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SUMMARY 
In this article we develop a finite mixture negative binomial count model that accommodates unobserved 
heterogeneity in an intuitive and analytically tractable manner. This model, the standard negative binomial 
model, and its hurdle extension are estimated for six measures of medical care demand by the elderly using 
a sample from the 1987 National Medical Expenditure Survey. The finite mixture model is preferred overall 
by statistical model selection criteria. Two points of support adequately describe the distribution of the 
unobserved heterogeneity, suggesting two latent populations, the 'healthy' and the 'ill' whose fitted 
distributions differ substantially from each other. © 1997 by John Wiley & Sons, Ltd. 
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1. INTRODUCTION 

Cost and access continue to be the fundamental issues in the debate over the future of the 
American health-care system. An important element of this debate concerns the health-care 
needs of the elderly. During the past two decades, the population aged 65 and over has increased 
more than twice as fast as the younger population and they account for a disproportionate share 
of medical care expenditures.' This disproportionate share of expenditures can be attributed, in 
part, to the relatively greater need of the elderly for individualized care, and the increasing 
incidence of chronic diseases and impairment with age. Therefore, the increasing size and life 
expectancy of the elderly population have significant implications for health care: this motivates 
the present study. 

Theoretical analyses of medical care utilization suggest two approaches. The first takes the 
traditional consumer theory approach (Grossman, 1972; Muurinen, 1982) and views medical care 
demand as primarily patient determined, though conditioned by the health-care delivery system. 
One-step econometric models in this tradition are estimated by Duan et al. (1983) and Cameron 
et al. (1988), among others. The second approach uses a principal-agent set-up (Zweifel, 1981) in 
which the physician (agent) determines utilization on behalf of the patient (principal) once initial 
contact is made. Econometric models which have an interpretation in the principal-agent 
tradition are estimated by Manning et al. (1987), Pohlmeier and Ulrich (1995), and others. 

* Correspondence to: Partha Deb, Department of Economics, Indiana University-Purdue University Indianapolis 
(IUPUI), Cavanaugh Hall 516, 425 University Blvd, Indianapolis, IN 46205, USA. E-mail: pdeb@indyunix.iupui.edu 

I In 1987, these elderly comprised 12% of the US population and accounted for 36% of health-care expenditures 
(Waldo et al., 1989). 
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Previous analyses of the elderly by Huang and Koropecky (1976), who estimate a one-step 
model of utilization, Rice (1984), Christensen, Long, and Rodgers (1987), and Cartwright, 
Hu, and Huang (1992), who use two-step models, find that individuals with greater health- 
care insurance coverage tend to use more medical care than individuals with less generous 
coverage. Moreover, health status is often shown to be the most important determinant of 
utilization. 

This article models counts of medical care utilization by the elderly in the United States using 
data from the National Medical Expenditure Survey, 1987. A feature of these data is that they 
include a high proportion of zero counts, corresponding to zero recorded demand over the 
sample interval, and a high degree of unconditional overdispersion. With these features in mind, 
we consider three econometric specifications: (1) the standard negative binomial specification, 
(2) a hurdles variant of the negative binomial-a 'two-part model', and (3) a finite mixture of 
negative binomials which provides additional flexibility compared with the hurdles model. 

The two-part hurdles model has performed satisfactorily in several empirical studies 
(Pohlmeier and Ulrich, 1995; Gurmu, 1996) and is typically superior to standard one-part 
specifications. It may be interpreted as a principal-agent type model in which the first part 
specifies the decision to seek care as a binary outcome process, and the second part models the 
number of visits for the individuals who receive some care. The second part allows for population 
heterogeneity among the users of health care. 

The finite mixture model allows for additional population heterogeneity but avoids the sharp 
dichotomy between the population of 'users' and 'non-users'. In the formulation of this paper the 
underlying unobserved heterogeneity which splits the population into latent classes is assumed to 
be based on the person's latent long-term health status. Proxy variables such as self-perceived 
health status and chronic health conditions are not necessarily good indicators of an individual's 
health, and may not fully capture population heterogeneity from this source. Hence we assume 
that the most important source of unobserved population heterogeneity is unobserved or latent 
health status. In the case of a two-point finite mixture model, a dichotomy between the 'healthy' 
and the 'ill' groups, whose demands for health care are characterized by, respectively, low mean 
and low variance, and high mean and high variance may be suggested. While the two-step model 
captures an important feature of the data that the one-step model does not, the proposed finite 
mixture model has greater flexibility of functional form, but does not rely for its justification on a 
principal-agent type formulation. 

To the best of our knowledge, no application of finite mixture models in health economics 
exists. Yet the intuitive appeal of a finite mixture specification as a plausible alternative to the 
existing models cannot be ignored. Finite mixture and latent class analysis, a closely related area, 
have received increasing attention in the statistics literature mainly because of the number of 
areas in which such distributions are encountered (see McLachlan and Basford, 1988, and 
Lindsay, 1995, for numerous applications). Econometric applications of finite mixture models 
include the seminal work of Heckman and Singer (1984), of Wedel et al. (1993) to marketing data 
and El-Gamal and Grether (1995) to data from experiments in decision making under 
uncertainty. 

In the following section of the paper, we present several mixture count models used in 
this paper. Section 3 discusses the model comparison, selection and evaluation strategies used 
in this article. Section 4 reports a small simulation investigation of several of these criteria. The 
data are described in Section 5. The empirical results of the specification tests and the evaluation 
and interpretation of the empirical results are in Section 6. Section 7 concludes the article. 
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2. MIXTURE MODELS FOR COUNTS 

Consider a single probabilistic health event, e.g. sickness or health maintenance, which may or 
may not result in the demand for some type of health care, e.g. doctor consultation. The decision 
to seek health care may be treated within the random utility framework used in binary choice 
models. Denote by Uo the utility of not seeking care, by U1 the utility of seeking care. Let 
Uli = x'#i + £li, let Uoi = Xi#o + £oi where xi is the vector of individual attributes, and E£i and 
E£o are random errors. Then for individual i who seeks care, we have 

Uli > Uoi 

Pio < Xi(l - lo) 

where plo = Pr[s0i - sij. Thus, the decision to seek care is characterized by the binomial model 
as is standard in a binary outcome model. 

For the population, consider N independent Bernoulli trials occurring over some time interval. 
By the 'Law of Rare Events', the distribution of the number of successes can be shown to follow 
the Poisson law. Formally, let Yn,p, denote the total number of successes in a large number N of 
independent Bernoulli trials with success probability Plo of each trial being small. Then 

Pr[YN,P = k] = ( )(Po)k(l - po)Nk k = 0 1, ..., N 

In the limiting case where N - oo, plo - 0, and Nplo = p > 0, i.e. the average i is held constant 
while N - oo, then 

lim ( N 
N-oao ok (k 

- N- 
k! 

for k > 0, which is the Poisson probability distribution with parameter P. 
The above argument justifies the framework of count data models for the study of medical care 

utilization based on event counts. It can be generalized in a straightforward manner to allow for 
serial correlation or unobserved heterogeneity which will imply an overdispersed count model 
like the negative binomial. Since empirical evidence (Cameron and Trivedi, 1986; Pohlmeier and 
Ulrich, 1995) suggests that overdispersion is a common feature of medical care utilization data in 
this article we take the negative binomial family as the benchmark and consider generalizations 
based on it. 

