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Abstract: A variety of mathematical forms have been developed to characterize de-

mand functions which depend on a firm’s operational and marketing activities. Such

demand functions are being increasingly used by researchers in economics and different

functional areas of business. We provide a comprehensive survey of commonly-used de-

mand models which depend on (i) price, (ii) rebate, (iii) leadtime, (iv) space, (v) quality,

and, (vi) advertising. Our survey includes single-firm demand models in each category,

as well as game theoretic multi-firm models involving strategic interaction among the

firms. We observe that certain types of functional forms, such as, linear, power/iso-

elastic, multinomial logit, and multiplicative competitive interaction, have been widely

used to construct various demand models in all six categories, but that a large majority

of publications deal with categories (i) and (v) of demand models. For each of the six

categories, we survey relevant functional forms in the representative papers, and discuss

the main properties, the advantages, the disadvantages, and comment on possible future

research directions. We also present a discussions of the applications of these analyti-

cal demand models in empirical studies. The paper ends with a summary of our major

findings.

Keywords: Demand function; price; rebate; lead time; space; quality; advertising; em-

pirical study.

1 Introduction

In order to capture market share and increase sales, in highly competitive free markets of liberalized

economies firms have to compete not only with their prices, but also with rebates, leadtimes, operating

spaces, product and/or service quality, and advertising and other promotional expenditures. But, the

degree of effectiveness of these competitive factors in increasing a firm’s sales depends on how much

of these factors influence the consumers’ purchasing decisions.

As Lilien et al. (1992) have shown, a consumer usually progresses through the following five steps

in her purchase cycle: In the first step, the consumer is aroused by internal stimuli and/or external

drives. In the second step, the consumer searches for relevant information to identify a potential set

1The authors are grateful to the editor (Professor Asoo J. Vakharia), the Senior Editor, the Associate Editor, and two

anonymous referees for their insightful comments that helped improve the paper.
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of brands or products that satisfy her need. In the third step, the consumer evaluates the identified

products according to her utilities associated with different product attributes such as price, quality,

functionality, rebates, return policy, brand reputation, etc. In the fourth step, the consumer makes her

purchase decision based on the comparison of the utilities of different products. In the final step, the

consumer has post-purchase feelings such as whether or not she is satisfied with the product, and may

request post-sales services such as product return/replacement, technical support services, etc. Thus,

consumers are sensitive to firms’ operational and marketing activities in each step and in order to be

competitive, each firm has to make decisions on price, rebate, leadtime, quality, advertising etc., in a

prudent manner and entice more potential consumers to buy its products or request its service.

In the past two decades, a considerable number of researchers in economics and different func-

tional areas of business have studied the impact of various operational and marketing activities on the

consumer demand. These researchers have developed a variety of mathematical functions to char-

acterize the demand. Motivated by the prevalence of demand models in the literature, we present a

comprehensive survey of the functional forms that have been used in such demand models. We focus

our survey on various commonly-used demand models in six categories, which include (i) price-,

(ii) rebate-, (iii) leadtime- (iv) space-, (v) quality-, and (vi) advertising-dependent demand models.

For each model, we briefly describe the analysis in one or several representative publications, and

discuss the main properties, the advantages, the disadvantages, and possible future research direc-

tions. For each category, we also compare relevant demand models to identify the conditions for the

applicability of each model.

In this paper, we select representative publications mainly based on the following four criteria,

which are listed in the order of their priority. First, we emphasize the review of the models that can

be used to describe the demands of consumers who are sensitive to firms’ decisions on price, rebate,

leadtime, shelf space, product/service quality, and advertising. We do not consider the demand func-

tions independent of a firm’s decision, e.g., the demand functions in terms of a product’s life-time,

which have been reviewed by Goyal and Giri (2001). Second, our paper is focused on reviewing the

demand models that have not been comprehensively surveyed in the extant literature. For example,

we do not review the demand models in terms of a firm’s initial and instantaneous inventory lev-

els, because those models have been discussed by Urban (2005). Similarly, we do not consider the

dynamic advertising models and empirical studies relating to advertising, because those have been

comprehensively reviewed by Erickson (2003), Feichtinger et al. (1994), Huang, Leng, and Liang

(2012), Mahajan et al. (1990), Sethi (1977), etc. Third, we mainly review early demand models, and

very briefly mention or omit their extensions that do not exhibit any significant difference. Fourth,

we have chosen to review the models that are simple but representative, in order to clearly present

our survey and draw insightful conclusions.

We show in our review that the price-dependent demand models are the most commonly employed

possibly because pricing strategy is the most effective tool that has been used to impact a firm’s
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demand. Our comprehensive review includes, for each category, single firm demand function models.

We also survey, where available, game theoretic multi-firm models involving strategic interaction.

We have found that a large number of publications belong to the categories of price- and quality-

dependent models, but fewer publications to other categories. This suggests that there may exist

further research opportunities for using rebate-, leadtime-, space-, and advertising-dependent models.

The remainder of this paper is organized as follows: Sections 2 to 7 present a survey of the

demand function models in six categories. Then, in Section 8, we review demand models for which

empirical studies have been performed to estimate the model parameters. In Section 9, we summarize

our survey, and discuss how the existing demand function models have helped analyze a variety of

business and economics problems. For each category of demand models, we also provide a further

discussion of possible research directions.

2 Price-Dependent Demand Models

In the past several decades, numerous theoretical demand models have been developed from various

perspectives to investigate the impact of price on the consumer demand and to examine the firms’

optimal pricing decisions for the settings with a monopolistic or multiple competitive firms. In this

section, we first review demand models without price competition, and then survey those where there

is price competition between two or among n ≥ 3 firms.

2.1 Single Firm Price-Dependent Demand Models

These models are commonly used to characterize the demand for a product that only depends on the

price of the product itself, which include the deterministic, stochastic, willingness-to-pay (WTP), and

Poisson flow models. We divide these price-dependent models for a single firm into four subgroups

according to the main factors that affect the consumer demand, in addition to the product price.

Specifically, the stochastic demand models differ from the deterministic models because random

factors may affect the consumer demand. Different from the deterministic models, the WTP models

can be used to derive the demand function by considering the consumers’ WTP, and the Poisson flow

models incorporate both the consumers’ WTP and their arrival time when they purchase.

2.1.1 Deterministic Models

In the simplest deterministic model, demand d(p) is defined as a decreasing linear function of price

p and written as d(p) = a− bp, where a, b > 0 and 0 ≤ p ≤ a/b. Table 1 lists several linear models

(LM) which extend this basic linear model. The simplest nonlinear (power) model is the iso-elastic

model d(p) = ap−b, where a > 0, b > 1. One of the advantages of this model is that it does not

require a finite upper limit on price. The iso-elastic model is also called the constant elasticity model
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because the demand function exhibits a constant elasticity, i.e.,−b. Table 1 lists several extensions of

the power model (PM) and also summarizes the hybrid (HM), exponential (EM), logarithmic (LgM)

and logit (LtM) models. In the basic exponential model (EM I) the demand response to a reduction

in price follows an increasing returns to scale (see Hanssens and Parsons 1993). The standard logit

model (LgtM I) is useful because its parameters can be estimated by regression methods in empirical

applications.

Deterministic Demand Models Price-Dependent Deterministic Demand

Linear Models (LM)

LM I: Mills (1959),

Petruzzi Dada (1999)
d(p) = a− bp, where a, b > 0

LM II: Eliashberg and Steinberg (1987) d(p) = a(t)− bp(t), where a(t), b > 0, t ∈ [0, T ]
LM III: Chou and Parlar (2006) d(p) = a(t)− b(t)p(t), where t ∈ [0, T ]
LM IV(Reference-price model):

Fibich et al. (2003)
d(p, r) = a− δp− γ(p− r), where a, δ, γ > 0

Power Models (PM)

PM I (Iso-elastic model):

Karlin and Carr (1962),

Petruzzi Dada (1999)

d(p) = ap−b, where a > 0, b > 1

PM II (Algebraic model):

Jeuland and Shugan (1988)
d(p) = (ap+ b)−γ , where a, b > 0, γ > 1

PM III (Linear-power model):

Song et al. (2008)
d(p) = (a− bp)γ , where a, bγ > 0, γ ∈ (−∞,−1) ∪ (0,∞)

PM IV: Chen et al. (2006) d(p) = a− bpγ , where a, b > 0, γ ≥ 1
PM V: Ray et al. (2005) d(p) = (a− bpβ)γ , where a, b > 0, β ≥ 1, γ ≤ 1
PM VI: Agrawal and Ferguson (2007) d(p) = a/[a+ bpγ ], where a, b, γ > 0

Hybrid Model (HM): Lau and Lau (2003) d(p) = τ(a1 − bp) + (1− τ)a2p−γ , where a1 > 0, a2 > 0,

b > 0, γ > 1, and 0 ≤ τ ≤ 1
Exponential Models (EM)

EM I:

Hanssens and Parsons (1993),

Jeuland and Shugan (1988),

Song et al. (2008)

d(p) = a exp(−γp), where a > 0, γ > 0

EM II:

Chen et al. (2006),

Song et al. (2008)

d(p) = exp(a− bp), where a > 0, b > 0

EM III: Chen and Simchi-Levi (2004a) d(p) = a− exp(γp), where a > 0, γ > 0
Logarithmic Model (LgM):

Chen et al. (2006),

Ray et al. (2005)

d(p) = ln[(a− bp)γ ], where a, b, γ > 0

Logit Models (LtM)

LtM I: Chen and Simchi-Levi (2012), d(p) = a exp(−bp)/[1 + exp(−bp)], where a, b > 0
LtM II: Phillips (2005) d(p) = 1/[1 + exp[a+ bp]]

Table 1: Price-dependent deterministic demand functions.

Remark 1 The linear model is extensively used in the literature because it gives rise to explicit

results for the optimal solution, and it is relatively easy to estimate its parameters in an empirical

study. Moreover, the demand elasticity of the linear model [i.e., d′(p)/[d(p)/p] = −bp/(a − bp)]

depends on the price decision variable p and it is always decreasing and concave in p. On the other

hand, in most practical cases the assumption of a linear demand function and the requirement of

a finite upper bound on the price do not correspond to reality. The advantage of the iso-elastic

(power) model is that it can be transformed to a linear function by taking logarithms which makes the

parameter estimation relatively easier. The other advantages of the power model include its ability

to characterize the nonlinear effects arising in the market and the possibility of deriving it from the

Cobb-Douglas production function. However, one of the drawbacks of the iso-elastic model is that

the demand elasticity always equals the constant −γ. Another drawback of the iso-elastic model is
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that, when price approaches zero, demand approaches infinity, which is not realistic since market size

is a finite quantity. See Oum (1989) for a detailed discussion of the advantages and drawbacks of the

linear and iso-elastic demand models.

As shown in Table 1, numerous demand models have appeared in the literature, but there has been

little justification for why one demand model should be chosen instead of the others. An exception

to this is Lau and Lau (2003) who showed that, for a single-echelon system, using different types of

demand functions leads to structurally very similar conclusions. However, for multi-echelon systems,

even a small change in the specification of the demand function results in a significant change in the

channel efficiency and profitability ratios, thus requiring a more prudent approach in the specification

of the demand model. �

2.1.2 Stochastic Models

The above deterministic demand models have been extended to the stochastic cases with frequent

applications to the investigation of the newsvendor-type problems with pricing decisions. For a list

of commonly-used stochastic models, see Table 2.

Stochastic Demand Models Price-Dependent Stochastic Demand

General Model: Federgruen and Heching (1999), Kocabıyıkoğlu and Popescu (2011) D(p, ε)

Additive Model: Mills (1959), Petruzzi and Dada (1999) D(p, ε) = d(p) + ε

Multiplicative Model: Karlin and Carr (1962), Petruzzi and Dada (1999) D(p, ε) = d(p)ε

Hybrid Model I: Petruzzi and Dada (1999), Young (1978) D(p, ε) = d1(p)ε+ d2(p)

Hybrid Model II: Chen and Simchi-Levi (2004a), Chen and Simchi-Levi (2004b) D(p, ε) = ε1d(p) + ε2
Power Model: Kocabıyıkoğlu and Popescu (2011) D(p, ε) = aε/(ε+ pb)

Exponential Model: Kocabıyıkoğlu and Popescu (2011) D(p, ε) = eε−bp

Logarithmic Model: Kocabıyıkoğlu and Popescu (2011) D(p, ε) = loga(ε− bp)
Logit Model: Agrawal and Ferguson (2007), Phillips (2005), Kocabıyıkoğlu and Popescu (2011) D(p, ε) = aeε−bp/(1 + eε−bp)

Table 2: Stochastic demand models commonly used in the literature.

We denote a general stochastic demand model as D(p, ε), where p is the selling price and ε is

a price-independent random variable with c.d.f. F (·) and p.d.f. f(·) defined on the range [A,B]

with mean E(ε) = µ and variance Var(ε) = σ2. For the general model, the variance captures

the market risk. In the literature, the stochastic demand D(p, ε) is usually specified either as an

additive, a multiplicative, or an additive-multiplicative model (Young, 1978), and is commonly used

for newsvendor-type problems with pricing (see, Federgruen and Heching, 1999 ; Petruzzi and Dada,

1999 ). More specifically, for the additive case (Mills, 1959), demand can be represented as,

D(p, ε) = d(p) + ε, (1)

where d(p) is the deterministic component of the random demand and is usually assumed to have the

linear form d(p) ≡ a− bp with a, b > 0. In the multiplicative case (Karlin and Carr, 1962 ), demand

can be modeled as,

D(p, ε) = d(p)ε, (2)
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where the deterministic term d(p) is often specified as the common power function d(p) = ap−b

(a > 0, b > 1).

Combining the additive and multiplicative models, Young (1978) proposed a hybrid additive-

multiplicative demand function as, D(p, ε) = d1(p)ε + d2(p), where d1(p) and d2(p) are two deter-

ministic, non-increasing functions of p. When d1(p) = 1, D(p, ε) reduces to the additive function in

(1), and when d2(p) = 0, D(p, ε) is transformed into the multiplicative model in (2).

Chen and Simchi-Levi (2004a) constructed another hybrid additive-multiplicative model that has

two risk components, D(p, ε) = ε1d(p) + ε2, where the two terms ε1 and ε2 are random variables

and without loss of generality, they are assumed to have the mean values E(ε1) = 1 and E(ε2) = 0.

When ε1 = 1 and ε2 = 0, this demand function reduces to the additive and multiplicative forms,

respectively. A variety of functional forms for d1(p) and d2(p) have been used by different authors; a

comprehensive list of these models in six groups is given in Table 1.

