
1 

Demand-Driven Points-To Analysis 
For Java  

Manu Sridharan, Ras Bodik       Lexin Shan        Denis Gopan 
            UC Berkeley                 Microsoft          UW Madison 

                                  OOPSLA 2005 



2 

Who needs better pointer analysis? 

IDEs: 
•  for refactoring, program understanding 

•  but program edits invalidate analysis 

•  current analyses too slow to re-analyze  

•  incremental analyses hard to engineer 

JIT compilers: 
•  for virtual call resolution, register allocation 

•  but current analyses too slow for runtime 

•  plus, class loading invalidates, needs re-analysis 



3 

What we provide 

Analysis so fast that you can 
•  run it in the JIT compiler 

•  16x speedup compared to Andersen’s analysis 

•  rerun it after the code changes 
•  2ms per query about a pointer variable 

Analysis with low memory overhead 
•  < 50 KB, eases engineering effort 

Analysis with tunable precision 
•  adjustable to different time constraints 



4 

Contributions 

1) Demand analysis with early termination:  
•  return conservative result after a time out 

 Problem we had to solve:  
•  how to approximate to make early termination 

rare? 

2) Refining the approximation 
 Problems we had to solve: 

•  Mechanism: how to refine?  

•  Policy: where to focus the refinement budget?   



5 

Outline 
•  Points-to analysis background 
•  Our approach 

•  Demand analysis 
•  Early termination 

•  Our algorithms 
•  CFL-reachability formulation 
•  Approximation 
•  Refinement (undoing the approximation) 

•  Experiments 



6 

Points-To Analysis 

•  Compute objects each variable can point to 
•  For each var x, points-to set pt(x) 

•  Andersen’s Analysis: our reference point 
•  Want similar precision for our analysis 
•  One abstract location for each allocation site 

x = new Foo() yields pt(x) = { o1Foo } 

•  Context- and flow-insensitive 

•  Current implementations not suitable for us  
•  Too costly for JIT, IDE 

•  30 s / 30 MB (Berndl et. al. PLDI03) on jedit 

•  Code changes require re-analysis 



7 

Demand-Driven Analysis 
Protocol: 

•  Client asks a query: what’s the points-to set of variable x? 
•  Analysis computes only the points-to set of x 

Works well when typically few queries: 
•  JIT compiler: variables in hot code 
•  IDE: variables in code being edited by developer 

Visits theoretically minimal set of statements 
Problem: 

•  worst-case time same as exhaustive 
•  Happens in practice for standard Andersen’s 

Lesson: Need to approximate for scalability 
•  Ideally, maintain nearly all precision 



8 

Approx: Early Termination 

Terminate queries when budget exhausted 
Return a sound result to client 

•  early result:       pt(x) = { all abstract locs } 
•  complete result: pt(x) = { o1Foo, o2Bar } 

No precision loss if complete result does not 
satisfy client 

Hypothesis: long-running ) unsatisfying 
•  Suggested previously (Heintze / Tardieu PLDI01) 
•  For standard Andersen’s, large precision loss 

Challenge: how to approximate further? 



9 

Key Ideas 

Formulate analysis in CFL-reachability 
•  Natural for demand-driven analysis 

•  Andersen’s for Java is balanced parens 

Approximate through regularization 
•  Solvable by linear DFS algorithm 

Iterative refinement to de-approximate 
•  Simple recursive queries 

•  Client-driven 



10 

CFL-Reachability 

Points-to analysis graph: 
•  Nodes represent variables / locs 
•  Edges represent statements 

Points-to analysis paths: 
•  o 2 pt(x) , flowsTo-path from o to x 
•  pt(x) Å pt(y) ≠ ; , alias-path from x to y 

( 

( ) 

) 

t v u S ! SS | (S) | ε	


( ( ) ) 