2.1. Negative Binomial (NB) 

Let y, be a count dependent variable that takes values 0, 1, 2, .... The density function for the 
negative binomial (NB) model is given by 

f(yi) = 
A(i)(Yi + 1) + )( r (1) r(¢d)r(yi + l i+ ,+O 

where 

2i = exp(x'l) 
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and the precision parameter (/i 1) specified as 

i = (1/a)4 

where o > 0 is an overdispersion parameter and k is an arbitrary constant. In this specification, 
the mean function is 

E(Yi xi) = i (2) 

and the variance function is 

V(Yi | xi) = i, + a2-k (3) 

If a- = 0 we get the Poisson model. The negative binomial-i (NB1) model is obtained by 
specifying k = 1 while the negative binomial-2 (NB2) is obtained by setting k = 0. Models with k 
estimated along with other parameters are not considered here. 

2.2. Zero-inflated NB (ZINB) 

The excess zeros feature of the data can be accommodated by a zero-inflated variant of the 
standard Poisson and negative binomial models. For example, the zeros may come partly from 
some NB model, say with probability it, and partly, with probability 1 - it, from the population 
of 'non-users'. Thus the model permits mixing with respect to the zero counts in a different way 
from that for positive counts. A ZINB specification such as this is usually justified in terms of a 
sampling frame that samples event counts both from the population who are 'at risk' and those 
'not at risk'. The ZINB model is not considered here because it is a special (degenerate) case of 
the finite mixture negative binomial model that permits mixing with respect to both zero and 
positive counts, which will be considered. 

2.3. Hurdle Negative Binomial (HNB) 

In the hurdles approach to the 'excess' zeros problem, the process that determines the zero/non- 
zero count threshold is different from the process that determines the count once the hurdle is 
crossed. In the case of markets for health care, the motivation for hurdle models comes from 
principal-agent theories of demand which suggest that the patient initially chooses whether to 
seek treatment, but once in treatment the physician determines the number of visits. The first part 
of the hurdle (HNB) two-part structure is specified as 

( Oh,i+ h,i) 
'i Prh(Y = 0 i,) =(J J (4) 

Prh(Yi > 0 
li) 

= 1 
-(h,Jh 

(5) 

where the subscript h denotes parameters associated with the 'hurdle distribution'. The likelihood 
function associated with this stage of the hurdle process can be maximized independently of 
the specification of the second stage. This stage of the hurdle process involves only binary 
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information so the parameters (jf) of the mean function and the parameter a are not separately 
identifiable. In this application we fix the value of a to 1: this is a sufficient condition for 
identification as long as the model is otherwise identified. 

Once the hurdle is crossed, the data are assumed to follow the density for a truncated negative 
binomial distribution given by 

F(Yi/ )F(y + 1 
f(i I xi, Yi > 0)= R(Yi + ) -(2+ (i l. )Yi (6) R(oi)r(y/ + 1) o/ - (6i 

This stage is estimated using the subsample of observations with positive values of yi. Denote 

Pr(yi >0l xi) =l1 -( 
i (7) 

then, in the HNB model, the mean of the count variable is given by 

Prh(yi > 0\xi) 
E(yil x) = Prh(yi > O Ixi) (8) 

Pr(y1 > 0 xi) 

and the variance by 

V x Prh(Yxi > 0) = i)+-, (i Prh(Yi > 0 I xi)> (9) 
V(Yi Xi) = Pr(yi > 0Y i 1 ) + Pr(yi > 01xi)i ( 

Note that both the mean and the variance in the hurdle model are, in general, different from their 
standard-model counterparts. 

2.4. C-point Finite Mixture Negative Binomial (FMNB-C) 

In a finite mixture model a random variable is postulated as a draw from a superpopulation 
which is an additive mixture of C distinct populations in proportions 7l, ..., c, where 

j =l j = 1, ,j > 0 (j = 1,..., C). The density is given by 

C-1 

f(Yi I O) = E jfj(Yi I Oj) + ncfc(Yi I Oc) (10) 
j=1 

where the mixing probabilities nj are estimated along with all other parameters, denoted 0. Also 
nc = (1 - EC-1Iyn). For identifiability, we use the condition that nl > n2 > ... > nc which can 

always be satisfied by rearrangement, post estimation (McLachlan and Basford, 1988). 
The component distributions in a C-point finite mixture negative binomial model (FMNB-C) 

are specified as 

"(Yi" j ) , i o bJ'i( 
j 

A,i, IYi 
fi(Yi) = r(,r(y,+ + 1) 

(11) 
F(where( = 1,2,y.C ae te l+ , i = ep ) +d J,i = 

where j = 1, 2, ..., C are the latent classes, ,i = exp(x'flj) and t/,i = (1otj)2Ij. 
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If dim[fj] = k, then the fully unconstrained C component mixture has dimension 
C(k + 1) - 1. In practice considerations of parsimonious parameterizations may motivate 
restrictions across the component densities. Therefore, we also consider a constrained FMNB-C 
(CFMNB-C) with all slope parameters in fBj restricted to be equal across all C components. The 
differences between component distributions then arise only from intercept differences. 

The finite mixture framework offers a number of advantages. It has a natural representation of 
heterogeneity in a finite, usually small, number of latent classes, each of which may be regarded as 
a 'type'. The choice of the number of components in the mixture determines the number of 
'types', but the choice of the functional form for the density can accommodate heterogeneity 
within each component. Thus the formulation is flexible enough to allow for a continuum of 
states. Second, the finite mixture approach is semi-parametric: it does not require any distribu- 
tional assumptions for the mixing variable. Third, the results of Laird (1978) and Heckman and 
Singer (1984) suggest that estimates of such finite mixture models may provide good numerical 
approximations even if the underlying mixing distribution is continuous. Finally, the choice of a 
continuous mixing density for some parametric count models is sometimes restrictive and 
computationally intractable except when the conditional (kernel) and mixing densities are from 
conjugate families, since otherwise the marginal density will not have a closed form. By contrast, 
there are several promising approaches available for estimating finite mixture models (B6hning, 
1995). 

2.4.1. Latent class analysis 
The finite mixture model is closely related to latent class analysis (Aitkin and Rubin, 1985; Wedel 
et al., 1993). Let di = (dil, ... , dic), define a (C x 1) vector of an indicator (0/1 dummy) variables 
such that dy = 1, C 1= d1i = 1, indicates that yi was drawn from thejth (latent) group or class for 
i = 1,..., n. That is, each observation may be regarded as a draw from one of the C latent classes 
or 'types', each with its own distribution. The latent class model specifies that (yi di) are 
independently distributed with densities 

c c 

y=if1(y1I) i= i Edfj(yi I Oj) = f(yII)dy 
j=l j=1 

and (d1 I 7r, 0) are iid with multinomial distribution 

rjj Oi) 0 < 7rr < 1 i 
j=1 j=1 

where fr = (nr, 72, ..., C),) = [0l2, .02. OC] The last two relations lead to the likelihood 
function 

n C C 

L(ar © y) = d ( j))dy 0v < Zy < I 
E^ 

= 1 (12) 
i=lj=1 j=1 

An alternative formulation of this likelihood may be based on equation (10). 
The results reported in this article are based on the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm which maximizes the likelihood directly based on equation (10) using only 
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likelihood scores. The algorithm, allowing for constraints 0 < nj < 1, programmed in SAS/IML, 
is a variable metric quasi-Newton algorithm. Upon convergence, robust standard errors of the 
parameter estimates are computed using the usual sandwich formula. An alternative widely 
recommended procedure for estimating the finite mixture model is the EM algorithm which is 
quite slow to converge (Brinnas and Rosenqvist, 1994; B6hning, 1995). 

