
Demand-Driven Construction of Call Graphs�

Gagan Agrawal

Department of Computer and Information Sciences, University of Delaware
Newark DE 19716
(302)-831-2783

agrawal@cis.udel.edu

Abstract. Call graph construction has been an important area of re-
search within the compilers and programming languages community.
However, all existing techniques focus on exhaustive analysis of all the
call-sites in the program. With increasing importance of just-in-time or
dynamic compilation and use of program analysis as part of the software
development environments, we believe that there is a need for techniques
for demand-driven construction of the call graph. We present a demand-
driven call graph construction framework in this paper, focusing on the
dynamic calls due to polymorphism in object-oriented languages. We
use a variant of Callahan’s Program Summary Graph (PSG) and per-
form analysis over a set of influencing nodes. We show that our demand-
driven technique has the same accuracy as the corresponding exhaustive
technique. The reduction in the graph construction time depends upon
the ratio of the cardinality of the set of influencing nodes to the set of
all nodes.

1 Introduction

With increasing focus on interprocedural optimizations in compilers for impera-
tive and object-oriented languages and with increasing use of results of interpro-
cedural program analysis in software development environments, the problem of
call graph construction has received a significant attention [1,4,5,7,11,12,13,14].
A call graph is a static representation of dynamic invocation relationships be-
tween procedures (or functions or methods) in a program. A node in this directed
graph represents a procedure and an edge (p → q) exists if the procedure p can
invoke procedure q. In object-oriented languages, a call graph is typically con-
structed as a side-effect of interprocedural class analysis or type analysis [4].
Interprocedural class analysis computes a set of classes or types for each pro-
gram variable such that each run-time value bound to a variable is a direct
instance of one of the classes bound to the variable. The set of classes associated
with the arguments of a dynamically dispatched message send at a callee site
determine the set of callee methods or procedures.

A number of techniques have been developed for call graph construction in
the last two decades. These techniques not only vary in their cost and preci-
sion, but also in the programming languages features they target. Some of the
� This research was supported by NSF CAREER award ACI-9733520

A. Watt (Ed.): CC/ETAPS 2000, LNCS 1781, pp. 125–140, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



126 Gagan Agrawal

techniques are specifically for object-oriented languages [1,4,5,11,12], some other
primarily target procedure-valued pointers in imperative languages [7,13], and
others primarily target functional languages [14]. However, a common charac-
teristic of all these techniques is that they perform exhaustive analysis, i.e. given
a code, they compute the set of procedures that can be called at each of the
call-sites in the code.

We believe that with increasing popularity of just-in-time or dynamic com-
pilation and with increasing use of program analysis in software development
environments, there is a strong need for demand-driven call graph analysis tech-
niques. In a dynamic or just-in-time compilation environments, aggressive com-
piler analysis and optimizations are applied to selected portions of the code, and
not to other less frequently executed or never executed portions of the code.
Therefore, the set of procedures called needs to be computed for a small set of
call-sites, and not for all the call-sites in the entire program.

Similarly, when program analysis is applied in a software development en-
vironment, demand-driven call graph analysis may be preferable to exhaustive
analysis. For example, while constructing static program slices [9], the informa-
tion on the set of procedures called is required only for the call-sites included in
the slice and depends upon the slicing criterion used. Similarly, during program
analysis for regression testing, only a part of the code needs to be analyzed, and
therefore, demand-driven call graph analysis can be significantly quicker than
an exhaustive approach.

In this paper, we present a framework for performing demand-driven call
graph analysis. We use a variant of the Callahan’s Program Summary Graph
(PSG) for performing flow-sensitive analysis for reaching definitions. There are
three major steps in our techniques. We initially assume a sound call graph using
Class Hierarchy Analysis (CHA). Then, we construct a set of influencing nodes
that influence the set of procedures invoked at the call-sites we are interested in.
Finally, we perform propagation analysis on the set of influencing nodes.

The rest of the paper is organized as follows. In Section 2, we formulate
the problem. The program representation used for our analysis is presented in
Section 3. Our demand-driven analysis technique is presented in Section 4. We
conclude in Section 5.

