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Abstract
Demand shocks—unobservable, sudden changes in customer behavior—are a common source of forecast error in airline 
revenue management systems. The COVID-19 pandemic has been one example of a highly impactful macro-level shock that 
significantly affected demand patterns and required manual intervention from airline analysts. Smaller, micro-level shocks 
also frequently occur due to special events or changes in competition. Despite their importance, shock detection methods 
employed by airlines today are often quite rudimentary in practice. In this paper, we develop a science-based shock detec-
tion framework based on statistical hypothesis testing which enables fast detection of demand shocks. Under simplifying 
assumptions, we show how the properties of the shock detector can be expressed in analytical closed form and demonstrate 
that this expression is remarkably accurate even in more complex environments. Simulations are used to show how the 
shock detector can successfully be used to identify positive and negative shocks in both demand volume and willingness-
to-pay. Finally, we discuss how the shock detector could be integrated into an airline revenue management system to allow 
for practical use by airline analysts.

Keywords Change point detection · Demand forecast error · Airline revenue management · Demand shock · Forecasting · 
Markov decision process

Introduction

Motivation for shock detection in airline revenue 
management

Airline revenue management (RM) analysts often spend a 
significant portion of their time searching for and correcting 
forecast errors in the airline’s revenue management system 
(RMS). These forecast errors can be costly to airlines—one 
study found that as little as a 10% error in an RMS demand 
forecast can be associated with a 1% decrease in airline rev-
enue (Fiig et al. 2019).

Forecast errors fundamentally occur due to a mismatch 
between the demand model parameters assumed by the RMS 
forecaster and the customer behavior in the marketplace. 
Usually, shifts in customer behavior are automatically cap-
tured by the RMS during forecast parameter re-estimation, 
which typically uses a historical database consisting of 
departed flights. However, when customer behavior suddenly 
changes, the RMS can struggle to adapt quickly, since it 
takes time for the new behavior to enter the historical data-
base and be detected by the parameter re-estimation.

We refer to these sudden, abrupt changes in customer 
behavior as demand shocks. Demand shocks vary in intensity 
and can occur at the macro- or micro-level. The COVID-19 
pandemic is one example of a highly impactful macro-level 
demand shock that affected demand across a wide range of 
flights and origin–destination (O&D) markets, while micro-
level demand shocks affecting a handful of flights or markets 
frequently occur due to entry or exit of a competitor, special 
events such as conferences, concerts, or sporting competi-
tions, changes in airline schedules, etc., that were not already 
anticipated and corrected by the airline analyst.

Airline analysts typically identify and address demand 
shocks via relatively simplistic alerting mechanisms. For 
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example, Weatherford (2019) describes how an analyst 
might set an alert to trigger if certain criteria for a flight 
departure date, such as current load factor (LF), falls above 
or behind a predefined threshold (e.g., greater than ±5 p.p. 
compared to the previous year) at a given time prior to 
departure. If an individual flight is alerted, the analyst would 
then apply a demand intervention to adjust the forecast for 
that flight. Vinod (2021) also describes a similar workflow 
where analysts define alerts by comparing key performance 
indicators (KPIs) from the RMS to predefined thresholds, 
conduct a root-cause analysis, and then apply interventions 
to forecasting or availability in response to a triggered alert.

These methods for detecting demand shocks face several 
limitations. First, they are often quite rudimentary and rely 
on imprecise heuristics or rules of thumb. Since analysts are 
not provided with guidance on how to set the alert thresh-
olds, they may either miss impactful shocks (false negatives, 
Type II error) or be overwhelmed with alerts that, after 
investigation, turn out to be normal behavior (false posi-
tives, Type I error).

Additionally, these threshold-based approaches often 
evaluate flights one at a time, ignoring wider-scale demand 
shocks that affect multiple departure dates or markets at the 
same time. They also do not directly consider the effect of 
offered prices on demand behavior. For example, they may 
alert an analyst to a flight with a very high current load factor 
without considering whether the prices offered for that flight 
were higher or lower than the previous year. In contrast, our 
method considers the offered prices for each flight when 
determining whether or not a demand shock has occurred.

Finally, traditional approaches to shock detection often 
consider KPIs taken at a single snapshot when the alerts 
were generated. Our method utilizes all accessible infor-
mation—bookings and demand forecast given the control 
policy—across the entire booking horizon of each flight. 
Our approach also aggregates data across multiple active 
flights, allowing for faster and more accurate detection of 
shocks. Since analysts are often responsible for hundreds or 
thousands of flight departure dates at a time, this approach 
allows for greater efficiency and less time spent identifying 
demand shocks.

Contributions

In this paper, we introduce a science-based framework for 
demand shock detection that aims to improve airline ana-
lysts’ ability to identify sudden changes in demand. Our 
detector is based on well-known approaches for statistical 
hypothesis testing which we have adapted for the shock 
detection problem in airline revenue management. Given 
an observed set of booking activity for one or more active 
(non-departed) flights, we compute the log likelihood that 
those observations occurred given the offered prices and the 

RMS’s demand forecast. If the log likelihood—assuming no 
shock—deviates from a calculated acceptance range, this 
indicates a poor model description by the forecast param-
eters and leads to the conclusion that a demand shock has 
occurred.

We show how the statistical properties of the shock detec-
tor, such as Type I error, Type II error, time since shock, etc., 
can be described in analytical closed form under simplifying 
assumptions about the demand environment and RMS pol-
icy. We find that the properties that we derive also generalize 
well to more complex environments with capacity constrain-
ing or time-dependent willingness-to-pay. We then show that 
the properties of the shock detector based on simulations 
can be accurately predicted from the analytical closed form 
expression, even in these complex environments.

Finally, we demonstrate how the shock detector outputs 
could be used in practice via an alert center application to 
allow for efficient prioritization of shocks for investigation.

Literature review

Academic research relating to detecting change in stochastic 
processes—so-called Change Point Detection (CPD)—has 
been conducted for nearly one hundred years. As described 
in a literature review by Lai (1995), the first CPD mecha-
nisms date back to the 1930s and have been frequently used 
in manufacturing and quality control applications to detect 
systematic shifts in time series data. Table 1 summarizes 
some of the relevant literature in the field.

We distinguish between CPD in an online and offline set-
ting. In online testing, the dataset is not available upfront but 
is gradually collected over time. For every new observation, 
a test is performed. If no change is detected, we continue to 
the next time step, while if a change is detected, we stop and 
raise an alarm. The online form is not of main interest in this 
paper because for our purpose, the full dataset of booking 
activity on active flights is given up front.