2.4.2. Properties of finite mixtures 
An observation in each latent class is a draw from a component distribution. The component 
densities are assumed to differ in location via the conditional mean function and in scale via the 
dispersion parameter. Wedel et al. (1993) proposed a finite mixture Poisson model for estimating 
the effects of direct marketing on purchases. Their approach also allows for heterogeneity in the 
conditional mean functions of the component densities. This article uses the more general 
negative binomial densities which additionally allow for differences in overdispersion within 
classes. We also give greater consideration to diagnostics and testing. 

Since in a FMNB-C model mixing is allowed with respect to all observations, and not only 
with respect to zero observations as in ZINB, the former may also be considered a generalization 
of the latter. In ZINB there is a sharp and unrealistic distinction between the healthy (not ill) 
population with zero demand, and the ill population with positive demand which is avoided by 
the FMNB-C model. 

The factorial raw moments of a finite mixture distribution may be derived using the general 
formula 

c 

m'(y) = E[yr] = rjm[y fj(Y)] 
j=1 

where m' denotes the rth factorial raw moment andfj(y) thejth component (Johnson, Kotz, and 
Kemp, 1992), whence the central moments can then be derived. 

The mean and variance are given, respectively, by 

C 

E(y I xi)= Ai = rjAi (13) 
j=l 

and 

c 

V(Yi I xi) = (jAjri,[1 + i ]) + k i -- i2 (14) 
j=l 

It is interesting to note that the CFMNB-C may be consistently estimated, upto the intercept, 
by Poisson maximum likelihood. This follows from the previous expression for E(y1 I xi) which, 
given the equality of the slope parameters, is also the conditional mean for the Poisson model. 
However, the intercept of the constrained finite mixture is a weighted sum of the intercepts in the 

components, with weights being the Tri. Hence Poisson maximum likelihood will yield only an 
estimate of the weighted sum of the intercepts and cannot identify the individual components 
which are often of economic interest. 
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If irj are given, the posterior probability that observation yi belongs to the population 
j,j = 1,2,..., C, is given by 

rjfj(yi Ix', j) 
Pr[yi E population j] = ' (15) 

E 7rfj(Yi I X', 0oj) 
j=l 

While the HNB and FMNB-C models both allow for greater flexibility relative to the NB 
model, the process that generates the data in each case is different. In the hurdle model, the 
underlying structure splits the population into two groups of 'users' (or 'at risk' population) and 
'non-users' ('not at risk' population). Then only the users of care determine the number of visits. 
Post estimation of HNB, the probability that an individual belongs to the 'non-user' group may 
be obtained by subtracting the estimated proportion of zero counts due to the 'users' from the 
observed proportion of zeros. 

The sharp dichotomy between 'users' and 'non-users' may not be tenable in the case of demand 
for health care, where even a healthy individual will not typically be a 'non-user' since many 
forms of health care among the elderly will take the form of health maintenance and 
precautionary care (Grossman, 1972). A more tenable distinction is between light and heavy 
users of health care, determined by health status, attitudes to health risk, and a choice of lifestyle. 
The finite mixture model, in which there is no distinction between users and non-users of care, but 
which can distinguish between groups with high average demand and low average demand 
therefore provides a better framework. 

3. SPECIFICATION TESTING AND MODEL SELECTION 

Two important issues in evaluating fitted finite mixture models are first, whether there is evidence 
for the presence of more than one components, i.e. mixing is present, and second, whether a 
global maximum is attained in estimation. Lindsay and Roeder (1992) have developed diagnostic 
tools for checking these properties for the case of exponential mixtures. Here we apply these tools 
in a heuristic fashion to the FMNB-C models which are not one-parameter exponential mixtures. 

3.1. Tests of Presence of Mixture 

Lindsay and Roeder present two diagnostic tools, the residual function and the gradient 
function. Of these the second, the directional gradient function, 

d(y, C, *) = (( )) y = 0, 1, 2,... (16) 

where 0* is the unicomponent MLE and C is the C component MLE, is more useful because it is 
smoother than the residual function. Following Lindsay and Roeder (1992) the graph of equation 
(16) is used as a diagnostic 'test' for the presence of a mixture. The convexity of the graph is 
interpreted as evidence in favour of a mixture. However, note that such convexity may be 
observed for more than one value of C, leaving open the issue of which value to select for C. 
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The use of the weighted sum measure 

D(C, 0*) = d(y, C, *)p(y) (17) 
yeS 

as an additional diagnostic is also suggested but we do not report this as it was found difficult to 
interpret. The poor discriminatory content of this statistic is not unexpected. Lindsay and Roeder 
argue that a truncated gradient statistic is preferred for unbounded densities, precisely because 
the unadjusted gradient statistic is likely to be uninformative. However they provide little 
guidance on how the statistic should be truncated so we do not pursue that issue in this article. 

3.2. Model-selection Tests 

Given the presence of mixture, one may either sequentially compare models with different values 
of C, or compare unconstrained and constrained models for a given C. Though these are both 
nested hypotheses, the use of the likelihood ratio (LR) test is only appropriate for the latter 
simplification, not the former in which the hypothesis is on the boundary of the parameter space 
and which violates the standard regularity conditions for maximum likelihood. For example, in a 
model with no component-density parameters estimated, the LR test of the null hypothesis 
Ho : c = 0 versus Ha: nc % 0, does not have the usual null X2(1) distribution. Instead, the 
asymptotic distribution of the likelihood ratio is a weighted X2. B6hning et al. (1994) show, using 
simulation analysis of the distribution of the likelihood ratio test in for several distributions 
involving a boundary hypothesis, that the use of the nominal X2(1) test is likely to underreject the 
false null. Therefore, systematic reliance on the LR test may cause an investigator to choose a 
value of C that is too small. However, the use of information criteria (IC) -we use the Akaike 
information criterion (AIC) and the Bayesian information criterion (BIC)- for model selection 
has formal justification (Leroux, 1992).2 

Model simplification in going from HNB to NB involves a standard nested hypothesis, hence it 
may be based on the LR test. Finally, if FMNB-C, C > 1, and HNB are the preferred models 
after initial tests, one will wish to select between these two. Again this involves non-nested 

comparisons, for which we use IC to choose between them. 
Schematically, the strategy described above is given by: 

* FMNB-C * FMNB-1 _ NB 
LR 

* FMNB-C -* CFMNB-C 
* HNB - NB 
* FMNB-C HNB. 