2 Problem Definition

In this section, we revisit the exhaustive call graph analysis problem, and then
give our definition of the problem of demand driven call graph construction.
We describe the language features our solution targets. We then state the main
challenges in performing demand driven analysis for call graph construction and
relate it to the existing solutions for exhaustive call graph construction.

2.1 Problem Definition

Consider a program for which the call graph is to be constructed. Let P =
{p1, p2, . . . , pn} be the set of procedures in the given program. Let P be the power



Demand-Driven Construction of Call Graphs 127

Class A { A::P(A *x, A *y) {
void P(A *x, A *y); x.Q(y) ; cs1
void Q(A* y); y.Q(y) ; cs2
void R() ; }

} main() {
Class B: public A { A* a;

void P(A *x, A *y) ; A* b;
void Q(A *y) ;
void R() ; ... s3

} a.R() ; cs3
A::Q(A *y) { a = new B ; s4

y = new A ; s1 b = new A ; s5
} a.P(b,a) ; cs4
B::Q(A *y) { a = new A ; s6

y = new B ; s2 a.P(a,b) ; cs5
} }

Fig. 1. Object-oriented program used as a running example in this paper. Defi-
nitions of functions A::R, B::R and B::P are not provided here.

set of P . Let C = {c1, c2, . . . , cm} be the set of dynamic call-sites, that is, the
call sites for which the set of procedures possibly invoked is not statically known
(without non-trivial analysis). The problem of exhaustive call graph analysis is
the same as constructing the mapping

M : C → P

In other words, we compute, for each call-site in the program , the set of proce-
dures that can be possibly be invoked.

In contrast, the demand-driven call graph analysis involves constructing the
set of procedures called at a specific call-site, or a (small) set of call-sites. Given
a particular call-site ci, we compute the mapping from ci to a subset of P .
Formally, this can be expressed as

mi : ci → P

2.2 Language Model

We now state the language features we focus on. We are interested in treating
common object-oriented languages like C++ and Java. At the same time, we
are interested in focusing on a set of simple language features, so that we can
present the details of our technique with simplicity.



128 Gagan Agrawal

A class has members fields and member methods or procedures. A member
procedure pname of a class pclass is denoted as pclass::pname. A base class
can be extended by another class. In such a case, the base class is called a
superclass and the class extending the base class is called a subclass. A class
can only extend one superclass, treating languages with multiple inheritance
is beyond the scope of this paper. The set of subclasses of a given class c is
constructed transitively by including the class c, and any class that extends c
or any class already included in the set. Similarly, the set of superclasses of a
given class c is constructed transitively by including the class c, the class that
the class c extended or any class that is extended by a class already included in
the set.

We assume a statically-typed language in which a new object reference is
created by a statement of the type r = new Classname; . Such a statement
gives the type Classname to the variable r. The type of this instance of the
variable r can only change as a result of another new statement.

The procedure calls are made as static procedure calls, in which an explicitly
declared procedure is directly called by its name, or as dynamic procedure calls.
A dynamic procedure call is of the format r.pname(paramlist). We assume
that the actual procedure invoked at this call-site depends only upon the type
of r. If r is of type Classname, then the procedure invoked at this call-site is the
procedure pname defined in the class Classname (if it exists) or the procedure
with the name pname declared in the nearest superclass of Classname. However,
the type of r is usually not known through static declarations. If the static
declaration of r is of class Declname, r can be dynamically assigned to an object
of any subclass of Declname.

An example code that will be used as a running example is shown in Figure 1.
We assume that all parameters are passed by reference and all procedures are
declared to be virtual (i.e. can be over-written by a derived class). All member
methods and fields are assumed to be public for simplicity. The class A is the
base class, from which the class B is derived. Procedures P, Q and R are each
defined in both these classes.

2.3 Overview of the Solution

We now give an overview of the problems involved in computing the mapping
mi : ci → P . Let the call-site ci have the format r.pname().

We first need to compute the types that r can possibly have at the program
point ci. Since a new type can only be assigned to r by a statement of the type
r = new Classname;, we need to examine such instantiations of r that reach ci.
Let p be the statement where ci is placed. There are three possibilities for each
reaching instantiation of r:

1. It is defined in the procedure p.
2. The procedure p has another call-site cj , such that the instantiation of r

reaching ci is passed as a reference parameter at the call-site cj .
3. The instantiation of r reaching ci is a formal parameter for the procedure p.



