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Abstract

This paper studies dynamic inventory and pricing decisions for a set of substitutable

products over a finite planning horizon. Demands are random and price sensitive. At

the beginning of each period, based on the current inventory status, we decide the price

and order quantity for each product. The replenishment arrives immediately, before

demand realizations. The pricing decision influences the demand vector in the current

period. Unsatisfied demands are backlogged subject to linear penalty costs. Inventories

incur linear holding costs. The objective is to maximize the total expected discounted

profit. We formulate the problem as a dynamic program. For tractability, we work

with a transformed pricing vector, termed the market-share vector. We characterize the

optimal policy and devise an algorithm to compute it. Both stationary and nonstationary

data are considered. We also present a numerical study to illustrate the interplay of the

pricing and inventory decisions.
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1 Introduction

Imagine a retailer selling a set of products with similar functions and quality levels but var-

ious brands and styles, such as laptop computers or running shoes. Demand arises randomly

and is price sensitive. Due to fast-changing technology and consumer tastes, the wholesale

prices of the products may change over time. So, in addition to the regular inventory replen-

ishment decisions, the retailer may set prices based on the current inventory status to influence

future demands. This approach can help the sales of slow moving items and reduce potential

losses due to obsolescence. By diverting some demands for products with low inventory to

those with high inventory, it can also help reduce backlogs for some products and at the same

time generate earlier realized revenues from other products. But, exactly how should one

make such pricing decisions? When should one raise or lower the price of a product? And

when should one order a product, and how large should the order be? These are the questions

we aim to address in this paper.

Our model is a finite-horizon, periodic-review inventory system of multiple products with

price-dependent random demand. At the beginning of each period, based on the current

inventory status, we decide the price and order quantity for each product. The replenishment

arrives immediately, before demand realizations. The pricing decision influences the demand

vector in the current period. Unsatisfied demands are backlogged subject to linear penalty

costs. Inventories incur linear holding costs. The objective is to maximize the total expected

discounted profit.

In Section 3, we introduce a general nonlinear stochastic demand function. It encompasses

both additive and multiplicative models. It also include the well-known logit and locational

models as special cases.

In Section 4, we formulate the problem as a dynamic program. Both stationary and

nonstationary data are considered. For tractability, we work with a transformed pricing vector,

termed the market-share vector. We characterize the optimal policy and devise an algorithm

to compute it. The optimal policy consists of three components: (1) the overstocking list

records the products that need not to order, (2) the order-up-to levels, conditioned on the

overstocking levels, and (3) the target market shares, also conditioned on the overstocking

levels. The overstocking list determines what product the retailer does not need to order.
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The order-up-to levels determine the ordering amounts. The target market shares provide the

optimal market share assigned to each product, which, in turn, determines the optimal price

for each product.

Section 5 studies the myopic policy and its optimality. There, we also report a numerical

study to illustrate the interplay of the pricing and inventory decisions.

As discussed in the literature review in Section 2 below, our paper appears to be the

first to study joint inventory and pricing decisions for system with multiple periods, multiple

products, and nonlinear demand function. The closest prior work is a two-product model

with a linear demand function. In Section 6 we summarize the theoretical results and discuss

future research directions.

2 Literature Review

Many researchers have studied joint pricing and inventory decisions. However, most of

these studies assume either a single product or multiple products but a single period. (See

Chan et al. 2004 for a review.) Our multi-period and multi-product model extends both

of these streams of research. Below we briefly review the main results of the most related

literature.

Papers concerning single-product, periodic-review pricing and inventory control systems

differ in their modeling assumptions on (1) the treatment of unsatisfied demand (backorder-

ing or lost-sales), (2) the cost structure (with or without a fixed ordering cost), and (3) the

form of the demand function (additive or multiplicative). Assuming backordering and a lin-

ear ordering cost, Federgruen and Heching (1999) showed that a base-stock list-price policy

is optimal. They also demonstrated that dynamic pricing can result in significant benefit

compared to static pricing. Chen and Simchi-Levi (2004 a,b) considered both variable and

fixed ordering costs. They proved that an (s, S, p) policy is optimal for additive demand, and

an (s, S, A, p) policy is optimal for multiplicative demand, assuming the unsatisfied demand

is fully backordered. With the same cost structure but assuming lost-sales and an additive

demand function, Chen, et al. (2003) showed that an (s, S, p) policy is optimal. Song et al.