Basseville and Nikiforov (1993) provide a theoreti-
cal framework of many CPD mechanisms, including the 
well-known Cumulative Sum (CuSum) method, which is 
available in both online and offline forms. CuSum works 
by accumulating deviations between observations and their 
expectations and identifying a change if the accumulated 
deviations become too extreme with respect to a predefined 
threshold. CuSum is frequently used when analyzing time 
series data to identify moments when the underlying demand 
generating process appears to have changed.

As Besbes and Zeevi (2011) point out, many CPD mecha-
nisms assume that the post-shock behavior is known, reduc-
ing the problem to identifying the shock as quickly as possi-
ble. We will discuss shock detection with and without known 
post-shock demand behavior. Classical CPD mechanisms 
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also assume that all samples are drawn from the same under-
lying distribution, while in the airline RM problem, the 
sample distribution is dependent on the states in state space 
which have been visited. Our methodology addresses this 
problem by calculating the probability of observing a par-
ticular trajectory of state-action pairs in state-action space.

Also related to our setting is a series of papers in the 
operations research literature that consider online “learning 
while earning” under conditions of demand uncertainty. In 
these papers, a retailer sets prices for a product that exhib-
its unknown demand behavior, and periodically estimates 
the parameters of the demand model from sales data. The 
retailer’s goal is to learn the demand behavior as quickly 
as possible to maximize long-term revenue by charging the 
optimal price. Common among many “learning while earn-
ing” papers is that the selling period is indefinite, and that 
the retailer continues to collect information about the envi-
ronment in perpetuity. The retailer must then decide which 
historical data to use in their estimation of customer behav-
ior, since old data may have been collected under a different 
demand model.

Besbes and Zeevi (2011) and Broder and Rusmevichien-
tong (2012) consider scenarios where the demand behavior 
undergoes a single demand shock. The retailer knows both 
the pre-shock and post-shock demand behavior but does 
not know when the shock occurs. They describe how price 
experimentation strategies can help the retailer identify the 
time of the shock and maximize the long-term revenue.

“Learning while earning” can also be applied in environ-
ments with multiple demand shocks. Garivier and Moulines 
(2011) describe how a multi-armed bandit approach can be 
used to perform price experimentation in order to minimize 
revenue regret in such a setting. Den Boer (2015) considers 
a dynamic pricing problem with a more complex demand 
model with parameters that change continuously over time. 

Keskin and Zeevi (2017) describe several methods for esti-
mating demand behavior in an environment with multiple 
demand shocks while assuming a given limit of how much 
the demand parameters can change from one period to the 
next.

Few “learning while earning” papers consider a setting 
similar to airline RM where capacity is constrained and the 
selling horizon is finite. An exception is Besbes and Sauré 
(2014), who study a situation in which a demand forecast 
model experiences a single demand shock. The retailer does 
not know the time of the demand shock nor the post-shock 
behavior, but the post-shock behavior is revealed to the 
retailer at the time of the shock. The goal is to set a pric-
ing policy to maximize revenue given an unknown shock 
that will be revealed at some point in future. den Boer and 
Keskin (2020) also review a dynamic pricing problem with 
a finite selling horizon. Their demand function allows for 
multiple discontinuity points and unknown pre- and post-
shock demand behavior. Their focus is not on shock detec-
tion, but rather on theoretically constructing a pricing policy 
that incorporates the possibility of demand discontinuities.

Our work is also related to a series of papers that describe 
the demand change process as a Markov process. Keller and 
Rady (1999) study a setting where demand shifts between 
two known linear demand functions. The retailer knows the 
demand functions but does not know which demand function 
is active. Aviv and Pazgal (2005) describe an environment 
with Poisson demand where the demand function fluctu-
ates between multiple “core states” with different demand 
behavior via a Markov process. They use this framework to 
describe static environments, those with decreasing demand, 
and those with increasing demand. The retailer bases their 
prices on a partial observation of the Markov Decision Pro-
cess (MDP), by assuming a prior belief of the current core 
state.

Table 1  Selected literature on change point detection

Paper Subject Capacity 
constraint?

Time horizon # of shocks Post-shock 
params 
known?

Demand model

Besbes and Zeevi (2011) “Learning while earning” No Infinite One Yes Parametric
Garivier and Moulines (2011) “Learning while earning” No Infinite Multiple No Parametric
Broder and Rusmevichientong (2012) “Learning while earning” No Infinite One Yes Non-parametric
Besbes and Sauré (2014) “Learning while earning” Yes Finite One Yes Parametric
den Boer (2015) “Learning while earning” No Infinite Multiple No Parametric
Keskin and Zeevi (2017) “Learning while earning” Yes Infinite Multiple No Parametric
den Boer and Keskin (2020) “Learning while earning” Yes Finite Multiple No Parametric
Keller and Rady (1999) MDP demand No Infinite One Yes Parametric
Aviv and Pazgal (2005) MDP demand No Finite Multiple Yes (in exp.) Parametric
Hadoux et al. (2014) Change−point detection N/A Both One Yes Non-parametric
This paper Shock detection Yes Finite One No Parametric
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Perhaps most similar to our work is the paper by Hadoux 
et al. (2014). They describe how the CuSum method can be 
adapted in an online setting to detect changes in state transi-
tions in an MDP. Their method is not directly applicable in 
the airline RMS setting, since they do not consider how a 
change intersects multiple flight departures at different times 
during an episode. In contrast, our shock detection method 
can detect a shock that simultaneously affects all flights 
across a given market. Further, their paper assumes known 
post-shock parameters, whereas we also consider the most 
relevant case for RMS of unknown post-shock parameters.

Problem formulation

We consider the optimization problem for a single flight 
leg without overbooking and cancelations. The flight has 
capacity C . The booking horizon is divided into time steps 
t = 0,… , T  , where T  is departure (e.g., if the time steps rep-
resent days to departure for one year ahead, then T = 365 ). 
The time step denotes the left end point of the time interval 
[t, t + 1[, t = 0,… , T − 1 . We assume the fare structure to 
be fenceless (that is, all classes in the fare structure have 
identical restrictions and all customers will buy-down to the 
lowest available class) with m equidistant fare levels (price 
points) f0 < ⋯ < fm−1 in increasing order. This assump-
tion on the fare structure is introduced purely for simplicity 
in the analysis; the methodology can be extended to other 
restricted, semi-restricted, or fare family fare structures 
without loss of generality.

