previously proposed limits for quasi-static

behavior to be examined using various diameter terms to cal-

culate the inertial number.

2 Methodology

2.1 Modified DEMmodel

DEM simulations were carried out using a modified version

of the open-source DEM code Granular LAMMPS [8]. In

order to improve efficiency when simulating highly poly-

disperse materials, the contact detection and inter-processor

communication algorithms in LAMMPS were modified from

the existing link-cell method [8] to a new method termed the

hierarchical stencil method, which is conceptually similar to

the hierarchical grid Method used in MercuryDPM [9, 10] but

utilizes the existing LAMMPS stencil capabilities developed

by in’t Veld et al. [11]. A brief outline of the modification is

given here; full details of the implementation and parametric

studies are available at [12].

The existing LAMMPS contact detection is a combination

of the widely used Verlet neighbor list and link-cell methods

[8]. In DEM simulations, Verlet neighbor lists store all pairs

of particles which are within a distance 2rskin of each other,

where rskin is the “skin distance,” as defined in Fig. 1. The

additional skin distance means the neighbor list must be con-

structed intermittently (e.g., when any particle has moved a

distance of rskin/2 since the last rebuild). At each intermedi-

ate timestep, only the particle pairs on the neighbor list are

checked for contact; where contact exists, the force is calcu-

lated. To avoid brute-force construction of the neighbor list,

the link-cell method is used. A regular grid of cells is overlaid

on the DEM domain, and, for each particle, a subset of link

cells are searched to create the neighbor list. For example, in

Fig. 1 the link-cell length is rcell � rmax + rskin. Considering

the green particle in Fig. 1, the neighbor list is constructed

by checking the “home” link cell plus surrounding link cells

within 2 rc. The list of cells to be checked is stored in a

pre-computed stencil [11].

LAMMPS implements a standard approach of domain

decomposition with message passing via the message pass-

ing interface (MPI) in parallel. This means that particles

are “owned” by a given MPI task dependent on their posi-
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Fig. 1 Schematic showing link-cell contact detection in LAMMPS,

where rmax is the maximum particle radius, and rc is the cell dimension.

rc � rmax + rskin where rskin is the skin distance

Fig. 2 2D schematic of inter-processor communication in LAMMPS.

Particle information within the halo of dimension rhalo must be com-

municated to the processor subdomain at every timestep

tion. In order that all relevant interactions may be located, a

given local domain must obtain information on particles in

adjoining regions. Communication of ghost particles within

a “halo” of cells with dimension rhalo � 2rc is performed to

fulfill this requirement, as shown in Fig. 2.

The Verlet/link-cell method is highly efficient for

monodisperse packings of particles. However, as the pack-

ings considered become increasingly polydisperse, the effi-

ciency of the method reduces [12]. Consider a granular

system with two types of particle having radii rs and rl (for

small and large). This introduces three different interaction

cutoff ranges: r ss
c , r sl

c and r ll
c . In principle, one should choose

the cell width to be rcell � 2r ll
c to ensure all large–large

interactions are captured. However, the resulting cell size

will necessarily drag into the search very many small–large

and small–small pairs well beyond their respective cutoffs.

This is inefficient and becomes more inefficient as the ratio

rl/rs increases. Similarly, the communication halo will be of

dimension rhalo � 2r ll
c . Therefore, as the link-cell and halo

sizes are both based on the largest particle, for polydisperse

packings many more particle pairs must be considered in

neighbor list construction and inter-processor communica-

tion than for monodisperse packings.

The new hierarchical stencil method overcomes this lim-

itation as follows:

• Particle types are allocated based on particle radius;

• Cell lists are instantiated for each particle type. The sizes of

the link cells are based on the largest particle of each type

in a similar way to Ogarko and Luding [9]. For example,

for a bidisperse system, two particle types and two cell

lists with sizes r s
c and r l

c are instantiated.

• Interactions between particles of the same type are identi-

fied using a stencil within the appropriate cell list as shown

schematically in Fig. 3 for a bidisperse system.