(2005) extends this result to multiplicative demands. Finally, Huh and Janakiraman (2005)
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streamlined the above results by using a sample path argument. In our model, we consider

multiple products, backordering, a linear ordering cost, and both additive and multiplicative

demands.

There is a rich literature on inventory planning with substitutable products. But almost all

those models assume predetermined prices and a single period. Some models allow hierarchy

substitution, in which a product of higher quality can be used to fulfill the demand for products

of lower quality. See, for example, Bassok, et al. (1999) and Chen, et al. (1999). Other

authors focus on the stock-out based substitution, where consumers might switch to some

other available products when their first choice is out of stock. See for example, Parlar and

Goyal (1984), Ernst and Kouvelis (1999), Smith and Agrawal (2000), Rajaram and Tang

(2001), and Honhon et al. (2006). Still other papers study assortment-based substitution,

assuming a consumer may switch the most preferred product when the composition of a

category changes. This is static substitution. That is, consumers do not look for a substitute

in a given category, if their first choice is stocked out. Thus, in these papers the optimal size

and composition of a category is of special interest. See, for example, van Ryzin and Mahajan

(1999), Mahajan and van Ryzin (2001), Gaur and Honhon (2006). We refer the reader to

KöK et al. (2006) for a complete review of inventory management of substitutable products

and assortment management.

Our model differs from this literature in that we do not assume fixed prices and we focus

on price-driven substitutions, i.e., a consumer’s favorite within a category may change when

prices change. We do not consider assortment-based substitution, since we study a certain

category. We also ignore stock-out based substitution and assume that the consumers will

delay their purchases when their favorite products are out of stock.

Aydin and Porteus (2005) studied joint pricing and inventory decisions for an assortment

in a single-period setting. We are interested in the dynamic pricing and inventory decisions.

We are aware of only two previous studies that investigate dynamic pricing and inventory

policies for multiple products within a category. Hall et al. (2003) study a setting with (1)

non-stationary procurement costs, (2) joint setup costs of ordering, (3) both own-price and

cross-price effects of all products within a category, and (4) deterministic demand. In our

study, we assume demand is uncertain. Zhu and Thonemann (2005) investigated combined

pricing and inventory decisions across two products, assuming (1) the cross-price effect is
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linear, and (2) the random demand has additive form. They segment the state space into

four regions and characterize the optimal policy in each region. We consider an arbitrary

number of products, linear and nonlinear cross-price substitutions, and random demands that

are either additive or multiplicative.

3 Demand Model

We concern a retailer managing a category of J substitutable products, J = {1, ..., J}.
These products are differentiated in one of the following two ways.

1. Vertical differentiation. Products are vertically differentiated, if they differ in quality,

where quality means the attributes having the ”more is better” property. For exam-

ple, cranberries are differentiated in terms of size and color, and digital cameras are

differentiated in terms of Megapixal.

2. Horizontal differentiation. Products are horizontally differentiated, if they possess vari-

ous styles, where style refers to the attributes not satisfying ”more is better” property.

For example, in the category of Classic-Fit Vintage Polo shirts, they differ only in color.

In the category of Hershey’s Kisses, chocolates are classified to almond chocolate, black

chocolate, milk chocolate, and etc.

In this section, we present a general demand model to describe consumers’ choices among

different products in response to prices. We also make a transformation of variables and re-

express the demand function as a function of the market-share vector. We then show that the

logit and spatial models, which are widely used in the economic and marketing literature, are

special cases of this general demand model.