Remark 2 There exists significant differences between the optimal pricing and inventory decisions

obtained by using the above additive and multiplicative models, which depend on how the demand

randomness is incorporated into the demand function (see, Petruzzi and Dada, 1999 ). For example,

the demand variance for the additive demand is independent of price but the coefficient of demand

variation is increasing in price. In contrast to the additive model, the coefficient of variation of

demand in the multiplicative model is independent of price but its variance is decreasing in price. To

deal with this problem, Kocabıyıkoğlu and Popescu (2011) developed a unified framework for the

newsvendor problem with pricing decision by introducing a new measure, the elasticity of lost-sales

rate (LSR), which can be used for most relevant demand models in the marketing and operations

studies, such as the additive linear model, multiplicative iso-elastic model, logit model, power model,

exponential model, log model and economic willingness-to-pay model; see Table 2 in Kocabıyıkoğlu

and Popescu (2011). �

2.1.3 Willingness-To-Pay Models

One often needs to consider how the firm’s pricing decision affects the purchase decision of individ-

ual customers who are usually assumed to have heterogeneous valuations. To that end, researchers

have proposed the willingness-to-pay (WTP) model (see, Kalish, 1985 ), which characterizes con-

sumers’ heterogeneous willingness to buy from a firm whose selling price is p. Suppose that con-

sumers have full information about the product. A consumer will buy if p ≤ V , where V denotes

a consumer’s willingness-to-pay, which is a random variable with p.d.f. f(v). Denoting the mar-

ket size by Λ, Kalish (1985) developed the total demand model as d(p) = Λ
∫
v≥p f(v)dv. Kalish

(1985) also extended the above model to incorporate the uncertainty about the product’s experience

attributes or the actual value of the product. The demand model in the uncertainty setting is given

as d(p) = Λ
∫
v≥p/δ f(v)dv, where δ ∈ (0, 1] denotes the reduction in the product’s value due to its
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experience attributes. Thus, for a fixed price p, as δ becomes smaller, there will be fewer customers

buying the product. In existing publications this model is used to investigate a firm’s optimal pric-

ing decisions, where a consumer’s purchase decision is influenced by the firm’s price as well as the

product quality. This issue is further discussed in the quality-dependent demand model in Section

6.1.1.

Remark 3 We note that if the random variable V follows the uniform distribution defined over

[A,B], then we find d(p) = [Λ/(B − A)]
∫ B
p/δ
dv = Λ[B − p/δ]/(B − A) which is of the same

form as the aggregate linear model LM I in Table 1. A similar result was obtained by Phillips

(2005), who assumed that δ = 1, as shown in Table 3. In fact, using different probability distri-

butions of consumers’s WTPs or utilities V (at the “micro-level”) can lead to different aggregate

demand functions (at the “macro-level”). In addition to the linear demand function resulting from

the uniform distribution over [A,B], we find that Kuo et al. (2008) and Phillips (2005) derived the

aggregate demand functions assuming that V satisfies the exponential, logistic, Weibull, and Pareto

distributions, as given in Table 3.

Our above discussion implies that which model (an aggregate model vs. a WTP model) we should

choose mainly depends on whether or not to analyze the consumers’ choices at the “micro-level.” If

we do not perform the analysis of the consumer choice, then we should not use a WTP model but

directly assume an aggregate demand function that was reviewed in, e.g., Sections 2.1.1 and 2.1.2.

Otherwise, we need to develop a WTP model and derive an aggregate demand function as discussed

in this section. �

Distribution Probability Density Function f(v) Aggregate Demand Function d(p)

Uniform(A,B): Phillips (2005)


1

B −A
, if A ≤ v ≤ B,

0, otherwise.

Λ(B − p)
B −A

(Linear function)

Exponential(λ): Kuo et al. (2008)

{
λ exp(−λv), if v ≥ 0,

0, otherwise.
Λ exp(−λp) (Log-linear function)

Logistic(α, β): Phillips (2005)
exp[−(v − α)/β]

β{1 + exp[−(v − α)/β]}2
Λ exp[−(v − α)/β]

1 + exp[−(v − α)/β]
(Logistic function)

Weibull(α, β): Kuo et al. (2008)


α

β

(
v

β

)α−1
exp

[
−
(
v

β

)α]
, if v ≥ 0,

0, otherwise.

Λ exp

[
−
(
p

β

)α]
(Exponential function)

Pareto(b): Phillips (2005)

{
bv−(b+1), if v ≥ 1,

0, otherwise.
Λp−b (Power function)

Table 3: A summary of commonly-used probability distributions of consumers’ WTPs or utilities and

the corresponding aggregate demand models.

2.1.4 Poisson Flow Models

In recent years, dynamic pricing and inventory models have been widely used in marketing and

operations management; see, e.g., Bitran and Caldentey (2003) and Elmaghraby and Keskinocak

(2003). In such models, one of the most important factors that influence the pricing decisions is

demand; thus, in order to analyze the optimal pricing decisions, one needs to consider customers’

arrival process and the changes in their willingness to pay (Elmaghraby and Keskinocak, 2003).
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An early publication concerning the dynamic pricing decision for a perishable product was by

Kincaid and Darling (1963), who developed a continuous time model in which the demand follows

a Poisson process with intensity λ. A customer arriving at time t has a reservation price V (t) for

the product, which is assumed to be a random variable with c.d.f. F (·). Kincaid and Darling (1963)

considered two cases. In the first case, the firm does not post the prices but receives offers from

potential customers, which the firm may accept or reject. For this case, the customers are not strategic

players. In the second case, customers are strategic, and each customer’s net surplus drawn from his

or her purchase is U(p, t) = V (t) − p(t), where p(t) is the price at time t. Thus, a customer buys if

V (t) ≥ p(t). As a result, if customers’ arrival rate is λ and each customer has an i.i.d. reservation

price V (t) with tail probability F̄ (p), then the expected demand at price p(t) is λF̄ (p(t)) per unit

time. In this setting, the firm can control the intensity of demand by choosing the price p(t) at time t.

For other similar models, see Bitran and Mondschein (1997), and Gallego and van Ryzin (1994).

Zhao and Zheng (2000) modeled the demand as a nonhomogeneous Poisson process with rate

λ(t) and allowed the probability distribution of the reservation price, F (·), to change over time. That

is, consumers’ arrival rate is only dependent on time t, and the purchase rate depends on customers’

reservation prices. Assuming that customers whose reservation prices are higher than or equal to p

will buy, Zhao and Zheng (2000) characterized the demand as a nonhomogeneous Poisson process

with the arrival rate λ(p, t) = λ(t)(1− F (p, t)).

Generalizing the model in Zhao and Zheng (2000), Xu and Hopp (2009) considered the price

trades in the dynamic pricing setting from the martingale perspective. The authors assumed that a

firm has a stock level of n > 0 items at time 0, which will be sold over the period [0, T ]. Similar to

Zhao and Zheng (2000), customers’ arrival follows a nonhomogeneous Poisson process with intensity

λ(t) where t ∈ [0, T ]. But, different from Zhao and Zheng (2000), Xu and Hopp (2009) assumed that

each customer arriving at time t has a utility U(p, t) = V (t) − α(t)p where V (t) is the customer’s

reservation price and α(t) is the price sensitivity parameter, and the customer purchases the product

if U(p, t) ≥ 0. The total demand at time t given the price p is thus computed as, λ(p, t) = λ(t)[1 −
F (α(t)p, t)].

Remark 4 The general Poisson flow models—which take into account the customers’ willingness-

to-pay (WTP)—extend the early WTP models in several important directions. These models allow

for, (i) the possibility of time-varying valuation, i.e., V (t) ≥ p(t), (ii) the time-dependent price p(t),

and (iii) the time-and-price dependent arrival rates λ(p, t). Such generalizations make these models

more useful in the context of, e.g., revenue management, while making the estimation of parameters

a more challenging problem. �
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2.2 Competitive Multi-Firm Price-Dependent Demand Models

We now review price-dependent demand models when there is price competition among multiple

firms where a price increase by one firm reduces the demand for its product but increases the de-

mand for the competitors’ products. Since the classic demand models for homogenous products

were comprehensively discussed in the literature (see, for example, Tirole, 1988 ; Vives, 1999), this

section only focuses on reviewing the demand models for firms’ pricing competition with product

differentiation.

Suppose that n ≥ 2 firms serve a common market with n competing products. When firm i

= 1, 2, . . . , n sets the price of its product as pi, the demand for firm i’s product is written as di(p),

where p ≡ (p1, p2, . . . , pn). As in most publications, we assume that n firms have complete market

information. In addition, we find that the price-dependent demand di(p) is commonly assumed to

satisfy the following conditions (see, e.g., Bernstein and Federgruen, 2004 ; Chen, Yan, and Yao,

2004 ):

1. Firm i determines its price pi on Λi = [ci, p̄i], where p̄i denotes the maximum admissible value

of pi such that di(p)|pi=p̄i = 0, and ci denotes firm i’s unit acquisition cost.

2. di(p) is continuous, bounded, and differentiable on the strategy space Λ = Λ1×Λ2×· · ·×Λn.

3. di(p) is decreasing in firm i’s price pi, i.e., ∂di(p)/∂pi < 0; and di(p) is increasing in firm j’s

price pj , i.e., ∂di(p)/∂pj > 0, for j 6= i.

4.
∑n

j=1 ∂di(p)/∂pj < 0, and
∑n

j=1 ∂dj(p)/∂pi < 0, for i = 1, 2, . . . , n. The former assumption

assures that a uniform price increase by n firms results in a decrease in the demand for each

firm’s product. The latter assumption means that, as a firm increases its price, the aggregate

demand for all firms’ products is reduced.

5. The (negative) local price elasticity of di(p), ei ≡ −[∂di(p)/∂pi]/[di(p)/pi], is increasing in

pi, i.e., ∂ei/∂pi ≥ 0. But, ei is decreasing in pj , i.e., ∂ei/∂pj ≤ 0, for j 6= i. Under the

assumption of ∂ei/∂pi ≥ 0, the demand di(p) has increasing price elasticity (IPE) in pi; most

price-dependent models (e.g., linear, power, etc.) satisfy this assumption. With the assumption

∂ei/∂pj ≤ 0 (j 6= i), Milgrom and Roberts (1990) showed that ln[di(p)] is supermodular in

(pi, pj); and Chen, Yan and Yao (2004) proved that a newsvendor game—where n firms each

jointly making its pricing and inventory decisions compete with their pricing strategies in a

single-period setting—is supermodular.

6. ∂ei/∂pi +
∑

j 6=i(∂ei/∂pj) ≥ 0, for all j 6= i. Since, ∂ei/∂pi ≥ 0 and ∂ei/∂pj ≤ 0 (j 6= i),

this assumption is equivalent to, ∂ei/∂pi ≥
∑

j 6=i |∂ei/∂pj| which says that the impact of firm

i’s own price on its elasticity dominates that of other firms’ prices on firm i’s elasticity which

describes the substitution effect.

Letting Ci(di(p)) denote the total acquisition cost incurred by firm i when it obtains di(p) units
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of its products, we write the firm’s profit as,

πi(p) = pidi(p)− Ci(di(p)), (3)

which was first used by Bertrand (1883) to investigate a duopoly problem in which two firms make

their pricing decisions to compete for market demand. Edgeworth (1922, 1925) extended the model

(3) to investigate the problem where each firm with a limited capacity is assumed to serve only a sub-

set of a market. If the lower-priced firm cannot satisfy the demand for its product, then the unserved

consumers will buy from the high-priced firm. Such a demand model is called “Edgeworth demand”

(see, e.g., Dixon, 1987 ), which was used by Edgeworth to show that the pure strategy equilibrium

may not exist unless demand is highly elastic. Hotelling (1929) developed the demand systems with

product differentiation based on heterogeneous tastes of consumers and under Hotelling’s demand

systems, Chamberlin (1933) and Robinson (1933) discussed imperfect competition with product dif-

ferentiation.

When both di(p) andCi(di(p)) in (3) are linear functions, it is easy to derive the equilibrium solu-

tion. However, when di(p) and/or Ci(di(p)) are nonlinear, then it may be difficult to find the analytic

solution for the equilibrium, but conditions for the existence and uniqueness of the equilibrium are

available. Cachon and Netessine (2004) indicated that the quasi-concave method and the supermod-

ular method can be used for proving the existence of equilibrium solution; see Topkis (1979, 1998)

for supermodularity. They also showed that the algebraic argument, the contraction mapping, the

univalent mapping, and the index theory approach have been widely used to examine the uniqueness

of the equilibrium. For additional discussions about the existence of equilibrium solutions for price

competition games, see Vives (1999).

Remark 5 The demand model di(p), for i = 1, 2, . . . , n, can be derived from the representative

consumer’s utility (Anderson et al., 1992). Specifically, to derive the linear model, one usually needs

to solve the following maximization problem (Anderson et al., 1992, and Vives, 1999):

max
q

Λ(q) ≡ u(q)− pTq, (4)

where u(q) is a representative consumer’s utility, which is smooth and strictly concave; that is, the

Hessian matrix of u, Hu, is negative definite; q ≡ (q1, . . . , qn) is a vector representing the quantities

purchased by a representative consumer, and pT ≡ (p1, . . . , pn) is firms’ retail prices. The inverse

demand functions can be obtained from the first-order conditions of Λ(q): pi = ∂ui(q)/∂qi for

qi > 0, i = 1, 2, . . . , n; and inverting these inverse demand models, we find the direct demand

functions. These demand models should have the symmetric cross effects: ∂pi/∂qj = ∂pj/∂qi, for

i 6= j, and the downward-sloping property, ∂pi/∂qi < 0. Furthermore, the utility must satisfy the

condition, ∂2u/∂qj∂qi = ∂pi/∂qj ≤ 0, for i 6= j, if the products are substitutes, and ∂2u/∂qj∂qi =
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∂pi/∂qj ≥ 0, for i 6= j, if they are complements. �

2.2.1 Linear Model

We now present an example of the approach used in (Anderson et al., 1992; Vives, 1999) to obtain a

linear demand function. Assume that n firms compete in a market, and each produces a differentiated

good. We consider the following consumer’s utility function,

u(q) = α
n∑
i=1

qi −
1

2
β

n∑
i=1

q2
i − γ

∑
j 6=i

qiqj , for i = 1, 2, . . . , n and i 6= j, (5)

where α > 0, β > 0 denotes the impact of the price of product i on the demand for this product, and

γ > 0 is interpreted as the substitutability measure. Note that the parameters β and γ should be set

such that β > γ, because the demand for product i should be more sensitive to its own price changes

than to that of the other product, and that the total market demand should not increase in the product

prices.

Substituting this utility function into the optimization problem in (4) and solving, we obtain the

following inverse linear demands and direct demands, respectively,

pi(q) = α− βqi − γ
∑
j 6=i

qj , and di(p) = ai − bipi + δi
∑
j 6=i

pj , (6)

where ai = α/[β + (n− 1)γ], bi = [β + (n− 2)γ]/[(β + (n− 1)γ)(β − γ)], and δi = γ/[(β + (n−
1)γ)(β − γ)].