• For interactions between two particles of different types,

particle i is located within the cell list of the j-type particles.

An appropriate stencil is then used to perform the neighbor

list construction in the j-type cell list. The most efficient

way to locate particles is using a one-way search which

identifies potential small–large pairs by considering only

small particles and using the large particle cell list to search

for interactions, and using a symmetric stencil in the large

cell list (Fig. 3b) to examine large neighbors [12].

• In’t Veld et al. [11] improved the existing LAMMPS inter-

processor communication by introducing multiple halos

for different interaction types. For a bidisperse system, the

halo width is r sl
halo for small particles and r ll

halo for large

particles, where, for example, r sl
halo � r s

c + r l
c as shown

in Fig. 4. This is sufficient to allow identification of all

potential pairs. Potential small–small pairs may be located

on the basis of r ss
halo. In addition, a significant efficiency

saving can be made as all potential small–large pairs are

located by examining owned small particles, meaning no

small ghost particles beyond r ss
c are required. The ghost

cutoff distance for large particles is unchanged at r ll
halo,

and potential large–large pairs are identified as before.

• The discussion thus far has focused on bidisperse systems.

Generalization of the scheme to polydisperse systems is

straightforward. A number of cell lists of varying size are
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Fig. 3 2D schematic showing interactions between different parti-

cle types: a small–small interactions; b small–large interactions;

c large–large interactions

selected, and particle i is assigned a type based on the

smallest cell for which ri + rskin ≤ rc. The number and

size of cell lists must then be selected. Previous studies

[13] suggest this is strongly dependent on the particle size

distribution for the problem at hand, and no general law is

available to decide without testing. However, for the con-

tinuous polydisperse systems simulated here it was found

that two or three cell lists with a logarithmic size spac-

ing were optimal [12]. This is in contrast to the findings

of Krijgsman et al. [13] for the hierarchical grid method,

highlighting that although the two schemes are conceptu-

ally similar, important differences in implementation exist.

More detail on the classes of the C ++ implementation

in LAMMPS is given in [12]. The implementation was vali-

Fig. 4 Schematic of hierarchical stencil inter-processor communication

(adapted from [11]). Halos of different dimensions are adopted depend-

ing on the interaction type (i.e., large–large, small–large or small–small)

dated using the analytical solution developed for the failure

stress ratios in a face-centered cubic assembly of uniform

rigid spheres [14] in which multiple particle types were

assigned. A further validation was carried out by comparing

the results of triaxial compression simulations using 74,504

particles to the existing link-cell contact detection schemes.

The variation in coordination number and stress ratio at the

critical state were found to be a fraction of a percent, repre-

senting rounding errors accumulated due to the neighbor lists

being assessed in a different order with the different schemes.

The speedup of the hierarchical stencil method over the

link-cell method improves with increasing size ratio. For

size ratios of rmax/rmin � 10, speedups were at least 10,

and for rmax/rmin � 100, speedups of up to 400 versus the

existing link-cell method without communication improve-

ments were obtained [12]. The hierarchical stencil also scales

well to at least 768 processors, with scaling being greatly

improved by the inter-processor communication improve-

ments [12].

2.2 DEM simulations

A total of 76 DEM simulations of constant mean stress tri-

axial tests were carried out. Seven different polydisperse

particle size distributions (PSDs) were simulated, as shown

in Fig. 5. Samples of series “A” have an equal volume of

particles per log diameter bin, whereas samples of series “B”

have an equal volume of particles per linear diameter bin.

Series A therefore have relatively more fine particles. The
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Fig. 5 Particle size distributions

number of particles in each sample is presented in Table 1.

These were selected on a trial-and-error basis, taking care to

ensure that an REV was achieved for each sample so that the

sample responses with respect to I are meaningful. Unfor-

tunately, no clear relationship can be established between

grading and number of particles for an REV. A conservative

timestep of 7.5 × 10−8 s was used in all simulations, cal-

culated using �t � 0.1
√

mmin
Kmax

where mmin is the minimum

particle mass and Kmax is the maximum contact stiffness

[15] calculated using a 2% particle overlap (actual overlaps

in the simulations at no point exceeded 1%).

