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THE DEMAND FOR ELECTRICITY IN VIRGINIA 

Michael P. Murray, Robert Spann, Lawrence Pulley, 
and Edward Beauvais* 

I. Introduction 

LESTER Taylor concluded his recent survey 
of electricity demand studies (1975) with an 

overview of the deficiencies of those studies and 
a program for future research.' In his remarks 
Taylor noted that most empirical studies have 
been limited to a single customer class, residen- 
tial consumers, that many studies have relied on 
highly aggregated data such as national time 
series or cross sections of states, that few have 
explicitly accounted for the declining block rate 
structure of residential electricity prices and 
none has considered the two-part tariff aspect of 
commercial and industrial demand, and that none 
has analyzed seasonal variations in electricity 
demand, especially seasonal variations in kil- 
owatt peak demands. This paper presents a 
demand study of the Virginia Electric Power 
Company2 (VEPCO) that is not lacking in any of 
the aforementioned dimensions. 

Residential, commercial, and industrial de- 
mands are analyzed using monthly data from 
each of VEPCO's nine Virginia billing districts 

over the period 1958-1973.3 Seasonal variation in 
the kilowatt hour demand coefficients is per- 
mitted, and the structure of VEPCO's (summer) 
monthly kilowatt peak demand is estimated 
(from 1960-1973 data) to allow some conclusions 
to be drawn about VEPCO's peak load problems. 
For each customer class, and for peak demand, 
more careful attention has been given to the 
specification of appropriate price variables than 
has been customary in the past studies. In an 
appendix, Murray and Pulley contrast two sets of 
forecasts for residential kilowatt hour demand, 
one based on the model of this paper and the 
other based on a model-free methodology 
pioneered by Box and Jenkins (1970). The out- 
comes of these two forecasting methods are 
compared with actual demands for a limited 
number of years. 

We come to four major conclusions. First, 
both economic growth and increases in the real 
price of electricity tend to induce load factor 
deterioration because kilowatt peak demand in- 
come elasticities are higher, and price elasticities 
lower, than the corresponding kilowatt hour de- 
mand elasticities. This finding suggests that in a 
period of rising real incomes and rising real elec- 
tricity prices, electric utilities will face an increas- 
ing need for means, such as time of day pricing, 
to alleviate peak load problems. Second, demand 
elasticities can vary substantially within a com- 
pany's service area, implying that there may be 
regional differences in the impact of rate changes 
on customers, and that uniform patterns of rate 
changes and of economic growth within a com- 
pany's service area may cause uneven patterns in 
the need for new transmission and generating 
facilities. Third, and most tentatively, alternative 
fuel prices should be accounted for in forecasting 
kilowatt hour demand because industrial electric- 
ity users are sensitive to these prices. And 
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I Taylor (1975), pp. 107-108. Readers interested in compar- 
ing our empirical results with those obtained by earlier re- 
searchers will find Taylor's article very useful. Taylor's paper 
also contains a comprehensive bibliography of the electricity 
demand literature. 

2 In 1975, VEPCO provided 72% of the total kilowatt hours 
consumed in Virginia. 

I There were actually eleven VEPCO billing districts in 
Virginia during the sample period, but two of these served 
primarily other states and contained only a few customers in 
Virginia. In 1974, VEPCO redefined the geographic bound- 
aries of its billing districts, so we were limited to pre-1974 
data. 

4 Load factor is the ratio of actual annual kilowatt hours 
delivered to potential annual kilowatt hour output. 
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586 THE REVIEW OF ECONOMICS AND STATISTICS 

fourth, the choice between modeled and model- 
free forecasts is not trivial; separate forecasts of 
each of residential demand's determinants, 
coupled with structural estimates of the demand 
relationship, yield very different forecasts of 
electricity demand than does direct forecasting of 
electricity demand. 

As Taylor has emphasized,5 econometric 
models of residential electricity demand are 
much better developed than those for industrial, 
commercial or peak demands. In this paper we 
have sought to improve on past efforts in all four 
areas. Our residential model, which accounts for 
both the declining block structure of residential 
prices, and the dynamics of appliance accumula- 
tion, has benefited from the past work of others; 
our industrial, commercial, and peak models 
make notable advances in that they account for 
the two-part tariff structure of industrial and 
commercial price schedules and differentiate 
among seasons and between long run and short 
run demand changes. In all, the methods used 
throughout are consistent enough to permit rea- 
sonable comparisons among, and combinations 
of, customer class results. 

The next three sections discuss the theoretical 
models underlying the demand parameter esti- 
mates. Section V details the data used, while 
sections VI and VII contain the empirical results. 
Concluding remarks are made in section VIII. 

II. Residential Consumption 

Two major stumbling blocks to modeling resi- 
dential electricity consumption are the complex 
residential electricity price schedules and the dy- 
namic responses of households to changes in 
their long run desired appliance holdings. Other 
factors to be accounted for are climate (espe- 
cially temperature), income, appliance prices, 
and the prices of alternative fuels. 

Residential electricity customers typically face 
a declining block rate structure. For example, the 
first fifty kilowatt hours (kwh) purchased may 
cost 5g each, the next hundred 3g each, and so 
on; the intervals over which the marginal price is 
held constant are called "blocks." For each cus- 
tomer, the prices in blocks below one's own de- 
mand are inframarginal; prices in blocks above 
one's own demand are superfluous. The response 
of a single customer to a change in a block's price 

will vary as that price is marginal, inframarginal, 
or superfluous. For inframarginal prices, the ef- 
fect of a price change will be the same as for an 
income change equal to minus the price change 
times the block length; for marginal prices, a 
price change will induce both income and sub- 
stitution effects; for superfluous prices, a price 
change has no effect. 

Since in the aggregate most blocks will play 
different roles for different customers, the price 
coefficients in the demand equation will depend 
on the distribution of kwh demands across cus- 
tomers. Only in the lowest blocks, above which 
virtually all usages lie, can we assume that the 
effect of price changes is homogeneous across 
customers; in these blocks, the prices are in- 
framarginal for everyone. Indeed, one test of the 
validity of our demand model, suggested by 
Taylor (1975),6 is to verify if the income coeffi- 
cient is of the same magnitude (but opposite sign) 
as the coefficients of the prices of lowest kwh 
blocks when these block prices are weighted by 
their block lengths. 

In the sample period there are nine price 
blocks; multicollinearity among them requires 
reduction in their number to three. The first five 
prices are assumed generally inframarginal (from 
0 to 210 kwh). To facilitate comparison with the 
income coefficient, a weighted sum (with block 
lengths as weights) of these prices forms the first 
price variable. The sixth and seventh blocks' 
prices are summed, as are the eighth and ninth 
blocks' prices, to form the other two price vari- 
ables. The empirical results of the paper are not 
sensitive to alternative groupings. 

A definitive empirical treatment of the dynam- 
ics of residential electricity demand will not be 
possible until detailed data on electrical ap- 
pliances and appliance prices become avail- 
able. Without such data it is necessary to make 
simplifying assumptions if the dynamics of con- 
sumer behavior are to be included in a model of 
residential electricity demand. A very tractable 
model follows from the assumption that utiliza- 
tion rates are constant and the same for all 
appliances.7 This permits kwh consumption to be 
written as 

5 Taylor (1975), pp. 107-108. 

6 Taylor (1975), p. 80. A theoretical paper by Nordin (1976) 
written after this paper, shows that Taylor's test is, at best, an 
approximation to a proper test; by implication, our test re- 
sults are not conclusive. 

7 See Taylor (1975) for detailed discussions of several ap- 
proaches to dynamizing electricity demand models. 
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DEMAND FOR ELECTRICITY IN VIRGINIA 587 

K = kwh = rA 

where r is the utilization rate and A is total 
appliance holdings measured in kw capacity. If, 
further, we assume r is a log-linear function of 
some n variables, the Xi (prices, income, tem- 
perature, etc.), we can write 

n 

lnK= 1,fiXi + lnA. 
i=1 

To circumvent the need for data on A, we assume 
households are in a process of continuous partial 
adjustment towards a desired level of appliance 
holdings. Desired appliance holdings, A*, are as- 
sumed to depend multiplicatively on a vector of 
m variables, the Zj, some of which may also 
appear among the Xi. Thus, 

m 

ln A*t = EajZjt-i. 
j=1 

We also assume the partial adjustment process 
takes the form 

n At - In At = , (ln A*t -n At-,) 

0 < ' 1. 