Singh and Vives (1984), and Vives (1999) presented a special case of the above general demand

model where two firms compete in a market, and each produces a differentiated good. The consumer’s

utility function similar to (5) is given as,

u(q1, q2) = α1q1 + α2q2 − (β1q
2
1 + 2γq1q2 + β2q

2
2)/2,

where αi, βi > 0, and αiβj − γαi > 0, for i = 1, 2, and i 6= j. To ensure the strict concavity of the

utility function, the parameters must satisfy, η ≡ β1β2 − γ2 > 0. Using this utility functions into the

optimization problem in (4), we obtain the inverse and direct demand functions as pi = αi−βiqi−γqj
and di = ai−bipi+δpj , respectively, where ai = (αiβj−γαi)/η, bi = αj/η, and δ = γ/η. Moreover,

if α1 = α2 and β1 = β2 = γ, the two products are perfect substitutes, and when α1 = α2, the ratio

γ2/(β1β2) measures the degree of product differentiation.

Remark 6 As an alternative to the substitutability measure γ, some researchers in the marketing

and operations areas have adopted the parameter δ (representing the cross-price effect) to measure

the product substitutability. To show the difference between these substitutability measures, Lus and
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Muriel (2009) have compared them, and showed that using δ instead of γ as the measure of the

product substitutability may lead to unrealistic effects that cannot be supported empirically. �

2.2.2 Attraction Model

Some researchers have proposed another novel demand model, known as the attraction model, which

corresponds to each product’s market share. The attraction model was developed axiomatically by

Luce (1959) based on simple assumptions about consumer behavior, and has been extensively used to

estimate the demand in the economics, marketing (Anderson, 1992; Mahajan and van Ryzin, 1998)

and operations management (Bernstein and Federgruen, 2004; So, 2000). The attraction demand

model is typically written as,

di(p) =
Mvi(pi)

v0 +
∑n

j=1 vj(pj)
, for i = 1, 2, . . . , n, (7)

where M is the potential number of customers in a market; v0 is a non-negative constant which

can be interpreted as the attractiveness of the no-purchase option and may be used to determine

whether or not the total demandM is satisfied by n firms; and vi(pi) (i = 1, 2, . . . , n) denotes firm i’s

attractiveness value that is a measure of the attractiveness of firm i’s product. Note that the term vi(pi)

possesses the properties that vi(pi) ≥ 0 and ∂vi(pi)/∂pi < 0, and it can be used to characterize firm

i’s market share under the assumption that the expected demand for firm i’s product is proportional

to the product’s attractiveness.

In (7), vi(pi)/[v0 +
∑n

j=1 vj(pj)] is a typical logistic model (see, e.g., Bowerman and O’Connell,

2007) which characterizes the probability that a consumer chooses product i among n products.

Thus, di(p) is the expected demand for product i. When v0 = 0, all firms satisfy the demand∑n
i=1 di(p) = M , which means that all customers are served by the firms. But, when v0 > 0,

the total demand of all firms is
∑n

i=1 di(p) < M , which implies that some customers are lost. Note

that in the above attraction model (7), each firm’s market share should be nonnegative, and when

M = 1 and v0 = 0, the sum of all products’ market shares equals unity, which is commonly known

as the logical-consistency requirements (Cooper and Nakanishi, 1988).

In our review we find that a number of publications assumed specific functions for the term vi(pi)

in the attraction model of (7). Note that in many applications, the constant v0 is assumed to be zero

in order to be consistent with the logical-consistency requirements that the sum of all firms’ market

shares is equal to one (Cooper and Nakanishi, 1988). The commonly-used specific functions of vi(pi)

are summarized as follows:

1. MultiNomial Logit (MNL) model vi(pi) = exp(αi − βipi): Here, ai > 0 can be inter-

preted as the consumer’s expected utility for the product, and βi > 0 is the price sensi-

tivity parameter. This model can be derived from the MNL consumer choice model (see,

e.g., Guadagni and Little, 1983), and the representative consumer’s utility (see Anderson et

12



al., 1992; Vives, 1999). Actually, MNL model gives the probability that a consumer would

choose a product i among n available products, and thus, it is usually regarded as the ex-

pected demand for product i. Define the own-brand and cross-brand elasticities as follows,

respectively, ei = [∂di(p)/∂pi][pi/di(p)] and ei,j = [∂di(p)/∂pj][pj/di(p)]. Accordingly,

we can obtain the two elasticities of the above MNL model as, ei = βi[1 − di(p)]pi, and

ei,j = −βjdj(p)pj .

2. Multiplicative Competitive Interaction (MCI) model vi(pi) = αip
−βi
i : Here, αi > 0 loosely

represents the quality of product i; and βi > 1 is a measure of consumers’ price sensitivity for

product i. For an application of the MCI model, see, e.g., Hadjinicola (1999) and So (2000).

From the above definitions of the own-brand and cross-brand elasticities, we can derive these

two elasticities for the MCI model as, ei = βi[1− di(p)], and ei,j = −βjdj(p).

In empirical studies, the MNL and MCI models are transformed into a linear model in order to

estimate the model parameters (see Cooper and Nakanish, 1988). Recently, Gallego et al. (2006)

considered Bertrand oligopoly price competition games in which firm i’s profit function is given by

(3), and the demand for firm i’s product is determined by (7) with M = 1 and the attraction value

vi(pi) as either a linear model [vi(pi) = αi − βipi, αi, βi ≥ 0], the MNL, or the MCI model.

Assuming that the cost function Ci(di(p)) in (3) is convex, Gallego et al. showed the existence of a

unique Nash equilibrium for the price competition game.

Remark 7 In the literature, the MNL and MCI models are the most commonly-used attraction mod-

els. The main difference between the MNL and MCI models is the assumed pattern of the own-brand

elasticity with respect to price. According to, e.g., Cooper (1993), we define the market-share elas-

ticity as the ratio of the relative change in a brand’s market share corresponding to a relative change

in the price of the brand. We find that the market-share elasticity of the MNL model increases up

to a specific level and then declines, while the share elasticity of the MCI model is monotonically

decreasing in price. Cooper (1993) suggested that the MCI model seems to be more appropriate than

the MNL model when firms compete by determining their prices, because when price approaches

zero, the market-share elasticity will more likely become very large. �

2.3 Other Price-Dependent Models

In addition to the linear model and the attraction model, the following models have also been used to

characterize the price-dependent demand in the case of two or more competing firms.

2.3.1 Hotelling Model and Its Extensions

Hotelling (1929) proposed a price competition model (called “the linear city model”) with horizontal

product differentiation, with the following features: Two competing firms produce identical products

or offer the same service, and the firms differ from each other because of the space location, the
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post-sales service, or other aspects. Consumers may display preferences given the constraints of a

product characteristic space, and perceive certain brands with common characteristics to be close

substitutes, and differentiate these products from their unique characteristics. For a thorough review

of the Hotelling models and their extensions, see Martin (1993) and Tirole (1988).

Incorporating firms’ entry decisions, Salop (1979) extended the above “linear city model” to the

“circular city model” (also see, e.g., Tirole, 1988) under the following assumptions: Consumers are

located uniformly on a circle with a perimeter equal to 1. Multiple (n ≥ 2) firms are located around

the circle and all travel occurs along the circle; and each consumer buys one unit of the product and

incurs a unit transport cost t. Moreover, each consumer is willing to buy at the lowest cost as long as

the cost does not exceed the gross surplus obtained from the product.

2.3.2 Multiple Competing Firms

Here we survey three other models when multiple firms compete with their products.

Cobb-Douglas (constant elasticity log-linear) model This model is also called multiplicative de-

mand model, which is given as,

di(p) = aip
−βi
i

(∏
j 6=i

p
βij
j

)
, for i = 1, 2, . . . , n, (8)

where ai > 0; βi > 1 denotes the absolute elasticity of firm i’s demand with respect to its own

price; βij ≥ 0 (j = 1, 2, . . . , n, j 6= i) denotes the cross elasticity with respect to firm j’s price. In

this Cobb-Douglas model, the price elasticities βi and βij are both price-independent constants. For

applications, see, for example, Allon and Federgruen (2007), and Bernstein and Federgruen (2004).

Although the Cobb-Douglas model can capture the nonlinear phenomena in the market, it has the

drawback that its demand elasticity always equals the power coefficient −βi, i = 1, 2, . . . , n. This

model can be linearized by taking logarithms as, ln di(p) = ln ai − βi ln pi +
∑

j 6=i βij ln pj , which

is linear in the terms ln di(p), ln pi, ln pj , and âi = ln ai, for i, j = 1, 2, . . . , n and j 6= i. Such

linearization of the Cobb-Douglas model facilitates the estimation of the parameters in an empirical

study.

Constant expenditure model Constant expenditure model is di(p) = γp−1
i g(pi)/

∑n
j=1 g(pj),

where γ > 0; and g(pi) is a positive, strictly decreasing function of pi, (see, Allenby et al., 1998;

Vives, 1999). Common specific forms of g(pi) include, (i) the constant elasticity of substitution

model (CES) g(pi) = p−ri , where r > 0; and (ii) the exponential function g(pi) = exp(−βipi), where

βi > 0. With a constant expenditure model, it easily follows that the ratio of the demands for two

different firms i and j is given as, di(p)/dj(p) = p−1
i g(pi)/p

−1
j g(pj), which depends only on the

prices pi and pj; that is, it is independent of the prices of other firms.
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Remark 8 The MNL model of Section 2.2.2 and CES model have several identical properties: (i)

The demand ratios of the MNL and CES models are given, respectively, as,

di(p)/dj(p) = exp
[
(αi − βipi)/(αj − βjpj)

]
and di(p)/dj(p) = (pi/pj)

−1−γ ,

for i, j = 1, 2, . . . , n and j 6= i. Accordingly, these two demand ratios are both independent of the

number of firms, n, and all other firms’ prices (besides pi and pj), (ii) the cross elasticities of the

MNL and CES models are, ηLij = βjdj(p)pj and ηCij = rdj(p)pj , respectively, which show that the

cross elasticities for both the MNL and CES models are identical for all firms, i 6= j. For the details,

see Anderson et al. (1992).

Milgrom and Roberts (1990) considered the price competition games in which each firm’s profit

function is given by (3) and showed that, (i) the linear, (ii) the MNL, (iii) the Cobb-Douglas, and (iv)

the constant expenditure models have the log-supermodularity property, i.e., ∂2[ln di(p)]/(∂pi∂pj) ≥
0, which assures the existence of a Nash equilibrium for the non-cooperative game involving each

of these four demand models. Moreover, as discussed in Bernstein and Federgruen (2004) and Mil-

grom and Roberts (1990), the above four models also satisfy the condition that ∂2[ln di(p)]/∂p2
i >∑

j 6=i{∂2[ln di(p)]/(∂pi∂pj)}, for i = 1, 2, . . . , n; which assures the uniqueness of the Nash equilib-

rium. �

2.4 General Remarks

In this section we reviewed different price-dependent demand models and compared their advantages

and disadvantages. The linear models can lead to easily-obtainable analytic solutions, but they fail

to take into account complex nonlinearities in the market demand. On the other hand, the nonlinear

models may represent reality more closely, but (with the exception of the iso-elastic model) they are

more difficult to obtain explicit analytical results.

For the case of price competition, both the linear and the attraction models lead to easily ob-

tainable analytical result, but the attraction models have the added advantage that they can reflect

the nonlinear effects arising in competitive phenomena. Because of this advantage, attraction models

have recently become the preferred choice of many researchers in exploring price competition among

firms. Other competitive demand models including the Cobb-Douglas model, and constant expendi-

ture model are more difficult to analyze but one advantage of the Cobb-Douglas model is the ease

with which one can estimate its parameters in empirical studies.

3 Rebate-Dependent Demand Models

In addition to the pricing strategy, manufacturers and retailers may offer a rebate (or, promotion) to

the final customers as an attempt to stimulate the demand for their products. Of course, the manufac-
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turer may also provide a rebate to its retailer based on the retailer’s sales performance. In most of the

published literature researchers have assumed that the rebates provided to the customers can directly

influence the consumers’ purchase decisions, and thus, the demand models are usually assumed to

depend on the customer rebate. The rebate paid by the manufacturer to the retailer may also indi-

rectly affect the consumers’ demand because the retailer may pass a portion of the rebate to the final

customers. But in most existing papers, this rebate is usually assumed to only affect the two firms’

marginal profits, rather than the consumer demand. The aim of this section is to survey the demand

functions which explicitly depend on the firms’ rebate rewarded to the final customers.

3.1 Demand Models

Recently, several researchers have examined the effect of a firm’s rebate to customers on its demand.

Arcelus et al. (2005) used additive and multiplicative stochastic models to investigate the manu-

facturer’s rebate as an incentive to stimulate the final customer’s demand, and also compared the

efficiency of this rebate to that of the promotion paid by the manufacturer to retailer. The additive

demand model is given as, D(p,R) = a0 + γR − bp + ε, and the multiplicative demand model is

written as, D(p,R) = α0R
δp−βε, where R is the rebate amount, α0 > 0, γ and b are the rebate and

price sensitivities, respectively, with 0 < γ < b, and 0 < δ < 1 < β, and ε is a price- and rebate-

independent random variable. Khouja (2006) used two rebate-dependent demand functions—similar

to the deterministic components of the stochastic models of Arcelus et al. (2005)—to examine the

manufacturer’s mail-in rebate (MIR) policy; for similar models, see Sigué (2008), Cho et al. (2009),

and Demirağ et al. (2010).

Chen et al. (2007) developed a multiplicative model to examine the effect of customers’ redemp-

tion behavior on the manufacturer’s MIR policy. But they assumed that there exists two customer

segments in which the customers may or my not perceive the price reduction by the amount of re-

bate. Similar to Chen et al. (2007), Khouja and Zhou (2010) also examined the effect of the con-

sumer’s redemption behavior on the manufacturer rebate decision. They assumed that the demand

is dependent on whether the consumers make their purchase and redemption decisions concurrently

and whether the customer’s redemption effort is larger than the net cost. Similar to Chen et al.

(2007), Aydin and Porteus (2008) investigated the rebates paid by the manufacturer to the retailer

and by the retailer to the customer, using a more general multiplicative model for demand defined as

D(p,R) = g(p− aR)ε, where g(·) is a decreasing nonlinear function, and α is the rebate sensitivity

constant. Yang et al. (2010) investigated the manufacturer’s optimal mail-in rebate decision when

he/she also provides a suggested retail price (MSRP). Yang et al. (2010) derived the demand model

from the consumer’s utility which depends on the manufacturer’s rebate, the MSRP as well as the

retail price.

Arcelus and Srinivasan (2003) investigated the manufacturer’s scanbacks and customer rebates by

which the manufacturer intends to deter the retailer’s forward-buying behavior. The demand under
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the rebate scheme is given as, d(p,R) = α0(p − R)β , where R is the manufacturer’s direct rebate

to the customer, and α0 > 0, β < −1, R > 0. Considering a problem similar to that by Cho

et al. (2009), Geng and Mallik (2011) examined a situation in which both the manufacturer and

the retailer can offer an MIR to the end consumer. They used an additive framework to model the

stochastic rebate-dependent demand D(p,Rr, Rm) = a − b(p − αRr − αRm) + ε, where Rr and

Rm represent the retailer’s and manufacturer’s customer rebates, respectively; ε is the random error

defined on [ε0, ε1] with ε1 > ε0 ≥ 0. In order to assure that the demand is positive, they assume that

a− bp+ ε0 ≥ 0.