In each test, the particles were initially generated in a

random, non-touching cloud, before being isotropically com-

pressed to p′ � 100 kPa. A simplified Hertz–Mindlin contact

model was used with shear modulus G � 29 GPa and Pois-

son’s ratio ν� 0.2. The initial interparticle friction coefficient

ofµ�0.15 was used during compression to create an initially

dense packing configuration. Following isotropic compres-

sion, the friction was set to µ � 0.3 and the sample allowed

to equilibrate. During shearing, the mean normal stress was

maintained at p′ � 100 kPa to allow a constant value of I

to be maintained [3]. For each PSD, a series of tests were

carried out in which the axial shear rate, ε̇1, was varied to

impose different values of inertial number calculated using

the maximum particle diameter, Idmax � ε̇1dmax

√

ρ
p

, rang-

ing from Idmax � 5×10−3 to Idmax � 5×10−6 for samples

with χ � dmax/dmin � 1.2 to 5 and Idmax � 5 × 10−3 to

Idmax � 1×10−6 for samples with χ � 10 and 20. Idmax was

selected as the default inertial number as it gives the largest

value of I. Idmax � 1 × 10−6 was proved to be the slowest

simulation which could be practically carried out: To shear

to ε1 � 2% at this rate, sample A20 required around 480 h

using 180 cores and B20 required 288 h using 72 cores on

the Cirrus HPC facility (http://www.cirrus.ac.uk/). To reduce

Idmax by a further order of magnitude would have been com-

putationally infeasible.

3 Results and discussion

Plots of axial strain against stress ratio η � q
p

, where q is

the deviatoric stress, volumetric strain εv and mechanical

coordination number Zmech (the average number of contacts

per stress-transmitting particle) for simulations with Idmax �
1 × 10−3 are shown in Figs. 6, 7 and 8. These strains are

sufficient to allow the effect of I on material behavior to be

determined in what Roux [16] called Regime 2, in which

particle rearrangements control the macroscale quasi-static

response. At this fixed inertial number, η and |εv| increase,

while Zmech decreases with increasing χ .

3.1 Variation of sample response with Idmax

Figure 9 shows the stress ratio at ε1 � 2% with varying Idmax

for all samples. The stress ratios are normalized by their val-

Table 1 dmax/dmin, number of particles, initial packing fraction and coordination number for the seven samples tested

Sample name Distribution type χ � dmax/dmin Number of particles Initial packing

fraction, φ0

Initial coordination

number, Z0

Initial mechanical

coordination

number, Zmech0

A1.2 Log-linear 1.2 21,052 0.604 5.23 5.43

A2 Log-linear 2 45,500 0.637 5.03 5.43

A3 Log-linear 3 72,264 0.618 4.71 5.42

A5 Log-linear 5 202,606 0.672 4.17 5.39

A10 Log-linear 10 156,162 0.703 3.71 5.37

A20 Log-linear 20 358,568 0.758 4.62 5.93

B5 Linear 5 110,445 0.673 3.51 5.36

B10 Linear 10 828,208 0.715 2.16 5.18

B20 Linear 20 303,889 0.749 0.79 5.34
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ues at Idmax � 1×10−3, which are shown in Fig. 6. The most

uniform sample, A1.2, shows approximately constant values

at Idmax ≤ 1 × 10−3. For all other samples, the stress ratio

reduces with inertial number with no sign of a plateau in val-

ues at Idmax � 1 × 10−6, most significantly for sample B20

for which η � 0.846η(1e−3). Interestingly, the trends do not

exactly follow χ ; most notably, A10 shows more variation

with Idmax than A20. Figure 10 shows normalized values of

solid packing fraction φ at ε1 � 2%. Apart from the near-

monodisperse A1.2, all samples show an increase in packing

fraction as the inertial number reduces, although the mag-

nitude of this change is less significant than for the stress

ratio. In contrast, mechanical coordination number (Fig. 11)

shows a similar trend regardless of the particle size distribu-
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Fig. 8 Mechanical coordination number during shearing at Idmax �
1 × 10−3