Demand-Driven Construction of Call Graphs 129

Case 1: This case is trivial because the reaching types of r can be deter-
mined by intraprocedural analysis within the procedure p. For example, in Fig-
urer̃efex:code, the dynamic calls at call-sites cs4 and cs5 can be resolved by
intraprocedural propagation. The following non-trivial analysis is required for
cases 2 and 3.

Case 2: We need to analyze the procedures that can possibly be invoked at
the call-site cj to be able to determine the type of r. This is relatively easy
if the call-site cj is a static call-site. However, if the call-site cj is a dynamic
call-site, we need to perform additional analysis to be able to determine the
set of procedures invoked at the call-site cj , and then need to perform reaching
definitions analysis in the procedures invoked at cj . For example, in Figure 1, for
resolving the call-site cs2, we need to look at the possible values of the reference
parameter y at the end of the procedure calls possible at the call-site cs1.

Case 3: To determine the types associated with r when entering the procedure p,
we need to analyze all the call-sites at the which the procedure p is invoked. In the
absence of the call graph, however, we do not know the set of call-sites that can
invoke the procedure p. Therefore, we need to start with a conservative estimate
of the set of call-sites at which the procedure p may be invoked. Analyzing these
call-sites, we need to determine:

– Can the procedure p be invoked at this call-site ?
– If so, what are the types associated with the actual parameter at this call-site

corresponding to the formal parameter r ?

For example, in Figure 1, for resolving the call-site cs1, we need to look the
possible values of the reference parameter x at the entry of the proceedure A::P.

The previous work in demand-driven flow-sensitive data-flow analysis [6,8]
(which does not apply to call graph analysis) formulates the problem as that of
query propagation. The initial data-flow problem to be solved on a demand-basis
is itself a query, whose solution is described in terms of queries at successor or
predecessor nodes.

We can also describe the analysis for cases 2 and 3 as query propagation
problems. Consider initially the case 2. If the call-site cj is a dynamic call site,
we need to answer the query

mj : cj → P
to answer our initial query. Irrespective of whether the call-site ci is a dynamic
call-site or a static call-site, we will need to know the types associated with r
at the end of the call to each of the procedures that can possibly be invoked at
this call-site.

The query propagation for case 3 can be stated as follows. We need to deter-
mine the set of call-sites C′, such that for each

∀ ck ∈ C′ (mk : ck → Pk) → p ∈ Pk



130 Gagan Agrawal

2.4 Overview of Call Graph Analysis Techniques

For ease in explaining our demand-driven call graph construction technique,
we describe an existing classification of call graph analysis techniques [4]. All
possible call graphs constructued by various algorithms, including the initial
call graphs assumed and the results after each stage of the algorithm, can be
described by a lattice. The top-most element of the lattice (denoted by G�) has
no edges between any of the procedures. The bottom-most element of the lattice
is denoted by G⊥ and includes edges to all procedures in the entire program at
each call-site. An ideal graph is the one in which each edge corresponds to an
actual procedure invocation during one of the possible executions of the program.
Obviously, the ideal graph is uncomputable.

Actual call graphs at each stage in various algorithms can be classified as
optimistic or sound. An optimistic graph has fewer edges than the ideal graph,
i.e., additional edges need to be inserted to model invocations during actual
executions. A sound graph has more edges than ideal graph, so some edges can
be deleted to improve the accuracy of the analysis. The process of adding more
edges to an optimistic graph (to move it down the lattice) is referred to as the
monotonic refinement. The process of deleting some edges from a sound graph
(to move it up the lattice) is referred to as non-monotonic improvement.

3 Program Summary Graph

We use the interprocedural representation Program Summary Graph (PSG),
initially proposed by Callahan [2], for presenting our demand-driven call graph
analysis technique. We initially give the original definition of PSG and then
describe several extensions of PSG that we use for our purpose.

A program summary graph is a representation of the complete program that
is much concise as compared to the Myers’ Supergraph or Interprocedural Con-
trol Flow Graph (ICFG) [10], but is more detailed than a call graph, and allows
flow-sensitive interprocedural analysis.