So the demand relationship can be expressed as 
n 

In Kt - (1 - k)ln Kt-, = E i 

m 
x (Xit - (1 - k)Xit1) + a3.4Zjt... (1) 

j=1 

And if households adjust instantaneously (4 = 

1), as we find they do, the model becomes 
n m 

In Kt = 1PAXt + I CiAZt_l (1') 
i=1 3=1 

The equal utilization rate assumption is 
thoroughly untenable across winter and summer; 
air conditioners are unused in winter, while heat- 
ers are inactive in summer, and these two 
appliances are an important part of the whole 
stock. Our approach is to conceptualize two dis- 
tinct capital stocks, one for summer and one for 
winter. This implies that the time lags between 
observations are not uniform since the lag within 
seasons is two months (in our bimonthly data) 
while the lag between seasons is six months, so 
we have added the assumption that all summer 
appliance stock adjustment occurs during the 
winter, and conversely for the winter appliance 

stock.8 In this conceptualization, the Xt-, and 
Zt-, in equations (1) and (1') are the means of the 
X's and Z's in the season of t for the previous 
year (i.e., if t is in the summer of 1971, Zjt- 
refers to the mean Zj in the summer of 1970). 

Equation (1) is the demand model we estimate. 
The Xi are (the logs of) the three electricity price 
variables described above lagged one period, one 
or two temperature variables, per capita perma- 
nent income, and dummy variables to permit 
bimonthly shifts in the demand function. The Zj 
are (the logs of) the three electricity prices, per 
capita permanent income, and the price of #2 
heating oil. Kilowatt hour consumption is mea- 
sured in per capita terms. 

Responses to price and income changes are 
probably not instantaneous, but rather are spread 
over several periods. Unfortunately, multicol- 
linearity precludes the inclusion of further lagged 
prices, so the price coefficients reflect the effects 
of both current and lagged prices; this consider- 
ation should be kept in mind when interpreting 
residential short run price elasticities below. A 
permanent income measure, discussed further in 
section V, is used to reflect the lagged response 
of households to income changes. 

III. Commercial and Industrial Consumptions 

Commercial and industrial electricity demands 
are similar to one another and dissimilar from 
residential demands. The relative price of elec- 
tricity, the level of economic activity, the prices 
of alternative fuels, and weather are the primary 
variables. Once again the complexity of the rate 
structure and the dynamic adjustment of users to 
their desired electricity using capital stocks are 
the principal problems. 

Typically, commercial and industrial users 
face (different) two-part, declining-block tariffs. 
The first part of the tariff is a declining-block 
price system for total kwh demanded in a month, 
called an "energy charge." The second part of 
the tariff is a declining-block price system for the 
maximum rate of kilowatt (kw) consumption dur- 
ing a 15, 30, or 60 minute interval, called a "de- 
mand charge." As in residential demand, each 

8 The residential demand model was also estimated under 
the assumption that there is a single homogeneous capital 
stock, without the assumption of all adjustment occurring 
between seasons. The empirical results were basically the 
same as those for the two stock models presented here. 
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588 THE REVIEW OF ECONOMICS AND STATISTICS 

block price (for both energy and demand 
charges) will vary from being marginal, in- 
framarginal, or superfluous from one customer to 
another. 

The dynamic adjustment problem is somewhat 
different in the commercial and industrial sectors 
than in the residential sector. The highly inte- 
grated nature of the production process makes 
the assumption of instantaneous adjustment of 
the utilization rate and lagged adjustments of 
stocks untenable; both the utilization rate and 
capital stocks are likely to respond slowly to 
changes in demand determinants. Rather than 
attempt to disentangle the utilization and stock 
adjustments we simply assume a distributed lag 
structure for electricity demand 

m 

ln Kt = yiVit + X1 ln Kt-, 
i=l 

+ X2 ln Kt-12 (2) 

where X1, X2, and the yi are parameters, the Vi are 
the determinants of demand, and K is kilowatt 
hours demanded. Both Kt-, and Kt-12 are in- 
cluded in order to capture both month to month 
and year to year adjustments; Kt-, captures the 
usual short run lags in response while Kt-12 ac- 
counts for both seasonal factors and the dynamic 
adjustment of the season-specific capital stocks. 
The Vi are all measured in logs so the yj are short 
run elasticities and the yj divided by (1 - Xi - 
X2) are the long run elasticities. The Vi are (the 
logs of) real marginal energy and demand prices, 
temperature, a measure of economic activity, the 
real price of oil, and the average price of electric- 
ity. In the commercial sector about the only pos- 
sible substitution for electricity is in heating; for 
this reason, the price of oil is included only in the 
winter regressions for commercial customers. 

The limitations of the data make it impractica- 
ble to model the complexity of interactions be- 
tween energy and demand charges; therefore 
representative marginal prices are constructed. 
For marginal energy charges we use the marginal 
cost of increasing kwh from one half of average 
kwh to one and a half average kwh, at average 
kw demand. For marginal demand charges the 
construction is analogous, with the roles of kw 
and kwh reversed.9 Since the marginal prices are 

not complete representations of the price struc- 
ture, average electricity price is included to cap- 
ture otherwise masked price responses. 

Two measures of economic activity are used. 
In the commercial sector total taxable income is 
used to reflect commercial activity. In the indus- 
trial sector, in which there is great variance 
across industries in electricity usage, an electric- 
intensity-industrial-activity index was con- 
structed by weighting industry employments by 
the 1971 national ratios of electricity consump- 
tion to employment for the industries.10 This 
measure is especially attractive since it can re- 
flect differing cyclical activity patterns across in- 
dustries as well as differing electricity intensities. 

Of the three major alternatives to electricity 
(gas, coal, and oil), only oil is represented in the 
model by a price variable, because of multicol- 
linearity problems.11 

IV. Monthly Peak Kilowatt Demand 

High storage costs make it uneconomical for 
electrical utilities to use storage to smooth out 
production in the face of uneven temporal pat- 
terns of demand. Instead, utilities choose their 
productive capacity so as to be able to meet 
"peak demands" at the moment they arise, an 
approach that results in excess capacity in off 
peak periods. The "load factor" of a utility, the 
ratio of actual kwh usage to potential kwh output 
in a period, is a measure of capacity utilization; a 
low load factor implies that during much of a 
period considerable generating capacity has lain 
idle. 

Despite the importance of kw peak demand for 
generating capacity and financial planning, 
nowhere in the economic literature on electricity 
demand are there estimates of monthly kilowatt 

9 For commercial users, an average kilowatt level is as- 
sumed to be 10 kw; an average kwh demand is assumed to be 
2,190 kwh. For industrial users, the averages are 7,500 kw 

and 2,737,500 kwh. Since for commercial customers the 
lower marginal demand charge is always zero, this variable 
never appears in the regressions. 

10 The industry employments were drawn from the March 
and September reports of the Virginia Employment Commis- 
sion. The ratios of electricity consumption to employment for 
the industries were calculated from data in the Census of 
Manufactures. 

I Due to restrictions on the use of gas by industrial cus- 
tomers, it can be shown that under general conditions for 
industrial users the shadow price of gas at the margin equals 
the price of fuel oil. Moreover, the high degree of substitut- 
ability among fuel oils in many processes suggests that the 
prices of these goods will continue to move together in the 
future. 
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DEMAND FOR ELECTRICITY IN VIRGINIA 589 

peak demand price and income elasticities. 12 

Without such estimates, kilowatt hour demand 
elasticities give no information as to the effect of 
price and income changes on load factors. How- 
ever, once both kw peak and kwh demand elas- 
ticities are obtained, the behavior of load factors 
can be inferred. 

If the system kw peak income elasticity is 
larger than the system kwh demand income elas- 
ticity, as we find, then growth in income will 
bring about a large increase in required kw capac- 
ity relative to the actual kwh demand, and the 
load factor will decline. Similarly, if system peak 
price elasticity is smaller in magnitude than the 
system kwh demand price elasticity, as we find, 
then increased real electricity prices will lead to a 
load factor decline. 