Suppose that demand arrives following a negative expo-
nential demand model d�(f ) = λe−γ(f∕f0−1) , where � = (�, �) , 
𝜆 > 0, 𝛾 > 0 are the demand parameters that represent the 
demand volume per time step and the willingness-to-pay, 
respectively. In practice, RMS is unaware of the true demand 
parameters � = (�, �) and instead estimates the parameters 
�̂ = (�̂, �̂) using historical booking data. This negative expo-
nential demand model has been extensively studied in the lit-
erature (e.g., Gallego and van Ryzin 1994; Fiig et al. 2010), 
but the demand model could in practice take any functional 
form.

The single flight optimization problem can be repre-
sented as a finite time Markov Decision Process (MDP) 
(Talluri and van Ryzin 2005). Formally, an MDP is defined 
as a tuple (S,A, r, p) where S is the state space, A is the 
action space, r ∶ S ×A × S → ℝ is the reward function 
which in our problem takes a finite number of values 
corresponding to multiples of the price points in the fare 
structure, and p ∶ S ×A × S → [0, 1] is the state transition 
probability function. In this setting, we can define the state 
space as the set of pairs st = (c, t) of remaining capacity 
c = 0,… ,C and time steps t = 0,… , T  , the action space 

A =
{
f0,… , fm−1

}
 as the set of possible price points, the 

state transition probability function as the probability of 
receiving a specific number of bookings (zero or more) in 
a time step, and the reward function as the revenue col-
lected after transitioning to a new state.

The state transition process can be represented as follows: 
at time t , the system is in state s

t
= (c, t) , the agent (RMS) 

selects an action (fare) at ∈ A according to a deterministic 
policy � ∶ S → A . The system enters into a subsequent state 
st+1 with probability pt = p�

(
st, at, st+1

)
 , where we use the 

index � to indicate that the transition probability depends on 
the demand parameters. The environment then returns an 
immediate reward rt = r

(
st, at, st+1

)
 . The process is repeated 

until termination at t = T  , as shown in Fig. 1. In the follow-
ing, we will use an asterisk to denote optimality.

The objective of the agent is to select the optimal policy 
�∗(st) that maximizes the expectation of the sum of future 
rewards until departure, v∗

�
st
�
= ��∗

�∑T−1

k=t
rk

�
 . The optimal 

policy can be extracted from the state-action value function 
q∗
(
st, at

)
 which is the revenue to go from state st , given the 

agent takes an action at and then acts following the optimal 
policy until termination. The Dynamic Program for the state-
action value function and its relation to the value function 
v∗
(
st
)
 is given below.

where st ∈ S, at ∈ A, and t = 0,… , T − 1. The optimal state 
value function v∗

(
st
)
= maxatq

∗
(
st, at

)
 is given employing 

the revenue maximizing action �∗
(
st
)
= argmaxatq

∗
(
st, at

)
.

q∗
(
st, at

)
=

∑

st+1∈S

p�
(
st, at, st+1

)

×

[
r
(
st, at, st+1

)
+ max

at+1

q∗
(
st+1, at+1

)]
,

Fig. 1  Single resource MDP back-up diagram. The system is initially 
in state st . The agent chooses an action at that causes the system to 
transition with probability p�

(
st, at, st+1

)
 into a reachable subsequent 

state st+1 , yielding a reward r
(
st, at, st+1

)
.
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Anatomy of a demand shock

We define a trajectory  
as the path a f light takes through state-action space. 
Hence, a trajectory is a sequence of state-action pairs 
which records the offered prices and the subsequent 
bookings received in each time step t  . Once a trajec-
tory reaches its terminal state sT  , the f light departs. 
Note that we omit the rewards in our definition of the 
trajectory, since in our setting there is a deterministic 
reward of moving from one state st to the successor 
state st+1 : namely, rt = (ct − ct+1)at , where ct − ct+1 is the 
change in remaining capacity.

While a trajectory represents the path of a single flight 
through state-action space, it is also of interest to consider 
a collection of multiple trajectories—for example, multiple 
departure dates of a flight that departs once per day. We 
define the departure horizon 1,… , Tdep as the set of depar-
ture dates (indexed by days to departure) for active flights, 
where Tdep is the furthest active departure date from today’s 
date (e.g., Tdep = 365 if flights are available for sale one year 
out).

In the remainder of the paper, and without loss of gen-
erality, we assume for ease of exposition that the booking 
horizon and departure horizon have the same cardinality 
( T = Tdep ), and that the time step is one day.

We define a trajectory set J  as a set of one or more tra-
jectories , i = 1,… ,N  where N  is the cardinality of the 
trajectory set. The departure date of trajectory  is denoted 
tdep(i), where tdep ∶ {1,… ,N} → {1,… , Tdep} . This notation 
allows us to represent any flight schedule or aggregation of 
multiple flights per departure day in the trajectory set.

The triangle in Fig. 2 illustrates a trajectory set contain-
ing a total of Tdep future departure dates (e.g., one year). 
The horizontal axis indexes the departure horizon (depar-
ture dates) and the vertical axis indexes the booking hori-
zon (time steps). Each trajectory (active flight) in the trajec-
tory set can be represented as a vertical line in the triangle; 
one such trajectory , representing a flight that departs in 
65 days from now, is illustrated in the figure.

We consider a demand shock that simultaneously 
affects the entire trajectory set as follows: prior to the 
demand shock, the state transition probabilities for 
all trajectories are governed by a vector of pre-shock 
demand parameters �0 =

(
�0, �0

)
 , which are assumed 

to be known to the RMS. This region is shown in the 
dark blue area on the left side of the triangle marked 
“pre-shock.” After the demand shock, the state transition 
probabilities for all trajectories are governed by a vec-
tor of post-shock demand parameters �1 =

(
�1, �1

)
, which 

are unknown to the RMS. This region as shown in the 
light blue area on the right side of the triangle marked 
“post-shock.” The demand shock occurs at the separation 
between the pre-shock and post-shock regions, which is 
shown as the red diagonal line.

