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DEMAND FLUCTUATIONS AND 

CAPACITY UTILIZATION UNDER DUOPOLY 

J. J. Gabszewicz • and S. Poddar • 

September 1995 

Abstract 

This paper studies the in1pact of uncertain de1nand on firn1s1 capacity decisions when 
they operate in an oligopolistic environ111ent. VVe define a two-stage game where firn1s 
choose capacity in the first stage without knowing which state of nature is going to 
realize, and output levels in the second, knowing which state is realized. VVe prove 
the existence of a syn1metric subgame perfect equilibrium at which firms are in excess 
capacity compared with the capacity they would choose in the Cournot certainty 
equivalent gan1e. 
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This text presents research results of the Belgian Program on Interuniversity Poles 
of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy 
Programming. The scientific responsibility is assumed by its authors. 



1. Introduction 

This paper studies the impact of uncertain demand on firms' capacity deci­

sions \Vhen they operate in an oligopolistic e11viron1nent. The effect of uncertain 

demand fluctuatious on expected profits. expected price and capacity in com­

petitive. or monopolistic industries has been extensively analysed (sec Oi (1961). 

Sandmo (1971). Leland (1972), Dreze and Gabszewicz ( 1967), Smith (19G9), Dreze 

and Sheshinski (1976)). To the best of our knowledge, no similar contributions 

have been devoted to the same problem, with assuming that demand fluctuations 

are faced by firms in a context of strategic interaction.1 This context implies that 

firms must adjust their capacity not only in view of meeting output demand lev­

els varying acroso the states of Nature, but also for providing best output replies 

against the capacity and output strategies chosen by rival firms. In this random 

environment, firms play a game simultaneously against Nature and against their 

rivals. We assume however a kind of sequentiality in this intertwined game: when 

firms have to make their output decisions, they know which state the Nature has 

chosen; but they do not know it when they make their capacity choice. This situ­

ation lends itself to be formalized as a two-period sequential game in which firms 

choose capacity in the first stage (without knowing which state is going to realize), 

and output levels in the second (knowing which state is realized). In the second 

stage. firms play a Cournot game, conditional on the capacity levels decided in the 

first stage. If, between the first and the second stage, Nature has chosen a "boom" 

demand function, a firm with a low capacity level chosen in the first stage is un­

able to play in the second stage the Cournot output corresponding to the boom, 

but can at best, play a quantity equal to its chosen capacity. On the contrary, 

if Nature has chosen a "recession" demand function, a firm having chosen a high 

capacity level can play the Cournot output corresponding to recession, but re­

mains with a costly idle capacity. A subgame perfect equilibrium of the two-stage 

game defined above must take simultaneously into account the strategic aspects 

of firms' behaviour and the cost considerations related to possible underutilization 

of capacity. 

1 A recent literature considers infinitely repeated price competition when the in­
dustry is submitted to exogenous demand shocks (see, in particular, Rotenberg, J. 
and G. Saloner (1986) and Kandori, M. (1991)). Even if these contributions are 
somewhat related to the present paper, they are formulated in the totally different 
approach of a supergame theoretic model. The purpose is also different since they 
study the impact of demand shocks on collusive behaviour of firms. 
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Our model assumes that total demand varies linearly with output in each 

state of Nature: with a randon1 intercept over the states. The industry consists of 

two firms. each with tho same cost structure of the inelastic type. For this context. 

first we prove the existence of a symmetric subgame perfect equilibrium. Then. 

we fully characterize it, in terms of the capacity chosen ttt equilibrium and of the 

set of states at which firms decide, for reducing the cost of capacity. to choose a 

capacity smaller than the Cournot output level corresponding to these states. 