We jointly estimate the structure of VEPCO's 
monthly kilowatt peak demand for each of the 
summer months. (VEPCO's annual peak has oc- 
curred in the summer over the entire sample pe- 
riod.) The monthly peaks are assumed to follow a 
distributed lag pattern reflecting the lags in the 
demand responses outlined in sections II and III. 

ln Mt = Y,4jZjt + X,ln Mt-, + X21n Mt-12 (3) 

where X, and X2, and the j are parameters, M is 
monthly peak kilowatts, and the Zj are the de- 
terminants of peak kilowatt demand. Again, Mt-, 
captures the usual short run lags in behavioral 
response, while MI-12 accounts for both seasonal 
factors and the dynamic adjustment of the sea- 
son-specific capital stocks. 

Since a utility's peak demand involves de- 
mands by all customer classes, the Zj should 
include all the variables of the three kilowatt 
hour demand equations. Unfortunately, many of 
these variables are highly collinear over the sam- 
ple period and some accommodation is neces- 
sary. The marginal energy prices from the com- 
mercial and industrial kilowatt hour demand 
models are summed, together with similar con- 
structions based on the residential price struc- 
ture, to form two price variables. A marginal 
demand price is formed by summing the marginal 
demand prices from the commercial and indus- 

trial kilowatt hour demand models. Both the 
electric-intensity-industrial-activity index and 
total taxable income are included to reflect eco- 
nomic activity and income. The price of the most 
widely used alternative fuel, #6 residual oil, is 
included. (In the residential sector #2 heating oil 
is the most widely used alternative, but multicol- 
linearity precluded including both prices. Other 
fuel prices were also highly collinear with the oil 
prices.) One average temperature variable is in- 
cluded as well. 

V. Data 

Monthly kilowatt hour sales, from January 
1958 to December 1973, by customer class, by 
each of nine billing districts were obtained from 
marketing reports provided by VEPCO. The 
company also provided summer month kw peak 
demands for 1960 through 1973 and schedules of 
prices for each customer class (inclusive of fuel 
adjustment costs) over the sample period. Data 
beyond 1973 were not used because the company 
reorganized its billing districts, destroying the 
comparability, at the billing district level, of ear- 
lier and subsequent data bases. 

Demographic data were gathered from the 
Tayloe Murphy Institute for each of the state's 
counties and independent cities. Taxable income 
by county and city for the sample period was 
provided by the Virginia Department of Taxa- 
tion. Taxable income is used in lieu of gross 
income, which was not available on a county or 
city basis. Since the billing district boundaries do 
not coincide with city and county lines, it was 
necessary to transcribe a map of districts onto a 
map showing county and city lines. Since each 
billing district's boundaries are in the less popu- 
lous parts of a legal jurisdiction, reasonable ap- 
proximations to the true population and income 
data were obtained by matching the billing dis- 
tricts to the jurisdictions they embraced.'3 

Neither income nor population data were 
available on a monthly basis, so the annual data 
were interpolated to approximate the true data. 
Population data were interpolated linearly, while 
the income data were assumed to follow the same 
path as employment, for which monthly observa- 

12 There have been some analyses of time of day kwh 
elasticities, such as Cargill and Meyer (1971) and Atkinson 
(1977). Uri (1977) offers an analysis of system kw peak using 
monthly data, as we do here, but he focuses on forecasting 
and does not report elasticities. Noneconomic analyses of 
peak demand forecasts are summarized by Gupta (1969). 

13 Since the boundaries of the billing districts are in rural 
areas or along jurisdictional boundaries, it was not difficult to 
ascertain to which billing district a city or county contributed 
the bulk of its population and income. 
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590 THE REVIEW OF ECONOMICS AND STATISTICS 

tions were available from the Virginia State Em- 
ployment Commission. 

The actual income variable used in the residen- 
tial regressions is not taxable income interpo- 
lated, but rather a measure of permanent income. 
Annual gross state income was regressed against 
annual state taxable income over the period 1941 
to 1973. This relationship was used to estimate 
annual gross income from annual taxable income 
on a county and city basis. These annual esti- 
mates were then coupled with Friedman's (1957) 
weights to form a permanent income variable (a 
procedure drawn from the work of Fisher and 
Kaysen (1962)). It is the permanent income vari- 
able that is interpolated and utilized in the resi- 
dential sector regressions. This measure of in- 
come is used so that the price and income elas- 
ticities estimated in the residential sector are 
comparable, both capturing the influence of past 
values of prices and income; multicollinearity 
among present and lagged prices made such an 
outcome unavoidable for price elasticities.14 

The temperature data were obtained from the 
Environmental Data Service of the U.S. De- 
partment of Commerce. The data were average 
monthly temperatures for six climatic divisions 
of the state. Some VEPCO billing districts fall 
into a single climatic division, others into two. In 
the residential regressions, the single tempera- 
ture variable was used in the former case, and the 
temperature variables from both divisions were 
used in the latter case. In the industrial and 
commercial regressions an average of the two 
temperature variables was used when the billing 
district fell in two climatic divisions. 

The fuel oil prices are an average of the prices 
for Charlotte, North Carolina and Washington, 
D.C. These prices were provided by Foster As- 
sociates. All nominal variables in the study are 
deflated by the Consumer Price Index to express 
them in real terms. 

VI. Billing District Demands 

Our data permit differentiation among VEP- 
CO's nine Virginia billing districts, and F-tests 

indicate that the demand parameters are not ho- 
mogeneous across these districts. This section 
summarizes the seasonal demand regressions for 
each customer class in each billing district,15 and 
presents the regression results for the system 
(summer) kw peak demand. Of course, for most 
policy purposes it is the system-wide price and 
income elasticities that are of interest, and in the 
next section we present the price and income 
elasticity estimates implied by the estimated dis- 
trict parameters. 

The variation in demand parameters across bill- 
ing districts is not surprising. Variations in 
rural/urban composition, industrial mix, the ratio 
of single family to multiple family units, and the 
like will alter the pattern of electricity demand. 
Also, to the extent the log-linear specification is 
an approximation, regional differences in in- 
come, weather, etc. imply that the true demand 
structures are being estimated about different 
points across the regions. 

For commercial and industrial users, we have 
monthly data and we use this to differentiate 
among four seasons: summer, fall, winter, and 
spring. 16 Residential customers are generally 
billed on a bimonthly basis, with one group of cus- 
tomers billed in odd months (January, March, 
etc.) and another billed in even months (Feb- 
ruary, April, etc.). F-tests indicate that these 
residential billing groups are not homogeneous,17 
so separate demand equations are estimated for 
each billing group in each district. The restriction 
to bimonthly data limited us to only two seasons, 
hot and cold.18 

The lack of homogeneity among billing groups 
is somewhat surprising. One likely explanation is 
that meters are read in half the billing district in 

14 We might also have constructed permanent price vari- 
ables, using weights from earlier studies. However, the high 
degree of collinearity among lagged price variables implies 
the choice makes little difference. Moreover, since most stud- 
ies that account for dynamics do not differentiate between 
lagged price responses and lagged adjustments in appliance 
stocks, it is not clear what weight one could select. 

15 Due to missing data, 2 billing districts were not examined 
for the Industrial Fall demand, and 1 was not examined for 
the Industrial Spring demand. The missing elasticities were 
estimated as the aggregate elasticities for the remaining ob- 
servations. 

16 Summer is June, July, and August; Fall is September, 
October, and November; Winter is December, January, and 
February; and Spring is March, April, and May. 

17 In two of its Virginia billing districts, VEPCO delivers 
natural gas as well as electricity. Since in these districts the 
gas meters are read monthly, the electricity customers also 
receive monthly bills. In these two districts, the odd months 
and even months do appear homogeneous, as one would 
hope, but separate regressions were still maintained for 
simplicity. 

18 For customers billed in odd months, cold is October 
through March and hot is April through September. For cus- 
tomers billed in even months, cold is November through 
April and hot is May through October. 
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one month, and in the remaining area the next 
month. The geographic and demographic disper- 
sion between the two areas accounts for the lack 
of homogeneity. This explanation is consistent 
with the finding that in the two districts in which 
residential billing is monthly, homogeneity be- 
tween odd and even months was not rejected. 

The residential demands, of the form given in 
equation (1), were estimated by an iterative least 
squares procedure to obtain unique parameter 
estimates.'9 In every instance the estimated 
value of the speed of adjustment converged to 
unity. While this result is surprising, it is consis- 
tent with the finding that the estimated speed of 
adjustment in system peak kw demand (which is 
a mix of commercial, residential and industrial 
responses) is faster than the commercial and in- 

dustrial adjustments.20 Conditional upon the re- 
sult that 0 = 1, the Cochrane-Orcutt procedure 
was applied to demand functions of the form 
given in equation (1') to correct for apparent first 
order serial correlation. The mean estimated co- 
efficients of (1'), by season, across billing dis- 
tricts, and the standard deviations of these coef- 
ficients across billing districts, are presented in 
table 1; all the variables are measured in real 
terms. 