Let �shock refer to the number of time steps that have 
elapsed since the demand shock occurred, which is also 
unknown to the RMS. Note that �shock is not a fixed quan-
tity—it increases with time. At the onset of a shock, 
�shock = 0 . All active flights are not yet impacted by the 
shock (Fig. 2, the dark blue area covers fully the trian-
gle). As system time progresses, �shock increases and more 
and more of the active flights’ history are impacted by the 

Fig. 2  Two-dimensional time aspects of RMS historic database for a 
given flight. The triangle contains live sales data. Prior to the shock, 
the data are generated according to the pre-shock parameters, while 

after the shock (represented by the diagonal line) the data are gener-
ated according to the post-shock parameters
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shock until eventually at �shock = Tdep all of the active flight 
data are generated under the post-shock parameters (Fig. 2, 
the light blue area covers fully the triangle).

For trajectory i, let tshock(i) = T − tdep(i) − �shock be the 
time step at which the demand shock occurred for that 
trajectory. The state transition probabilities for trajectory 
i are as follows:

As a concrete example, consider the situation where 
we have one flight per departure day, T = Tdep = 365 , 
and �shock = 100 . For trajectory , tdep(65) = 65 and 
tshock(65) = 200 . Hence, we see that for t < 200 we follow 
the pre-shock parameters, while for t ≥ 200 we follow the 
post-shock parameters.

Methods for demand change detection

In this section, we provide a framework for detecting 
demand shocks. This framework provides a science-based 
approach to detecting anomalous flights in practice, as we 
will discuss in the section “Practical implementation of 
the shock detector.”

In this section, we will first assume for the purpose of 
deriving the statistical properties of the shock detector that 
the post-shock demand parameters �1 =

(
�1, �1

)
 are known. 

Subsequently, we discuss the case of unknown post-shock 
parameters.

Let J obs represent an observed trajectory set—the set 
of active flights for which we wish to detect whether a 
demand shock has occurred. We construct a hypothesis 
test for the occurrence of a shock as follows:

Note that the alternative hypothesis is indexed by �shock , 
since the time step tshock(i) = T − tdep(i)− �shock at which the 
shock occurs for each trajectory in J obs is dependent on �shock.

To test H�shock
 against H0 , we compute the log likelihood 

of obtaining the observed trajectory set under each hypoth-
esis. First, we compute the likelihood  of observ-
ing a single trajectory  assuming no shock has occurred 
while following a deterministic policy at ∼ �∗

(
st
)
:

p𝜃
(
st, at, st+1

)
=

{
p𝜃0

(
st, at, st+1

)
for t < tshock(i)

p𝜃1

(
st, at, st+1

)
for t ≥ tshock(i)

H0 ∶ � = �0 ∀i, t

H𝜏shock
∶

{
𝜃 = 𝜃0 for t < tshock(i) ∀i

𝜃 = 𝜃1 for t ≥ tshock(i) ∀i

Analogously, we compute , the likelihood of a 
trajectory given a shock that occurred �shock time steps ago. 
Recall that if there is a shock, the state transition probabili-
ties will be governed by demand parameters �0 until time 
tshock(i) − 1 = T − tdep(i) − �shock − 1 and demand parameters 
�1 thereafter.

We extend the likelihood computations from single trajec-
tories to the observed trajectory set J obs by taking the prod-
uct of likelihood functions over the trajectories in the set:  

where we have suppressed the departure day index for 
readability.

We then compute the likelihood ratio test statistic D 
(deviance) by comparing the log likelihood of the observed 
trajectory set under the null hypothesis and under the alter-
native hypothesis.

where �
(
J

obs
)
= logL

(
J

obs
)
 denotes the corresponding 

log-likelihood function. Large values of the deviance indi-
cate a poor model description and thus lead to a rejection 
of H0. To determine the critical region for the deviance, we 
need to determine its sampling distribution. This can be done 
in closed form for a simple MDP, as we show below.

Closed form expressions for the log‑likelihood 
functions

Consider again the negative exponential model d�(f ) , with 
pre-shock and post-shock parameters �0 =

(
�0, �0

)
 and 

�1 =
(
�1, �1

)
 , respectively. Assume no capacity constrain-

ing and that the timesteps are sufficiently close that we can 
ignore multiple bookings in a time step. These assumptions 
simplify the mathematical derivation, and we will discuss in 
the section “Shock detection in the general case—parametric 

D

2
= log

Lshock

(
J obs

)

L0

(
J

obs
) = ��shock

(
J

obs
)
− �0

(
J

obs
)
,
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bootstrapping” how the framework can be extended in the 
general case.

Given the simplifying assumptions, we can compute 
closed form expressions for the log-likelihood functions.

The optimal pre-shock policy in all states is �∗
�0
= f0∕�0 . 

Let p0 = d�0

(
�∗
�0

)
 and p1 = d�1

(
�∗
�0

)
 . The transition prob-

abilities under the pre- and post-shock environments are 
thus: pre-shock: p�0 = p0 (booking) and p�0 = 1 − p0 (no 
booking); post-shock: p�1 = p1 (booking) and p�1 = 1 − p1 
(no booking). Let n0 , n1 denote the number of state transi-
tions in the pre-shock and post-shock regions of J obs , 
respectively, and let x0, x1 denote the bookings in the pre-
shock and post-shock region of J obs , respectively.

The likelihood function Lshock

(
J

obs
)
 and the correspond-

ing log-likelihood function and its sample distribution can 
be computed:

Note that this expression for the log-likelihood includes 
the no-shock log-likelihood as a special case. Indeed, the 
no-shock case is obtained by setting the post-shock and pre-
shock booking probability equal p1 = p0.

Until now we have considered the likelihood of observing 
a specific set of trajectories. Now we change point of view 
and focus on the sample distribution of the log-likelihood 
function. Thus, we consider the log-likelihood function 
depending on the random variables X0 and X1.