Remark 9 Similar to the discussions for the linear and iso-elastic price-dependent demand model,

one can easily derive the optimal results by using a linear rebate demand model (e.g., Geng and

Mallik, 2011; Khouja, 2006), but such models do not reflect the nonlinearities observed in an actual

rebate scheme. However, the power rebate-dependent models of Khouja (2006) and Arcelus and

Srinivasan (2003) can characterize the nonlinear phenomenon, but the demand elasticity of the latter

with respect to the rebate R, i.e., [∂d(p,R)/∂R][R/d(p,R)] = δ, always equals a constant. Although

the model of Arcelus and Srinivasan (2003) has a similar structure to that of Khouja (2006), the

former’s demand elasticity is, [∂d(p,R)/∂R][R/d(p,R)] = βR/(p− R) > 0 (when P > R), which

is not a constant, but instead, depends on both the price and rebate. Moreover, when the rebate

approaches zero, the power demands of Arcelus et al. (2005) and Khouja (2006) will also converge

to zero, which is contradicts reality that even when there is no rebate offered, some customers would

still purchase the products. Accordingly, the power model of Arcelus and Srinivasan (2003) may be

more reasonable than that used by Khouja (2006). �

3.2 General Remarks

Our review above shows that when the rebate is offered by the manufacturer and/or the retailer to

the customers, the demand function is assumed to be sensitive to both the retail price and the rebate

level. Interestingly, we observe that the rebate-dependent demand models for supply chain analysis

have only considered a supply chain with one manufacturer and one retailer. It appears to us that

the rebate competition between/among manufacturers or retailers may be an interesting direction

for future research. Our above review also shows that when considering the effect of firm’s rebate

on demand, most papers assumed that the demand is a linear or power function for the deterministic

demands. Consequently, extending other price-dependent demand functions in Tables 1 to investigate

the manufacturer’s and/or the retailer’s rebate policies may be worthy of devoting some attention in

the future.
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4 Leadtime-Dependent Demand Models

In addition to the pricing strategy, it is generally agreed that timely customer service is also a major

determinant in gaining competitive advantage in today’s markets. Geary and Zonnenberg (2000) re-

ported that top performers among 110 organizations conducted initiatives not only to reduce costs and

maintain reliability, but also to improve delivery speed and flexibility. Baker et al. (2001) also found

that less than 10% of end consumers and less than 30% of corporate customers base their purchasing

decisions on price only; for a substantial majority of purchasers both price and the delivery leadtime

are crucial factors that determine their purchase decisions. Thus, in order to improve consumers’

satisfaction and their competitiveness, firms should focus on fast, reliable delivery as well as the sale

price.

Similar to Section 2, we first review leadtime-dependent demand models which do not involve

competition. This is followed by a review of models where firms compete via their leadtimes.

4.1 Single Firm Price and Leadtime-Dependent Demand Models

When there is no leadtime competition, most authors have used the linear model, the Cobb-Douglas

model, the multi-nomial logit (MNL) model and the willingness-to-pay model to characterize the

leadtime-dependent demand.

4.1.1 Linear Model

Suppose that a firm determines a uniform guaranteed leadtime L, which applies to all customers

served by the firm in a market. Palaka et al. (1998), and Pekgün et al. (2008) modeled the firm’s

operation as a simple M/M/1 queueing system with mean production rate µ (which is the capacity

of the system) and mean arrival (demand) rate λ. With this assumption, Palaka et al. and Pekgün et

al. assumed that the mean demand rate d(p, L) is linearly dependent on the price p and the guaranteed

delivery leadtime L, i.e.,

d(p, L) = a− βp− γL, (9)

where a > 0 represents the maximum attainable demand corresponding to zero price and zero lead-

time; β > 0 denotes the price sensitivity of demand; and γ > 0 is the leadtime sensitivity of demand.

In order to assure the positive demand for the firm, Palaka et al. (1998), and Pekgün et al. (2008)

assumed that d(c, k/µ) = a − βc − γk/µ > 0, where c denotes the firm’s unit production cost, and

k ≡ 1− ln(1− α) with α ∈ [0, 1] as the firm’s pre-determined (desired) service level. With suitable

constraints, the optimal price and leadtime are determined. Liu, Parlar, and Zhu (2007) considered a

demand model similar to that of Pekgün et al. (2008), and investigated a decentralized supply chain.
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4.1.2 Cobb-Douglas Model

Another common leadtime-dependent demand function for a monopolist is the Cobb-Douglas model,

which is written as,

d(p, L) = λp−aL−b, a, b > 0. (10)

An example in So and Song (1998) illustrates the Cobb-Douglas model where a firm has a fixed

capacity µ, and a constant unit production cost c. To find the optimal price and leadtime, the firm

needs to solve the constrained maximization problem,

max
p>c,L

π(p, L) = λ(p− c)p−aL−b, s.t. 1− exp{−[µ− d(p, L)]L} ≥ α, (11)

where λ > 0 represents the highest potential demand for the firm’s product; α ∈ [0, 1] is the firm’s

desired service level, as discussed for the linear model in (9); a > 0 and b > 0 denote the price

elasticity and the guaranteed delivery leadtime elasticity, respectively; the constraint is the same as

that for the linear model in (9).

4.1.3 Multi-Nomial Logit (MNL) Model

Ho and Zheng (2004) considered a service firm which satisfies homogeneous customers’ demands in

a market with a fixed total demand rate Λ. The firm aims at maximizing its demand rate d, which is the

product of the total demand rate Λ and the firm’s market share S(U) that is an MNL function of the

homogeneous customer’s utility U for the firm’s service. That is, d = ΛS(U) = Λ exp(U)/[exp(U)+

A], where A denotes the sum of exponential values of other firms’ utilities. For example, if there are

two or more competing firms in the market and the firm considered i, then A =
∑

j 6=i exp(Uj). Such

an MNL model has been widely used to characterize the market share; see, e.g., Lee and Cohen

(1985), and McFadden (1980).

Ho and Zheng (2004) assumed that A is given, and utility U depends on (i) the firm’s service

delivery-time commitment (which is customers’ maximum expectation), denoted by L; and (ii) the

delivery quality by the firm as the probability that the firm’s delivery time ` is not greater than its

commitment L. As in the linear and Cobb-Douglas models, Ho and Zheng (2004) calculated the

firm’s service delivery quality as They develop the linear function to characterize the utility U as,

U = β0 − βLL + βωω, where β0 > 0 reflects the homogeneous customers’ utility drawn from the

firm’s leadtime-independent attributes; βL > 0 and βω > 0 reflect the customer’s sensitivity to the

firm’s delivery leadtime commitment and that to the firm’s service delivery quality, respectively. ω

is the firm’s service delivery quality that is determined as, ω = Pr(` ≤ L) = 1 − exp[−(µ − d)L],

where µ is the firm’s service rate.
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4.1.4 Willingness-to-pay Model

The linear model, Cobb-Douglas (log-linear) model and the multi-nomial logit (MNL) model dis-

cussed above use aggregate demand functions to model the leadtime problem. Researchers have

recently started using leadtime-dependent models based on the consumer’s utility which is affected

by the firm’s guaranteed leadtime.

In this line of research, Li (1992) used a utility-based model to investigate a firm’s pricing and

quality investment problems, where the firm produces and sells a homogeneous good. Demand arises

over time according to a Poisson process with intensity λ, and customers have homogeneous pref-

erence over the price p, the valuation of product (quality) q, and the product’s delivery leadtime, L.

The customer’s utility function is U(q, p, L) = u(q, p) − γL where u(q, p) represents the leadtime-

independent utility function which is increasing in q and decreasing in p, and γ is the marginal

decrease in utility for a unit increase in leadtime. Assuming that the customer’s reservation price

is ū, the customer will purchase from the firm if E[U(q, p, L) | Ft] ≥ ū, where Ft represents the

information available to the customer at time t. From this condition, Li derived the firm’s demand.

Zhao et al. (2012) studied a firm’s optimal pricing and leadtime decisions by assuming that the

consumer’s utility is a linear function of the price as well as the quote lead times. They classified

customers into two groups: lead time sensitive (LS), with proportion θ ∈ (0, 1) and price sensitive

(PS) with proportion 1− θ.

Remark 10 Our review of the leadtime-dependent models has revealed an interesting parallel be-

tween these models and the deterministic price-dependent models discussed in Section 2. In partic-

ular, the linear demand model LM I found in Table 1 is a simpler version of the leadtime-dependent

model of (9), but the use of the latter involves several constraints in the optimization model. Similarly,

the Cobb-Douglas model (10) of this section is a simplified version of the more general model (8) we

reviewed in the context of price-dependent models with multiple competing firms. The multi-nomial

logit model of this section was also encountered as a special case of the attraction models discussed

in Section 2.2.2. Finally, the willingness-to-pay models of this section has an intimate connection

to the similar model in Sections 2.1.3 and the Poisson flow model in Section 2.1.4. But different

from the Poisson flow models, the willingness-to-pay models of this section do not consider the con-

sumer’s arrival time. Remarkably, what is missing in the leadtime-dependent models is the inclusion

of a random factor ε that was present in all the models summarized in Table 2 in Section 2.1.2. This

observation leads us to suggest that there may be several important open problems that incorporate

stochastic demand environments with the leadtime-dependent demand scenarios. �

4.2 Competitive Multi-Firm Leadtime-Dependent Demand Models

We now review leadtime-dependent demand models in the competing setting. The most common

models include the linear model and the multi-nomial logit (MNL) model and the multiplicative
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competitive interaction (MCI) model.

4.2.1 Linear Model

The simplest demand model for this case was developed as a linear function. The extant relevant

publications (e.g., Boyaci and Ray, 2003, 2006; Pekgün et al., 2009) assumed that each firm has a

constant capacity, and that the demand faced by each firm is linearly dependent on both the price and

the guaranteed delivery leadtime. That is, the linear demand model for firm i’s product (i = 1, 2) is

written as,

di(pi, Li; pj, Lj) = ai − bipi − αiLi + βijpj + γijLj , for i, j = 1, 2, and i 6= j, (12)

where ai > 0 is the maximum potential demand in a market; bi > 0 and βij > 0 are firm i’s and firm

j’s (j = 1, 2, j 6= i) price sensitive parameters, respectively; and, αi > 0 and γij > 0 denote firm

i’s and firm j’s leadtime sensitive parameters, respectively. Since, compared with firm j’s price pj

(j = 1, 2), firm i’s price pi (i = 1, 2, i 6= j) should have a higher impact on the demand for the firm’s

product, it is assumed that bi is greater than βij , i.e., bi > βij . Similarly, αi > γij , for i, j = 1, 2, and

i 6= j.

Using (12), we calculate the total demand satisfied by the two firms as,
∑2

i=1 di(pi, Li; pj, Lj) =∑2
i=1 ai −

∑2
i=1[(bi − βji)pi]−

∑2
i=1[(αi − γji)Li], from which we find that, as firm i increases its

price pi by $1, the total demand is reduced by (b1 − β21) units. Pekgün et al. (2009) utilized the

linear model in (12) to investigate the competition between two firms who determine their prices and

leadtimes.

4.2.2 Multi-Nomial Logit (MNL) Model

In Section 4.1, we reviewed the MNL model proposed by Ho and Zheng (2004) to characterize the

demand rate faced by a single firm. Ho and Zheng (2004) also investigated the duopolistic case where

two firms compete for homogenous customers with their delivery-time commitments. Similar to the

MNL model for a single firm in Section 4.1, we write firm i’s demand rate function as,

di(L) = Λ
exp(β0i − βLLi + βω{1− exp[−(µi − di)Li]})∑2
j=1 exp(β0j − βLLj + βω{1− exp[−(µj − dj)Lj]})

, for i = 1, 2. (13)

Ho and Zheng (2004) analyzed a two-player, simultaneous-move game in which firm i maximizes its

demand rate di in (13). They showed that Nash equilibrium exists for the game.

The MNL model may be extended to address the oligopolistic competition where n ≥ 2 firms

compete for homogeneous customers’ demands in a market with a fixed total demand rate D. As in

Ho and Zheng (2004) and So (2000), we assume that firm i’s demand rate di, which is calculated as

the product of the total demand rate D and the firm’s market share Si(ui) that is an MNL function of
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the homogeneous customer’s utility ui for firm i’s service. That is,

di(L) = DSi(ui) = D exp(ui)
/[∑n

j=1
exp(uj)

]
, for i = 1, 2, . . . , n. (14)

where the utility ui is assumed to have the form ui = βi − βLiLi + βωiωi, and ωi ≡ [1− e−(µi−di)Li ]

is firm i’s service quality; Li is firm i’s guaranteed service time; µi denotes firm i’s service rate

(capacity); and, βi > 0, βLi > 0 and βωi > 0 are defined as the utility drawn from firm i’s delivery

time-independent attributes.

4.2.3 Multiplicative Competitive Interaction (MCI) Model

When n ≥ 3 firms compete with their differentiated products, we find that the most common model

for this case is the multiplicative competitive interaction (MCI). Recall that while in Section 2.2.2

(where MCI is discussed) demand is dependent on the price only, in this section demand for each

firm depends on both the price and the delivery time.

So (2000) analyzed a multi-player, simultaneous-move game in which n ≥ 2 service firms deter-

mine their prices and guaranteed delivery-times to maximize their operating profits. The firms serve

a market with a fixed size Λ > 0, and compete for customers’ demands that are sensitive to the prices,

the delivery times, and other factors such as the firms’ reputations or other service quality dimensions.

Hence, any firm with the lowest price and the shortest time guarantee does not necessarily gain the

entire market. So (2000) computed the demand for a firm’s service as the product of the total market

demand Λ and the firm’s market share in the MCI function form. That is, the demand model for firm

i = 1, 2, . . . , n is constructed as,

di(p,L) = Λ
{
βip
−a
i L−bi

/[∑n

j=1

(
βjp

−a
j L−bj

)]}
, (15)

where the term βip
−a
i L−bi /[

∑n
j=1(βjp

−a
j L−bj )] denotes firm i’s market share. In (15), the attraction of

firm i is denoted by βip
−a
i L−bi , where pi and Li are firm i’s pricing and guaranteed time decisions,

respectively; βi > 0 represents the combined effect of the factors that are not related to the price and

the delivery time; and, the parameters a > 0 and b > 0 are the price and time attraction factors of the

market.

Since the constant market size Λ has a moderate value, So (2000) assumed that each firm’s price

is smaller than or equal to the maximum value p̄ that can be charged for the available services in the

market. In addition, as argued by So (2000), the demand model in (15) doesn’t explicitly consider

the impact of the reliability of delivering these time guarantees.