Under pure competition, it is known that firms operate production, on av­

erage, at a level which is smaller than capacity. This is due to the fact that the 

number of firms for which expected profits are equal to zero, exceeds the num­

ber of firms for which the average cost of output per firm is minimum (see, for 

instance, Dreze and Sheshinski (1976) ). Here we obtain an analogous excess capac­

ity property when we compare the capacity chosen by the firms at the symmetric 

subgame perfect equilibrium, with the capacity they would choose if they would 

play a Cournot game with a "certainty equivalent" demand function. We found 

that uncertain capacity chosen by the firms at the symmetric subgame perfect 

equilibrium is at least greater than or equal to the capacity they would choose if 

they would play a Cournot game with "certainty equivalent'' demand function. By 

contrast, expected output and expected price are shown to coincide at equilibrium 

with the output and price resulting from the same Cournot "certainty equivalent" 

game. 

We present the model and the two-stage game in section 2. Section 3 is 

devoted to the existence and characterization of the symmetric subgame perfect 

equilibrium for the two-stage game defined in section 2. Section 4 compares the 

duopoly solution with the monopoly case. and with the "certainty equivalent" 

Cournot game. We end up with some concluding remarks collected in section 5. 

2. The model 

We consider two fir1ns with the sarne cost structure facing uncertain de111and. 

The cost structure is of inelastic type: when production does not exceed capacity. 

costs increase linearly with output; when production exceeds capacity, costs are 

infinite, i.e. 
C(k, q) = {Jk + "{q, 

= oo, 

2 

q -o; k; 

k < q. 



We assume that there are n states of Nature and the demand in state i is given by 

Pi(Q) =Ai - Q, 

with Q denoting aggregate supply. Furthermore we assume that Ai > 'Y + {3, 

i = 1, · · ·.n. 

We study a two-stage game in which firms choose capacity k1 and k2 in the 

first stage and output levels q1 and q2 in the second stage. When choosing capacity, 

firms do not know which state will realize, while they choose output knowing which 

state has realized. We assume the existence of an objective probability density pi, 

i = 1, ... , n. over the states of Nature, E7=t Pi = 1. Firms are assumed to be 

risk-neutral. We are interested in a symmetric subgame perfect equilibrium cor­

responding to firms' strategies (k;, q;);=t,2, in which firm j chooses first capacity 

k; and then output level q;. 

Assume that firms have chosen capacities k1 and k2 in the first stage and let 

us consider the second stage game. The second stage payoff of firm j in state i is 

defined by 

IT;; (q;, qh, k;, kh) = (A; - q; - qh)q; - 1q; - f3k;, if q; S kj and qh S kh; 

= (A, - qj - kh)qj - {qj - f]kj, if q; S k; and qh > kh; (1) 

= (A; - k; - kh)k; - 1k1 - f3k;,if qj > kj and qh > kh. 

It is easy to verify that, when both firms' capacities kt and k2 exceed the Cournot 

output At i Y in state i~ the unique second stage "unconstrainedi' Nash equilib­

rium is given by ( A3 Y, A;:J '1) in state i. When both firms' capacities k1 and 

k2 are smaller than the Cournot outcome A, 3-y in state i, the unique second 

stage Nash equilibrium in state i is given by (k1, k2)- In the asymmetric case, 

when k; 2 A3 Y while kh < Aii 'Y, the unique second stage Nash equilibrium 

[ { 
A - kh - ,, } ] A - k1 - 'Y in state i is min kj, ' 2 ' , kh where ' 2 ' is the best reply out-

put of firm j against kh. 

Figures 1.1 and 1.2 illustrate the second stage equilibrium in state i. Figure 

1.1 corresponds to the case where capacities k1 and k2 chosen in the first stage 

are both insufficient to produce the Cournot outcome ( y, A;:J Y) in state 

i. Figure 1.2 illustrates the second stage equilibrium when firm 1 is capacity 

constrained at k1 and firm 2 has chosen a capacity k2 in the first stage sufficient 

to play its best reply against k1• 
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Figure 1.1 Figure 1.2 

In the next section, we characterize a symmetric subgame perfect equilibrium 

(SSPE) and prove its existence. This symmetry allows us to define the first-stage 

game payoffs only on a restricted set of first stage strategies (k1 , kz). 