Fig. 9 Effect of Idmax on stress ratio at ε1 � 2%. Results are normalized

by the response at Idmax � 1 × 10−3: a series A; b series B

tion, with a small increase in normalized values as inertial

number reduces.
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Further insight into changes in the stress-transmitting

fabric of the sample showing the greatest variation in η

with Idmax, B20, is given in Figs. 12a, b and 13a, which,

respectively, show the probability density functions of nor-

mal contact force and the relative frequency distribution of

connectivity (number of stress-transmitting contacts per par-

ticle). In Fig. 12a, b it can be seen that the force network

tends to become more inhomogeneous as the inertial number

increases (resembling the increasing force inhomogeneity

found by Voivret et al. [17] in 2D and Mutabaruka et al.

[18] in 3D with increasing polydispersity). This suggests that

at higher inertial numbers the deviatoric stress-transmitting

strong-force network is more dominant, which explains the

higher stress ratios at higher inertial numbers. Despite the

relatively small changes in mechanical coordination number

(Fig. 11), the number of contacts per particle shows sig-

nificant differences between samples sheared with different

inertial numbers (Fig. 13a). The more slowly a sample is

sheared, the fewer relatively unstable particles with C � 2 or

3 or highly connected particles with C ≥18 are present. How-

Fig. 11 Effect of Idmax on mechanical coordination number at ε1 � 2%.

Results are normalized by the response at Idmax � 1 × 10−3: a series

A; b series B

ever, there are more particles with 4≤C ≤17 when inertial

numbers are low. In contrast, the near-monodisperse sample

A1.2 has almost indistinguishable force and contact distri-

butions for all samples with Idmax ≤ 1 × 10−3 as shown in

Figs. 12c and 13b. Considering both macro- and microscale

results, it can be concluded that a true quasi-static limit has

not been reached for the polydisperse samples with χ ≥ 5.

For frictional particles, the minimum number of contacts for

static mechanical stability is 4 [19], and therefore, the num-

ber of particles with four or more contacts can be taken as a

measure of quasi-staticity [3, 20]. This was termed the non-

rattler fraction f NR by Bi et al. [21] and is plotted against

inertial number normalized by values at Idmax � 10−3 in

Fig. 14a and as raw values in Fig. 14b. Two features to note

are: (i) More polydisperse samples have a much lower f NR

(i.e., a greater proportion of rattlers) and (ii) f NR reduces with

Idmax for the more polydisperse samples. Shen and Sankaran

[22] demonstrated that at higher strain rates the coordination

number reduces, but the size of groups of interconnected par-

ticles (analogous to the non-rattlers) increases, similar to the
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Fig. 12 Probability density functions of normal contact force, N, nor-

malized by mean normal contact force, < N >. a Sample B20; b sample

A1.2

trend seen here. Large numbers of rattlers will naturally be

present in all highly polydisperse materials. It is possible that

at inertial numbers around the previously defined quasi-static

(monodisperse) limit (I � 10−3) these rattlers are more able

to join and stabilize buckling force chains [23, 24] than at

either higher or lower inertial numbers. This would account

for the higher stress ratio and packing fraction at inertial num-

bers close to the monodisperse limit. These rattlers would

be the smaller particles, which would be “captured” by the

larger particles upon force chain buckling [25]. Interestingly,

at Idmax � 5×10−3 (above the usual definition for the quasi-

static limit) the non-rattler fraction and stress ratio are both

higher, suggesting that this rattler “capturing” mechanism

is mainly found below the monodisperse quasi-static limit.

However, the relationship between rattlers and quasi-staticity

requires further study.