In each of the eighteen residential regressions 
we tested the hypothesis that the inframarginal 
price variable has a coefficient equal in mag- 
nitude, but opposite in sign, to the income coeffi- 
cient. In fourteen cases we fail to reject the null 
hypothesis (a = .05).21 We also tested the per 

TABLE 1.-MEAN ESTIMATED RESIDENTIAL SECTOR DEMAND COEFFICIENTS BY SEASON, BY DISTRICT AND THEIR 

STANDARD DEVIATIONS ACROSS DISTRICTS 

Coefficients 

Cold Hot 

Variable Group I Group II Group I Group II 

Per capita kilowatt hours demanded in bimonth (dependent variable) 
Dummy for 1st bimonth in season -7.25 1.21 -7.33 -3.51 
Dummy for 2nd bimonth in season -7.14 1.12 -7.33 -3.34 
Dummy for 3rd bimonth in season -7.38 1.07 -7.20 -3.40 
Sum of first 5 block prices multiplied by the block lengths, 

lagged one month (P,) -0.22 0.13 -0.04 0.54 
(0.32) (0.46) (0.29) (0.27) 

Sum of 6th and 7th prices, lagged one month (P2) -1.07 -1.89 -1.10 -1.51 
(1.33) (1.13) (1.01) (1.43) 

Sum of 8th and 9th prices, lagged one month (P3) -0.02 0.09 0.04 -0.08 
(0.08) (0.08) (0.07) (0.07) 

Average of P1 in this season, lagged one year -0.57 -0.63 -0.10 -0.35 
(0.43) (0.39) (0.42) (0.68) 

Average of P2 in this season, lagged one year 1.75 0.81 1.48 0.72 
(0.91) (1.19) (1.65) (2.24) 

Average of P3 in this season, lagged one year -0.04 -0.28 -0.10 -0.15 
(0.11) (0.16) (0.36) (0.19) 

Per capita permanent income for this year (Y) 0.71 -0.29 0.53 0.76 
(0.86) (1.11) (0.71) (0.97) 

Average of Y in this season, lagged one year 0.17 0.61 0.33 -0.17 
(0.73) (0.96) (0.61) (0.93) 

1st temperature 0.06 -0.08 0.85 -0.28 
(0.47) (0.12) (0.97) (1.06) 

2nd temperature -0.41 -0.03 -1.10 1.15 
(0.74) (0.18) (1.14) (1.70) 

Price of #2 heating oil -0.19 -0.14 -1.12 -0.41 
(0.20) (0.28) (0.45) (1.08) 

R2 ,o0.99 0.99 0.99 0.99 
(0.006) (0.002) (0.0") (0.002) 

Note: Logs of above used as variables. Figures in parentheses are not standard errors, but standard deviations of estimates across billing districts. 

'9 The iterative procedure selected a value for X, per- 
formed OLS conditional on this value, then used values of 0 
near, but on opposite sides of, the first 0 to seek a lower sum 
of squared residuals. A new 0 was then chosen in the new 
direction and the process repeated until the 0 converged. 0 
was restricted a priori to the zero and one interval. 

20 One possible explanation of the rapid adjustments is that 
the sample period was a stable one in which income growth 
and price changes could well have been correctly anticipated 
by households. There is no evidence here that the adjustment 
to large, unanticipated shocks, such as VEPCO's 37% in- 
crease in real electricity prices in 1975, is instantaneous. 

21 These failures to reject are not very conclusive since 
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capita formulation for income and kwh demand; 
in fifteen of eighteen cases we could not reject 
the constraint (a = .05). Also, in fourteen of 
eighteen cases we reject (a = .05) the null hy- 
pothesis that all price coefficients are zero. Fi- 
nally, in ten of eighteen cases, we fail to reject 
(a = .05) the null hypothesis that the coefficient 
of fuel oil is zero, and in the remaining cases the 
coefficients are of the wrong sign.22 

The commercial and industrial demands (of the 
form given in equation (2)) were estimated by 
ordinary least squares. Given the finding about 
inframarginal prices in the residential sector, the 
average price of elasticity is assumed to have a 
coefficient equal in magnitude but opposite in 
sign to the income variable.23 Durbin-Watson 

tests for serial correlation indicated no need for 
corrections. Tables 2 and 3 present the mean 
estimated coefficients, by season, of the com- 
mercial and industrial demands across billing dis- 
tricts, and the standard deviations of those esti- 
mated coefficients across districts.24 All the vari- 
ables are measured in real terms. 

TABLE 2.-MEAN ESTIMATED COMMERCIAL SECTOR DEMAND COEFFICIENTS BY SEASON, BY DISTRICT AND THEIR 

STANDARD DEVIATIONS ACROSS DISTRICTS 

Coefficients 

Variable Fall Winter Spring Summer 

Log of kilowatt hours demanded (kwh) (dependent variable) 
Sum of logs of two marginal energy charges 0.11 0.04 -0.02 -0.04 

(0.18) (0.03) (0.12) (0.03) 
Log of marginal demand charge 0.02 0.007 -0.005 -0.02 

(0.05) (0.01) (0.03) (0.01) 
Difference between logs of income and average electricity 

price 0.42 0.27 0.003 0.002 
(0.36) (0.13) (0.002) (0.009) 

Log of average temperature -0.001 0.003 0.001 0.008 
(0.005) (0.003) (0.0006) (0.004) 

Log of kwh lagged one month 0.51 0.34 0.63 0.49 
(0.27) (0.18) (0.22) (0.15) 

Log of kwh lagged one year 0.07 0.28 0.34 0.43 
(0.20) (0.25) (0.18) (0.17) 

Log of price of #6 residual oil 0.22 
(0.18) 

Constant 4.35 2.75 0.43 0.47 
(2.39) (2.17) (0.56) (1.60) 

R 2 0.97 0.94 0.96 0.91 
(0.04) (0.08) (0.04) (0.19) 

Note: Figures in parentheses are not standard errors, but standard deviations of estimates across billing districts. 

they derive largely from the large standard errors on the price 
coefficients arising from the high degree of multicollinearity 
among all the price variables; moreover, as indicated in foot- 
note 6, this test is, at best, only an approximation to a true 
test. 

22 The use of the price of natural gas did not alter these 
results about the importance of alternative fuel prices to the 
residential demand for electricity. 

23 It has been pointed out to us that the log of the average 
price of electricity should not be subtracted from the log of 
income, as we have done. First, it is inframarginal expendi- 
ture, not average price, whose effect is similar to income. 
Second, an average price variable is negatively correlated 
with the disturbance term. Fortunately, the biases introduced 
by what amounts to a mismeasurement of income are not 
likely to be large. Average price is quite small relative to 
income, and its variance is small relative to that of income. 
Moreover, the bulk of this small bias will be absorbed as an 

increase in the expected value of the marginal price 
coefficients, since the marginal prices are highly positively 
correlated with average price; correction for this part of the 
bias would only reinforce our conclusions. The income 
coefficient is likely to be biased upwards only slightly and 
almost certainly not enough to reverse our conclusions. Un- 
fortunately, the considerable cost of redoing all 72 commer- 
cial and industrial estimations makes such small corrections 
uneconomical. 

24 The observed variation in estimated coefficients across 
billing districts and billing groups could arise from two 
sources. First are differences in the actual coefficients that 
are being estimated, and second are the sampling errors in- 
herent in estimation. Comparisons of the sums of squared 
residuals from pooled and disaggregated regressions (F-tests) 
indicate that the latter source is not sufficient to explain the 
observed variation by itself, so we conclude that there are 
coefficient differences across districts and across billing 
groups. Examination of the observed differences in estimated 
coefficients and their estimated standard errors suggests that 
these differences are not only statistically significant, but 
appreciable as well. The standard deviations of estimated 
coefficients across districts are not reported for purposes of 
statistical inference, but rather as summary statistics for the 
distribution of estimated coefficients across regressions. 
Statistical inference is postponed to section VII. Readers who 
wish to purchase xeroxed summaries of the individual regres- 
sion results, with a key to variable names, should contact 
Michael Murray. 
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The most striking feature of tables 1-3 is the 
wide variation of coefficients across districts; in 
general these differences are statistically signifi- 
cant. The lesson to be learned from this is that 
regulatory bodies may have to consider regional 
differences in the impact of proposed rate 
changes on customers within a company's ser- 
vice area and that, when reviewing utility plans 
to increase transmission and generating facilities, 
regulators may have to give special attention to 
the geographic distribution of such facilities since 
uniform income and price changes may generate 
uneven geographic demand changes. 