3. The symmetric subgame perfect equilibrium (SSPE) 

To characterize a SSPE, we shall write the first stage payoff of each firm under 

the assumption that both firms in the second stage are constrained (resp. uncon­

strained) by capacity on exactly the same subset of states of Nature. Indeed this 

property must necessarily hold at a SSPE whenever it exists: in such an equilil>­

rinm, both firms choose the same capacity level, which implies that unconstrained 

Cournot outcomes can be reached by both firms on exactly the same subset of 

states. Accordingly, in order to characterize a SSPE, we have only to consider the 

second stage equilibria which are given by (k1, k2 ) in those states where capacity 

constraints are active, and by (A, - 'I, A, 3 7 ) in those states i where firms are 

not constrained by installed capacity. Since A, < A,+ 1 for all i = 1, ... , n, it is 

clear that if capacities (k1,k2) are binding for some states (namely, k1 and k2 are 

less than A.,31), they will be also binding for all states i, wheres< i < n. 

4 



Denoting by;• the largest index of states for which capacities are not binding. 

expected payoff "'i (k1. k2) for firm 1 is given by 

and by II,; (k1. k2). with 

for firm 2. 

Consider a candidate SSPE of the two stage game, and let i' denote that 

state for which. at the corresponding candidate, both firms are not constrained 

up to state i', but constrained in the states s with i' + 1 :S s :S n. At this can­

didate subgame perfect equilibrium. first-order conditions for a maximum should 

be satisfied. that is, 

n 

L p, [A .• - 2k1 - k2 - 'Y] - ,6 = 0 ( 4) 
s=i• +1 

and 
n 

L p,[A,-2k2-k1-'Y]-,6=0. (5) 
s=i•+l 

It is easy to verify that the second order conditions for a maximum are also satis­

fied. Now (4) holds¢> 

k, = 
1 ( t p,(A, - k2 - -y)) - ,6 

n n 

2 I: Ps s=i·+1 2 I: p, 
s=i~+l S=i*+l 

Similary, (5) holds ¢> 

kz = 
1 ( t p,(A, -k1 --y))- ,6 

n n 

2 I: p, s=i~+1 2 I: p, 
s=i·+1 .<i=i·+1 
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Using the symmetry property. we solve the above system for k1 = kz = k•, say, 

which yields 

(6) 

Notice in particular that, if it is optimal for the firm to choose i' + l to be equal 

to 1, so that the firm chooses to be constrained in all states, then we get 

k* = ~s=_l _____ _ 

3 
(7) 

Proposition 1. For the pai1· (k', k') to be part of a SSPE with jinns constrained 

from state (i' + 1) onwards, it is necessarily true that 

L p,(A, - A.·+1 < {3 S L Ps(A, - A;·). (8) 

Proof. To be a part of a SSPE with both firms unconstrained up to state i", k' 

must exceed the Cournot outcome under state i', i.e. k' =". A;·3-y, an inequality 

which is satisfied if, and only if. the right inequality of (8) holds. By a similar 

argument, it must be necessarily true that k' < A,. +j - 'I, an inequality which 

is satisfied if, and only if, the left inequality of (8) holds. • 

So far we have shown that, to be a part of a SSPE in which both firms are not 

capacity constrained up to state i*, capacities must be defined by (6) and satisfy 

the parametric conditions (8). Yet, this is not sufficient to guarantee that (k', k') 

is a SSPE. We have still to prove that, under (8), no unilateral strategic deviation 

from k' can be advantageous to any firm. 

Proposition 2. Under (8), the pair (k', k') is part of a SSPE with firms con­

strained from state (i' + 1) onwards. 

Proof. See appendix for the detailed proof. Here we provide a sketch of the proof. 

Consider that firm 1 deviates from k• by increasing its capacity to a level k1 which 

exceeds k•, while firm 2 stays at k'. As soon as k1 exceeds the Cournot outcome 
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in state 'i.'" + 1, firrn 1 is no longer capacity-constrained in i* + 1; accordingly) 

the payoff in the first stage game as a function of ki is no longer provided by 

(2). Prom now on. firm 1 can play it., best reply against k' in all second stage 

games con~sponding to states where these best replies are smaller or equal to k1. 