Remark 11 All three competitive models we have reviewed in this section have their parallels in

Section 2.2 concerned with price competition. The multi-firm linear demand model in (6) is a spe-

cial case of the multi-firm linear demand model with leadtime competition covered in this section.
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Similarly, price-dependent multi-nomial logit (MNL) model of Section 2.2.2 is a variation of the

leadtime-dependent MNL model of this section. Finally, the price-dependent MCI model of Section

2.2.2 is a special case of the MCI model of the current section. As explained in Remark 7, the main

difference between the MNL and MCI models is the assumed pattern of the share elasticity with

respect to price. Thus, even when we consider the leadtime-dependent models, the comments of

Cooper (1993) related to the appropriateness of MNL vs. MCI also apply here. �

4.3 General Remarks

In this section we first reviewed four categories of leadtime-dependent models without leadtime com-

petition. Roughly speaking, which model we should choose depends on whether we need to consider

the effect of leadtime on consumers’ choice. Specifically, if one expects to examine the effect of lead-

time from an aggregate perspective, then the linear model, the Cobb-Douglas or the MNL models may

be good options. However, if one intends to explore the effect of firm’s leadtime on consumers’ pur-

chase choice, then the utility-based willingness-to-pay model may be appropriate. Note also that, as

before, while one can obtain the optimal solutions relatively easily for the linear model, the optimal

solutions for the Cobb-Douglas and MNL models may be less tractable.

For the case with leadtime competition, researchers have focussed on the linear, MCI and MNL

models to describe the effect of leadtime on demand. These are aggregate models which do not reflect

the effect of a firm’s leadtime decisions on the consumers’ utilities and thereby their purchase choice.

It follows that, with increasing attention paid to consumer’s behavior, it may be useful to extend the

utility-based model in Section 4.1.4 to explore the leadtime competition.

5 Space-Dependent Demand Models

It has been observed by retailers that allocating a larger space to an item may increase the demand

for that item (Urban, 2005). Motivated by this observation, a number of researchers have constructed

space-dependent demand models which were used to investigate the space allocation problems for

multiple-products. More specifically, when a retailer sells multiple products in a store, it needs to

consider how the available shelf space should be efficiently allocated among the products to maxi-

mize profit. The space allocation problem for a firm could be a complex problem for the following

reasons (see Corstjens and Doyle, 1981): First, from the revenue perspective, multiple products have

widely-varying profit margins, space elasticities, and cross elasticities due to the complementary or

substitutionary relationships among them. Second, from the cost perspective, the allocation of the

shelf space among multiple products impacts the firm’s operating costs; for example, the products

often have different procurement, carrying, and out-of-stock costs.

A retailer’s space allocation decision may, to some degree, influence its inventory level and hence

its demand. As Urban (2005) has provided an extensive review of inventory-dependent demand
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models, we do not consider such models in our review. Instead, we survey commonly-used space-

dependent demand models that were developed to determine the space allocation among n ≥ 2

products. These models are classified into static (single-period) models to which the majority belong

and dynamic (multi-period) demand models.

5.1 Static Space-Dependent Demand Models

In two early publications Anderson and Amato (1974) and Lee (1961) investigated two space allo-

cation problems that only consider a positive space elasticity but ignore the cross-elasticities among

different products in a store. In another early publication, Urban (1969) discussed the effects of the

cross elasticity. The above publications used the Cobb-Douglas functions to capture the shelf space-

dependent demand. A representative publication using the Cobb-Douglas model is by Corstjens and

Doyle (1981), which was then extended by Bultez and Naert (1988) to construct a general shelf-space

allocation model. We start our review with the general model, and then survey the Cobb-Douglas

models.

5.1.1 General Model

Bultez and Naert (1988) consider a space allocation problem for a firm selling n ≥ 2 products to

customers, whose aggregate demand for product i = 1, 2, . . . , n is dependent on the space allocation

in a general form. Letting s ≡ (s1, s2, . . . , sn) where si, i = 1, 2, . . . , n, is the space allocated

to product i, they use di(s) to denote the demand for product i, which depends on the space sj ,

j = 1, 2, . . . , n, allocated to product j.

The demand di(s) for product i is assumed to be a nonnegative, non-decreasing function of the

space si (for i = 1, 2, . . . , n), i.e., di(s) ≥ 0 and ∂di(s)/∂si ≥ 0. Consider the cross effects of

other products that are also displayed at the firm’s store, i.e., the sales of a product is impacted by

both the space allocated to the product and the spaces allocated to other products. The cross effect of

product j (j = 1, 2, . . . , n, j 6= i) on the demand for product i is commonly reflected by using the

cross-elasticity δij ≡ [∂di(s)/∂sj]× [sj/di(s)]. Note that δij may be positive or negative, depending

on the nature of interactions taking place within the assortment. More specifically, if products i and

j are substitutable, then δij < 0; but, if they are complementary products, then δij > 0.

5.1.2 Cobb-Douglas Models

Among the space-dependent demand models, the most commonly used is the Cobb-Douglas model

that is written in the log-linear function form. As an early publication using this model, Corstjens

and Doyle (1981) investigated an n product space allocation problem for a retailer who maximizes its

profit that is dependent on the allocation scheme s = (s1, s2, . . . , sn) with si (i = 1, 2, . . . , n) as the

space allocated to product i. The Cobb-Douglas demand model developed by Corstjens and Doyle
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(1981) incorporates both the individual space elasticity (i.e., “main effect”) and the cross elasticities

existing between different products in a store. That is, the demand for product i (i = 1, 2, . . . , n) is

given as,

di(s) = αi(si)
βi

[
n∏

j=1,j 6=i

(sj)
δij

]
, (16)

where αi ≥ 0; βi ≥ 0 denotes the space elasticity of product i; and δij means the cross-space

elasticity between products i and j (j = 1, 2, . . . , n, j 6= i). Note that δij may be positive or may be

negative, depending on whether products i and j are complementary or substitutable; and also note

that δij is not necessarily equal to δji. Corstjens and Doyle (1981) provided a through analysis of

the parameter estimation and find the optimal solution using a generalized geometric programming

algorithm. Martínez-de-Albéniz and Roels (2010) recently ignored the cross elasticity and reduced

the Cobb-Douglas model (16) to di(s) = αi(si)
βi , which could be a proper model to analyze the

single-product problems.

Martín-Herrán et al. (2006) investigated a two-manufacturer, one-retailer supply chain with a

space- and retail price-dependent demand model, which is simpler than (16). The two manufacturers

(M1 and M2) with substitutable products determine their wholesale prices (wi, i = 1, 2), and the

retailer makes its space allocation (for the two manufacturers’ products) and retail pricing decisions.

The demand for the manufacturer Mi’s product (i = 1, 2) was characterized by,

di(si; p1, p2) = α(si)
γ(pi)

−µi(pj)
εi , for i, j = 1, 2, i 6= j, (17)

where α > 0; 0 < γ < 1 is the constant space elasticity; pi is the retail price for product i; and, µi

and εi are the direct-price and cross-price elasticities of sales, respectively.

Urban (1998) investigated a retailer’s space allocation problem, by extending Corstjens and Doyle’s

model in (16) to consider the demands for stocked and unstocked products in the assortment. Yang

and Chen (1999) incorporated L ≥ 1 space-independent marketing variables (e.g., price, advertising,

promotion, etc.) into (16), and investigated the allocation of each of m ≥ 1 shelves among n ≥ 1

products.

5.2 Dynamic Space-Dependent Demand Model

Corstjens and Doyle (1983) extended the static space-dependent demand model in (16) to a dynamic

(multi-period) space allocation model, assuming that the demand in period t depends on both the

current space allocation decision and the demand in period t − 1. The dynamic model in the Cobb-

Douglas form was given as,

dit = αi(sit)
βit

[
n∏

j=1,j 6=i

(sjt)
δijt

]
(di,t−1)λ, for i = 1, 2, . . . , n, (18)

25



where dit is the demand for product i in period t; αi > 0 is a time-independent parameter; and, βit is

the space elasticity of product i in period t. Moreover, in (18), sit is the space allocated to product i

in period t; δijt is the cross elasticity between products i and j (j = 1, 2, . . . , n, j 6= i) in period t;

and λ is a constant elasticity, which measures how much of the goodwill effect in a period is retained

in the next period, i.e., λ = (∂dit/∂di,t−1)(di,t−1/dit).

5.3 General Remarks

Our review above reveals that most of the surveyed space-dependent demand models have used a

Cobb-Douglas model to formulate the demand functions. The Cobb-Douglas model has the attractive

property that its power coefficient can be interpreted as the demand elasticity with respect to the space.

Consequently, the Cobb-Douglas model can characterize the nonlinear interactions observed in the

actual market demand. However, as usual, the Cobb-Douglas model is usually less tractable in terms

of obtaining explicit results for the optimal solution. For example, Corstjens and Doyle’s (1981)

model requires special purpose algorithms, but given the non-concavity of the objective function, the

solution found may not even be globally optimal. In addition, the dynamic model in (18) can be

viewed as an interesting and realistic extension of the Cobb-Douglas static model in (16). However,

this dynamic model does not incorporate any state dynamics. A more general model where space is

a state variable and the optimization is performed on an optimal control model may be more useful

and realistic, but it may be more difficult to derive the optimal results. Martín-Herrán et al.’s (2006)

optimal space and price decisions are based on the assumption that the difference between cross- and

direct-price elasticities is independent of the brand, and the demand is only dependent on each brand’s

own space. Their model can be improved by investigating the optimal space allocation problem with

a more realistic space-dependent demand model that is sensitive to both the space and price.

6 Quality-Dependent Demand Models

In this section, we review product quality- and service quality-dependent models to reflect the fact

that the quality measurements for the manufacturing systems are different from those for the service

systems. More specifically, the quality of a product is usually measured based on the product’s

performance, reliability, aesthetics, durability, etc., whereas the service quality mostly depends on

convenience, assurance, time, etc.; see, e.g., Stevenson (2007). Therefore, the impacts of product

quality on the demand should be different from those of service quality.

6.1 Product Quality-Dependent Demand Models

In recent years, many firms have focused on quality control of their products, and will continue with

the quality improvement. However, in order to improve a product’s quality, a firm manufacturing the
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product may have to make an R&D investment and incur a higher production cost. More specifically,

as Banker et al. (1998) discussed, the investment in a quality improvement program may increase

the fixed production cost due to three possible reasons: (i) a new investment for high precision,

high reliability, or flexible equipment; (ii) organizational training and restructuring to implement a

quality management scheme; or, (iii) additional effort to redesign the product or process to achieve

the desired quality level.

To trade off the benefit and the cost, each firm (i.e., manufacturing system) may need to determine

an optimal quality level for its product, which affect consumers’ demands for the product.

6.1.1 Consumer’s Utility-Based Models

Moorthy (1988) and Tirole (1988) considered a utility-based model where product quality is denoted

by y. A consumer obtains the net surplus u(p) = θy − p if he decides to purchase; and 0, otherwise,

where θ > 0 is a random variable with p.d.f. f(θ) and c.d.f. F (θ) which represents the consumers’

valuations. This results in demand function, d(p) = a[1− F (p/y)].

Tirole (1988) extended the above model to investigate a utility-based demand for the case where

two products (1 and 2) with different qualities y1 and y2 (y1 < y2) are sold in a market at prices

p1 < p2. Each consumer buys either no product or only one of the two products. A consumer

enjoys the surplus u1 = θy1 − p1 if he or she buys a unit of product 1 with quality y1, but obtains

the surplus u2 = θy2 − p2 if the consumer buys a unit of product 2 with quality y2. In the surplus

functions, θ > 0 is a taste parameter that is randomly distributed over [0,+∞) with the p.d.f f(·)
and the c.d.f. F (·). Denoting θi ≡ yi/pi, for i = 1, 2, Tirole showed that when θ1 ≤ θ2, the demand

is d2(p1, p2) = a(1 − F (θ2)), where a is the market size, and when θ1 < θ2, he found expressions

for demand for low-quality and the high-quality products as, d1(p1, p2) = a[F ((θ̂) − F (θ1)] and

d2(p1, p2) = a[1− F ((θ̂)], respectively, where θ̂ ≡ (p2 − p1)/(y2 − y1).

Zhao et al. (2009) defined a consumer’s utility as a power function, i.e., u(p) = y1/n − p.

Such a model is useful to the research problems with product differentiation, because it possesses

the following two properties: (i) the marginal utility has the constant elasticity 1/n − 1 and (ii) the

coefficient of relative risk aversion is 1 − 1/n. Lauga and Ofek (2011) assumed that a product in

a given category comprises two quality-related characteristics, y1 and y2, and developed their utility

function as u(p) = v+θ1y1 +θ2y2−p, where θ1 and θ2 represent the willingness-to-pay for qualities

on characteristics y1 and y2, respectively. Desai (2001) incorporated both the quality (vertical) and the

taste (horizontal) differentiations into a consumer’s utility, assuming that each consumer may have

his or her ideal product corresponding to a point on the [0, 1] line segment. Similar to the Hotelling

(1929) model, a consumer with valuation θ has a utility of u(p) = θy−kt−p, where t is the distance

from a given product to the consumer’s ideal point and k is the unit transportation cost. Chambers

et al. (2006) assumed that consumers may differ in responding to price, and accordingly constructed

the consumer utility function as u(p) = y − θp, where θ is the parameter reflecting consumers’
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heterogeneity in the price sensitivity. Chambers et al. showed that their utility model is equivalent to

the Moorthy (1988) and Tirole (1988) model u(p) = θy − p.

6.1.2 Competitive Multi-Firm Linear Models

Since quality plays an important role in improving a firm’s competitiveness, it would be interesting

to determine the quality decisions for the firms that compete for consumers’ demands. We start by

discussing the linear quality-dependent demand model that was used by Banker et al. (1998) to jointly

determine the prices and the quality levels for two or more competing firms.

Banker et al. (1998) first considered the duopolistic case in which two firms (i.e., firm i = 1, 2)

compete in a common market with their pricing decisions (i.e., pi, i = 1, 2) and quality levels (i.e.,

yi ≥ 0, i = 1, 2). The demand model for firm i is assumed to be linear in two firms’ prices and

quality levels, i.e.,

di(p,y) = kiα− βpi + γpj + λyi − µyj , for i, j = 1, 2, i 6= j, (19)

where p ≡ (p1, p2); y ≡ (y1, y2); kiα > 0 is the intrinsic demand potential parameter for firm i;

and β ∈ (0, 1] and λ ∈ (0, 1] (γ ∈ (0, 1] and µ ∈ (0, 1]) are the demand responsiveness to firm

i’s (firm j’s) price and quality, respectively. Moreover, β/γ and λ/µ are referred to as the relative

responsiveness to price and quality, respectively, and they are both assumed to be greater than one,

i.e., β > γ and λ > µ. As discussed by Tirole (1988), this is necessary because, if both firms were to

raise their prices by $1 or to decrease their quality levels by one unit, then the demand for each firm

should be decreased.

In order to examine the impact of the number of competitors on quality, Banker et al. (1998)

extended the two-firm demand model in (19) to a general case involving n ≥ 2 firms. The general

demand model was constructed as, di(p,y) = αn − βnpi + γn
∑

j 6=i pj + λnyi − µn
∑

j 6=i yj , for

i, j = 1, 2, i 6= j.