Since VEPCO has long been a summer peaking 
company, and since this pattern does not appear 
to be changing, the structure of system-wide kw 
peak demands was estimated only for the sum- 
mer months. Ordinary least squares was applied 
to a demand equation of the form given in equa- 
tion (3); all the variables are measured in real 
terms. Tests indicated no problems of serial cor- 
relation. The estimated coefficients from this re- 
egression, and their t-statistics, are presented in 
table 4. Some may be surpnrsed to see that the kw 
peak is less responsive to demand charges than 
to energy charges. This apparent anomaly disap- 
pears when one realizes that residential custom- 
ers, and even some small commercial and indus- 
trial users, do not have demand meters, and pay 
only energy charges. 

VII. Price and Income Elasticities 

In 1973 residential customers accounted for 
44% of VEPCO's kwh demanded; commercial 
customers registered 33% of VEPCO's kwh de- 
manded; and industrial users demanded the re- 
maining 23% of total kwh. The system-wide price 
and income elasticities for VEPCO are weighted 
averages of the separate elasticities of each cus- 
tomer class in each billing district, in which the 
weights are these relative shares of total kwh 
demanded. Since the estimated price and income 
elasticities are short run elasticities, it is neces- 

TABLE 3.-MEAN ESTIMATED INDUSTRIAL SECTOR DEMAND COEFFICIENTS BY SEASON, BY DISTRICT AND THEIR 

STANDARD DEVIATIONS ACROSS DISTRICTS 

Coefficients 

Variable Fall Winter Spring Summer 

Log of kilowatt hours demanded (kwh) (dependent variable) 
Sum of logs of two marginal energy charges -0.08 -0.27 -0.37 -0.08 

(0.94) (0.42) (1.3) (0.50) 
Sum of logs of two marginal demand charges -0.96 -0.78 -0.75 -0.28 

(1.61) (1.23) (2.35) (1.88) 
Difference between logs of activity index and average 

electricity price 0.56 0.37 0.92 0.33 
(0.44) (0.44) (0.89) (0.41) 

Log of average temperature -0.0003 -0.002 -0.004 -0.002 
(0.004) (0.004) (0.008) (0.004) 

Log of kwh lagged one month 0.12 0.10 -0.07 0.10 
(0.27) (0.25) (0.35) (0.27) 

Log of kwh lagged one year 0.14 0.13 -0.37 0.18 
(0.53) (0.41) (0.45) (0.34) 

Log of price of #6 residual oil 0.86 0.04 0.11 0.04 
(1.43) (0.42) (1.22) (0.69) 

Constant 6.32 8.72 14.35 6.82 
(10.05) (7.75) (15.28) (8.32) 

R2 0.94 0.82 0.89 0.89 
(0.06) (0.17) (0.11) (0.05) 

Note: Figures in parentheses are not standard errors, but standard deviations of estimates across billing districts. 

TABLE 4.-ESTIMATED PEAK DEMAND COEFFICIENTS AND 

THEIR t-STATISTICS 

Variable Coefficients 

Log of system's monthly peak 
kilowatts (kw) (dependent variable) 

Sum of the logs of six marginal 
energy charges -0.05 (2.30) 

Sum of the logs of three marginal 
demand charges -0.02 (2.40) 

Log of taxable income 0.64 (3.42) 
Log of electric-intensity-indus- 

trial-activity index 0.26 (1.28) 
Log of kw lagged one month 0.16 (3.02) 
Log of kw lagged one year 0.13 (1.23) 
Log of the price of #6 residual oil 0.07 (0.94) 
Log of constant -5.14 (8.54) 

Note: Figures in parentheses are t-statistics. 
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sary to use the estimated dynamic coefficients to 
produce long run elasticity estimates.25 

The disaggregated elasticities can be estimated 
from the customer-class, billing-district regres- 
sion coefficients. In the residential sector, the 
kwh demand elasticity with respect to a uniform 
increase in all block prices is the sum of each of 
the six coefficients of the price variables; the 
residential income elasticity of demand is the 
sum of the coefficients of the two income vari- 
ables. In the commercial and industrial sectors, 
the kwh demand elasticity with respect to the 
two marginal kwh price measures is twice the 
(common) coefficient of the kwh price variable; 
the kwh demand elasticities with respect to the 
one kw price variable in the commercial sector, 
and with respect to the two kw price variables in 
the industrial sector, are the coefficient of the kw 
price variable(s), and twice that coefficient, re- 
spectively. The income elasticity in the commer- 
cial sector is simply the coefficient of the income 
variable; in the industrial sector it is necessary to 
assume that changes in income generate equi- 
proportionate changes in employment across in- 
dustries if the coefficient of the electric-inten- 
sity-industrial-activity index is to be interpreted 
as an income elasticity. For kw peak demand, the 
price elasticity of demand with respect to a uni- 
form change in all six marginal price variables is 
six times their common coefficient; the price 
elasticity of demand with respect to a uniform 
change in all three marginal demand price vari- 
ables is thrice their common coefficient; finally, 
the income elasticity of kw peak demand is the 
sum of the coefficients of the income and elec- 
tric-intensity-industrial-activity index variables, 
under the assumption mentioned above. 

Under the assumption of normally distributed 
disturbances in the regressions, each of the dis- 
aggregated elasticity estimators is normally dis- 
tributed, and, therefore, so would be the system 
elasticity estimators based upon them. However, 
these normally distributed estimators are not 
necessarily the most efficient estimators avail- 
able because they do not incorporate our prior 
beliefs about the signs of the coefficients. Incor- 
poration of these prior beliefs into the estimation 

process is especially important when the param- 
eters to be estimated are small relative to both 
zero and to the variances of the normally distrib- 
uted estimators, since it is in these instances that 
a large portion of the probability masses of the 
estimators' density functions fall on the intui- 
tively wrong side of zero.26 

The estimated variances of our income elastic- 
ity estimators are small enough relative to the 
estimated elasticities that we need not concern 
ourselves with the inefficiency of the regression 
coefficient estimators, but our price elasticity es- 
timators have sufficient variance to make an al- 
ternative estimation procedure worthwhile.27 

In the case of price elasticities, we define a 
truncated estimator, x, in terms of the normally 
distributed estimator, x. 

XT = min (x, 0). 

These truncated estimators are attractive be- 
cause they have smaller variances than the nor- 
mally distributed estimators, but they are also 
biased. Fortunately, it is not difficult to put upper 
and lower bounds on both the variance and bias 
of the truncated estimator, expressed in terms of 
the variance of the normally distributed es- 
timators. In a special case of interest, in which 
the true parameter equals zero, we can state the 
exact variance and bias of x, in terms of the 
variance of x. 

The cumulative distribution function for the 
truncated estimator, F(x,), is 

F(XT)= (= )-1 

x f exp [-(xT - f)2/2o0]dxT, XT < 0 

F(XT) = Pr(x - 0) + lim F(x), X = 0 
X--OT 

25 It should be recalled that the short run-long run distinc- 
tion is used to refer to the dynamic adjustments in capital 
stocks and utilization rates. Multicollinearity among the price 
variables prevents differentiation of responses to current and 
lagged prices. 

26 For example, if the true elasticity is zero, half of the 
coefficients estimated (in the long run) will be positive. In our 
regressions 44% of the price elasticities were of the wrong 
sign; if all the elasticities were zero, the probability of obtain- 
ing as few as 44% positive is only 6%. 

27 Although the estimator developed below utilizes prior 
information, it is decidedly non-Bayesian in spirit. The pa- 
rameter to be estimated is just that, and not a random vari- 
able; the prior information is not a distribution for a random 
variable, but rather a simple non-positivity restriction. The 
chief attractions of the' estimator are its simplicity and 
efficiency; the chief drawback is its bounded, but otherwise 
unknown bias. A Bayesian estimator would be more compli- 
cated (involving several truncated distributions), require 
more a priori assumptions (the prior density over non- 
positive values), and would still be biased. We are grateful to 
T. W. Epps for discussions about our truncated estimator. 
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F(x7) = 1, X7 > 0. 