Thus, given k1 • the first stage game payoff of firm 1 consists of three terms: the 

first term corresponds to the expected profit obtained from playing the Cournot 

outcome in all states a ::,:; i'; the second term corresponds to the expected profit 

of playing the best replies against k' in all second stage games corresponding to 

states where the best replies are smaller or equal to kl. The third term represents 

the expected profit over all states where the capacity k1 is not large enough to 

produce the best reply against k' in the corresponding states (the mathematical 

expression of this payoff is provided by formula (I) in the appendix). For instance, 

assume that k1 belongs to the interval [R,·+1(k•),Ri·+2(k.)) where R·+i(k•) 

(resp. Ri•+2(k•)) denotes the solution of the problem max,,{ Ai·+1 -k• -q)q-1q}, 

(resp. maxq{Ai·+2 -k• - q)q - 'YQ}), i.e. R;·+1 (k•) (resp. R·+2(k.)) is the best 

reply against k• in the second-stage game in state;•+ 1 (resp. i' + 2). Then the 

payoff II,·+1(k1,k') for this deviation kl consists of the sum of three terms: (i) 

I:~~ 1 Pu [ (Au 3- i) 2 
- /lk1] (expected payoff of playing the Cournot outcome in 

states er S i'); (ii) Pi·+1 { [R,.+1 (k.)) 2 
- {Jk1} (expected payoff of playing the best 

reply against k• in the second stage game under state i' +1); (iii) I:~~i'+2 p.(A.­

k• - k1 - 'Y - {J)k1 (expected payoff over the st.ates where the firm is constrained 

to play k1 ). It is shown in the appendix that the graph corresponding to this 

payoff can be represented as in figure l, where the graph of the payoff rr,. (kl' k') 

is also plotted. The interesting fact is that the graph of II,·+1(k1,k') is not only 

strictly concave, but it "cuts" the graph of II,. (k1, k') when k1 is equal to the best 

reply R·+1 (k•) in their respective decreasing parts. From this we conclude that 

the payoff rr,.+1 (k1. k') for k1 E [R,.+ 1 (k•), R;·+2(k")[ is smaller than the payoff 

II,.+ 1(R,.+1(k'),k'). which itself is equal to II,.(R,·+1(k'),k'). Furthermore, 

we know that II;·(R,.+ 1 (k'),k') is less than II,.(k',k'). Hence, no deviation 

k1 in [R,.+ 1 (k•), R,.+2 (k')[ can be profitable. Then proceeding recursively by 

assuming kl in [Ri'+2(k'),R·+3(k•)[ ... ·.[Rn-1(k'),R,,(k')). we show that no 

deviation k1 :'.': k' can be profitable for firm l. 
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Now, assume that firm 1 deviates by decreasing its capacity from k*, while 

firm 2 stays at k', Clearly no deviation kl with A;. i )' :<:: k1 < k' can be prof­

itable, So we must only consider deviations kl with k1 < A;. 3- )'. When k1 is 

chosen between the Cournot outcomes in the second stage games under state s 
and states+ 1, 1 < s :Si' -1, the payoff of firm 1 Il,(k1,k') in the first stage 

game consists again in the sum of three terms (see formula (II) in the appen­

dix): (i) I;~;;,\ Pu [ ( Au3-1}2 - /3k1] (expected payoff of playing the Cournot 

outcome in states u :S s - 1); (ii) I;~·=, Pu [(A. - Au 3- )' - kl - "I - ,13) k1] (ex­

pected payoff in all states with firm 1 constrained by kl and firm 2 playing the 

corresponding Cournot outcome: remember that firm 2 has capacity equal to k', 

and can thus produce the Cournot outcome for all states u with u :S i'); and 

(iii) z:::=i' + 1 Pu [ (Au - k' - k1 - "I - ,6) ki] (expected payoff with both firms con­