Using Xi ∼ Bin(ni, pi) , i = 0, 1 we can approximate 
these distributions with Normal distributions. Observe 
now that the expression for the log-likelihood function 
is linear of the form aX0 + bX1 + c , where X0 and X1 are 
normally distributed and a, b, c are constants. Hence, the 
log-likelihood function also becomes normally distributed 
�shock

(
J

obs
)
∼ N

(
�shock, �

2

shock

)
 where

Similarly, we obtain �0

(
J

obs
)
∼ N

(
�0, �

2

0

)
, with

Lshock

(
J

obs
)
= p

x0

0

(
1 − p0

)
n0−x0

p
x1

1

(
1 − p1

)
n1−x1

�shock

(
J

obs
)
=

1∑

i=0

x
i
log

(
p
i

1 − p
i

)
+ n

i
log(1 − p

i
)

�shock

(
J

obs
)
=

1∑
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Let m be the number of flights per departure day in 
J

obs (which can also be fractional, e.g., every second 
day). The sample size becomes N = mT, and the total 
number of state transitions n0 + n1 = NT∕2 , which is 
the area of the triangle of active flights. Analogously, the 
number of state transitions in the pre-shock area becomes 
n0 =

m(T−�shock)
2

2
≈

NT

2
− N�shock  ,  and n1 ≈ N�shock  for 

𝜏shock ≪ T  . Note that n0, n1 and N are integers, thus the rela-
tions above are approximations.

Thus, the separation between the two Normal distribu-
tions grows proportionally to sample size and time since 
shock.

That the variance �2
shock

≈ �2
0
 follows from n1 ≪ n0 

(assuming 𝜏shock ≪ T  , which holds for shocks that are 
detectable within a reasonable time frame of at most a 
few months). Further, it follows from the above expression 
that the variance grows proportionally with sample size.

Closed form expressions for the statistical power

In this section, we continue with the simplified ana-
lytical model and compute the statistical power of the 
shock detector. Let �(x) and Φ(x) denote the pdf and cdf 
of the standard Normal distribution. Assume 𝜇shock > 𝜇0 
(similar expressions can be obtained for 𝜇shock < 𝜇0 ). 
We choose a significance level � (one-sided). Let 
z1−� = Φ−1(1 − �) denote the quantile. The acceptance 
region of the one-sided hypothesis test is shown as the 
(1 − �)100% confidence interval and the rejection region 
is correspondingly shown as the complement, as illus-
trated in Fig. 3.

The power Pow of the statistical test is the probability 
of rejection of H0 . Hence, the power is computed as the 
shaded area, c.f. Figure 3 panel (a).
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Finally, define the alarm time �alarm as the expected 
number of days after a shock at which the statistical power 
of the detector reaches a given threshold 1 − �.

To understand how the shock evolves to affect the data 
over time, see Fig. 3 panel (b), which illustrates how the 
shock distribution (black dashed curve) propagates from 
left to right with increasing �shock . Also shown is the no-
shock distribution (blue curve), which remains static.

At the onset of a shock, �shock = 0 , �shock = �0 and 
�shock = �0 , and the statistical power Pow = �. Detection at 
this point will be entirely random. At the other extreme, 
�shock = Tdep , the shock distribution is shifted to the right and 
the statistical power Pow ≈ 1, which means all shocks will 
eventually be identified successfully.

In between these two extremes (for example, at 
�shock = 50 ), the shock distribution has been shifted such 

Pow = Pr(�shock

(
J obs

)
> 𝜇0 + z1−𝛼𝜎0)

= ∫
∞

𝜇0+z1−𝛼𝜎0

1

𝜎shock
𝜙

(
x − 𝜇shock

𝜎shock

)
dx

= 1 − Φ

(
𝜇0 − 𝜇shock + z1−𝛼𝜎0

𝜎shock

)

�alarm = argminτshock[Pow ≥ 1 − �]

that the statistical power reaches the predefined threshold: 
Pow = 1 − � . This defines the alarm time.

We can obtain an analytical expression for the alarm time 
by inverting the power equation employing the relationship 
1 − Φ(x) = Φ(−x) and inserting the analytical expressions 
for �shock − �0, �shock, �0:

where g
(
p0, p1

)
is a shock scenario-specific factor which 

depends on the pre-shock booking probability p0 and the 
post-shock booking probability p1.1 The approximate expres-
sion is obtained by a series expansion around p0 to first 
order.

Thus, we have computed a closed form relation-
ship between alarm time (�alarm ), shock scenario-spe-
cific factor ( g), significance level ( �) , statistical power 
( 1 − �) , and sample size (N) . Below we will discuss their 
interdependence:

•    Shock scenario‑specific factor (g) From the analytical 
expression, observe that g

(
p0, p1

)
 is a hyperbola where 

the alarm time is inversely proportional to shock size ex-
pressed as ||p1 − p0

|| . This makes intuitive sense. Small 
shocks will have a high g

(
p0, p1

)
 factor and be hard to 

detect, while large shocks will have a low g
(
p0, p1

)
 factor 

and be easy to detect.
•    Significance level (�) The significance level � express-

es the probability of incorrectly flagging a shock when 
in fact no shock has occurred (false positive, so-called 
Type I error). For example, if we choose � = 0.05 , then 
5% of flagged shocks will be false alerts. Decreasing the 
value of � will result in less shocks being flagged, while 
at the same time also leading to less false positives.

•    Statistical power (1−�) The statistical power expresses 
the probability of correctly identifying a shock that has 
occurred. If we choose e.g., (1 − �) = 80%, it implies that 
given that there has been a shock, we correctly identify 
80% of the trajectory sets as having experienced a shock, 

�alarm ≈ g(p0, p1)
z1−� + Φ−1(1 − �)
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Fig. 3  Log-likelihood distributions generated for the null hypothesis 
f0(�) and the alternative hypothesis fshock(�) at �shock = 50 . Param-
eters: �0 = (

70

365
, 0.447) and �1 = (

70

365
, 0.555)

1 The absolute value of the denominator allows us to cover both 
cases 𝜇shock > 𝜇0 and 𝜇shock < 𝜇0 in the same expression.
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while we incorrectly classify the remaining 20% as no 
shock (so-called Type II error). All else equal, increasing 
the power results in an increase in alarm time.

•    Sample size (N) The alarm time scales with the in-
verse square root of the sample size, which can be used 
to set the appropriate level of aggregation. Increas-
ing the sample size leads to faster detection but at the 
same time loses granularity. Therefore, it could be an 
option to configure multiple shock detectors (possibly 
overlapping) at various sample sizes and significance 
levels to detect shocks of different sizes and granulari-
ties. For example, the detectors could focus on lower-
impact shocks that affect a wide range of markets, or 
larger-impact shocks affecting a single flight or a single  
market.

•    Alarm time (�alarm) The alarm time is the expected time 
delay before a shock is detected at a specified statistical 
power. The alarm time depends on the factors discussed 
and can, for a given shock scenario, be controlled by set-
ting appropriate values for significance level, statistical 
power, and sample size.