Thus, the expected value of x, is 

b = E(xT) = (ofV;S7)-1 

x { (x) exp [-(xt - )2/22] dx, 
_x 30. 

The bias in this is E(x,) - E(x), or 

-(o'V)}' { (x) exp [-(xl - /)2/y2] dx, 

which reaches a maximum in magnitude 
(-o/V2) at ,3 = 0, and approaches zero as , 
approaches -X0. 

The variance of the truncated estimator when 
/3 = 0 is 

s2 = (O b)2 1/2 + (o- V') 

x { (x - b)2 exp [-x2/2-2] dx 

= b2/2 + (/7r)-1 

x x2exp [-x2/2o-2] dx 
00 

- 2bx exp [-x2/2o2] 
_00 

+ b2 r? exp [-x2/20-2 ] dx] 

= b2/2 + oT2/2 - 2b21+ b2/2 
= (2/2 - b2= .34Ic2. 

That s2 attains a minimum for ,l3c 0 at ,3 = 0 can 
be seen by considering the case in which 3 > 0; 
the result exceeds s2 at ,3 = 0 by a positive 
amount. 

The chief attraction to truncating the normally 
distributed price elasticity estimators for each 
billing district and customer class is that when we 
form the weighted averages of such estimators 
(using from nine to seventy terms in the sums) it 
is reasonable to appeal to the central limit 
theorem and to treat the system-wide elasticities 
as (approximately) normally distributed. 

For the primary null hypothesis of interest, 
that the elasticities are zero, the above formulae 
for bias and variance hold exactly, and asymptot- 
ically valid test statistics can be formed in the 
fashion of the usual t-statistic. Tests of other 
hypotheses are generally less conclusive since 
we can examine results only at the bounds of the 
bias (-o-/27r, O) and of the variance (.341cr2,c2). 

When corrected for maximum bias, the trun- 
cated estimators of system elasticities are not 
much different in magnitude than the untrun- 
cated estimators. The primary gain from trunca- 
tion is the reduction in estimated standard error 
of more than 40%. Since the untruncated point 
estimates of system price elasticities do not differ 
appreciably from the maximally corrected trun- 
cated point estimates, the untruncated estimates 
are not reported. 

Tables 5, 6, and 7 present the estimated sys- 
tem-wide income, own price, and cross price 
elasticities for each customer class in each sea- 
son, for the total system, and for kw peak de- 
mand. Both short run and long run elasticity es- 
timates are reported, but the former are consid- 
erably more reliable than the latter. In each 
commercial or industrial regression, the esti- 
mated long run elasticity is the short run elastic- 
ity divided by one minus the sum of the lag coef- 
ficients. In general, the standard errors on the 
lag coefficients were relatively large. Moreover, 
in a substantial number of cases, the sum of the 
lag coefficients is negative or exceeds unity, im- 
plying the dynamic system is not monotonically 
stable. In the instances in which the sum of the 
lags is negative, the sum is treated as if it were 
zero, thereby equating long run and short run 
responses. In the instances in which the sum of 
the lag coefficients is in excess of one, the long 
run response is assumed to be equal to the aver- 
age long run response for that class of customers 
in that season. In one other instance, the sum of 
the lag coefficients is very nearly one, but has a 
large standard error; to keep this case's long run 
elasticities (on the order of 150) from dominating 
the long run results, this case was treated like 
those in which the sum of the lag coefficients 
exceeds one. 

The estimates of the income elasticities seem 
the most reliable; the standard errors of the esti- 
mates are generally small relative to the esti- 
mated coefficients, even at the billing district 
level. For the system-wide responses, only the 
commercial spring and summer income elas- 
ticities are insignificant at the 0.05 significance 
level. While elasticities vary appreciably across 
customer classes, and across seasons within cus- 
tomer classes, there is little cross seasonal varia- 
tion in income elasticity for the system as a 
whole; thus growing incomes will tend to in- 
crease the absolute gap between summer and 
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TABLE 5.-SYSTEM-WIDE INCOME AND INDUSTRIAL ACTIVITY INDEX ELASTICITIES 

Cold Hot Annual 

Residential 0.57 0.80 0.69 
(0. 10) (0.02) (0.05) 

Fall Winter Spring Summer 

Commercial 
short run 0.60 0.27 0.001 0.001 0.02 

(0. 1 1) (0.05) (0.004) (0.003) (0.03) 
long run 1.90 0.82 0.001 0.001 0.70 

Industrial 
short run 0.62 0.58 1.25 0.86 0.82 

(0.17) (0.13) (0.23) (0.12) (0.08) 
long run 1.07 0.74 1.52 1.11 1.11 

Total system 
short run 0.48 0.54 0.52 

(0.06) (0.03) (0.03) 
long run 0.68 - 0.59 0.79 

System kw peak 
short run - - 0.90 
long run - - 1.27 

Note: Figures in parentheses are standard errors. 

winter demands, but will not affect the relative markedly larger than the actual kwh demand 
difference. However, the income elasticity of kw elasticity; therefore, if incomes grow, VEPCO 
peak demand (and, therefore, of kwh capacity) is will tend to experience deteriorating load factors. 

TABLE 6.-RANGESa FOR SYSTEM-WIDE OWN PRICE ELASTICITIES 

Cold Hot Annual 

Residential -1.43, -0.95 -0.60, -0.26 -1.01, -0.60 
(0.15) (0.16) (0.11) 

Fall Winter Spring Summer 

Commercial (kwh price) 
short run -0.06, 0 -0.04, -0.02 -0.14, -0.08 -0.10, -0.06 -0.08, -0.04 

(0.04) (0.02) (0.02) (0.02) (0.01) 
long run -0.12, 0.10 0, 0.08 -0.42, -0.24 -2.08, -1.64 -0.71, -0.47 

Industrial (kwh price) 
short run -0.78, -0.42 -0.66, -0.40 -0.98, -0.30 -0.16, -0.06 -0.64, -0.29 

(0.26) (0.18) (0.66) (0.18) (0.18) 
long run -1.02, -0.14 -0.86, -0.52 -1.28, -0.28 -0.52, 0.08 -0.91, -0.21 

Commercial (kw price) 
short run -0.01, -0.003 -0.01, -0.003 -0.003, 0.01 -0.01, -0.01 -0.01, -0.002 

(0.01) (0.001) (0.02) (0.001) (0.005) 
long run -0.02, 0.002 0, 0.01 -0.23, -0.01 -0.29, -0.03 -0.14, -0.01 

Industrial (kw price) 
short run -2.08, -1.50 -1.92, -1.22 -1.98, -0.96 -0.70, -0.12 -1.66, -0.95 

(0.40) (0.26) (0.72) (0.42) (0.23) 
long run -2.04, -0.04 -1.64, -1.08 -2.22, -0.66 -1.10, 0.02 -1.74, -0.42 

Total system 
(kwh price) short run -0.83, -0.54 -0.33, -0.15 -0.62, -0.39 

(0.08) (0.08) (0.06) 
long run -0.86, -0.54 -1.10, -0.67 -0.89, -0.47 

(kw price) short run -0.43, -0.27 -0.15, -0.02 -0.38, -0.21 
(0.06) (0.09) (0.05) 

long run -0.37, -0.24 -0.33, -0.01 -0.64, -0.14 
System kw peak 

(kwh pnce) short run -0.31 

long run; - _ -0.44 
(kw price) short run - - -0.06 

(0.03) 
long run - - - -0.09 

Note: Figures in parentheses are standard errors under the null hypothesis , = 0. 
a The lower bound of each range reflects no correction for truncation bias, the upper bound reflects correction for maximum possible bias. 
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The likely source of this discrepancy between kw 
peak and kwh elasticities is the increased usage 
of air conditioning as incomes rise. 