strained, firm 1 by k1 , firm 2 by k'), For instance, assume that k1 is chosen in the 
, t l J A;--i - "I A,. - "' I (' " 1) Tl h ff I1 (k k') , in erva , 3 ' 1.e. s =i - . ien t e payo i•-i 11 in 

the first stage game obtains as 

'~(A" - 1 )
2 

[( A,.-"! ) l n,._1(k1,k)=~ --
3
- +p,. A,.-

3 
-k1-1 kl 

n 

+ L Pa(Au - k' - k1 -7)k1 - ,l3k1. 
O'=i· + l 

It is shown in the appendix that the graph of rr,. _ 1 (k1, k') can be represented as 

on figure 2 where the graph of the payoff rr,. (k1, k') is also plotted. The interest­

ing fact is that not only the graph of rr,._ 1 (k1 , k') is strictly concave, but it "cuts" 
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the graph of IT,. ( k1• k•) when k1 is equal to the Cournot outcome A,. 3- 7 under 

state i• in their respective increasing parts. From this we conclude that the pay­

off rr,. _1 (k1, k') is smaller than the payoff IT,. _1 (A,. -1, k') which itself being 

equal to IT,. (A,. 3- '( k•), is smaller than IT,. (k', k•). Accordingly, no devia­

tion k 1 in the interval [A,. _1 - 1 , A;. 3- Y [ can be profitable. Then. proceeding 

recursively by assuming k1 in [A;·-2 - 1, A;·-1 - 1 [ ... , [A1
3-1, A2

3-1[, we 

show that no deviation kl <:'. k• can be profitable for firm 1. Applying a similar 

argument for deviations of firm 2 leads to a complete proof of proposition 2. 

4. A comparison with monopoly and with the uncertainty equivalent 

case 

It is interesting to compare the duopoly solution which as just been derived 

with the monopoly case. Given state i, the monopolist's optimal output is A; i Y. 

As under duopoly, the monopolist, facing the same uncertain demand and the 

same cost conditions, can freely choose its capacity and, accordingly, the subset of 

states under which this capacity exceeds the monopoly output in the corresponding 

states. If the monopolist's capacity km is chosen so as to be unconstrained up to 

state im, expected profit writes as 

The first order condition for a maximum requires that 

dE " 
dkm = 0 ~ L p,(A, - 2km -1) = {3. 

s=im+l 

Solving for km ~r k:O, leads to 

k" = ~ [·~~+1 p,A, - {3 - '] 
m 2 n I · 

I: p, 
s=tm+l 

(9) 

An argument similar to the one used in the duopoly case shows that exactly the 

same condition on {3 (see equation (8)) as in the duopoly case, guarantees that 

9 



it is indeed optimal for the monopolist to choose km so as to be unconstrained 

up to state im. However, a direct comparison betweeu (9) and (6) reveals that 

k;,. < 2k', so that total installed capacity in the duopoly case exceeds the installed 

capacity under monopoly. 

Now, it is also of interest to compare both monopoly and duopoly capacities 

with the certainty equivalent case. This case is defined as a deterministic market, in 

which the demand function P(Q) would be equal to the expected demand function 

resulting from the randomness of demand over the n states of Nature, i.e. 

n n n 

P(Q) = Lp,P,(Q) = LP;(A; -Q) = LP•Ai - Q, 
i=l i=l i=l 

with Q denoting aggregate supply. 

In the dnopoly situation, it is easy to check that the Cournot outcome corre­

sponding to the certainty equivalent case is given by 

n 

(10) 

so that it coincides with the duopoly solution ki = k2 = k' under uncertainty when 

firms choose to be constrained over all states (see (7)). In all other cases, when it 

is optimal for the firms to be constrained over a restricted set of states only, we get 

that k' > k, with k' defined by (6). Indeed. assume on the contrary that k' '.;; k, 
with both firms having chosen to be constrained from state i' + 1 onwards. This 

implies that ,. 