Note that NB in the above may refer to either NB1 or NB2. 
Finally, to evaluate the goodness of fit of the model selected after this multi-level comparison of 

models, the chi-square diagnostic test (f - f)'E- (f - f) is used where f - f is the q-dimensional 
vector of difference between sample and fitted cell frequencies, q is the number of cells used in the 
test, and E is the estimated variance matrix of the difference. Under the null hypothesis of no 

2 Leroux proves that under regularity conditions the maximum penalized likelihood approach, e.g. the use of Akaike 
and Bayes information criteria, lead to a consistent estimator of the true finite mixture model (Leroux, 1992, Section 3.3). 
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misspecification the test has an asymptotic x2(q - 1) distribution (Heckman, 1984; Andrews, 
1988). In general the last cell aggregates over several sample support points. If the sample mean is 
low, then fewer support points would be used than if the value is large. The covariance matrix of 
f - f is estimated by an auxiliary regression based on the outer product of gradients suggested by 
Andrews (1988, Appendix 5), because of the relative computational simplicity of this method 
compared with the alternative more complicated expressions (Andrews, 1988). 

4. A SIMULATION EXPERIMENT 

This section briefly summarizes the results of a small Monte Carlo experiment in which the finite 
sample properties of the various tests used in this article (details are available upon request). The 
main motivation for this section comes from an absence of evidence on the comparative 
performance of the tests, several of which are known to have case-specific properties. Specific 
issues of interest are the properties of the tests used for model comparison and evaluation, and 
the ability of the test procedures to discriminate between the HNB and the FMNB-2 model when 
the true model may be either. 

The data-generating process is either NB, HNB, or FMNB-2, within the NB2 family. Samples 
of 500 NB2 random variates are drawn by constructing a mixture of Poisson and Gamma 
random variates. The mean equation for the NB, and for the components of HNB and FMNB-2, 
are specified as consisting of an intercept and one uniformly distributed covariate. The parameter 
values generate count data consistent with two stylized facts of medical care utilization: relatively 
small means-the means are between 0.5 and 2, and a large proportion of zeros-there are 
between 40% and 70% zeros. For the finite mixture model, the mixing probability is varied 
between 0.7 and 0.9. For each data-generating process, parameters of NB, HNB, and FMNB-2 
models are estimated by maximum likelihood so that for each dgp, one estimated model is the 
true model while the other two models are misspecified. AIC, BIC, the X2 goodness-of-fit test, 
and LR tests for NB versus HNB, and for NB versus FMNB-2, are computed in each of 500 
replications for each experimental design point. 

The results show that the LR test for NB versus HNB has the correct size under the null and 
quite good power under the alternative. Second, if one uses the usual x2 critical value for the LR 
test of NB versus FMNB-2, the test is undersized. However, the test has excellent power under the 
alternative even when the usual critical value is used. When the difference in component means is 
about 2, the test rejects over 90% of the time. 

The AIC and BIC are quite successful at discriminating between the HNB and FMNB-2 
models. As one might expect, the BIC is quite conservative; it tends to select the NB model fairly 
frequently (up to 60% of the time) when the true model is either HNB or FMNB-2. Consequently, 
selection of either the finite mixture or hurdle specifications by the BIC may be taken as strong 
evidence that the NB model is inadequate. Finally, while the goodness-of-fit test generally has the 
nominal size for NB, it tends to underreject (0-05 for a nominal 0.10 test) for the HNB and 
overreject (0-20 for a nominal 0.10 test) for FMNB-2. Overall, a failure to reject the null using the 
goodness-of-fit test appears to be convincing evidence that the model is correctly specified. 

5. DATA AND SUMMARY STATISTICS 

The data are obtained from the National Medical Expenditure Survey (NMES) which was 
conducted in 1987 and 1988 to provide a comprehensive picture of how Americans use and pay 
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for health services. The NMES is based upon a representative, national probability sample of the 
civilian, non-institutionalized population and individuals admitted to long-term care facilities 
during 1987. Under the household survey of the NMES, more than 38000 individuals in 15000 
households across the United States were interviewed quarterly about their health insurance 
coverage, the services they used, and the cost and source of payments of those services. These 
data were verified by cross-checking information provided by survey respondents with providers 
of health-care services. In addition to health-care data, NMES provides information on health 
status, employment, sociodemographic characteristics, and economic status. 

In this paper we consider a subsample of individuals ages 66 and over (a total of 4406 
observations) all of whom are covered by Medicare, a public insurance programme that offers 
substantial protection against health care costs.3 Residents of the United States are eligible for 
Medicare coverage at age 65. Some individuals start receiving Medicare benefits a few months 
into their 65th year primarily because they fail to apply for coverage at the appropriate time. 
Virtually all individuals who are 66 or older are covered by Medicare. In addition, most 
individuals make a choice of supplemental private insurance coverage shortly before or in their 
65th year because the price of such insurance rises sharply with age and coverage becomes more 
restrictive. Therefore, given our choice of sample, the treatment of private insurance status as 
predetermined, rather than endogenous, is justified.4 On the other hand, to the extent that private 
insurance puchase is in anticipation of required health care, given health status, private insurance 
status may be treated as endogenous. Since our specification controls for health status by 
including several health-status variables, the force of this argument is reduced. Exogeneity of 
insurance is a major econometric simplification. 

We consider six mutually exclusive measures of utilization: visits to a physician in an office 
setting (OFP), visits to a non-physician in an office setting (OFNP), visits to a physician in a 
hospital outpatient setting (OPP), visits to a non-physician in an outpatient setting (OPNP), 
visits to an emergency room (EMR), and number of hospital stays (HOSP). Means and standard 
deviations of these variables are presented in Table I along with the proportions of zero values. 
As one might expect, most elderly persons see a physician at least once a year and a considerably 
smaller fraction seek care in an emergency room or are admitted to a hospital, even as 
outpatients. 

Definitions and summary statistics for the explanatory variables are presented in Table I. The 
health measures include self-perceived measures of health (EXCLHLTH and POORHLTH), 
the number of chronic diseases and conditions (NUMCHRON), and a measure of disability 
status (ADLDIFF). In order to control for regional differences we use NOREAST, MIDWEST 
and WEST. The demographic variables include AGE, race (BLACK), sex (MALE), marital 
status (MARRIED), and education (SCHOOL). Finally, the economic variables are family 
income (FAMINC), employment status (EMPLOY), supplementary private insurance status 
(PRIVINS), and public insurance status (MEDICAID). 