The own price elasticity estimates are not 
nearly as reliable as the income elasticities, 
primarily because real electricity prices did not 
vary as much over the period as income did. Of 
the twenty-three customer class short run price 
elasticities reported, only twelve are significantly 
different from zero (a = .05). However four of 
the six total system short run price elasticities are 
significant, including the two annual system elas- 
ticities, which are six and four times their stan- 
dard errors, respectively. Some of the estimated 
long run responses, when corrected for maxi- 
mum bias, are smaller than the short run re- 
sponses; this perverse result arises from some 
relatively large truncation biases occurring in 
conjunction with large sums of lag coefficients. 
Since the magnitude of the true bias declines with 
the magnitude of the elasticity, the unbiased es- 
timates of the price elasticities will generally lie 
between the reported uncorrected and maximally 
corrected estimates; this caution is especially 
important in considering the reported long run 
elasticities. 

The only consistently implausible estimated 
price elasticities in table 7 are the industrial kw 
demand price elasticities. One would expect 
these to be small relative to the industrial energy 

charge elasticities. Indeed, when we imposed the 
restriction that responses be the same in all bill- 
ing districts, we found the industrial energy 
price elasticities to be comparable to the annual 
system elasticities reported in table 6, but the 
demand price elasticities were then only about 
half the magnitude of the energy price elas- 
ticities, a much more satisfactory result.28 The 
magnitudes of the remaining elasticity estimates 
seem quite reasonable. 

There are two important implications of the 
price elasticity estimates in table 6. First, both 
the kwh price and the kw price elasticities of kw 
peak demand are smaller than the corresponding 
kwh demand elasticities. This implies that if real 
electricity prices rise, load factors will tend to 
deteriorate. Second, since price elasticities are 
not the same across demand and energy charges, 
and across seasons, manipulations of price 
schedules could enhance load factors, and 
thereby improve a utility's financial position. For 
example, the large price elasticity of residential 
users in the winter indicates that VEPCO's 
summer-winter price differential for residential 

TABLE 7.-RANGESa FOR CROSS PRICE ELASTICITIES WITH FUEL OILS UNCORRECTED FOR BIAS AND CORRECTED FOR 

MAXIMUM BIAS 

Cold Hot Annual 

Residential 0.01, -0.14 0.03, -0.18 0.02, -0.16 
(0.12) (0.17) (0. 10) 

Fall Winter Spring Summer 

Commercial 
short run 0.08, -0.01 0.02, -0.002 

(0.07) (0.02) 
long run 0.59, 0.27 0.15, 0.07 

Industrial 
short run 0.27, -0.05 0.28, 0.02 0.58, 0.40 0.15, 0.02 0.31, 0.09 

(0. 19) (0. 19) (0. 10) (0.08) (0.08) 
long run 0.78, 0.35 0.17, -0.09 0.17, -0.21 0.30, 0.04 0.37, 0.03 

Total system 
short run - - - 0.09, -0.04 

(0.05) 
long run - - - 0.14, -0.04 

System kw peak 
short run - 0.07 

(0.07) 
long run 0.10 

Note: Figures in parentheses are standard errors under the null hypothesis (3 = 0. 
a The upper bound of each range reflects no correction for truncation bias, the lower bound reflects correction for maximum possible bias. 

28 We believe the problems may arise from there being 
considerably more heterogeneity among users in the indus- 
trial category than among customers in either the residential 
or commercial classes. For example, shopping centers and 
large office buildings are classified among industrial users 
along with genuine manufacturers. 
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customers (with lower prices in winter) both im- 
proves load factor and increases total revenues, a 
double boon. 

We leave it to interested readers to amuse 
themselves by rationalizing the elasticities in 
table 6. For example, are the very low summer 
income elasticities in the commercial sector a 
reflection of the fact that commercial establish- 
ments must keep their air conditioners on in the 
summer whether business is good or bad? And is 
the higher residential price response in winter 
over summer due to the fact that one can always 
put on more clothes, but there is a limit to how 
much one can take off? 

Table 7 presents the estimated short and long 
run cross price elasticities with respect to alter- 
native fuel oils. While the parameter estimates do 
suggest industrial and commercial customers are 
sensitive to the prices of alternative fuels, the 
standard errors are sufficiently large that we 
must be somewhat skeptical about such a con- 
clusion. We conclude that if accurate projec- 
tions of electricity demand are to be made, it may 
be necessary to estimate more precisely the de- 
mand coefficients of alternative fuels, and to 
forecast accurately the future behavior of those 
prices. 

The most important finding of this paper is the 
seemingly strong correlations between load fac- 
tor deterioration and both rising real incomes and 
rising real electricity prices.29 In the next ten 
years it is likely that real incomes will rise and 
real electricity prices will not fall, implying load 
factor deterioration for electric utilities. More- 
over, in this period, utilities' reliance on nuclear 
power is likely to grow30 and the relatively high 
capital intensity of nuclear generators will in- 
crease the financial importance of load factors to 
utilities. Thus it is clear that electric utilities are 
likely to face an increasing need for means to 
improve load factors, or to at least retard their 
deterioration. One can only hope that ap- 

proaches such as time of day pricing will be suc- 
cessful in this regard. 

VIII. Conclusion 

In this paper we have sought to estimate a 
comprehensive system of demand equations for 
the Virginia Electric Power Company's major, 
non-governmental customer classes and for the 
system kw peak demands. We have sought to 
improve on previous electricity demand studies 
in several significant ways. First, we have given 
more careful attention to the declining block 
price structure of residential electricity prices 
and to the two-part tariff nature of commercial 
and industrial electricity price schedules. Sec- 
ond, we have tried to account for seasonal varia- 
tion in demand coefficients, and for the dynamics 
of consumer demand. Third, we have used a 
richer, less aggregated data base than has been 
used in previous studies. Finally, we have inte- 
grated the analysis of kilowatt hour demand with 
the analysis of the system-wide kilowatt peak 
demand, a step not previously taken. 

Our major conclusions are four. First, both 
growth in incomes and growth in the real price of 
electricity tend to induce load factor deteriora- 
tion because the long run kwh demand income 
elasticity (about 0.8) and marginal price elas- 
ticities for both energy and demand charges (be- 
tween -0.9 and -0.5, and between -0.64 and 
-0.14, respectively) are less than the corre- 
sponding kw peak demand elasticities (about 
1.27 for income, -0.44 for energy charges, and 
-0.08 for demand charges). This finding suggests 
that in periods of rising real incomes and rising 
real electricity prices, electric utilities will in- 
creasingly feel the need for means, such as time 
of day pricing, to alleviate peak load problems. 
Second, demand elasticities vary appreciably, 
between and even within VEPCO's major cus- 
tomer classes, so that regional differences in the 
impact of price changes on customers are likely 
and the geographic distribution of new transmis- 
sion and generating facilities must be carefully 
reckoned. Third, the prices of alternative fuels 
should be considered in forecasting electricity 
demand, since industrial customers seem re- 
sponsive to these prices. And fourth, in the ap- 
pendix we will find the choice between modeled 
and model-free forecasts is not trivial; separate 
forecasts of each of residential demand's deter- 

29 There is an important caveat here for those who wish to 
make forecasts of electricity demand. If gas hook-ups are 
restricted, and users also become uncertain about future oil 
supplies, there may be a trend towards electric heating that 
could, for a summer peaking company like VEPCO, offset the 
deterioration in load factors caused by rising real incomes and 
real electricity prices. 

30 It may well be that the economies of nuclear generation 
over alternative technologies will be sufficient to make nu- 
clear generation, coupled with storage (by pump, battery, or 
otherwise), economical even in periods of deteriorating load 
factors. 
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minants, coupled with structural estimates of the 
demand relationship yield very different fore- 
casts of electricity demand than does direct fore- 
casting of electricity demand. 

APPENDIX 

Michael P. Murray and Lawrence Pulley 

Modeled and Model-Free Forecasts of Residential Demand 

Forecasts of electricity demand are of interest to utilities, 
regulatory bodies, and many others. Forecasts based on eco- 
nomic models have a major advantage in that they explicitly 
account for the role of each determinant of demand, such as 
prices, income, and weather. Unfortunately, the selection 
and estimation of appropriate econometric models of elec- 
tricity demand can make such forecasts very costly. Less 
costly, non-modeled forecasting techniques might be prefera- 
ble to econometric methods if the forecast user can treat the 
demand determinants as exogenous, as, say, in the case of a 
utility planning future generating capacity. 