(11) 

Using the right hand side of (8), which holds since it is optimal for the firms to be 

constrained from state i' + 1 onwards, we get 

n 

{3 '.;; L p,(A, - A,.). (12) 
s=i•+t 

10 



Thus, combining (11) and (12), we must have 

s=l 

which implies ,. 
< Lp,A., 

s=l 

a contradiction. Thus we have proved the following 

Proposition 3. Whenever at the SSP E, firms choose to be unconstmined in at 

least one state, then the capacity chosen by the firms at fflUilibrium exceeds the 

capacity they would choose in the certainty fflUivalent case. 

At the monopoly, the certainty equivalent optimal capadty km obtains as 

(13) 

A similar argument as in proposition 3 shows that, whenever it is optimal for the 

monopolist to be unconstrained in a least one state, then monopolist's optimal 

capacity k;,, exceeds km. 

Finally, it is worthwhile to perform some further comparisons. First, notice 

that market excess capacity, obtained by aggregating firms excess capacities as 

referred in proposition 3, is greater under duopoly than under monopoly. Indeed, 

market excess capacity in the monopoly case is equal to k;,, - km;. As under 

duopoly, market excess capacity is equal to 2(k' - k), and a direct comparison 

using (9), (13), (6) and (10), reveals that k;,, - km < 2(k' - k). 

On the other hand, it is useful to compare, for the duopoly situation, the 

expected price and output in the uncertain demand case with price and output in 

the certainty equivalent case. For the latter, the output obtains as 

(14) 

11 



and price as 
n 

LPiAi 

P(2k) = '=1 

3 
+ ~(13+1). (15) 

In the uncertain demand case, under conditions (8) which guarantee that the firms 

choose the SSPE to be unconstrained up to state i', expected output writes as 

which, by (6), is equal to 

as in {14). AB for the expected price, we get 

and it is easily checked that this expected price is equal to P(2k). Accordingly, 

we obtain the following 

Proposition 4. Whenever it is optimal Joi· the firms to be unconstraine.d up so 

state i', expecte.d price and output at the SSPE coincide with the price and output 

corresponding to the certainty equivalent case. 

5. Concluding remarks 

In this paper we have analyzed the investment behaviour of firms when they 

are simultaneously faced with a random demand and with rival firms in the indus­

try. Under the restricted assumption of a linear demand with a random intercept 

over the states of Nature, we have shown that there exists a symmetric equilibrium 

at which firms operate in excess capacity, when compared with the capacity they 

would choose in the certainty equivalent case. Our analysis is original, we feel, to 

this extent that it deals with the strategic behaviour of firms when they operate 

in an uncertain environment. 

The paper calls for two natural extensions. The first would be to generalize the 

above analysis to other cost structures and different random demand environments. 

12 



The other one would consider the problem of investment in entry deterrence when 

demand fluctuates randomly. We have in mind an extension of the paper by Dixit 

(1980) which would consider sequential entry in an industry faced with uncertain 

demand. 
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Appendix: Proof of Proposition 2 

If capacity is not binding under state s. the best reply against k' in the 

second-stage game obtains as the solution of the maximization problem 

i.e. 

max(A, - k' - q)q - 'fq, 
q 

A, - ~· - "! ~ R,(k'). 

Now assume that firm 1 deviates from k' to some new level of capacity k1 ~ k'. 

When k' < k1 ~ A,+!; - 'Y it is clear that such a deviation cannot be profitable 

since k* is the best reply in the first stage game against k' as long as k1 is in the 

interval [A, 31, Ai±!i - 'Y]. So we have only to consider in the sequel values of 

k1 ~ A,+g -"(. Lets be any state with i' < s < n. If k1 E [R,(k'), R,+1 (k')[~' 
I., it is optimal for firm l to play Ra(k') in the second stage game in state u, for 

u E {i' + 1, ··-,s}. For u E {s + 1,-· · ,n}, firm 1 is constrained by k1 since it 

cannot use Ra(k*) in the second stage gan1e. Accordingly, the payoffs of firm l in 

the fust stage game when kz E [R,(k'), R,tl(k')[ is given by: 

II(k k')~,f.. (Aa-'1)
2

+ ~ (Aa-k' s 11 ~ P(f 3 ~ Pa 2 
u=l u=:i•+1 

n 
(I) 

+ L Pa(Aa - ki - k' - 'f)k1 - f3k1. 
u=s+l 

[~1 A-·+1 - k' - 'I [ Assume first that k1 E 'a , ' 2 . Then payoffs to firm 1 of the 

first stage game is, given by (see (2)) 

We know that k1 = k* is the best reply against k' for k1 in this domain since the 

payoff (A.1) coincides with (2), from which k' has been shown to be the unique 

solution to the maximization problem. 