End‑to‑end shock detection example

In this example, we describe how each of the properties 
above can be calculated for a specific demand shock. 
We consider a market AAA-BBB where we have 1 
flight per day for one year out, and a one-year booking 
horizon. Demand arrives following a negative exponen-
tial demand model d�(f ) = λe−γ(f∕f0−1) , with pre-shock 
parameters �0 =

(
�0, �0

)
=( 70

365
, 0.447) . We will consider 

the case where a shock has occurred �shock = 50 days ago 
with post-shock parameters �1 =

(
�1, �1

)
=( 56

365
, 0.447) , 

corresponding to a negative shock in the ar r ival 
rate of 20%. Using the notation from above, we can  
summarize:

Known to RMS:
• Sample size: N = 365

• Pre-shock: �0 = (70∕365, 0.447) ⇒ p0 = 0.1121

• Pax expected (no-shock): NTp0∕2 = 7467

Unknown to RMS: 
• Time since shock: �shock = 50

• Post-shock: �1 = (56∕365, 0.447) ⇒ p1 = 0.0897

• Number of state transitions in post-shock region: 
n1 = N�shock = 20440

• Number of state transitions in pre-shock region: 
n0 =

NT

2
− n1 ≈ 46172

Generation of the trajectory set J obs:
Let Zi(t) be the number of bookings for trajectory  at 

time t. Then Zi(t) is Bernoulli distributed with Zi(t)~B(p0) 
for 0 ≤ t < tshock(i) and Zi(t)~B(p̂1) for tshock(i) ≤ t < T − i, 
where tshock(i) = T − tdep(i)− �shock as before denotes the 
separation in time between the pre-shock and post-shock 
region. Given estimates of post-shock parameters and time 
since shock �̂shock , we compute the number of state tran-
sitions n1 = N�̂shock , n0 =

NT

2
− N�̂shock and aggregate the 

number of bookings in the two regions (which depend on 
the estimates):

Maximum likelihood estimation:
Inserting these values into �shock

(
J

obs
)
 provides the max-

imum likelihood estimates (MLE):

We assume that the shock has only affected the demand 
volume (i.e., �1 = �0 ), the reason being that we are unable to 
estimate the price elasticity parameter because we generated 
all data with constant price, corresponding to the optimal 
price without capacity constraining, and for simplicity, we 
drop the “MLE” superscript.

Observations and estimations: 
• Observed total bookings: x0 + x1 = 7146

• Current impact: 2(x0 + x1)∕(p0NT) − 1 = −4.3%

• MLE post-shock: ̂�1 = (57.05∕365, 0.447) ⇒ p̂1 = 0.0914

• MLE volume impact: (57.05 − 70)∕70 = −18.5%

• MLE time since shock: �̂shock = 56

Shock detection computations:
• Shock specific factor: g

(
p0, p̂1

)
≈ 10.76

• p-value < 10−4 (probability of no shock—Type I error)
• Power: (1 − �) = Φ

�
�̂shock

√
N∕T∕g

�
p0, p̂1

�
− z1−�

�
=

99.9% for � = 0.01

• Alarm time: �alarm = 34 days (for � = 0.01 , 1 − � = 0.8)

To summarize, applying the shock detection framework, 
we have estimated that a demand shock occurred �̂shock = 56 
days ago, causing a volume impact of −18.5% compared 
to the pre-shock parameters. Since the shock has not fully 
propagated across all days to departure, we observe only a 
−4.3% reduction in bookings compared to expectations. This 
information allows the airline analyst to proactively adjust 

x0 =
∑T

i=1

∑T−i−�̂shock−1

t=0
zi(t), x1 =

∑T

i=1

∑T−i−1

t=T−i−�̂shock
zi(t)

�̂MLE

shock
, �̂MLE

1
= argmax

�̂shock,�1

(
�shock

(
J

obs
))
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the demand forecast in line with the customer behavior after 
the demand shock.

Finally, to compare with methods currently used in the 
industry, we compute the time to shock detection if we were 
to alert flights individually. Using the same pre-shock and 
post-shock parameters and inserting N = 1, it would take one 
year ( �alarm = 365 days) to reach a power of 1 − � ≈ 0.8 at 
� = 0.1 . If we instead use the entire trajectory set of N = 365 
flights, as done in the example above, we can detect the 
shock in �alarm = 34 days with the same statistical power at 
a much stronger significance level ( � = 0.01 ), providing both 
significantly faster time to detection and improved accuracy.

Shock detection in the general case—parametric 
bootstrapping

The analytical results in the previous sections made two 
important assumptions: that the state transition probabili-
ties are state independent and that at most one booking 
occurred at each time step. When the transition probabili-
ties are state dependent (that is, the offered price depends 
on the state) and multiple arrivals can occur in a time step, 
we can no longer express the sample distribution in closed 
form. In this case, we use parametric bootstrapping (Efron 
and Tibshirani 1986) to construct the log-likelihood sam-
ple distribution used in the shock detector.

To perform the bootstrapping, we create an ensemble 
of independent “virtual copies” {J 1

,… ,J
K} of the 

observed trajectory set J obs . Each virtual copy matches 
the dimensions (departure dates, booking horizon, cardi-
nality) of J obs , and is initialized empty. For each virtual 

copy J k
, trajectories are then generated by following a 

random walk through state-action space assuming the a 
priori (pre-shock) demand parameters and the RMS policy 
�∗
�0

 , which is constructed from solving the Dynamic Pro-
gram as described previously.

We then compute observations �
k
= �

0

(
J

k
)
 of 

the log-likelihood function for each trajectory set 
J

k ∈ {J 1
,… ,J

K} using the state transition probabili-
ties corresponding to the no-shock case. Let f0(�) denote 
the “empirical” probability distribution functions (epdf) 
obtained from the ensemble (not to be confused with fare 
levels, that are also denoted by f  ). Analogously, we com-
pute the epdf for the post-shock demand parameters, which 
we denote fshock(�) . We will return to these distributions 
below, and in Fig. 4.

Further let F0(�) denote the corresponding empirical 
cumulative distribution function (ecdf). In this way, the 
ensemble produces a sample distribution of the log-like-
lihood function. As before, we determine the acceptance 
region of the one-sided hypothesis test as the (1 − �)100% 
confidence interval ] − ∞,F−1

0
(1 − �)] from the sample 

distribution F0(�).
To perform the hypothesis test, we evaluate the log likeli-

hood, �0

(
J

obs
)
 of the observed trajectory set J obs for the 

active flights. If �0

(
J

obs
)
 falls outside of the acceptance 

region, we reject the null hypothesis and flag that a demand 
shock has occurred.