11 

Andersen’s Analysis in CFL-Reachability 
x = new Obj(); // o1 
z = new Obj(); // o2 
w = x; 
y = x; 
y.f = z; 
v = w.f;  

o2 

y 

z 
new 

w 

v 

assign 

balanced parens 

x o1 
new 

assign 

flowsTo !  new (pf[f] alias gf[f] | assign)* flowsTo !  new (assign)* 

Edge types 
statement 
flowsTo 
alias 

Field-sensitive formulation: standard for Java 

See paper for alias grammar 

pf[f] gf[f] 

assign 



12 

Approx: Regularization 

Add match edges for matching 
field read/write pairs 
•  From source of putfield 

•  To sink of getfield 

Regular grammar 
•  Yields DFS algorithm 

Field-based precision 
o2 

y 

z 
new 

pf[f] 

w 

v 

assign 

gf[f] 

x o1 
new 

assign 

flowsToReg !  new (match | assign)* flowsTo !  new (pf[f] alias gf[f] | assign)* 

match 

o flowsTo x ) o flowsToReg x 

pf[f] alias gf[f] ) match 



13 

RegularPT 
marked, worklist: Set of Node 
procedure query(source: Node) 
  add source to marked and worklist 
  while (worklist is non-empty) do 
    remove w from worklist 
    foreach NEW edge o -> w do 
      add o to points-to set of source 
    end 
    foreach ASSIGN and MATCH edge y -> w do 
      if y unmarked, add y to marked and worklist 
    end 
  end 
end 

•  No caching, so very low memory usage 
•  Early termination through traversal budget 



14 

Refining Match Edges 

Most approximation can be refined 
•  Imprecise for recursive fields 

y w 

o1 o2 
new new t s 

gf[f] pf[f] 

o3 
new ? 

match ¼ pf[f] alias gf[f] 

? 



15 

Client-Driven Refinement Policy 

Not clear when / where to refine 
•  Extra queries may be costly 

•  Refining match edge may not affect result  

Client-driven: only refine when client affected 
•  E.g, multiple targets for virtual call 

•  Guyer and Lin SAS03 

RefinedRegularPT: 
•  Refine edges traversed by RegularPT 

•  Iterate until client satisfied or budget exhausted 



16 

Experimental Hypotheses 

1) Algorithms precise with early termination 
•  Regular approximation reasonable 

•  Refinement yields improved precision 

2) Algorithms meet performance goals 
•  Fast running time 

•  Low memory 



17 

Evaluation Framework 

Implemented in Soot / SPARK framework 
Benchmarks: SPEC, Ashes, jedit  
Clients 

•  IDE: Virtual call resolution  
•  For program understanding 

•  JIT: queries from hot code 
•  Virtual call resolution (for inlining) 
•  Local aliasing (for load/store elimination) 



18 

Algorithms 

RegularPT Field-based Demand DFS Traversal 

RefinedRegularPT Variable up to 
partially 
field-sensitive 

Demand Client-driven 
refinement 

FullFS Field-sensitive Demand Heintze and 
Tardieu [PLDI01] 
adapted to Java 

ExhaustiveFB Field-based Exhaustive from SPARK 

ExhaustiveFS Field-sensitive Exhaustive from SPARK 

Name 
Field-based 
/ sensitive 

Demand /  
Exhaustive Notes 



19 

1) Evaluation: Precision 
jedit virtual calls 

RegularPT: 90% at 
50 nodes (2ms) 

RefinedRegularPT: 
94% at 1250 nodes 
(20ms) 

FullFS: 47.2% 
resolved at 30,000 
nodes (500ms); 
> 300,000 nodes for  
100% (>30s) 

… 



20 

2) Evaluation: Performance 
javac virtual calls in hot code 

ExhaustiveFS: 
100% in 16s 

ExhaustiveFB: 
100% in 7.4s 

RegularPT: 
100% in 0.49s 

FullFS: 50% 
in 7.4s 

Memory: 
•  < 50 KB for (Refined)RegularPT 

•  28MB for FullFS using BDDs 



21 

Conclusions 

New demand points-to analysis 
•  Speed through two approximations 

•  Early termination 
•  Regularization 

•  Refinement driven by client 

Provide high precision in tight budget 
Suitable for JITs, IDEs; and elsewhere? 