Both PRIVINS and MEDICAID serve as indicators of the price of service. However, while 
Medicaid coverage was quite uniform across states in 1987, i.e. most individuals covered by 
Medicaid had identical deductibles, coinsurance rates and covered benefits, private insurance 
differed widely in deductibles, coinsurance rates, and defined benefits. Therefore, while the 

3 In 1990 Medicare benefit payments exceeded $100 billion. 
4 Cartwright, Hu, and Huang (1992) use a Wu-Hausman test for the exogeneity of supplemental private insurance in a 

utilization regression for a sample of individuals ages 65 and over and find that insurance status is exogeneous. 
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Table I. Variable definitions and summary statistics 

Variable Definition Mean SD 

OFP # of physician office visits 5.77 (15-5) 6.76 
OFNP # of non-physician office visits 1.62 (68-2) 5.32 
OPP # of physician hospital outpatient visits 0-75 (77-1) 3-65 
OPNP # of non-physician hospital outpatient visits 0.54 (83-8) 3.88 
EMR # of emergency room visits 0.26 (81-8) 0.70 
HOSP # of hospital stays 0.30 (80-4) 0.75 
EXCLHLTH = 1 if self-perceived health is excellent 0.08 0.27 
POORHLTH = 1 if self-perceived health is poor 0.13 0.33 
NUMCHRON # of chronic conditions (cancer, heart attack, 1.54 1.35 

gall bladder problems, emphysema, arthritis, 
diabetes, other heart disease) 

ADLDIFF = 1 if the person has a condition that 0.20 0.40 
limits activities of daily living 

NOREAST = 1 if the person lives in northeastern US 0.19 0.39 
MIDWEST = 1 if the person lives in the midwestern US 0.26 0.44 
WEST = 1 if the person lives in the western US 0-18 0.39 
AGE age in years (divided by 10) 7.40 0.63 
BLACK = 1 if the person is African American 0-12 0.32 
MALE = 1 if the person is male 0.40 0.49 
MARRIED = 1 if the person is married 0.55 0.50 
SCHOOL # of years of education 10.3 3.74 
FAMINC family income in $10 000 2.53 2.92 
EMPLOYED = 1 if the person is employed 0.10 0.30 
PRIVINS = 1 if the person is covered by private health insurance 0.78 0.42 
MEDICAID = 1 if the person is covered by Medicaid 0.09 0.29 

Numbers in parentheses are the frequency of zero counts. 

dummy variable for Medicaid is likely to measure the difference in prices for those enrolled versus 
others, the dummy variable for private insurance can be, at best, seen as a noisy indicator of the 
price of medical care for those with coverage versus those without. However, the interpretation of 
MEDICAID is complicated by the fact that it is a programme that provides health insurance for 
the poor. Hence, in addition to the price effect on medical care demand, MEDICAID is likely to 
capture income (poverty) effects. 

6. RESULTS 

6.1. Model Comparison and Evaluation 

For expositional ease, Table II collects the acronyms for the various models along with brief 
descriptions and number of parameters estimated in each. Note that the number of parameters 
approximately doubles for HNB and FMNB-2 models relative to NB and CFNB-2, thus 
increasing the chance of overparameterization. 

Table III presents likelihood ratio tests of NB versus HNB, the unicomponent model versus the 
two-component models (CFMNB-2 and FMNB-2) as well as the two-component models versus 
the corresponding three-component models. The NB model is rejected in favour of HNB in every 
case. The NB model is also rejected in favour of two-component mixture models, notwith- 
standing the fact that we have used conservative critical values. This evidence is corroborated by 
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Table II. Model description and number of estimated parameters 

Model Description Parameters 

NB Negative binomial count model 18 
HNB Hurdle variant of a negative binomial model 35 
CFMNB-2 Constrained two-point finite mixture of negative binomials: 21 

slope parameters equal across component densities 
FMNB-2 Two-point finite mixture of negative binomials 37 
CFMNB-3 Constrained three-point finite mixture of negative binomials: 24 

slope parameters equal across component densities 
FMNB-3 Three-point finite mixture of negative binomials 56 

Table III. Likelihood ratio tests 

Null Alternative OFP OFNP OPP OPNP EMR HOSP 

NB1 

NB HNB 59.8a 62.4a 124.0a 51.4a 49.9a 20.8a 
NB CFMNB-2 116.7a 96.4a 256.9a 267.3a 24.7a 9.7a 
NB FMNB-2 116.9a 121.4a 330.7a 307.1a 50.3a 26.8 
CFMNB-2 FMNB-2 50.2a 25.0 73.8a 39.7a 25-6 17-1 
CFMNB-2 CFMNB-3 0.002 0.01 0.001 0.78 le-5 le-4 
FMNB-2 FMNB-3 11.3 0.01 0.001 0.01 11.8 32.6a 

NB2 

NB HNB 183-4a 178-0a 89.6a 178.2a 13-4 30-8a 
NB CFMNB-2 106.7a 127.5a 113.8a 245.4a 1.3 13.2a 
NB FMNB-2 136.0a 189.8a 141.3a 297.3a 27.1 28-9 
CFMNB-2 FMNB-2 29.2 62.3a 27.5a 51.7a 25.7 15.7 
CFMNB-2 CFMNB-3 0.003 0.001 0.003 13.6a 1.2 2e-4 
FMNB-2 FMNB-3 0-002 0.0002 29.9 28.7 0.004 0-002 

Notes: 
The test of NB versus HNB follows a X2(17) distribution. 
The critical value for the test of NB versus CFMNB-2 is from a x2(3) distribution. 
The critical value for the test of NB versus FMNB-2 is from a X2(19) distribution. 
The test of CFMNB-2 versus FMNB-2 follows a X2(16) distribution. 
The critical value for the test of CFMNB-2 versus CFMNB-3 is from a x2(3) distribution. 
The critical value for the test of FMNB-2 versus FMNB-3 is from a X2(19) distribution. 
a Statistically significant at the 5% level. 

the directional gradient function evaluated against FMNB-2 which are presented in Figure 1 for 
the NB1 specification. Similar figures for CFMNB-2 and the specifications using NB2 and were 
obtained but are not reported for space reasons. They appear to satisfy the convexity require- 
ment, most clearly for OFP, and least clearly for EMR and HOSP. 

Though, as already noted, there are problems with the LR test for choosing between two- and 
three-component mixtures, it is interesting to note that, whether based on the NB1 or NB2 
mixtures, we get a significant LR statistic in only two cases out of 24. Finally, within the two- 
component models, the evidence in favour of the constrained model is mixed. The LR test of 
CFMNB-2 against FMNB-2 model, based on the NB1 specification, rejects the null model in 
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Figure 1. Directional Gradients against FMNB-2 NB1 

three cases (OFP, OPP, and OPNP). If we base comparisons on the NB2 specification, the test is 
also rejected three times (OFNP, OPP, and OPNP). 

Table IV presents values of the AIC and BIC. These show that either CFMNB-2 or FMNB-2, 
based on the NB1 specifications are the preferred models overall. Within the NB2 class, again 
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Table IV. Information criteria (AIC and BIC) 

OFP OFNP OPP OPNP EMR HOSP 

NB1 

NB AIC 24348 11830 8409 6251 5384 5718 
BIC 24463 11945 8524 6366 5499c 5833c'd 

HNB AIC 24323 11801 8319 6234 5368 5731 
BIC 24546 12025 8543 6457 5591 5955 

CFMNB-2 AIC 24238 11739a,b 8158 5990 5365a,b 5714a'b 
BIC 24372C d 11874c"d 8292C 6124c,d 5499 5848 

FMNB-2 AIC 24220a,b 11746 8117a,b 5982a,b 5371 5729 
BIC 24456 11983 8353 6218 5608 5965 