Data-flow within procedures and between procedures is represented through
edges between nodes of the following four types:

– Entry nodes; there is one entry node for each formal parameter of each
procedure.

– Exit nodes; there is one exit node for each formal parameter of each proce-
dure.

– Call nodes; there is one call node for each actual parameter at each call-site.
– Return nodes; there is one return node for each actual parameter at each

call-site.

Edges between these nodes can be classified as intraprocedural and inter-
procedural. Intraprocedural edges summarize data-flow within the procedures.
These edges are inserted after solving the standard data-flow problem of reach-
ing definitions within each procedure. Specifically, the intraprocedural edges are
inserted:



Demand-Driven Construction of Call Graphs 131

This

This y

y

yxThis

cs1

cs2

This y

This y

x
y

This

Fig. 2. Procedure A::P’s portion of PSG

– From an entry node to a call node if the value of the corresponding formal pa-
rameter at the procedure entry reaches the corresponding actual parameter
at the call-site.

– From an entry node to an exit node if the value of the corresponding formal
parameter at the procedure entry reaches a procedure return statement.

– From a return node to a call node if the value of the corresponding actual
parameter at the call return reaches the corresponding actual parameter at
the call node.

– From a return node to an exit node if the value of the corresponding actual
parameter at call return reaches a procedure return statement.

Interprocedural edges in the graph represent bindings of actual parameters
to the formal parameters and vice-versa. Specifically, interprocedural edges are
inserted:

– From a call node to an entry node to represent the binding of an actual
parameter at the call-site to the formal parameter at procedure entry.

– From an exit node to a return node to represent the binding of a formal
parameter at the procedure exit to the actual parameter at the call return.

To perform demand-driven call graph analysis, we make the following three
extensions to the original definition construction method of PSG.

This pointer as a parameter: Consider a call site of the form
r->pname(paramlist). For our analysis, besides having call and return nodes
corresponding to each actual parameter in the list paramlist, we also need to
have a call and return node for the object reference r. We refer to such nodes
as nodes for this pointer, consistent with the C++ terminology. We also insert
one this pointer node each at procedure entry and return for each procedure.



132 Gagan Agrawal

Internal Intraprocedural Nodes: We insert new internal intraprocedural nodes
in the graph besides entry, exit, call and return nodes. These intraprocedural
nodes represent statement that provide a new type to a variable. In the language
model we assumed, these are statements of the type r = new Classname. New
intraprocedural edges are inserted from internal nodes as follows. If a definition
given in an internal nodes reaches an actual parameter at a call-site, a new edges
is inserted from the internal node to the corresponding call node. If a definition
given in an internal node reaches a procedure return statement, a new edge is
inserted from the internal node to the corresponding exit node.

Demand Driven Construction: The Program Summary Graph is not fully con-
structed at the beginning of the analysis, since it will require knowing the call
graph. Instead, the program summary graph is constructed on a demand basis.
If v is the call node for which we are determining the types, we perform a reacha-
bility analysis on the portion of the graph constructed and check if v is reachable
from one of the nodes of a procedure p. If so, the CFG of the procedure p is
constructed, and intraprocedural edges of the procedure p’s portion of PSG are
inserted. The portion of PSG constructed in performing the propagation analysis
is referred to as the Partial Program Summary Graph (PPSG) and set of nodes
in the PPSG is referred to as the set of influencing nodes.

Procedure A::P’s portion of PSG is shown in Figure 2.

4 Demand-Driven Call Graph Construction

In this section, we describe the various phases of our algorithm for constructing
call graph on a demand-driven basis and analyze the complexity of our technique.

4.1 Overview of the Algorithm

We are considering the problem of computing the set of procedures that can be
invoked at a call-site ci, of the form r->pname(). The most important goal for
our algorithm is to analyze as few procedures as possible while determining the
set of procedures that can be invoked at the call-site ci. Our algorithm initially
assumes a sound or conservative call graph, i.e., one with much larger number of
edges than what can be taken during actual executions. This initial sound call
graph is constructed using the results of Class Hierarchy Analysis (CHA) [3].
Such an initial sound call graph is also not constructed explicitly for the entire
program, but is constructed on a demand basis. Each procedure’s components
are added only after it is known that this procedure may influence the types
associated with the object reference r at the call-site ci.