One non-modeled forecasting procedure that has received 
much attention of late is the method of time series analysis 
championed by Box and Jenkins (1970). Box-Jenkins analysis 
does not require data on many variables, nor is it computa- 
tionally demanding, yet in the arena of macro-forecasts, 
non-modeled predictions of this type compare favorably with 
those based on large econometric models of the U.S. econ- 
omy (Nelson, 1972). The purpose of this paper is to compare 
modeled and non-modeled forecasts of residential electricity 
demand for that part of Virginia served by the Virginia Elec- 
tric Power Company (VEPCO), for the years 1974-1983. 
Unfortunately, ex post comparisons of the forecasts are 
available only for the one, two and three period ahead fore- 
casts (1974-76), but there are lessons to be learned from the 
ex ante comparisons for the remaining seven years. 

The modeled forecasts of residential electricity demand are 
based on our model of the residential sector reported in this 
paper. I In addition to a model, modeled forecasts of demand 
require forecasts of the independent variables of the demand 
model. We generated these2 by applying Box-Jenkins tech- 
niques to past income, population, and price data, and by 
taking long term average temperatures for temperature fore- 
casts, using data from 1958-1973. 

The non-modeled forecasts of electricity demand were 
generated by applying Box-Jenkins techniques to past 
monthly residential electricity demand for each of VEPCO's 
nine billing districts.3 The resultant demand forecasts were 
aggregated to provide annual residential electricity demand 
for VEPCO's Virginia customers. 

In principle, the two forecasting techniques may be mutu- 
ally consistent. Anderson (1975) has shown that a linear 
combination of independent mixed autoregressive-moving 
average (ARMA) processes is also an ARMA process. Thus, 
if demand is log-linear and if the (logs of the) determinants are 
themselves generated by ARMA processes (or if all are gen- 
erated by processes that are ARMA when subjected to an 
identical degree of differencing), then residential electricity 
demand is indeed an ARMA variable itself, of the same de- 
gree. In fact, these conditions do not seem to be met in our 
case since not all the independent variables are identified to 
require the same degree of differencing to yield ARMA vari- 
ables.4 Thus, we cannot expect identical forecasts from the 
two approaches since one or the other, or both, are misspec- 
ified. However, from a practical point of view, it would be 
significant even if the two procedures yielded similar results. 
If modeled and non-modeled forecasts of electricity demand 
are generally similar,5 then the less costly non-modeled ap- 
proach would be preferable for all uses except those which 
explicitly concern changes in the determinants of demand. If 
the forecasts are generally dissimilar, then it becomes impor- 
tant to watch the comparative performances of the two pro- 
cedures to judge which is superior. 

Table A- 1 contains the modeled and non-modeled forecasts 
of electricity demand for 1974-1983 and the actual growth in 
1974-76 and the first quarter of 1977, all normalized with 1973 
actual demand equal to 100. It is immediately clear that the 
two forecast series are quite dissimilar; the modeled forecasts 
foresee an average growth rate of about 3.6% per year (4.2%1o 
uncompounded), while the non-modeled forecasts anticipate 
an average growth rate of about 8.4% per year (12.3% un- 
compounded). Thus, our results indicate that the choice be- 
tween modeled and non-modeled forecasts is not trivial; 
separate forecasts of each demand's determinants, coupled 
with structural estimates of the demand relationship, yield 
very different forecasts of electricity demand than does direct 
forecasting of electricity demand. Also, on the limited data 
available, the modeled forecasts seem more accurate than the 
non-modeled forecasts. The ratio of mean square errors of 
prediction for non-modeled forecasts to modeled forecasts is 
1.75 over the period 1974-77, using the first quarter of 1977 to 
reflect the year. Our tentative conclusion is that even for uses 
that are not directly concerned with the determinants of de- 
mand, modeled forecasting procedures are preferable to 
non-modeled forecasting techniques for anticipating future 
electricity demands.6 

After this research was completed, Boyd (1976) was 
brought to our attention. Several of the pieces in that collec- 
tion contrast the Box-Jenkins and econometric model ap- 
proaches to forecasting electric utility loads. Boyd sum- 
marizes one aspect of the discussion, noting "as the time 
horizon lengthens from the short run, the justification for 
explicitly modeling the underlying structure becomes more 
compelling." Thus far, our empirical results support the 
a priori arguments of Boyd's discussants. 

I One difference is that for forecasting purposes, prior 
non-positivity constraints were imposed on the price 
coefficients of the estimation process. This restriction af- 
fected only a small number of the estimated parameters, but 
the restrictions are important since over time the billing dis- 
tricts with perverse signs will come to dominate the results if 
prices tend to rise. 

2 We have also made forecasts based on the population and 
income forecasts of state agencies. Those results are rela- 
tively similar to the modeled forecasts over the period 1974- 
1977, but begin to move towards and eventually exceed the 
non-modeled forecasts thereafter. We believe this is due to 
the State's over-optimistic forecasts of future income growth 
in Virginia. 

3In 1974, VEPCO billing districts were reorganized. We 
use the pre-1974 service areas. 

4 The identified and estimated models for each of the vari- 
ables used in this paper are available upon request. 

5 Similar, that is, when forecasts of the independent vani- 
ables are used in forming the modeled forecasts. The unique 
aspect of modeled forecasts is that they permit consideration 
of alternative scenarios for these variables. 

6 One must be careful not to rely too heavily on the com- 
parison of the short run performances of the modeled and 
non-modeled forecasts. In the electric power industry, seven 
to ten years elapse between the making of capital investment 
plans and their fruition; the long term performance of the two 
procedures is very important. On this we must await 1978-85. 
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TABLE A-I.-INDICES OF RESIDENTIAL ELECTRICITY DEMAND FOR VEPCO's VIRGINIA CUSTOMERS 

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

Modeled 
forecasts 99.4 98.3 102.2 106.2 110.87 115.86 115.86 121.5 127.6 142.0 

Non-modeled 
forecasts 110.1 120.4 131.5 143.1 155.3 167.9 181.2 194.9 209.2 223.4 

Actual 99.1 104.4 112.96 127.2a 
I Based upon first quarter of 1977 over first quarter of 1976. 

REFERENCES 

Anderson, 0. D., "On a Lemma Associated with Box, Jen- 
kins and Granger," Journal of Econometrics 3 (May 
1975), 151-156. 

Atkinson, S., "A Preliminary Analysis of FEA's Time of Day 
Electricity Pricing Experiments," unpublished, Fed- 
eral Energy Administration, 1977. 

Box, George, and Gwilym Jenkins, Time Series Analysis (San 
Francisco: Holden Day, 1970). 

Boyd, J. W. (ed.), Proceedings on Forecasting Methodology 
for Time of Day and Seasonal Electric Utility Loads, 
Electric Power Research Institute, Palo Alto, Califor- 
nia, 1976. 

Cargill, Thomas E., and Robert A. Meyer, "Estimating the 
Demand for Electricity by Time of Day," Applied 
Economics 3 (Dec. 1971), 233-246. 

Fisher, Franklin, and Carl Kaysen, A Study in Econometrics: 
The Demand for Electricity in the United States 
(Amsterdam: North-Holland Publishing Company, 
1962). 

Friedman, Milton, A Theory of the Consumption Function 
(Princeton: Princeton University Press (for National 
Bureau of Economic Research, 1957). 

Gupta, P. C., "Statistical and Stochastic Techniques for Peak 
Power Demand Forecasting in Electric Utility Sys- 
tems," Purdue Research and Education Center, Re- 
port No. 51, 1969. 

Nelson, Charles R., "The Prediction Performance of the 
FRB-MIT-PENN Model of the U.S. Economy," 
American Economic Review 62 (Dec. 1972), 902-917. 

Nordin, John, "A Proposed Modification of Taylor's Demand 
Analysis: Comment," Bell Journal of Economics 7 
(Autumn 1976), 719-721. 

Spann, Robert, and Michael Murray, "Electricity Sales and 
Load Forecasting in Virginia," Virginia State Corpo- 
ration Commission, Richmond, Virginia, Oct. 1976. 

Taylor, Lester, "The Demand for Electricity: A Survey," 
Bell Journal of Economics (Spring 1975), 74-1 10. 

Uri, N., "A Mixed Time SeIies-Econometric Approach to 
Forecasting Peak System Load," unpublished, Fed- 
eral Energy Administration, 1977. 

This content downloaded from 128.173.125.76 on Wed, 19 Feb 2014 15:55:21 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	p. 585
	p. 586
	p. 587
	p. 588
	p. 589
	p. 590
	p. 591
	p. 592
	p. 593
	p. 594
	p. 595
	p. 596
	p. 597
	p. 598
	p. 599
	p. 600