Balasubramanian and Bhardwaj (2004) developed two-firm, price- and quality level-dependent

demand models that are similar to but simpler than that in (19). That is, the basic relevant model by

Balasubramanian and Bhardwaj (2004) was given as, di(p,y) = 1 − β(pi − pj) + γ(yi − yj), for

i, j = 1, 2 and i 6= j. Then, Balasubramanian and Bhardwaj revised their basic model, and considered

the demand model in the following function form: di(p,y) = 1−pi+βpj +γyi− δyj , for i, j = 1, 2

and i 6= j.

Remark 12 It is important to note that when F is uniform over [A,B], we find d(p) = a[1 −
F (p/y)] = a[B − p/y]/(B − A) which is of the same form as the aggregate linear model LM I

in Table 1. Interestingly, this was the same observation we made in Remark 3 when we discussed

willingness-to-pay model by Kalish (1985). Thus, two apparently different problems lead to the same

structure. �
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6.2 Service Quality-Dependent Demand Models

Many firms compete with their service quality to gain larger market shares, in addition to traditional

approaches such as pricing; see, e.g., Bernstein and Federgruen (2004). The quality of service is

measured somewhat differently in manufacturing and service systems. For a manufacturing system,

the typical measurements of service quality include, expected order delay, the probability that an

order delay doesn’t exceed a quoted leadtime, and the percentage of orders fulfilled accurately. For

a service system, the measurements of service quality include expected customer waiting time, the

probability that a customer receives his/her requested service within a guaranteed time window, and

the probability that a customer doesn’t leave before being served (Benjaafar et al., 2007).

Recall that, in Section 4, we have discussed the demand models that depend on the guaranteed

delivery time, which involve delivery reliability constraints. In this section we consider the service

quality-dependent demand models that are not concerned with the guaranteed delivery time for both

the manufacturing and the service systems. We first review the models without quality competition,

and then survey those for multiple competing firms.

6.2.1 Single Firm Demand Models

For the case of a single-firm, we review demand models that characterize the impacts of the firm’s

service quality on the aggregate demand for the firm’s product or service. Our survey has revealed that

existing publications have considered a general service quality-dependent model, a specific (square-

root) model and a utility model.

General Model In an early publication, Desai and Srinivasan (1995) constructed a general service

level-dependent demand model to analyze demand signalling by an informed franchisor (principal)

to a risk-neutral franchisee (agent) whose effort cannot be monitored. The franchisor is one of two

possible types: high-demand (H) and low-demand (L). The franchisor knows its “true” type, which

is unknown to the franchisee. The demand d(p, y) is assumed to be linearly dependent on the price p

and be also dependent on the franchisee’s service level y in a general function form; that is, dJ(p, y) =

TJ−p+g(y)+ε, for J = H,L, where TJ is higher for the high-demand franchisor; g(y) is the demand

function only of the service level y, which is assumed to be weakly concave in y; and, ε denotes an

exogenous r.v. with E(ε) = 0. Moreover, Desai and Srinivasan assumed that the franchisee’s service

cost c(y) is a weakly convex function of the service level y. They developed a Stackelberg game

model to analyze the two-part pricing scheme between a franchisor (as the decision leader) and a

franchisee (as the decision follower).

Square-Root Model Desiraju and Moorthy (1997) developed a price- and service-dependent de-

mand model to analyze a two-level supply chain involving a manufacturer and a retailer. The authors

29



assumed that the demand faced by the retailer is linearly dependent on the price p and is also de-

pendent on the service level y in a square-root function form. With these assumptions, the demand

was given as, d(p, y) = α − p + γ
√
y, for α > 0 and 0 < γ < 2. In this model, ∂d(p, y)/∂y > 0,

and ∂2d(p, y)/∂y2 < 0, which implies the demand is increasing in the service effort y but with an

decreasing returns to scale.

6.2.2 Multi-Firm Demand Models for Multiple Competing Products

We now consider the multi-firm case in which n ≥ 2 firms compete with their service qualities

to increase the demand for their products or services. As our review indicates, most publications

assumed that each firm jointly determines its price and service quality, thereby constructing price- and

service quality-dependent demand models. Letting p ≡ (p1, p2, . . . , pn) and y ≡ (y1, y2, . . . , yn), we

denote the demand for firm i by di(p,y), which is assumed to satisfy the monotonicity properties,

∂di(p,y)

∂pi
≤ 0,

∂di(p,y)

∂yi
≥ 0;

∂di(p,y)

∂pj
≥ 0,

∂di(p,y)

∂yj
≤ 0, for i, j = 1, 2, . . . , n and i 6= j.

(20)

These assumptions are reasonable because of the following reasons: if firm i increases its retail

price pi (service quality yi), the demand di(p,y) for firm i’s product or service is usually decreased

(increased), but if firm j (a competitor of firm i) increases its price pj (service quality yj), then the

demand di(p,y) is usually increased (decreased). The specific demand function forms include the

attraction model, the linear model, and the log-separable model. Since Bernstein and Federgruen

(2004) used the three models to investigate a problem, we next survey the analysis by Bernstein and

Federgruen (2004) to illustrate these specific models.

Attraction Model This model characterizes the demand in the logistic function form, which is

similar to that in Section 2.2.2, with the exception that the attraction model in this section is dependent

on both the price p and the service level y. The model is typically written as,

di(p,y) = Mvi(pi, yi)

/[
v0 +

n∑
j=1

vj(pj, yj)

]
, for i = 1, 2, . . . , n, (21)

where M is the fixed market size; v0 is a constant parameter; and vi(pi, yi) is firm i’s attraction value

that is dependent on its own price and service quality. Moreover, vi(pi, yi) is commonly assumed to be

strictly decreasing in pi but strictly increasing in si, i.e., dvi(pi, yi)/dpi < 0 and dvi(pi, yi)/dyi > 0.

The attraction values vi(pi, yi) in (21) were usually assumed by existing publications to have spe-

cific structures—i.e., multinomial logit (MNL) model, multiplicative competitive interaction (MCI)

model, and multiple customer segments (MCS) model—as discussed in Section 2.2.2. For exam-

ple, Bernstein and Federgruen (2004) considered the infinite-horizon competition among n retailers

each facing a random demand in each period, characterizing the random demand faced by retailer
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i = 1, 2, . . . , n as, Di(p,y) = di(p,y)εi, where di(p,y) is given as in (21) with the attraction value

in the MNL function form (i.e., vi(pi, yi) = exp[bi(yi) − αipi]), and εi is a general continuous r.v.

with a stationary distribution independent of the price p and the service level (fill rate) y. Benjaa-

far et al. (2007) developed an attraction model that is only dependent on the service quality, which

is given as, di(y) = vi(yi)/
∑n

j=1 vi(yj), for i = 1, 2, . . . , n, where the attraction value vi(yi) is a

non-decreasing, concave function of yi with vi(0) = 0.

Linear Model The service quality-dependent demand model in a linear function form is the sim-

plest one. Bernstein and Federgruen (2004) and (2007) constructed a linear model to characterize the

demand for retailer i (i = 1, 2, . . . , n). Similar to our discussion for the attraction demand model, we

next review the model of Bernstein and Federgruen (2004), which was stated as,

di(p,y) = ai − bipi +
∑
j 6=i

cijpj + βiyi −
∑
j 6=i

γijyj , for ai, bi, cij, βi, γij > 0, (22)

where all parameters are assumed to be positive constants, in order to assure the monotonicity proper-

ties in (20); and bi >
∑

j 6=i cij . In addition, letting ki(yi) denote retailer i’s expected (end-of-period)

inventory cost per unit of sales for a guaranteed service level yi, Bernstein and Federgruen (2004)

assumed that k′i(0.5) < βi/b, for i = 1, 2, . . . , n, in order to assure that retailer i cannot be “better

off“ by offering a fill-rate of less than 50%.

Extending the linear model in (22) where the market base ai is a constant, Allon and Federgruen

(2007) considered a linear demand model where the market base is dependent on the service levels

{yi, i = 1, 2, . . . , n}, which is written as, di(p,y) = ai(yi)−bipi+
∑

j 6=i(cijpj)−
∑

j 6=i αij(yj), where

the service-dependent market base ai(yi) is assumed to be three times differentiable, increasing, and

concave in the service level yi, αij(yj) is a non-decreasing and differentiable cross-term function.

Moreover, such a demand function should satisfy the following two properties: (i) a uniform price

increase by all firms cannot lead to an increase in the demand faced by each firm, i.e., bi >
∑

j 6=i cij;

and (ii) an price increase by a firm cannot result in an increase in the aggregate demand of all firms,

i.e., bi >
∑

j 6=i cji.

Log-Separable Model Bernstein and Federgruen (2004) assumed that, in the log-separable model,

a regular system of price-dependent demand functions {qi(p), i = 1, 2, . . . , n} is scaled up or down

as a function of the service levels yi (i = 1, 2, . . . , n) offered by the different retailers. That is,

the price- and service level-dependent demand model in the log-separable function form is given

as, di(p,y) = ψi(y)qi(p), where ψi(y) and qi(p) are assumed to satisfy the monotonicity prop-

erties in (20). Moreover, Bernstein and Federgruen (2004) assumed that the function ψi(y) is log-

supermodular in (yi, yj) (i, j = 1, 2, . . . , n, i 6= j) and the function qi(p) is also log-supermodular in

(pi, pj) (i, j = 1, 2, . . . , n, i 6= j).
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As Bernstein and Federgruen discussed in (2004), the function ψi(y) may be normalized to one

or may be proposed in a logit function form; and the function qi(p) may be the linear, the logit,

the Cobb-Douglas, or the constant elasticity of substitution (CES) model. Note that the first three

possible models for qi(p) has been discussed in Section 2; and the CES model, developed by Dixit

and Stiglitz (1977), is typically given as, qi(p) = γ(pi)
r−1/

∑n
j=1(pj)

r, for r < 0 and γ > 0.

6.3 General Remarks

This section surveyed the quality-dependent demand models. Our survey has revealed that most

commonly-used product quality-dependent models include the utility-based model (for the single firm

setting) and the linear model (for the competitive setting). In the utility-based model, the consumers

are usually assumed to be heterogeneous on their valuations on the product quality. The linear model,

on the other hand, is used to describe the effect of quality on demand from an aggregate perspective;

that is, the consumers are assumed to have homogeneous valuations.

The present section also reviewed the commonly-used service quality-based demand models. In

order to examine a monopolistic firm’s optimal service problem, we can use the general and square-

root model. Both of these two models are aggregate demand functions. But so far, few researchers

have used the service quality-based demand model by considering the consumer’s behavior, which

may be worthy of further investigation. On the other hand, to capture the firms’ optimal investment

decisions on the service levels in a competitive setting, the demand functions used in the literature

include the attraction model, the linear model and the log-separable model. The attraction model is a

market share response model, which implies that an estimate of a brand’s market share lies between 0

and 1, and naturally, the sum of the estimated market share for all brands at any given time equals one.

Different from the attraction model, the linear and log-separable models reflect the actual demands

in the market.

7 Advertising-Dependent Demand Models

Advertising is a common, effective marketing approach used to promote products to customers. As

discussed by Banerjee and Bandyopadhyay (2003), the advertising competition and its impacts on

consumer behavior and market performance usually have two major descriptions: (i) Advertising

can be regarded as a channel that provides valuable information to customers who can then reduce

informational product differentiation and make rational choices, (ii) advertising is also a device that

persuades customers by means of intangible and/or psychic differentiators, thereby creating differen-

tiation among products.

In practice, a firm may need to determine how much to spend on advertising and/or how to allocate

its expenditure over time [that is, should advertising be static or dynamic (turned on and off) for a

multi-period problem?] Thus, a proper advertising decision is important for a firm to succeed in a
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competitive market (Mesak and Mwans, 1998). In economics and marketing fields, models have been

developed to characterize the impacts of the advertising on the demand in a static or dynamic setting,

which is also the classification we use in our review.

In the past several decades, a number of dynamic models were proposed to examine the advertising-

related problem; those models include the diffusion model, the Lanchester model, the Nerlove-Arrow

model, the Vidale-Wolfe model, etc., which were reviewed in Erickson (2003), Feichtinger et al.

(1994), Mahajan et al. (1990), and Sethi (1977). Thus, we limit our review to static demand mod-

els, which include, for the non-competitive case, the general and the log-separable (i.e., log-linear)

models. For the competitive case, we discuss the multiplicative competitive interaction (MCI) and

the multinomial logit (MNL) demand models.

7.1 Non-competitive Advertising-Dependent Demand Models

This section reviews the single-firm (non-competitive) demand models.

7.1.1 General Model

In an early paper, Dorfman and Steiner (1954) developed a formal theory of the optimal advertising

problem for a monopolistic firm which wants to determine its price p and the advertising expenditure

A for its product. They denote the market demand as, d(p,A), with ∂d/∂p < 0 < ∂d/∂A, which

implies that the demand is increasing in the advertising expenditure A but is decreasing in the price

p. The monopolist’s variable production cost is, C(d), with C ′ > 0 so that the monopolist’s profit is

given as, Π(p,A) = pd(p,A)−C(d)−ηA, where η is the cost of per unit advertisement. The optimal

price and advertising decisions are determined by the first-order conditions, given the second-order

conditions hold.

Pepall et al. (1999) presented two examples for the above-mentioned general demand d(p,A).

In the first example, they derived the demand model from the consumer’s utility function. Assume

that the consumers are vertically differentiated with respect to the effect of the advertising on their

valuations. Accordingly, a consumer with type θ obtains the net surplus u(p) = θg(A) − p if he or

she purchases one unit of product, where g(0) = 1 and g′(A) > 0, and zero, otherwise. Letting a > 0

be the potential market size and assuming that the random variable θ is uniformly distributed over

[0, 1], the market demand is given as, d(p,A) = a
∫ 1

p/g(A)
1 · dθ = a[1− p/g(A)].

In the second example, a consumer may or may not receive the advertising, and thus, denote the

probability that a consumer receives no advertising as, (1 − 1/a)A ≈ e−A/a, for a large a. For this

case, the demand is given as, d(p,A) = a(1− e−A/a)d̂(p) ≡ G(A)d̂(p), where d̂(p) is the impact of

the price on demand with the properties such that, d̂′(p) < 0 for p ∈ [0, p̄] and d(p̄) = 0.

Nguyen (1985) examined a firm’s optimal advertising decision, assuming the random demand

for the firm’s product in the additive form as d(A) = g(A) + ε, where A is the firm’s advertising
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level, and g(A) is a constant sales response function with g′(A) > 0 and g′′(A) ≤ 0; and ε is a

r.v. with mean zero and known variance. Nguyen identified the conditions under which whether

the demand uncertainty affect the firm’s advertising decisions. Lariviere and Padmanabhan (1997)

considered the manufacturer’s optimal slotting allowance decision when he introduces a new product

and sells it through a downstream retailer, where the demand is influenced by both the price and

retailer’s marketing effort (advertising). They constructed an additive demand model as, d(p,A) =

a− βp+ g(A), where a > 0 is the market size; β > 0 is the price sensitivity of demand; g(A) is the

response function of sales with the properties that g(A) ≥ 0, g′(A) > 0, and g′′(A) < 0.