CFMNB-3 AIC 24244 11745 8164 5995 5371 5720 
BIC 24397 11899 8318 6148 5524 5873 

FMNB-3 AIC 24246 11784 8155 6020 5397 5734 
BIC 24604 12142 8512 6378 5755 6092 

NB2 

NB AIC 24440 11900 8229 6245 5360 5729 
BIC 24555 12015 8344 6360 5475cd 5844C 

HNB AIC 24291a 11756 8173 6101 5381 5732 
BIC 24515 11980 8397 6324 5605 5956 

CFMNB-2 AIC 24340 11779 8121a 6005 5365a 5722a 
BIC 24474c 11913c 8255c,d 6140C 5499 5856 

FMNB-2 AIC 24342 11749a 8126 5986a 5371 5738 
BIC 24579 11985 8362 6222 5608 5974 

CFMNB-3 AIC 24346 11785 8127 5370 5998 5728 
BIC 24499 11938 8281 6151 5523 5881 

FMNB-3 AIC 24380 11787 8134 5995 5409 5776 
BIC 24738 12144 8492 6353 5767 6134 

Notes: 
AIC = -2 log(L) + 2K; BIC = -2 log(L) + K log(N); where L, K, and N are the maximized log likelihood, number 
of parameters, and observations, respectively. a model preferred by the AIC within the negative binomial-i class. 
b model preferred by the AIC overall. 
c model preferred by the BIC within the negative binomial-i class. 
d model preferred by the BIC overall. 

either CFMNB-2 or FMNB-2 are preferred models. While there is some evidence in favour of 
NBI on the basis of BIC for EMR and HOSP, evidence in favour of HNB is restricted to the case 
of OFP in the NB2 using AIC. To emphasize, neither HNB nor FMNB-3 are preferred to the 
FMNB-2 model. As expected, BIC favours the more parsimonious CFMNB-2 model whereas 
AIC favours the FMNB-2 model in three cases. 

Taking together the evidence from the statistics described above we conclude that the FMNB-2 
model is best within each density class and that models based on NB1 specifications perform 
better overall than those based on NB2 specifications. Thus, in what follows we present results 
from the FMNB-2 NB 1 models. This evidence in favour of a two-component mixture also allows 
us to interpret the two populations as being healthy and ill. 
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Table V. Actual, fitted distributions and goodness-of-fit tests: FMNB-2 NB1 models 

Count OFP OFNP OPP OPNP EMR HOSP 

Sample frequencies 

0 15.5 68.2 77.1 83.8 81.8 80.4 
1 10.9 12.9 11.9 9.8 13.3 13.6 
2 9.7 4.7 4.6 2.8 3.1 4.0 
3 9.5 2.8 1.7 1.1 1.2 1.1 
4 8.7 2.4 1.2 0.6 0.2 0-5 
5 7.7 1.6 0.8 0.2 0.2 0-3 
6+ 38.0 7.5 2.6 1.6 0.2 0.2 

Fitted frequencies 

0 15.1 68.3 77.2 83.8 81.8 80.4 
1 11.5 11.9 12.0 9.5 13.1 13.6 
2 10.5 5.7 4.3 3.1 3.4 3.8 
3 9.4 3.2 1.9 1.2 1.0 1.2 
4 8.2 2.0 1.0 0.5 0.4 0.5 
5 7.0 1.4 0.6 0.3 0.2 0.2 
6+ 38.3 7.5 2.9 1.6 0.2 0.3 

Goodness-of-fit tests 

X2 14-80 25.25a 13-69a 3.13 4.46 0.59 
df 13 8 5 2 2 2 

Notes: 
The fitted frequencies are the sample averages of the cell frequencies estimated from the FMNB-2 NB1 models. 
a Statistically significant at the 5% level. 

6.2. Further Analysis of the Preferred Model 

Table V presents the sample frequency distribution of the count variable along with the sample 
averages of the estimated cell frequencies from the selected model. We then present two views of 
the differences between the two populations that comprise the mixture. Table VI reports the fitted 
mean and variances for the fitted component densities and Figure 2 presents the fitted frequency 
distributions. Finally, Tables VII(a) and VII(b) contain parameter estimates for the FMNB-2 
models estimated using NB1 specifications. 

Tables VI, VII(a), and VII(b) report statistics for each of the two-component densities of the 
finite mixture. For office and hospital outpatient visits (OFP, OFNP, OPP and OPNP), the first 
component corresponds to the healthy population while the second component corresponds to 
the ill population. However, these interpretations are reversed for EMR and HOSP. 

Goodness offit 
A comparison of sample and fitted frequency distributions in Table V shows a good fit over the 
entire range of the distribution. The discrepancy between the actual and fitted cell frequencies is 
never greater than 1%. Discrepancies between actual and predicted frequencies based on NB and 
HNB models (not presented) are usually much larger. 

The X2 goodness-of-fit statistics were calculated for all models but are shown in Table V only 
for the selected models. The NB and HNB (both variants) are generally rejected by this test, 
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Table VI. Sample averages of fitted means and variances: FMNB-2 NB1 models 

OFP OFNP OPP OPNP EMR HOSP 

Mean 

Component density 1 5.55 0.58 0.33 0.39 0.35 0.99 
Component density 2 8-17 2.43 2.11 0.67 0.22 0.26 
Mixture density 5.78 1.62 0 76 0.54 0.26 0.30 

Variance 

Component density 1 24-69 1.26 0.61 0.54 0.53 1.42 
Component density 2 161-93 42-62 28-75 22-22 0.29 0.37 
Mixture density 42-82 25-79 9.35 12-34 0.43 0.64 

suggesting specification errors (not presented). The mixture models do considerably better in 
relative terms. In two cases (OFNP and OPP), however, the mixture specification is also rejected 
by this test-a surprising result given the match between sample and predicted cell 
frequencies-which reinforces the suspicion that the version of the test used here has a 
tendency to overreject a true null. 

Estimates of , component means, and densities 
The estimates of the 7n components vary from a low value of 0.06 for HOSP to a high value of 
0.91 for OFP. In all cases the estimates n and (1 - n) are large relative to their estimated standard 
errors, reinforcing the conclusion that the evidence supporting the two population hypothesis is 
strong. Note, however, that rejecting the hypothesis of one population against the alternative of 
two populations, on the basis of the 't-test' of 7r, has to be done with caution because the 
hypothesis involves a boundary value and the distribution of the test statistic is non-standard. 

The sample averages of the estimates of Aj,i (fitted means) for the two component distributions 
are dramatically different in some cases. Healthy individuals who comprise 91% of the 
population have 5.6 visits to a physician (OFP) while the remaining ill individuals seek care 8.2 
times. The component distributions shown in Figure 2 suggests that this difference in means is 
caused by a greater proportion of zeros and high values for the ill population. It appears that, 
while most healthy individuals see a doctor a few times a year for health maintenance and minor 
illnesses, a larger fraction of the ill do not seek any (preventive) care. Those ill individuals who do 
see a doctor (these individuals have sickness events) do so much more often than healthy 
individuals. Since preventive care usually takes the form of a visit to a doctor in an office setting, 
one would not expect such a pattern of differences between the healthy and ill to arise for the 
other measures of utilization. 