[
A·+1-k' -'r A··+z-k' -~[ Now assume that k1 E ' 2 ·, ' 2 ' = I,.+1 . In this 

domain the payoff of the first stage game given firm 2 plays k', obtains by applying 
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formula (I) with s = i* + 1, i.e. 

n (A.2) 

+ L p,(Aa - k• - k, -7)k1 - f3k1. 
u=i•+2 

It is easy to check that iJ2II,.~~~ki, k•) < 0, so that II,.+1 is strictly concave. On 

the other hand, 

n 

L p,A, - {3 
8IIi·+1 _ 0 k -k- <!.o.fu=i"+2 k*+'Y --- - ¢:> 1 - 11 - ___ n ___ - --

iJk1 ~ 2 
2 L...J Pu 

u=i•+2 

Now assume that 

This implies that 

f3 < L p,(A, - A·+i), 
u>i" +1 

which contradicts the left part of inequality (8), so that 

- A,·+i -k• -'Y 
k11 < 2 

Accordingly. the value of k1 which maximizes the function II,.+1 (k1 , k•) does not 

belong to I,.+ 1• Thus. by strict concavity of II,. +1 (k1 , k• ), the optimal value of 

IIi'+i. when k1 is restricted to I,.+2, lies on the left boundary of!,.+!, i.e. at 

k1 = A,. +l 2 k• - 'Y. Moreover, substituting the values of k1 in (A.l) in II;- ( ., k•), 

we see that 

(
A.-+1-k'-'1 ·) (A;·+1-k'-'Y ·) II;· 

2 
,k =II;·+1 

2 
,k . (A.3) 

Since 

II,. ( A·+i ~k' - 7 .k•) <II,.(k',k') 

no deviation k1 in l;·+i is profitable. 
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Now assume that k1 E Ii'+2· Applying fromula (I) with s = ;• + 2, we get. 

for k1 E I,.+2, 

* 0"-1 •i·+1- -')' ;• (A )2 
( 4 k* )

2 

Il;·+2(k1,k )=~Pa --
3

- +P;·+1 
2 

··+2- -"/ (A k' )2 n 
+ Pi•+2 ' 

2 
' - I: Pa(Aa - k' - k1 -1)k1 - f3ki. 

a=i•+3 

It is easy to check that fPII,.B~~ki, k') < 0, so that rr,.+2 is strictly concave. 
1 

Furthermore, 

n 

I; PaAa - i3 
[}II d k• + 'Y i'+2 O k k- ef a=i•+3 , 
-~- = ¢:} 1 = 12 = ---=--- - ---
[}~ n 2 

2 I: Pa 
a=i•+3 

- A-. +2 - k' - 'Y Now suppose that k12 2'. ' 2 ' . This implies 

n 

(3 S I: (Aa - A,.+2) 
CT=i• +3 

and1 a fortiori, 

n 

i3 S I; Pa (A, -A·+2) + Pi'+2 (A,.+2 -A,·+1). 
a=i•+3 

This, in turn, implies 
n 

f3 S I: Pu (A, - A,.+1) 
u=i"+2 

However the last inequality contradicts the left part of (A.1). Accordingly, 

the value of k, which maximizes II,.+2(k1 ,k') does not belong to l;·+z- Thus. 

by strict concavity of Il;•+z, the optimal value of II,.+z, when k1 is restricted to 
A·+2 - k' - " l;-+2, lies on the left boundary of I,.+2, i.e at k1 = ' 2 '. Hence, for 

all k1 E I[. +2 , we have 

(
A-·+2 - k' -1 ) 