7.1.2 Log-Separable Model

Recent publications have considered the advertising cooperation between a manufacturer and a re-

tailer, where the manufacturer and the retailer decide to invest on the national advertising (A1) and

local advertising (A2), respectively. Moreover, the manufacturer decides whether to pay for a por-

tion or the entire advertising cost for a retailer (see, e.g., SeyedEsfahani et al., 2011; Xie and Neyret,

2009). Similar to the second demand model of Pepall et al. (1999), they assumed that the demand has

the multiplicative form, d(A1, A2, p) = ad1(A1, A2)d2(p), where a is the base demand, d1(A1, A2)

and d2(p) capture the impact of the advertising investments and retail price on the demand, respec-

tively. In the published literature, the advertising effect d1(A1, A2) is usually assumed to have a

power form, α − β(A1)−γ(A2)−δ (e.g., Szmerekovsky and Zhang, 2009; Xie and Neyret, 2009), or

a square-root function, k1

√
A1 + k2

√
A2 (e.g., Xie and Wei, 2009; SeyedEsfahani et al., 2011). The

effect of price on demand, d2(p), is usually assumed to be a linear function, a − bp (e.g., Xie and

Neyret, 2009; Xie and Wei, 2009), or a nonlinear function having the iso-elastic form, p−γ , γ > 1

(e.g., Szmerekovsky and Zhang, 2009).

Remark 13 All of the aforementioned general and separable demand models are assumed to be

increasing and concave in the advertising expenditure, which is the common “advertising saturation

effect.” Note that in the stochastic model of Nguyen (1985), the randomness is incorporated into the

demand function as an additive form. Accordingly, similar to the discussions for the stochastic price-

dependent models in Section 2.1.2, one can also investigate the firm’s advertising decision where

the demand error is modeled as a multiplicative form, and also compare these results with those

obtained by using the additive demand model. Moreover, one can also use the general framework of

Kocabıyıkoğlu and Popescu (2011) to investigate the firm’s optimal advertising decision.

Our review above also indicates that the demand models for the advertising cooperation in supply

chain analysis is usually modeled in the separable form, where the researchers characterize the effect

of advertising by the power model, d1(A1, A2) = α − β(A1)−γ(A2)−δ, or the square-root function,

d1(A1, A2) = k1

√
A1 + k2

√
A2. Although these two models are both increasing and concave in the

advertising expenditures A1 and A2, there exists an important difference between the two models.
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Specifically, in the power model, the function d1(A1, A2) has an upper bound α, i.e., d1(A1, A2) < α,

but when the advertising levels A1 or A2 are sufficiently small, the function d1(A1, A2) assumes

negative values, which is not realistic. On the other hand, demand in the square-root model increases

without bound as the advertising levels A1 or A2 increases, which is also not realistic because the

market size should be bounded from above for any advertising level. Finally, when the two firms’

advertising levels are zero, i.e., A1 = A2 = 0, the square-root function d1(A1, A2), and hence, the

consumers’ demand d(A1, A2, p) in Section 7.1.2 will be also zero, which is another drawback of the

square-root model. �

7.2 Competitive Multi-Firm Advertising-Dependent Demand Models

In this section we review two important competitive models.

7.2.1 Multi-Nomial Logit (MNL) Model

Gruca and Sudharshan (1991) used an MNL model to examine the multi-firm competition problem

in which n ≥ 2 firms determine their prices p = (p1, p2, . . . , pn) and marketing (advertising) ex-

penditures A = (A1, A2, . . . , An). Their MNL demand model is given as, di = Vi/
∑n

j=1 Vj , where

Vi = ai exp(αipi + βiAi); and pi and Ai is the price and advertising effort of firm i, respectively.

Gruca and Sudharshan identified the conditions for the existence of the Nash equilibrium.

Extending the model of Gruca and Sudharshan (1991), Basuroy and Nguyen (1998) assumed that

the attraction value of firm i’s product is dependent on both the price pi as well as the advertising

expenditure Ai, and is calculated as, Vi(pi, Ai) = exp[fi(pi) + gi(Ai)], for i = 1, 2, . . . , n, where

fi(pi) and gi(Ai) denote the price response function and the function relating awareness to advertising

expenditure, respectively. Moreover, in order to assure the existence of a Nash equilibrium, Basuroy

and Nguyen (1998) assumed that f ′i(·) < 0, f ′′i (·) = 0; and g′′i (·) < 0, for i = 1, 2, . . . , n; and used

some examples in the marketing literature to support their assumption that g′′i (·) < 0. In particular,

the functions fi(pi) and gi(Ai) were specified as, fi(pi) = −βpi (β > 0) and gi(Ai) = γ lnAi

(γ > 0), where Basuroy and Nguyen investigated the long-run market equilibrium.

7.2.2 Multiplicative Competitive Interaction (MCI) Model

A common advertising-dependent model is given in the MCI function form as discussed by Mills

(1961). Assume that there are n ≥ 2 firms competing in a market by determining their advertising

expenditures. Mills considered the MCI demand model, di = aVi/
∑n

j=1 Vj , where a is the potential

market size, and Vi = ηiA
β
i , for i = 1, 2, . . . , n, and β > 0 measures the market share sensitivity

with respect to the advertising expenditure; and ηi > 0 measures the relative consumer preference

for firm i. Mills developed a finite algorithm to determine the Nash equilibrium among n firms.

For another application of the MCI demand model, see Karnani (1983) who considered the general
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“marketing activity” rather than only the advertising expenditure. Cooper and Nakanishi (1988)

considered a MCI model in which the demand is dependent on both the firms’ retail prices, the

advertising expenditures as well as the distribution efforts; that is, Vi = pαi A
β
i B

γ
i , for i = 1, 2, . . . , n,

where pi, Ai and Bi are the retail price, advertising expenditure, and distribution effort of firm i.

Remark 14 We note that the MNL and MCI models are the two commonly-used attraction models

for the advertising competition among multiple firms. Similar to our discussions in Remark 7, we

know that the main difference between the MNL and MCI models results from the share elasticity

with respect to the advertising level. Specifically, the share elasticity of the MNL model increases

up to a specific level and then declines in advertising, while the share elasticity of the MCI model

is monotonically decreasing in advertising. But different from the price-dependent models, Cooper

(1993) suggested that the MNL model seems to be more appropriate than the MCI model when firms

compete by deciding their advertising levels. �

7.3 General Remarks

This section reviewed the advertising-dependent demand models commonly used in the literature.

The survey of the demand models without competition reveals that the demand can be derived from

the consumer’s utility function or modeled as an aggregate model. Which model we choose depends

on whether we attempt to consider the consumer’s choice. The above review also shows that most of

the advertising-dependent models belong to the class of aggregate models, except for the first demand

example of Pepall et al. (1999).

For the competitive case, we have seen that most models only consider the advertising compe-

tition among individual firms, not from the supply chain perspective where each chain consists of

manufacturer(s) and retailer(s). A potential research topic could incorporate the competitive deci-

sions where the manufacturer makes the national advertising decisions and the retailer is responsible

for local advertising and the retail price decisions.

8 Empirical Studies of Demand Models

Our survey in the preceding sections indicates that a considerable number of demand models have

been developed to investigate various problems arising in economics, marketing, and operations

fields. Many of these models have been empirically tested to forecast the aggregate market demand

of potential consumers to help decision makers. In this section, we focus on the review of the empir-

ical literature involving demand functions, examine the suitability of those demand functions in the

empirical studies, and also present our suggestions regarding the applications of demand functions in

the empirical research.
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We note that there is a large number of published empirical studies concerning advertising models

which have examined the static or dynamic impact of advertising effort on the demand; see, for

example, the reviews by Erickson (2003), Feichtinger et al.(1994), Huang, Leng, and Liang (2012),

Leeflang et al. (2000), Mahajan et al. (1990), and Sethi (1977). Since these papers have already

reviewed advertising-dependent demand models, we do not review such papers in this section.

8.1 Empirical Studies of Price-Dependent Demand Models

A number of researchers have used the linear, exponential, power, MNL, and MCI models to forecast,

measure, and test the effect of retail price on the market demand. Genesove and Mullin (1998)

conducted an empirical study for the sugar industry, adopting a demand model in the form d(p) =

β(α−p)γ , which can be, (i) a linear model when γ = 1, (ii) a log-linear model when α = 0 and γ < 0,

(iii) an exponential model when α, γ →∞ and α/γ constant, (iv) a quadratic model when γ = 2. The

non-linear functional forms (ii), (iii), and (iv) were transformed into ln d = ln(−β) + γ ln p, ln d =

ln β+γp/α, and ln d = ln β+2 ln(α−p), respectively. Genesove and Mullin (1998) considered both

a high season for sugar—which starts at the end of May and reaches its peak in September—and a low

season which includes other months. For the two seasons, the authors estimated the parameters, and

calculated standard errors of the estimates (SEEs) to test the performance of the above four demand

models.

The estimated parameters with corresponding standard errors given in parenthesis are provided as

follows: (i) (βα)H = 10.74 (1.57) and βH = 1.36 (0.36)/(βα)L = 13.37 (1.90) and βL = 2.30 (0.48)

in the linear model; (ii) [ln(−β)]H = 3.17 (0.40) and γH = −1.10 (0.28)/[ln(−β)]L = 4.19 (0.65)

and γL = −2.03 (0.48) in the log-linear model; (iii) (ln β)H = 2.70 (0.29) and (γ/α)H = −0.26

(0.07)/(ln β)L = 3.52 (0.48) and (γ/α)L = −0.53 (0.12) in the exponential model; (iv) (ln β)H =

−2.48 (0.54) and αH = 11.88 (2.03)/(ln β)L = −1.20 (0.47) and αL = 7.72 (0.86) in the quadratic

model. Note that the SEEs are significantly small compared with the estimates. Moreover, the above

estimates indicates that for each model the demand curve in both the high and the low seasons is

downward sloping. Thus, Genesove and Mullin (1998) concluded from both the statistic and practical

perspectives that the four demand models can “reasonably” describe the market sales in two seasons.

Furthermore, we note that in each season, the exponential model should be the best-fitting one among

the four models, because the SEEs for the exponential model are the smallest. This may imply that,

for the sugar industry, the exponential model could be highly applicable to empirical study.

In addition to the above, the logit demand functions have also been widely applied in empiri-

cal studies. Sudhir (2001) analyzed a distribution channel where two manufacturers sell through a

common retailer to consumers, using a logit model and a multiplicative model. In the logit model,

the demand for the brand i product (i = 1, 2) in period t was characterized as dit = exp(Uit)/[1 +∑2
k=1 exp(Ukt)], where Uit = β01 +βffit+βdyit+βdpyitpit+βfpfitpit+βpipit+ξit. Note that in Uit,

β0i is the intrinsic attraction of brand i, fit, yit, and pit denote the feature, the display, and the retail
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price for brand i in period t, and ξit is the unobservable component of utility. In the multiplicative de-

mand model the demand for brand i in period t is, dit = ai(pit)
bii(pjt)

bij(fit)
fii(fjt)

fij(yit)
yii(yjt)

yij ,

where bii (fii, yii) and bij (fij , yij) denote the own-brand price (feature, display) elasticity and the

cross-brand price (feature, display) elasticity of the demand for brand i, respectively. Sudhir adopted

the above two demand models to empirically investigate the yogurt and the peanut butter categories

for two of the biggest stores (i.e., stores 1 and 2) in a particular market, and computed log-likelihoods

of the best-fitting logit and multiplicative demand models. Since there are a large number of esti-

mated parameters in the two best-fitting demand models, we do not write the best-fitting estimates

but refer readers to Tables 5a and 5b in the publication by Sudhir (2001). We note from Sudhir

(2001) that in the yogurt category, the best-fitting logit and multiplicative models for store 1 have the

log-likelihoods of -196.90 and –343.09, respectively; and those for store 2 have the log-likelihoods of

-247.27 and –423.90, respectively. In the peanut butter category, the log-likelihoods of the best-fitting

logit and multiplicative models for store 1 are -240.66 and –320.14, respectively; and those for store

2 are -212.96 and –421.39. According to the above log-likelihood statistics, Sudhir (2001) concluded

that the logit demand model can fit the empirical data much better compared to the multiplicative

demand model.

We also find a number of publications concerning the MNL model for the empirical studies.

Besanko et al. (1998) theoretically and empirically found the prices in Nash equilibrium for multiple

manufacturers and multiple retailers, using the MNL model djt = eα(vjt−pjt)/(1 +
∑n

k=1 e
α(vkt−pkt)),

for j = 1, . . . , n, where vjt is the “average” consumer’s maximum willingness to pay for brand j

at time t and pjt is the price of product j at time t. Moreover, for the empirical study, the authors

used the data in the yogurt and the catsup product categories for a 102 week period in 1986–1988,

which the AC Nielsen Company collected from nine stores (belonging to a single “Everyday Low

Price” (EDLP) chain) in Springfield, Missouri. Besanko et al. (1998) found that the absolute value

of empirical estimates of the demand elasticity with respect to price are greater than 1 except for the

Yoplait brand (in the yogurt category), which is consistent with the theoretical results. For other MNL

models in the empirical studies, see, e.g., Khan and Jain (2005) and Nevo (2000). A few researchers

(Parks, 1969; Nakanishi and Cooper, 1982) performed their empirical studies by using the MCI

models, which also belong to the category of attraction models which we reviewed in Section 2.2.2.

Nakanishi and Cooper (1982) showed that the empirical estimation with the MCI model is better than

that with the MNL model, which is in agreement with our Remark 7.

Remark 15 The linear and the logit models (mainly the MNL model) are the most common in the

price-related empirical studies. The wide applications of the linear model may be ascribed to the

easy estimation of the parameters in such a model. The logit model has broad applications possibly

because of the following two facts: (i) taking the logarithm transformation can convert the logit

model into a linear model and (ii) the logit model can properly describe the nonlinear phenomenon

in practice, as discussed by, e.g., Sudhir (2001). In addition, we learn from Genesove and Mullin
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(1998) and Sudhir (2001) that standard error of the estimate and the log-likelihood statistic should

be useful to the selection of demand models. We also learn that the best-fitting demand models may

vary in different industries. For example, for the sugar industry, the exponential demand model may

be highly applicable to empirical study, whereas for the yogurt and peanut butter industries, the logit

demand model may be highly applicable to empirical study. �

8.2 Empirical Studies of Coupon-Dependent Demand Models

Our review indicates that very few papers have empirically examined the validation of the coupon-

dependent demand models reviewed in Section 3. Leone and Srinivasan (1996) developed an expo-

nential demand model to empirically explore the impact of the face value of a manufacturer’s coupon

on the manufacturer’s profit in a duopoly setting. In their model two manufacturers making prod-

ucts of different brands compete in a market consisting of two customer categories—i.e., the coupon

prone (CP) category in which the customers are prone to the coupon and the coupon indifferent (CI)

segment in which the customers are indifferent to the coupon.

The exponential demand model for manufacturer i’s product (i = 1, 2) at time t in the CP category

is dict = exp [β0 + β1/(pit − v̂iβτ2)], where pit is the price of brand i at time t, v̂it is the value of the

coupon for brand i that is valid at time t, and τ is the number of weeks since the coupon was dropped.