There are two main phases in our algorithm. Initially, we perform reachability
analysis using the sound call graph to determine the set of influencing nodes and
to construct the Partial Program Summary Graph (PPSG). The second phase
involves performing data-flow propagation on the PPSG to improve the precision
of the call graph using reaching types information.



Demand-Driven Construction of Call Graphs 133

4.2 Initial Sound Call Graph

As we described earlier in Section 2, call graph analysis techniques either start
from an optimistic graph and add more edges, or can start from a sound or
conservative graph and delete edges. We prefer to start from a sound graph
and delete edges since it allows us to compute the set of influencing nodes.
One possible initial sound graph is G⊥, in which each call-site can invoke all
procedures. Obviously, starting from such an initial call graph will defeat the
purpose of demand-driven analysis as all the nodes in the entire program will
get added to the set of influencing nodes. We can construct a relatively accurate
initial call graph by performing relatively inexpensive Class Hierarchy Analysis
(CHA) [3].

CHA involves having knowledge of all the classes declared in the entire pro-
gram, including which class extends another class, and the set of procedures
declared in each of the classes. Consider a call-site of the form r->rname(), such
that the declared type of r is rclass. Let R be the set of subclasses of rclass.
For each class in the set R, we determine the nearest superclass (including it-
self) in which a procedure with the name rname is declared. Let us denote such
a set of classes by R′. Then, as a result of class hierarchy analysis, we know
that the possible procedures that can be called at this call-site are of the form
pclass::rname, where pclass belongs to the set R′.

Alternatively, consider a procedure p of the form pclass::pname. By knowing
all class declarations in the program, we can determine the set of subclasses of
pclass. By further examining the procedures declared in each of these classes,
we can narrow this set down to classes for which pclass is the earliest superclass
for which the procedure pname is defined. Let us denote such a set by S. The
procedure p can be called at any dynamic call-site of the form r->pname where
the declared type of the reference r belongs to the set S.

4.3 Preliminary Definitions

In presenting our technique, we use the following definitions.
pred(v) : The set of predecessors of the node v in the PPSG. This set is

initially defined during the construction of PPSG and is not modified as the
type information becomes more precise.

proc(v) : This relation is only defined if the node v is an entry node or an
exit node. It denotes the name of the procedure to which this node belongs.

TYPES(v): The set of types associated with a node v in the PSG during
any stage in the analysis. This set is initially constructed using Class Hierarchy
Analysis, and is later refined through data-flow propagation.

THIS NODE(v): This is the node corresponding to the this pointer at the
procedure entry (if v is an entry node), procedure exit (if v is an exit node),
procedure call (if v is a call node) or call return (if v is a return node).

THIS TYPE(v): If the vertex v is a call node or a return node,
THIS TYPE(v) returns the types currently associated with the call node for



134 Gagan Agrawal

the this pointer at this call-site. This relation is not defined if v is an entry or
exit node.

PROCS(S): Let S be the set of types associated with a call node for a this
pointer. Then, PROCS(S) is the set of procedures that can actually be invoked at
this call-site. This function is computed using Class Hierarchy Analysis (CHA).

Let v be the this pointer node at the call site
Let p be the procedure to which v belongs
Initialize Workset to {v}
Initialize Procset to {p}
Initialize all nodes to be not marked
Construct PSG Portion(p)

While Workset is not empty
Select and remove vertex u from Workset
case (type of u):

call or exit:
foreach predecessor w of u

If w is not marked
Workset = Workset ∪ {w}

return:
If THIS NODE(u) is not marked

Workset = Workset ∪ THIS NODE(u)
foreach possibly called function q

If q /∈ Procset
Procset = Procset ∪ {q}
Construct PSG Portion(q)

foreach predecessor w of u
If w is not marked

Workset = Workset ∪ {w}
entry:

Workset = Workset ∪ THIS NODE(u)
foreach possible callee function q

If q /∈ Procset
Procset = Procset ∪ {q}
Construct PSG Portion(q)

foreach predecessor w of u
If w is not marked

Workset = Workset ∪ {w}

Fig. 3. Constructing the Partial Program Summary Graph (PPSG)

4.4 Constructing the Set of Influencing Nodes

We now describe how we compute the set of nodes in the PSG for the entire
program that influence the set of procedures invoked at the given call-site ci.