3.2 Alternative definitions of inertial number

Figure 15 presents the variation of normalized stress ratio for

the series B tests with inertial number where two alternative

definitions of inertial number are used: (i) Id50 � ε̇1d50

√

ρ
p

,

Fig. 13 Relative frequency plot of connectivity, C: a sample B20, con-

tacts C ≤6 (note linear y-scale); b sample B20, contacts C ≥6 (note

log y-scale); c sample A1.2, contacts C ≤6
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where d50 is the median particle diameter (for which 50%

of particles by volume are smaller) and (ii) Id̄ � ε̇1d̄
√

ρ
p

,

where d̄ �
∑Nmech

i�1 (di Vp,i)
∑Nmech

i�1 Vp,i

, Nmech is the number of particles

with two or more contacts, di is the diameter of particle i and

Vp,i is the volume of particle i. Id̄ takes a form similar to that

proposed by Rognon et al. [7] for bidisperse granular flows.

For both Id50 and Id̄, there is a similar trend of reducing η

with inertial number, but the minimum inertial numbers are

lower for Id50 and Id̄ than for Idmax.

As the quasi-static limit has not been reached for samples

with χ ≥ 5, the most effective inertial number for deter-

mining this limit cannot be established. As explained in the

Introduction, the fundamental concept of inertial number is

a ratio between the impulsive forces and the contact forces

of static origin [4]. For a polydisperse granular material, the

largest possible inertial number, as currently defined, requires

maximizing the order of magnitude of the impulsive forces by

using the largest particle diameter and mass in its calculation,

while minimizing the contact forces of static origin by using

the smallest particle diameter. In that “worst possible” case,

the inertial number would be χ Idmax. Therefore, the current

definition of inertial number does not permit differences in

(b)

(a)

Fig. 15 Effect of alternative inertial number definitions on stress ratio

at ε1 � 2%: a Id50; b Id̄

inertial number of more than three orders of magnitude com-

pared to the uniform case, irrespective of the definition of

particle diameter adopted. Hence, the inertial number, as cur-

rently defined, is not appropriate for locating the quasi-static

limit for polydisperse granular materials.

4 Conclusions

Particulate simulations of continuously polydisperse granu-

lar materials with χ � dmax/dmin � 1.2 to 20 were carried

out using a DEM code which was modified for increased

efficiency with polydisperse media. This was achieved by

introducing a hierarchy of cell lists and improved inter-

processor communication for particles of a different diame-

ter. In order to investigate whether the quasi-static limit is the

same for granular materials regardless of their particle size

distribution, the polydisperse samples were sheared under

triaxial compression to ε1 � 2% with inertial numbers cal-

culated using the maximum particle diameter ranging from

Idmax � 5 × 10−3 to Idmax � 1 × 10−6. From the results,

the following conclusions can be drawn:
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• For a near-monodisperse particle size distribution (χ �
1.2), the quasi-static limit was found at approximately

Idmax ≤ 1 × 10−3, in agreement with previous studies

[2].

• For the more polydisperse distributions, the quasi-static

limit was not found even at Idmax � 1 × 10−6 and, in

general, more polydisperse distributions showed a greater

reduction in stress ratio and more homogeneous force and

contact networks with a reduction in inertial number.

• More polydisperse distributions have more rattlers, and the

proportion of rattlers increases as inertial number reduces

below Idmax � 1 × 10−3. These rattlers may be less likely

to join and stabilize force chains at low inertial numbers,

leading to a lower stress ratio.

• Definitions of inertial number using alternative diame-

ter definitions, for example the median particle diameter,

Id50, or a volume-weighted diameter, Id̄ , are also unable to

determine a unique quasi-static limit regardless of particle

size distribution.

As currently defined, the inertial number is not appropriate

for locating the quasi-static limit for polydisperse granular

materials. Further work is required to determine where the

quasi-static limit lies for polydisperse media and to establish

whether the inertial number could be somehow adapted to

find this limit accounting for polydispersity. As both compu-

tational resources increase in power and further algorithmic

improvements can be identified, it is hoped that future work

will be able to access more highly polydisperse systems at

yet smaller inertial numbers. Such simulations should be able

to identify more exactly where the limiting inertial number

lies.
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