The means are also quite different for OFNP and OPPD. While 44% of the population average 
0.58 visits to a non-physician in an office (OFNP), the remainder average 2.43 visits. The mean 
number of visits to a physician in a hospital outpatient (OPP) setting is 0.33 for 76% of the 
population who are healthy but the remaining 24%, who are ill, seek care an average of 2.11 
times. For these two cases, the component frequency distributions for OFNP and OPP (Figure 2) 
show that the main reason for the differences in the component means is the higher proportion of 
large counts in the ill population. There is little or no difference in the number of zero counts. 
This contrasts with the explanation for the differences in means for OFP where the healthy and ill 
groups differ in zero and large counts. 
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Table VII(a). Parameter estimates of FMNB-2 NB1 models 

Variable OFP OFNP OPP 

Comp-1 Comp-2 Comp- 1 Comp-2 Comp-1 Comp-2 

EXCLHLTH 

POORHLTH 

NUMCHRON 

ADLDIFF 

NOREAST 

MID WEST 

WEST 

AGE 

BLACK 

MALE 

MARRIED 

SCHOOL 

FAMINC 

EMPLOYED 

PRIVINS 

MEDICAID 

CONSTANT 

7in 

-0.25a 
(0.06) 
0.24a 

(0.07) 
0.20a 

(0.01) 
0.01 

(0.04) 
0.08 

(0.05) 
0*01 

(0.04) 

(0.05) 
0*03 

(0.02) 
-0*07 

(0.06) 
- 0.l2a 

(0.04) 
0*04 

(0.04) 
o.ola 

(4e-3) 
- 3e-4 

(0.01) 
-0.06 
(0.05) 
0.25a 

(0.05) 
0.34a 

(0.06) 
0.78a 

(0.18) 
3 .45a 

(0.19) 

log L 

-0.77 
(0.57) 
0.06 

(0.89) 
0.14 

(0.I1) 
0-58 

(0.39) 
0.21 

(0.44) 
0.09 

(0.33) 
0.23 

(0.44) 
-0.57a 

(0.20) 
-1.16 
(1.10) 
0.06 

(0.28) 
-0.44 
(0.38) 
0. 1 a 

(0.05) 
- le-3 

(0.01) 
0.39 

(0.52) 
2.89 

(1.84) 
- 2.44a 
(0.99) 
1.71ia 

(0.63) 
18.82a 
(0.58) 

0.91IC 
(0.02) 

-0.31 
(0.35) 

-0.52 
(0.47) 

(0.09) 
-0.31 
(0.34) 
2e-4 

(0.41) 
-0.33 
(0.35) 

-0.10 
(0.59) 
0.13 

(0.47) 
-0.50 
(0.52) 

-0.37 
(0.27) 

-0.04 
(0.34) 
0.05 

(0.04) 
0*01 

(0.01) 
0.28 

(0.54) 

(0.40) 
-0.60 

(0.94) 
-2.41 

(3.77) 
1.18 

(0.93) 

-12072.8 

-0.08 
(0.24) 

-0.09 
(0.20) 
o.11la 

(0.05) 
0*25 

(0.16) 
0.57a 

(0.29) 
0.75a 

(0.25) 
I.ola 

(0.23) 
-0*17 
(0.29) 

-0*19 
(0.27) 

(0.16) 
0*13 

(0.22) 
0.06a 

(0.03) 
-0*02 

(0.02) 
-0.24 

(0.33) 
0.40 

(0.27) 
0*31 

(0.28) 
0*57 

(2.47) 
16.51la 
(0.68) 

0.44C 
(0.21) 

-5836.2 

(0.24) 
0.05 

(0.19) 
0. 16a 

(0.04) 
2e-3 

(0. 19) 
-0.07 
(0.18) 
0.11 

(0.17) 
0.18 

(0.17) 
-0.02 
(0.10) 

-0.13 
(0.35) 
0.03 

(0.12) 
0-05 

(0.12) 
0*03 

(0.02) 
-0.01 
(0.02) 
0-04 

(0.20) 

(0.28) 
-0.02 

(0.29) 
- 1.97a 
(0.71) 
0.87a 

(0.24) 

-0.21 
(0.48) 
0.39 

(0.34) 
0.35a 

(0.10o) 
0*30 

(0.37) 
0*3 1 

(0.38) 
0.24 

(0.41) 
0-45 

(0.33) 
-0.40a 

(0.18) 

(0.29) 

(0.21) 
0*16 

(0.25) 
0*06 

(0.04) 
0.01 

(0.03) 
-0.70 

(0.45) 
-0-69a 
(0.27) 

-0.14 
(0.35) 

(1.14) 
12.63a 
(3.25) 

0.76C 
(0.1I0) 

-4021.3 

Notes: 
Comp-1I and Comp-2 are the first and second component densities, respectively. 
Standard errors are in parentheses. 
a Statistically significant at the 5% level. 
b Statistically significant at the 10% level. 
c Significantly different from 0 and 1 at the 5% level. 
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Table VII(b). Parameter estimates of FMNB-2 NB1I models 

Variable 

EXCLHLTH 

POORHLTH 

NUMCHRON 

ADLDIFF 

NOREAST 

MID WEST 

WEST 

AGE 

BLACK 

MALE 

MARRIED 

SCHOOL 

FAMINC 

EMPLOYED 

PRIVINS 

MEDICAID 

CONSTANT 

7in 

OPNP EMR HOSP 

Comp-1 Comp-2 Comp-1 Comp-2 Comp- 1 C 

-0.49a 
(0.30) 

-0-22 
(0.23) 
0.24a 

(0.06) 
-0.12 

(0.17) 
0*50a 

(0.16) 
0-22 

(0.15) 
0*33 

(0.27) 
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0.68a 

(0.18) 
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-0.08 

(0.42) 
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32.Ola 
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0.46c 
(0.21) 

0.73 
0.60 

0.64 
0.36a 
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0.27 
-0.01 

0.38 
-0.21 

0.32 
0-30 
0.48 

-0.42a 
0.19 
0-50 
0-34 
0*12 
0.27 

-0.02 
(0*26) 

-0.04 
(0.03) 

-0-04 
(0.09) 
0-63 

(0.46) 
0-17 

(0.29) 
-0.10 

(0.43) 
0-92 

(0.58) 

(0.28) 

-2954.0 

- 4.3 6a 
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0 1 3a 

(0.06) 
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(0.17) 
0*05 

(0*24) 
0*09 

(0.17) 
0-04 
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(0* 1) 
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-4.97 a 

(2.25) 
0*51 

(0.39) 
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(0.16) 
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- 3.94a 

(1.51~ 
0.44 

(0.26) 
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.-omp-2 
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0.06c 

(0.02) 

-2827.5 

Notes: 
Comp- 1 and Comp-2 are the first and second component densities, respectively. 
Standard errors are in parentheses. 
a Statistically significant at the 5% level. 
b Statistically significant at the 10% level. 
c Significantly different from 0 and 1 at the 5% level. 
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Figure 2. Component Densities from the FMNB-2 NB1 Model 