Demand-Driven Construction of Call Graphs 135

The PSG for the entire program is never constructed. However, for ease in pre-
senting the definition of the set of influencing nodes, we assume that the PSG
components of all procedures in the entire program are connected based upon
the initial sound call graph.

Let v be the call node for the this pointer at the call-site ci. Given the
hypothetical complete PSG, the set of influencing nodes (which we denote by S)
is the minimal set of nodes such that:

– v ∈ S
– (x ∈ S) ∧ (y ∈ pred(x)) → y ∈ S
– x ∈ S → THIS NODE(x) ∈ S

Starting from the node v, we include the predecessors of any node already in
the set, till we reach internal nodes that do not have any predecessors. For any
node included in the set, we also include the corresponding node for the this
pointer (denoted by THIS NODE) in the set.

Such a set of influencing node and the partial PSG can be constructed by
an iterative algorithm, which is shown in Figure 3. Two main data-structures
maintained in the algorithm are Workset and Procset. Workset is the set of
nodes whose predecessors have not been analyzed yet. Procset is the set of
procedures that have been analyzed and whose portions of the PSG has been
constructed.

The algorithm progresses by removing a node from the Workset. If this
node is a call or exit node, all the predecessors of this node are within the
same procedure. These predecessors are added to the Workset. If the node u
(removed from the Workset) is a return node, the predecessors of this node are
the exit nodes of the procedures that can be invoked at this call-site. Such a set
of procedures is known (not necessarily accurately) from our construction of the
initial sound call graph. Let q be any such procedure. If q is not in the set Procset
(i.e. it has not been analyzed yet), then the function Construct PSG Portion(q)
is invoked. This function analyzes the CFG of the procedure q to construct its
portion of the PSG. For each callee of q that has been analyzed, edges from its
call nodes to entry nodes of q and edges from exit nodes of q to its return nodes
are inserted. Similarly, for each function called by q that has been analyzed, we
insert edges from call nodes at q to its entry nodes from its exit nodes to the
return nodes at q. After all such procedures called at this call-site have been
analyzed and edges have been inserted, we add the predecessors of the node u
to the Workset.

The edges inserted at these call-sites are obviously based upon an initial
sound call graph, that needs to be refined by our analysis. For this purpose,
we need to know the types associated with the THIS NODE at the call-site
corresponding to the return node. For this reason, we also add THIS NODE(u)
to the Workset.

The actions taken for an entry node are very similar to the actions taken for a
return node. The only difference is that instead of analyzing the procedures that
can be called at that call-site, we analyze the procedures that have a call-site
that can invoke this procedure.



136 Gagan Agrawal

4.5 Call Graph Refinement

The next step in the algorithm is to perform iterative analysis over the set of
nodes in the Partial Program Summary Graph (PPSG) to compute the set of
types associated with a given initial node. This problem can be modeled as
computing the data-flow set TYPES with each node in the PPSG and refining it
iteratively. The initial values of TYPES(v) are computed through class hierarchy
analysis that we described earlier in this section. If a formal or actual parameter
is declared to be a reference to class cname, then the actual runtime type of that
parameter can be any of the subclasses (including itself) of cname.

The refinement stage can be described by a single equation, which is shown
in Figure 4. Consider a node v in PPSG. Depending upon the type of v, three
cases are possible in performing the update:

1. v is a call or exit node,
2. v is an entry node, and
3. v is a return node.

In Case 1., the predecessors of the node v are the internal nodes, the entry
nodes for the same procedure, or the return nodes at one of the call-sites within
this procedure. The important observation is that such a set of predecessors does
not change as the type information is made more precise. So, the set TYPES(v)
is updated by taking union over the sets of TYPES(v) over the predecessors of
the node v.

We next consider case 2, i.e., when the node v is an entry node. proc(v) is
the procedure to which the node v belongs. The predecessors of such a node are
call nodes at all call-sites at which the function proc(v) can possibly be called,
as per the initial call graph assumed by performing class hierarchy analysis.
Such a set of possible call-sites for proc(v) gets restricted as interprocedural
type propagation is performed. Let p be a call node that is a predecessor of v.
We want to use the set TYPES(p) in updating TYPES(v) only if the call-site
corresponding to p invokes proc(v). We determine this by checking the condition
proc(v) ∈ PROCS(THIS TYPE(p)). The function THIS TYPE(p) determines
the types currently associated with the this pointer at the call-site corresponding
to p and the function PROCS determines the set of procedures that can be called
at this call-site based upon this type information.