In the section “Closed form expressions for the log-likeli-
hood functions,” we determined closed form expressions for 
the log-likelihood sample distribution �0 ∼ N

(
�0, �

2
0

)
, and 

�shock ∼ N
(
�shock, �

2
shock

)
, for the pre- and post-shock distri-

butions, respectively. These normally distributed pdfs can 
be compared to the corresponding epdfs f0(�) and fshock(�) 
obtained using parametric bootstrapping, as explained 
above.

Figure  4 shows one such example of comparing the 
pdfs (analytical model) and epdfs (parametric bootstrap-
ping), under identical demand parameters at �shock = 0 and 
�shock = 50 . Note that the distributions from the analytical 
model are shifted with respect to the empirical distributions 
due to the differences in demand assumptions. This offset 
implies that we cannot rely solely on the analytical model 
to determine the critical regions.

Importantly, however, the offset between the pdf and the 
epdf appears to be constant independent of demand param-
eters in the considered scenario and with the assumptions 
made so far. This also means that the deviance metric that 
measures the difference between the log-likelihood func-
tions under the pre-shock and post-shock demand parameters 
(i.e., the difference between the two epdfs) can accurately be 
approximated using the analytical model (i.e., the difference 
between the two pdfs). This implies that even though we 

Fig. 4  Log-likelihood sample distributions for the analytical model 
and parametric bootstrapping shock detectors for �shock = 0 and 
�shock = 50 . Parameters: �0 = (

70

365
, 0.447) and �1 = (

70

365
, 0.555)
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cannot use the analytical model to construct explicit values 
for the critical regions, we can trust the analytical closed 
form expression for the power (because it relies only on the 
difference between the no-shock and shock distributions), 
without having to resort to an entirely simulation-based 
approach.

Simulation studies

In this section, we validate the theoretical properties of 
the shock detector. We construct a simulation environ-
ment in which bookings arrive according to a specified 
pre-shock demand model until a demand shock occurs at 
a predetermined time. Both the shock impact and the time 
since shock are unknown to the detector. We then measure 
the number of days necessary for the detector to identify 
the shock. For each scenario, the shock detection perfor-
mance computed using the analytical model is included 
for reference.

In our simulation environment, we retain the fenceless 
fare structure, capacity, and negative exponential  
demand model from previous sections while representing 
the willingness-to-pay parameter � in terms of the more 
widely used business term frat5 = 1 + log(2)∕� . The frat5 
represents the ratio of the lowest fare at which half of  
the demand will buy up (Belobaba and Hopperstad 2004). 
The underlying pre-shock demand parameters are 
�0 =

(
�0, frat50

)
=
(

70

365
, 2.55

)
 , which under the optimal 

policy �∗
0
 produces an expected load factor of 82%.

We evaluate the performance of the detector under vari-
ous positive and negative shocks in demand volume and 
willingness-to-pay, which are shown in Table 2. We use a 
trajectory set J obs consisting of N = 365 flights. We set the 
confidence level to 96% ( � = 0.04 ). Then, we measure the 

statistical power of the shock detector across 2000 independ-
ent simulations. The results are shown in Fig. 5, where the 
alarm time �alarm at which the statistical power reaches 80% 
is marked for each scenario.

Overall, we see that the statistical power exhibits an 
S-shape evolution from a power level of Pow

(
�shock = 0

)
= � 

to Pow
(
�shock = 100

)
≈ 1 . This behavior can intuitively be 

observed by looking at the overlap between the underlying 
no-shock and shock distributions at various �shock shown 
for scenario (c).

As predicted in the section “Shock detection in the general 
case—parametric bootstrapping” the analytical closed form 
expression for the statistical power provides a very accurate 
approximation of the power of the detector, even though the 
demand assumptions differ between the two models. We also 
observe that negative shocks in demand volume and willing-
ness-to-pay can be detected more quickly than positive shocks. 
For example, in scenario (a), a negative shock in willingness-to-
pay can be detected in about two weeks with 80% power, while 
an equivalent positive shock in scenario (b) takes one month to 
detect. This is because a negative shock in willingness-to-pay 
will result in a sudden loss of bookings received at higher price 
points, which is easier for the detector to identify compared to 
the slight increase of bookings associated with a positive shock 
in willingness-to-pay.

Next, in Fig. 6, we investigate the sensitivity of the shock 
detector with respect to the number of flights in the trajec-
tory set. For simplicity, we assume that fight schedules are 
equally spaced across the year (for example, a departure 
once a week, twice a week, etc.).

Adding more flights dramatically improves performance 
of the detector, and the scaling law �alarm ∝ 1∕

√
N  proven 

by the analytical model can clearly be seen in Fig. 6. Note 
again that the analytical model provides an accurate descrip-
tion of the power of the detector as a function of sample size, 
although the analytical model predicts a slightly faster shock 
detection than is realized by the detector.

For our last experiment, we study how �alarm varies with 
the intensity of the shock. We evaluate five positive and five 
negative shocks with different intensities for both volume 
and willingness-to-pay. Figure 7 presents the findings.

The pre-shock settings are shown at the center of each 
chart's horizontal axis. The region to the right of the center 
line shows positive shocks of increasing intensity, and the 
region to the left shows negative shocks of increasing inten-
sity. The alarm time �alarm is shown in the left axis of each 
panel. Again, the analytical model closely approximates the 
performance of the detector in all shock scenarios. Further-
more, as shocks get more extreme, the less time it takes to 
detect them.

Table 2  Demand shock scenarios evaluated in the simulation studies

Scenario Demand shock parameters

Shock type �1 frat51

(a) Negative 0.192 1.8
(b) Positive 0.192 3.3
(c) Negative 0.123 2.55
(d) Positive 0.260 2.55
(e) Negative 0.192 1.8
(f) Both 0.123 to 0.260  

(10 steps)
2.55

(g) Both 0.192 1.8 to 3.3  
(10 steps)
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Practical implementation of the shock 
detector

In this section, we discuss how the theoretical shock detector 
mechanism described in previous sections could be used in 
practice via an alert center application in an RMS. Figure 8 
shows how the shock detector can be integrated into a typical 

RMS process flow of demand forecasting, optimization and 
availability control.