The difference in means, though not large for the number of hospital stays (HOSP), is likely to 
be economically significant because of the higher costs of treatment in hospitals. As the 
distributions in Figure 2 show, about 19% of the healthy group, and 34% of the ill group, are 
likely to have at least one hospital stay. Finally, for the remaining two measures, OPNP and 
EMR, the component densities are not as markedly different as for other cases. 
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Estimates of c, variance, and overdispersion 
The estimates of a are significantly different from zero, reinforcing the stylized fact that medical 
care utilization counts are overdispersed relative to the Poisson model.5 This is also apparent 
from the fact that the component means are generally smaller than the sample averages of the 
estimated component variances + a (Table VI). The sample average of the fitted variance of 
the mixture distribution is smaller than the sample variance of the corresponding count variable 
in each case. This is expected because the fitted variance accounts for unobserved heterogeneity 
while the sample variance accounts for observed heterogeneity (via covariates) and unobserved 
heterogeneity. The sample averages of the fitted variances for the two-component distributions 
are dramatically different in every case. Part of this difference is due to the fact that the variance 
of a negative binomial- variate is positively related to its mean. However, the estimates of a that 
correspond to the high mean component are much larger than those corresponding to the low 
mean component, suggesting that the ill population is more overdispersed than the healthy 
population.6 A large component of this difference comes from the significant differences in the 
probability of zero health events in the two populations. The histograms for event frequencies 
bring this out clearly. Overall, therefore, there is strong support for the hypothesis of two 
populations, one with a low mean and variance, and the other with a higher mean and higher 
variance. 

Insurance, income, and employment 
Supplementary private insurance status (PRIVINS) does not affect emergency room or hospital 
utilization because Medicare coverage is quite generous in these areas (the net price to the user is 
quite small, and often zero). Utilization is insensitive to marginal changes in price given the small 
baseline price levels. Persons with supplementary private insurance seek care from physicians and 
non-physicians in office as well as outpatient settings more often than individuals without 
supplementary coverage and the additional usage for OFF is estimated to be considerably higher 
for the high-use group. This is because private insurance typically covers physical therapy, check- 
ups, etc., with small deductibles and coinsurance rates while Medicare does not.7 

Medicaid coverage is a significant determinant of the number of visits for two categories of 
medical care- OFP and HOSP -which are the two most important measures of utilization: 
office visits to a physician in terms of the overall number of medical care visits and hospital stays 
in terms of the share of expenditures on medical care. In both cases, the coefficient is significantly 
positive in the component density for the healthy group and is significantly negative in the 
component density for the ill group. A plausible explanation for this intriguing result is that, for 
the healthy group, the price (insurance) effect of the MEDICAID dummy outweighs the income 
effect (because MEDICAID is a health insurance plan for the poor). But poor individuals within 
the ill group (for whom the opportunity cost of seeking care is disproportionately large relative to 
the money-price of care) seek care less often even though they have Medicaid insurance coverage. 
This is a potentially important finding, and one that is uncovered in the finite mixture framework 
in a natural way, which confirms that the unhealthy poor are a vulnerable population in society. 

5 The t-test is not strictly valid because a is bounded below by zero. 
6 The parameter estimate of a for the second component of OPNP is implausibly large (32-01). Therefore, we 

re-estimated the model with a limited number of different starting values but they yielded little change in the maximized 
estimates. Note, however, that our discomfort with this value is statistically embodied in the large estimated standard 
error (15-54). 

7 Because we do not have data on the price of care, however, we cannot estimate price elasticities of demand, which 
would be of practical use. 
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Perhaps surprisingly, the (continuous) family income variable (FAMINC) does not affect the 
utilization of medical care. Furthermore, employment, which may capture income effects as well, 
is never significant. One explanation for the negligible income effect is that the overall generosity 
of Medicare irrespective of family income, combined with Social Security Income which 
guarantees a certain level of income, make utilization insensitive to marginal changes in income.8 
Another is that the effect of income is to induce changes in the intensity and quality of care which 
would be captured in expenditure functions but not in visits functions. 

Health status 
Consistent with previous studies, both the number of chronic conditions (NUMCHRON) and 
self-perceived health and are important determinants of utilization. An increase in the number of 
chronic conditions increases utilization of each form of medical care.9 The measures of self- 
perceived health (EXCLHLTH and POORHLTH) affect OFP but not OFNP or OPP. HOSP 
and EMR are increased by perceptions of ill-health. Disability (ADLDIFF) increases emergency 
room and hospital care usage but generally does not affect other forms of care. It is well known 
that emergency room and inpatient care are the most expensive forms of care. Moreover, the 
debilitating impact of a number of conditions that lead to disability can be ameliorated or 
postponed through physical therapy or rehabilitation. Since physical therapy and some rehab- 
ilitative programmes are considerably cheaper than hospital stays, a policy implication of this 
finding is that resources could be spent on programmes that reduce limitations. 

Demographics 
Hospital stays increase with age but hospital outpatient visits decrease with age, probably due to 
decreasing mobility associated with ageing.10 Men seek less care in office settings and from non- 
physicians in outpatient settings than women but have more hospital stays and outpatient 
physician visits. An explanation for this phenomenon is the anecdotal 'fact' that men tend to wait 
longer before seeking medical care, and therefore have more serious conditions that require 
treatment in in- and outpatient hospital settings. Cartwright, Hu, and Huang (1992) corroborate 
these findings and explanation; they find that men are less likely to seek medical care, but once 
care is sought they expend about 13% more than women. 

Individuals with greater schooling seek care in office settings more often than those with less. 
Given the insignificance of income, this finding could be due to an income effect signalled 
through schooling, but it could also be due to the more conventional reason that education 
makes individuals more informed consumers of medical care services. Marital status appears to 
have no effect on utilization. Finally, the region of residence appears to have some influence on 
the mix of office and outpatient utilization but not on emergency room or hospital visits. 

7. CONCLUSION 

The results obtained from the three variants of the negative binomial count-regression (standard, 
hurdle, and finite mixture) estimated in this article lend support to the theoretical models of 

8 This finding is consistent with the literature; see, for example, Cartwright, Hu, and Huang (1992). 
9 We present results using one variable measuring the number of chronic conditions for parsimony. However, the 

conclusion with respect to the effect of chronic conditions on utilization is not altered when a dummy variable is used for 
each condition. 
10 Doctors' offices which are located in diverse geographic locations are typically more accessible than outpatient clinics 
in large hospitals, which are concentrated in city centres. 
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medical care demand in the consumer-theoretic framework which do not need to assume that the 
decision making for the demand for health care has a two-part structure. To the extent that a 

two-part (hurdles) specification is interpreted as reflecting a principal-agent structure, our 

empirical results do not support it. However, it should be acknowledged that a hurdles model 
need not be interpreted as a unique characterization of the principal-agent type formulation. 
With the exception of the hospitalization outcome, our results support a two-point finite mixture 
model, thus allowing a categorization of individuals as ill and healthy, a characterization which is 
silent on how the patient-provider relationship leads to a particular outcome. 

Our empirical results emphasize the importance of health status and insurance as determinants 
of health-care demand, and the relative unimportance of income. 

An interesting issue for future research concerns the use of a multivariate framework which will 

permit one to consider whether 'low user' and 'high users' categories across different types of 

usage are significantly and positively correlated, as indicated by crude correlation measures based 
on raw data. If so, this will lend additional support to such a dichotomy, which in turn is germane 
to the distinction between 'high risks' and 'low risks' in models of adverse selection in health 
insurance. A second methodological issue for future research is the avoidance of estimators based 
on strong distributional assumptions in favour of moment-based estimators. 
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