Il;·+2(k1, k') s 1f;•+2 ' 2 'k' . (A.4) 
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Moreover, substituting this value of k1 in II,+1 (-, k'), we see that 

(
A,.+2 - k' - 7 ·) _ . (Ai·+2 - k' -7 ·) Ili•+2 

2 
,k -II,·+1 

2 
,k . (A.5) 

Now by Strl.ct concav1·ty of II· 1 and tl1e fact that k-11 < A,·+1 -;/' - 7 , 1't ' ··+ - -
follows that 

(
A,·+2 - k' - 7 ·) (A;·+1 - k' -7 ·) rri·+i 

2 
,k < II;·+1 

2 
,k . (A.6) 

(
A-·+2 - k' - 'Y A-·+1 - k' - 7) since ' 2 ' > ' 2 . Furthermore, using {A.3) and (A.6), 

we get 

Finally comparing (A.4) and (A. 7), we obtain 

for all k1 E Ii·+z• which proves that no deviation k1 in I[.+2 is profitable. 

Proceeding in the same fashion for k1 in Ii·+3• Ii'+4 ···In, it can be shown 

that no deviation k1 ~ k' can be profitable for firm 1. 

Now let us consider deviations kl with ki::; k'. When A,.3-y ::; k1 < k', it 

is clear that such a deviation cannot be profitable, since k' is the best reply in the 

[
A-. - 7 A-·+1 - 7] first stage game against k' as long as kl is in the interval ' 3 , • 3 . 

b.-=-1 So we have only to consider the values of k1 ::; ~- Let s be any state with 

1 ::; s < i'. Denote by D, the interval [ A,i J, A,+~ - J [, 1 < s ::; i' -1. When 

k1 ED,, 1 < s::; i' -1, the payoff II,(k1, k') of firm 1 in the first game is given 

by 

n 
(II) 

+ L Pu(Au - k' -7 - kl)k1 - f3k1. 
CT=i*+l 
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Assume first that k1 E D,. - l · In this domain. the payoff of the first stage game. 

given that firm 2 plays k•, obtains by applying formula (II) with s = i• - 1. i.e. 

~ (A-1) 2 

( A·-"t ) IIi'-1 (k1, k') = ~Pu T + p;· A,. - '
3 

- k1 -1 k1 

n 

+ L Pu(Au -k' - kl -1)k1 - f3k1. 
a=i•+I 

It l·s easy to theck that 
82

IIi'-l < 0 th t II . t . tl 0 th 8ki , so a ,. -1 1s s ric y concave. n e 

other hand, 

an,. -1 _ 
0 

k _ k- ~r [j;_ PuA,, - fJ] 
--- - ¢:} 1 - 13 -

8k1 ~ 
L. Pu 
O'=i· 

- A 0 -1 Notice that if k13 is strictly smaller than ' 3 , then we would have 

n 

{J> L p,,(Au-A,.), 
u=i•+l 

which contradicts the right part of inequality (A.1). 

Accordingly, the value of k1 which maximizes the function II,._ 1 exceeds the 

right extreme of the interval D,._1. Thus, by strict concavity of rr,._1(k1,k'), 

the optimal value of IIi'-1 (k1, k') when kl is restricted to D,·-1, lies on the right 
A. - 't boundary of D,._ 1, i.e. at k1 = ' 3 . Moreover, substituting this value of k1 

in (2), we see that 

(A.-~ ) (A·-1 ) rr,._1 '
3 

', k. = rr,. ' 
3 

, k' s rr,. (k*, k'). 

Accordingly, no deviation from k' can be profitable by reducing capacity in D,._ 1. 

Applying the analogous reasoning held above for values of k1 S k', it can be 

shown that no deviation in D,.-2. D,._3 , · · ·, D 1 can be profitable to firm 1. Con­

sequently, no deviation k1 S k' can be profitable for firm 1. A perfectly similar 

argument applies to show that no deviation from k' can be profitable either for 

firm 2. 

This completes the proof of proposition 2. 
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