Case 3 is very similar to the case 2. If the node v is a return node, the prede-
cessor node p to v is an exit node. We want to use the set TYPES(p) in updating
TYPES(v) only if the call-site corresponding to v can invoke the function proc(p).
We determine this by checking the condition proc(p)∈PROCS(THIS TYPE(v)).
The function THIS TYPE(v) determines the types currently associated with the
this pointer at the call-site corresponding to v and the function PROCS deter-
mines the set of procedures that can be called at this call-site based upon this
type information.



Demand-Driven Construction of Call Graphs 137

TYPES(v)=

8
>>>>>><
>>>>>>:

TYPES(v)
T

(
S

p ∈ pred(v) TYPES(p) )

if v is call or exit node
TYPES(v)

T
(
S

(p∈pred(v))∧(proc(v)∈PROCS(THIS TYPE(p)))
TYPES(p))

if v is an entry node
TYPES(v)

T
(
S

(p∈pred(v))∧(proc(p)∈PROCS(THIS TYPE(v)))
TYPES(p))

if v is a return node

Fig. 4. Data-Flow Equation for Propagating Type Information

4.6 Complexity Analysis

We now calculate the worst-case complexity of the technique proposed earlier.
We initially analyze the complexity of the phase for creating the PPSG and
then analyze the complexity of the call graph refinement phase. We define the
following terms for our presentation:

N : The number of nodes in PPSG
E : The number of edges in the PPSG
D : The maximum depth of a class hieararchy

Creating PPSG: The algorithm for constructing the set of influencing nodes
was presented in Figure 3. We are focussing on analysis of large codes com-
prising a very large number of procedures. Therefore, we assume that the cost
of constructing and analyzing a single procedure is small and the function
Construct PSG Portion can be executed in a constant time. Then the over-
all cost of the execution of the algorithm presented in Figure 3 is O(N + E).
This is because each node is removed once from the Workset (and the total
number of elements ever added in the Workset is N) and each edge is followed
once to consider the source of the edge.

Iterative Analysis: The iterative analysis is performed over a graph with N nodes
and E edges. The maximum number of times that the types associated with a
node can change is bounded by D, the maximum depth of the class hierarchy.
Since the total number of nodes in the graph is N , the maximum possible length
of any acyclic path in the graph is also N . Therefore, the iterative analysis needs
to be repeated over a maximum of a N × D steps. Each step in the iterative
analysis requires updating the types of N nodes, which will take O(N) time,
assuming that the number of predecessors of a node is bounded by a small
constant. Therefore, the complexity of iterative analysis is O(N2D).

The efficiency of our technique depends upon the size of the PPSG con-
structed. If the PPSG is almost as large as the complete PSG for the entire
program, our algorithm basically reduces to the classical 0-CFA construction
technique proposed by Shivers [14]. If PPSG is significantly smaller than the



138 Gagan Agrawal

PSG for the entire program, our technique is very efficient as compared to the
exhaustive techniques.

4.7 Theoretical Results

As we mentioned in the previous subsection, our analysis is similar to Shiver’s 0-
CFA, except that we perform demand-driven analysis using propagation only on
PPSG, whereas Shiver’s 0-CFA is an exhaustive technique requiring propagation
over the PSG for the entire program. One important issue is the accuracy of our
demand driven technique as compared to the similar exhaustive technique. We
show below that the accuracy of our demand-driven technique is the same as
the accuracy of Shiver’s 0-CFA technique.

Theorem 1 The sets TYPES(v) computed by our technique for any node v in
the set S is identical to the set constructed by 0-CFA exhaustive technique.

Proof: The basic idea behind the proof is as follows. Any node that can
influence the value of TYPES(v) is included in the set S. Therefore, a propa-
gation just over the set S results in as accurate results as propagating over the
entire PSG.