In dict, the parameters β0, β1, and β2 were empirically estimated. Note that β2 captures the decaying

effect of the coupon’s face value on brand sales in the CP category. Using the least squares method,

Leone and Srinivasan (1996) found that β0 = 1.8098, β1 = 713.1394, and β2 = 1.0000.

Kumar and Swaminathan (2005) extended the demand model of Leone and Srinivasan (1996) to

a generalized coupon-sales response model, which is given as,

dirt = exp

[
β0 + β1/(pirt − γiv̂iβτ i2 )−

3∑
i=1

Ui + β5Tirt + β7T̂irt + εirt

]
, for i = 1, . . . , n, (23)

where dirt and pirt denote the demand and the price for brand i in store r = 1, . . . , r̄ at time t,

respectively; U1 ≡
∑

j 6=i[β3j/(pjrt− δj v̂jβ
τ j
4j )], U2 ≡

∑
j 6=i β6jTjrt, and U3 ≡

∑
j 6=i β8jTjrt. In (23),

v̂i is the value of the coupon for brand i; Tirt and T̂irt are two dummy variables that represent the

display activity and the featuring activity for brand i in store r at time t, respectively; and, γi and

δj are the face values of the coupons for brands i and j at time t, respectively. All β’s with numbered

subscripts are parameters that were estimated in the empirical study.

The demand model in (23) can characterize the fact that the coupon strategy may vary over the

coupon expiration period, and can thus be regarded as a general model capturing the competition

among multiple brands. Kumar and Swaminathan compared their general model in (23) with (i) the

linear model dist = β0i + β1i(pist − γstv̂iβτ2i) +Z, (ii) the semi-log model log dist = β0i + β1(pist −
γstv̂iβ

τ
2i) + Z, and (iii) the double-log model log dist = β0i + β1[log(pist − γstv̂iβ

τ
2i)] + Z. Note
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that Z ≡ −
∑3

i=1 Ui + β5Tirt + β7T̂irt + εirt. Using a nonlinear least squares (NLS) method, Kumar

and Swaminathan (2005) estimated the parameters in the generalized model in (23) and other three

models, and also found that if the single couponing strategy (i.e., γi = 1 and δj = 1) is used, then the

range of adjusted R2 for the model in (23) is from 0.69 to 0.81, and the range for other three models

is from 0.54 to 0.62. If the double couponing strategy (i.e., γi = 2 and δj = 2) applies, then the range

of adjusted R2 for the model in (23) and other three models are from 0.72 to 0.81 and from 0.52 to

0.59. According to the above, Kumar and Swaminathan (2005) concluded that the generalized model

is better than other three models.

From our review above, we conclude that, the exponential and the double-log models have been

used to conduct the empirical studies regarding the impact of the coupon on the demand. In future,

we may consider the empirical studies with other coupon-dependent models specified in Section 3,

which include the power model by Arcelus and Srinivasan (2003), the logit model by Aydin and

Porteus (2008), etc. In addition, the NLS method and the adjusted R2 test can be used to select a

proper demand model.

8.3 Empirical Studies of Space-Dependent Demand Models

In recent years, very few publications have appeared that deal with the empirical studies concerning

space-dependent demand models. Desmet and Renaudin (1998) examined the monthly sales respon-

siveness to the shelf space allocated for product category c in 125 stores—belonging to store type l—

during 11 months. They adopted the demand function dc = exp(αc0 +
∑125

i=1 δciŝi +
∑11

j=1 γcjmj)×
sβcl , where αc0 is a constant. Note that dc represents the turnover share of product category c, which

is calculated as the ratio of the turnover volume of product category c to the total turnover volume of

all product categories in 125 stores during 11 months. In the above demand function, s is the share

of the space allocated to product category c—i.e., the ratio of the space allocated to product category

c to the total space available to all product categories in 125 stores during 11 months; and βcl is the

space elasticity of product category c in stores of type l.

Moreover, in Desmet and Renaudin’s demand function (1998), ŝi (i = 1, 2, . . . 125) denotes store

i’s specific characteristic value that distinguishes this store from other 124 stores according to the

differences in all stores’ locations and competitive environment; and δci is the parameter reflecting

the impact of ŝi on product category c. Thus, the term δciŝi determines the component of the demand

for the products in category c at store i that possesses specific characteristic value ŝi. We also learn

thatmj (j = 1, 2, . . . , 11) represents a specific characteristic value reflecting retailers’ seasonal space

allocations in month j, and the parameter γcj denotes the impact of mj on product category c. It thus

follows that the term γcjmj is the component of the demand for product category c in month j that

possesses specific seasonal value mj .

Desmet and Renaudin (1998) considered the distribution of space elasticities for three different

stores: plus store, standard store, and essential store, and found that the average value of the space
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elasticity (weighted by the number of stores of each type) is 0.2138. It was shown that the space

elasticities for each product category vary considerably from −0.44 to 0.80. This demonstrates that

the space elasticities for some categories may be negative; for example, the elasticities are−0.12 and

−0.13 for the fashion category in plus and standard stores, respectively. Such results are contrary

to (i) the model assumptions in Section 5.1.2, where the space elasticity is always assumed to be

positive and (ii) earlier relevant empirical studies (e.g., Desmet and Renaudin, 1998), where the

space elasticity varies between 0.15 and 0.8.

For another relevant paper, see Van Dijk et al. (2004) who incorporated the spatial interaction

between shelf space and the error term into their empirical study. In future work, it may be useful

to consider other theoretical demand models surveyed in Section 5, which include, e.g., the demand

models with both the spacing and the pricing decision variables.

8.4 General Remarks

We learn that many empirical studies assume linear demand functions and apply econometrics tech-

niques to estimate the parameters in their linear models. However, as our review of the preceding

sections has revealed, majority of extant demand functions (e.g., the attraction model, the constant

expenditure model, the Cobb-Douglas model, etc.) are nonlinear. Nevertheless, a number of nonlin-

ear functions can be transformed into linear ones for the empirical studies. For example, taking the

logarithm of the Cobb-Douglas demand model in (8), we obtain the double-log linear regression to

estimate the Cobb-Douglas parameters. As in Besanko et al. (1998), the MultiNomial Logit (MNL)

model—which is an attraction model, see Section 2.2.2—can be also transformed into a double-

log function. For those non-linear models that cannot be transformed into linear functions, one can

also empirically estimate parameter values by using nonlinear methods that are provided by, e.g.,

Hanssens and Parsons (1993). Our review also indicates that standard error of the estimate, the log-

likelihood statistic, and the NLS method with the adjusted R2 test should be helpful to measuring the

goodness of fit of demand models and identifying a proper demand model for empirical study.

Majority of extant publications are focused on the empirical studies with price-dependent demand

models, which were shown to be accurate in capturing the actual market demand. However, our se-

lection of the best-fitting model may be dependent on research problems. For example, to investigate

the impact of the channel power on the interactions between a manufacturer and a retailer, Kadiyali

et al. (2000) chose a logit model rather than a linear or double-log model. Sudhir (2001) showed that

the logit model is much better than the multiplicative model for the problem of investigating a man-

ufacturer’s pricing decision in the presence of a strategic retailer. Kumar and Swaminathan (2005)

developed a generalized space-dependent model to estimate the space elasticity, and concluded that

this general model is much better than the linear, semi-log, and double-log models in fitting the data.

Since extant publications mostly consider linear and logit demand models, it may be important to con-

duct empirical studies with other nonlinear models (e.g., Cobb-Douglas, power, etc.) and examine
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the validity of those nonlinear models in practice.

We also observed that researchers seldom considered the empirical studies with the demand mod-

els that depend on the delivery leadtime and the product’s quality. It thus follows that, in the future,

one may need to empirically analyze leadtime- or quality-related problems. These problems include,

e.g., if and how the leadtime- and quality-dependent demand models in Sections 4 and 6 can be used

to accurately describe the actual demand.

9 Summary and Concluding Remarks

In this paper, we surveyed the commonly-used mathematical models that were developed to charac-

terize the dependency of demand on various factors such as price, rebate, lead time, space, quality, and

advertising. Such demand functions have been increasingly useful in investigating many important

problems in business and economics, because consumers are usually sensitive to firms’ operational

and marketing activities and their demands would thus change as firms implement different strategies.

We learn from our survey that some functional forms (e.g., linear, MNL, MCI, power/iso-elastic)

have been widely used to construct various demand function models. For example, the MNL function

was utilized to model the price-, the leadtime-, the quality-, and the advertising-dependent demands.

To understand clearly the applications of each functional form that we surveyed in our paper, we

summarize the distribution of these function forms in the following six categories: (i) price-, (ii)

rebate-, (iii) leadtime-, (iv) space-, (v) quality-, and (vi) advertising-dependent demand models; see

Table 4. Note from Table 4 that, except for the lead-time category, a number of publications in

other categories have not assumed any specific demand models but considered general mathematical

function forms that were assumed to possess the convexity or concavity property. Additionally, the

linear, the MNL, the MCI, and the power/iso-elastic demand models have been extensively used

to analyze various problems, whereas other specific functional forms (e.g., exponential, the log-

separable, the square-root, etc.) have not been very popular.

Mathematical Factor that Affects Demand

Function Form Price Rebate LeadTime Space Quality Advertising

General • • • • •
Cobb-Douglas • •

Constant Expenditure •
Exponential •

Linear • • • •
Log-Separable • •
Logarithmic •

MCI • • • •
MCS •
MNL • • • •

Power/Iso-elastic • • • • •
Square-Root •

Transcendental Logarithmic •
Utility-Based • • • •

Table 4: Distribution of mathematical functional forms in six categories of dependent demand mod-

els: price-, rebate-, leadtime-, space-, quality-, and advertising-dependent demand models.
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We also find that a large number of publications belong to the categories of price- and quality-

dependent demand models; but, a small number of publications considered the demand models in

other categories. This implies that there may be open problems in the areas of rebate-, leadtime-,

space-, and advertising-/marketing effort-dependent models and that, in the future, researchers may

need to pay more attention to these models. Our findings on each category of demand models are

summarized as follows.

1. Price-dependent demand models. In our review we found that this category has been the most

popular and most interesting to academic researchers, possibly because pricing is the most com-

mon marketing tool that has been used to affect consumers’ purchase decisions. Moreover, we

note that many researchers jointly considered pricing and at least one other decision, e.g., lead-

time, quality, advertising in their models. But few publications have considered joint pricing

and space decisions, which may be worth investigating in the future.

2. Rebate-dependent demand models. These demand models have recently attracted the atten-

tion of researchers in marketing and operations fields, as rebates have been widely used by

many firms to improve their sales. Our review indicates that extant rebate-dependent models

were developed to characterize the demand faced by a monopolistic firm or a supply chain in-

cluding only one manufacturer and one retailer. Rebate competition between two, or among

three or more, firms or supply chains may thus provide interesting research avenues in the

future.

3. Leadtime-dependent demand models. This category includes the demand models that de-

pend on the firm’s delivery leadtime. More specifically, the leadtime-dependent demand mod-

els are generally used to analyze inventory-related problems. However, very few publications

have considered the joint impact of the leadtime and other decisions (e.g., stocking decision)

or factors (e.g., shelf space) that affect the inventory cost. It would thus be interesting to incor-

porate both the leadtime and the stocking decision or shelf space into the demand function as

potential research topics.

4. Space-dependent demand models. We have found that such models were developed only for

the operations of retail systems. In fact, space allocation decision is not only important to the

management of tangible products but also to the delivery of effective service. For example, if

the space available in a service system (e.g., restaurant, hotel) is small, then customers may be

unlikely to request the service. It would thus be necessary to consider space-dependent demand

for service systems.

5. Quality-dependent demand models. Quality is important to both the manufacturing and ser-

vice systems in today’s business world. But, as our review indicates, there are relatively few

models that characterize the impact of product quality on the demand, whereas most relevant

publications considered the service level for manufacturing systems and the service quality for

service systems. Thus, researchers may need to consider other function forms (e.g., Cobb-
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Douglas, MNL, MCI) to address product quality-related problems.

6. Advertising-dependent demand models: Marketing activities influence consumers’ purchase

decisions. Our review has revealed that many publications have focused on the impacts of ad-

vertising on the demand. Even though some papers have considered general marketing activity

or effort which influence demand (e.g., Karnani, 1983; Lariviere and Padmanabhan, 1997), it

may be useful to develop models to investigate demand functions that depend on other specific

marketing activities such as mail-in rebate, interest-free loan, etc. It may also be useful to ex-

amine online demand that depends on other, no-advertising type, marketing activities such as

free shipping, word-of-mouth (i.e., the opinions that past online buyers write online).

In addition to the above observations for each category, we find from our survey that the majority

of publications assumed general or specific functions (listed in Table 4) to investigate a variety of

problems. Those functions may not properly characterize the consumer behavior. As a response, a

number of researchers have developed utility-based approaches to investigate a variety of problems

in the categories of price-, rebate-, leadtime-, and quality-dependent demand models, as indicated by

Table 4.

Among these four categories, the quality-dependent models provide a wide variety of promising

research problems since quality is an important determinant of consumers’ purchasing decisions.

For example, an important research direction should be concerned with the empirical analysis of

consumers’ quality-dependent utilities. For such an empirical study, we need to collect and analyze

the data capturing consumers’ attitudes toward quality and other factors affecting their purchasing

decisions, and the data analysis may help explore more insights regarding the impact of quality on

consumer behavior and firms’ optimal decisions on their quality levels. In addition, one may consider

the following quality-related research direction. As Section 6.1.1 indicates, most of extant utility

models are linear functions of quality levels, whereas very few publications considered non-linear

function forms—for example, Zhao et al. (2009) used a power utility function. Since non-linear

utility functions should be more realistic than the linear functions, in the future we may need to

consider other common non-linear functions such as MCI and MNL to characterize the consumer

utility. The analysis of the non-linear utility functions should result in more interesting insights that

may be different from those generated from the analysis of the linear utility functions.

We also find from Section 6.1.1 that the existing utility functions incorporate the impact of the

quality and the price. But actually, in addition to the quality, consumers’ decisions may be dependent

on the leadtime, the rebate, the space, the advertising, etc. It would thus be interesting to consider

utility functions in terms of quality and other factors that do not include price as a decision variable.

Moreover, the quality category only includes a few relevant papers in a monopoly or duopoly setting.

In future, it may be also interesting to investigate the oligopoly case in which n > 3 firms compete

in the market by determining their product quality levels. Furthermore, for the oligopoly case, we

could incorporate the price sensitivity and the taste differentiation into the consumers’ utility func-
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tions, which may generate new insights. For the applications of the price sensitivity and the taste

differentiation in the monopoly or duopoly setting, see Chambers et al. (2006) and Desai (2001),

respectively.

In conclusion, we find that the demand functions in Table 4 have been shown to be useful in

analyzing a variety of business- and economics-related problems. Such models may be used for the

investigation of new problems, and they may even create possibilities for developing new types of

demand models.
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