Following the flow in Fig. 8, incoming bookings and 
RMS controls (i.e., offered prices for active flights) are 
stored in the active flight/flow database. Note that RMS 
controls are stored even if no bookings are observed. Once 
a flight departs, it moves from the live flight/flow database to 
the departed flight/flow database. These data are used by the 
forecasting module, which estimates the forecast parameters 
and computes the demand forecasts for all possible control 
policies (Fiig et al. 2014). Finally, the optimization module 
calculates bid prices used in the availability calculation to 
determine the RMS controls.

The input data for the shock detection algorithm—the 
trajectory set J obs—can be compiled from the active flight 
database and the forecasting module. This corresponds to 
the transition probabilities p�

(
st, at, st+1

)
 that are used to 

compute the observed value of the log-likelihood func-
tion assuming no shock �0

(
J

obs
)
 . As discussed in the 

section “Shock detection in the general case—paramet-
ric bootstrapping,” we can then employ parametric boot-
strapping to construct the empirical distribution function 
F0(�) , which is used to construct acceptance and rejection 
regions used to detect a shock affecting J obs.

The data produced from the demand shock detection 
mechanism could be used as part of an alert center dashboard 
to draw the analyst’s attention to aggregations of flights that 

(a)

(c) (d)

(b)

Fig. 5  Statistical power as a function of days since shock �shock for the bootstrapped shock detector and analytical model for scenarios (a)–(d) 
from Table 2

(e)

Fig. 6  Average days to detection, �alarm estimated from when the sta-
tistical power of the test reaches 80%: 1 − �(�alarm) = 0.8 as a function 
of number of flights in the trajectory set for scenario (e)
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have experienced a demand shock. The alert center would 
operate as an offline process that daily or weekly scans the 
airline’s entire network to provide lists of O&D markets, 
regions, or other aggregations of flights that experienced a 
shock. The shock detector can be configured through a vari-
ety of criteria—for example, the shock impact or Type I and 
Type II error levels—to alert users to shocks with significant 
business relevance while limiting the number of false alerts.

The shock detector can also generate additional KPIs to 
display along with the list of markets or other aggregations 
that have experienced a shock. In Fig. 8, we have illustrated 
some of this information, such as the demand shock impact, 
time since shock, expected bookings, observed bookings, 

p-value, and statistical power, following the End-to-end 
shock detection example presented previously.

Such information would allow airline analysts to sort and 
rank shocks in order of recency or revenue impact, allowing 
analysts to prioritize their shock investigation and decide on 
corrective actions. In this example where the shock detec-
tor has identified an 18% reduction in demand volume, the 
analyst may choose to apply an intervention to lower the 
demand forecast for future flights in the market, to ensure 
that the RMS does not overprotect capacity.

Extensions and future work

In this paper, we have made several simplifying assumptions 
for ease of exposition. For example, we have formulated the 
detection methodology for a single flights or multiple flights, 
but not across O&D markets. However, the concepts and 
methodologies generalize easily to the O&D market level. 
The transition probabilities at the traffic flow level are one 
of the byproducts of a conditional demand forecast (Fiig 
et al. 2014) which the airline would already have computed 
in order to perform the network optimization. The offered 
prices (actions) for each traffic flow are also available from 
the historical booking data for the trajectory. The shock 
detector would then simply use the relevant transition prob-
abilities and offered prices associated with each traffic flow 
when computing the log likelihood of a trajectory, and when 
generating the trajectories used in parameter bootstrapping.

Additionally, there are several avenues of future work that 
could be explored to improve the performance of the shock 
detector. First, the speed of shock detection could be further 

Fig. 7  Average days to detection, �alarm estimated from when the statistical power of the test reaches 80%: 1 − �(�alarm) = 0.8 as a function of 
shock intensity for scenarios (f) and (g)

(f) (g)

Fig. 8  Implementation of shock detection in practice
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improved from the method presented here. One possibility 
would be to apply a weight decay to the state transition prob-
abilities p�(st, at, st+1) such that more recent observations are 
weighted more in the calculation of the log-likelihood func-
tion. Alternatively, the shock detection mechanisms could 
focus on transitions from only the most recent sales dates, 
as opposed to the set of all transitions in the trajectory set. 
Such an idea has recently been successfully applied to adapt 
the RMS forecast to widespread demand changes caused by 
the COVID-19 pandemic (Fiig et al. 2020).

Finally, we have shown that the analytical model well 
represents the performance of the bootstrapped shock detec-
tor in a case with a simple demand model. It is also worth 
investigating whether these properties continue to hold in 
more complex cases, including across multiple fare families 
and time-dependent demand volumes or willingness-to-pay.

Conclusions

Sudden, unobservable changes in customer behavior can 
create significant demand forecast error, which can be 
costly to airlines. Identifying these demand shocks can be 
a time-consuming process for airline analysts, who often 
set arbitrary performance thresholds to flag flights or 
markets with abnormal booking behavior. Analysts often 
struggle to determine appropriate thresholds to accurately 
identify meaningful demand shocks while limiting the 
amount of false positive alerts.

In this paper, we introduced a science-based framework 
for demand shock detection. Our shock detector computes 
the log likelihood that a set of active flights followed the 
observed trajectories in state-action space, assuming that 
demand was governed by the pre-shock forecast param-
eters. If the log likelihood of the trajectory set falls outside 
an acceptance region, this indicates a poor model descrip-
tion by the forecast parameters and thus leads to the con-
clusion that a shock has occurred.

We demonstrated how with simple state-independent 
transition probabilities, we could analytically compute a 
closed form relationship between alarm time (�alarm ), shock 
scenario-specific factor ( g ), significance level ( �) , statisti-
cal power ( 1 − �) , and sample size (N) . For more complex 
environments with state-dependent transition probabilities, 
we demonstrated how a parametric bootstrapping approach 
could be used to construct the acceptance region for the 
shock detector. We found through simulations that the 
shock detector exhibited the expected statistical proper-
ties and was well described by the analytical model.

We described how our framework could be integrated 
into an RMS and used to display an estimate of shock 
impact and time since shock to airline analysts in an alert 
center application, allowing the airline analyst to easily 

and quickly identify shocks and prioritize them. This lim-
its the burden on airline analysts and allows them to focus 
their energy on responding to changes in demand, rather 
than on merely identifying such changes.
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