There are two interesting consequences of this theorem. Suppose, we initially
computed the types for a node v by performing demand-driven analysis and the
set of influencing nodes S that is computed includes a node w. If we later require
the type information for the node w, we can just use the information computed
while performing demand-driven analysis for node v. Further, suppose we need to
compute types information for a node z. While computing the set of influencing
nodes, we include a node y, which was previously included in a set of influencing
nodes. We can just use the previously computed types information for y, and do
not need to continue to include predecessors of y in the new set of influencing
nodes.

5 Conclusions

For performing interprocedural program analysis and transformations on pro-
grams with polymorphism, we need to know which methods can be called at
each of the call-sites. In a number of scenarios, it can be important to compute
this information on a demand-basis for certain call-sites only, rather than the
entire program. Examples of such scenarios are 1) performing optimizations dur-
ing just-in-time or dynamic compilation, 2) performing program analysis (like
slicing) for software development, and 3) performing scalable analysis for very
large programs.

In this paper we have presented, to the best of our knowledge, first solution
to the problem of demand-driven resolution of call-sites in object-oriented pro-
grams. Our technique is based upon computing a set of influencing nodes, and
then applying data-flow propagation over such a set.



Demand-Driven Construction of Call Graphs 139

We have two major theoretical results. We have shown that the worst-case
complexity of our analysis is the same as the well known 0-CFA exhaustive
analysis technique, expect that our input is cardinality of the set of influencing
nodes, rather than the total number of nodes in the graph. Thus, the advantage of
our demand-driven technique depends upon the relative size of set of influencing
nodes and the total number of nodes. Second, we have shown that they type
information computed by our technique for all the nodes in the set of influencing
nodes is as accurate as the 0-CFA exhaustive analysis technique.

References

1. David Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function
calls. In Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’96), pages 324–341, October 1996. 125,
126

2. D. Callahan. The program summary graph and flow-sensitive interprocedural data
flow analysis. In Proceedings of the SIGPLAN ’88 Conference on Programming
Language Design and Implementation, Atlanta, GA, June 1988. 130

3. Jeffrey Dean, Craig Chambers, and David Grove. Selective specialization for
object-oriented languages. In Proceedings of the ACM SIGPLAN’95 Conference
on Programming Language Design and Implementation (PLDI), pages 93–102, La
Jolla, California, 18–21 June 1995. SIGPLAN Notices 30(6), June 1995. 132, 133

4. Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural class anal-
ysis. In Proceedings of the POPL’98 Conference, 1998. 125, 126, 130

5. Amer Diwan, J. Elliot Moss, and K. Mckinley. Simple and effective analysis of
statically typed object-oriented programs. In Eleventh Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’96), pages 292–305, October 1996. 125, 126

6. Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven compu-
tation of interprocedual data flow. In Conference Record of POPL ’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
37–48, San Francisco, California, January 1995. 129

7. Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters on
Programming Languages and Systems, 1(3):227–242, September 1992. 125, 126

8. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis.
In In SIGSOFT ’95: Proceedings of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 104–115, 1995. 129

9. Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and Systems,
12(1):26–60, January 1990. 126

10. E. Myers. A precise interprocedural data flow algorithm. In Conference Record of
the Eighth ACM Symposium on the Principles of Programming Languages, pages
219–230, January 1981. 130

11. Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. In
Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 367–378, San Francisco, California,
January 1995. 125, 126



140 Gagan Agrawal

12. Hemant Pande and Barbara Ryder. Data-flow-based virtual function resolution.
In Proceedings of the Third International Static Analysis Symposium, 1996. 125,
126

13. B. Ryder. Constructing the call graph of a program. IEEE Transactions on
Software Engineering, SE-5(3):216–226, May 1979. 125, 126

14. O. Shivers. The semantics of Scheme control-flow analysis. In Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
volume 26, pages 190–198, New Haven, CN, June 1991. 125, 126, 137


	Introduction
	Problem Definition
	Problem Definition
	Language Model
	Overview of the Solution
	Overview of Call Graph Analysis Techniques

	Program Summary Graph
	Demand-Driven Call Graph Construction
	Overview of the Algorithm
	Initial Sound Call Graph
	Preliminary Definitions
	Constructing the Set of Influencing Nodes
	Call Graph Refinement
	Complexity Analysis
	Theoretical Results

	Conclusions
	References