3.1 The General Demand Model

Assume the planning horizon contains T periods. Consider any period t ∈ {1, ..., T}. Let pjt

be the price for product j at beginning of t. Denote pt = (p1t, ..., pJt) be the price vector.

Define qj(pt) be the probability that an arriving customer in period t selects product j, when

observing pt. We also call qj(pt) the market share of product j in period t, a term coined
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in the literature of logit models (see Anderson et al., and etc.). Here, “q” is used to imply

the quota of the market assigned to each variant in the category. Note that the total market

share
∑

j∈J qj(pt) ≤ 1. Denote qt(pt) = (q11(pt), ..., qJ(pt)).

For any given price vector p, we assume the demand in period t, Dt(p) = (D1t(p), ..., DJt(p)),

is of the following form:

Dt(p) = q(p)Λt + L(q(p))εt. (1)

Here,

• q(p) is the market-share function defined above.

• Λt is a random variable with finite mean and variance, representing the volume of po-

tential customers in period t. It characterizes the randomness of the market volume of

the category. For example, consider a category of raincoats, the number of potential

customers increases when they face freezing winter, and decreases when they meet warm

winter.

• εt = (ε1t, ..., εJt) is the vector of random error terms, in which εjt has zero mean and

finite variance. εjt indicates the uncertainty of the demand of product j. For example,

if a movie star recently dressed a taupe color raincoat in a new released movie, the

sales of taupe color raincoat should unpredictably increase. The random errors εjt can

be correlated cross j, either positively or negatively. For simplicity, in the remaining

analysis, we assume εjt is independent across j. However, the structure of the optimal

policy holds for both dependent and independent error terms.

• L(q) is a J × J-matrix.

Thus, the demand function consists of two parts – a controllable part q, which is sensitive

to prices, and an uncontrollable, stochastic part (Λt, εt), which are independent across time

periods. Note that the expected demand of product j is proportional to the market share

qj(p).

When Λt is deterministic, the demand function is in additive form. When εt is determinis-

tic, the demand function is in multiplicative form. When L(q(p)) = I, a J×J identity matrix,

the demands can be simplified to q(p)Λt+εt. When L(q(p)) = Diag(q(p)), a diagonal matrix

with the (j, j)th element qj(p), the demands can be expressed as qΛt + (q1ε1t, ..., qJεJt).
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To make the analysis tractable, we use the inverse of the market-share function to make a

transformation of the decision variables. That is, we use q as the control variable instead of

p. Now, the demand function is of the following simpler expression:

Dt(q) = qΛt + L(q)εt. (2)

Let

p(qt) = (p1(qt), ..., pJ(qt)), the inverse market share function,

= for qt ∈ Qt = {q(pt)|pt ∈ Pt};
r(q) = p(q)q, the revenue rate function.

Note that r(q) is the ratio of the expected revenue to the expected volume of potential

customers. We impose the following assumption about r(q).

Assumption 1 r(q) is concave in q, for q ∈ Qt, where Qt is a compact and convex set.

In the following two subsections we present two special cases of the general demand func-

tion. In each case, we derive the market-share function and examine the property of the

revenue rate function. We show that Assumption 1 is valid in both cases.

3.2 Special Case 1: Multinomial Logit Choice Model

A logit model can be used to study a set of products differentiated in both quality and

style. A customer evaluates a product, based on the overall feeling of its attributes. A product

can be described by the average perceptive value, which is the average value of the consumers’

overall perception on a product. For example, a logit model can be applied to studying digital

products. Concern a category of digital cameras, products are both vertically differentiated in

quality and horizontally differentiated in brand, and they can be ranked in terms of the aver-

age evaluation by all consumers. Consider an MP3 category, in which some products are more

popular than others. The popularity mainly comes from two sources, the high sound quality,

or the appealing style. However, the logit model also assumes consumers are heterogeneous

in their individual perception of each product. The heterogeneity is captured by indepen-

dently and identically distributed random variables with double exponential distribution. To

characterize the products, we define
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Θj =the average perceptive value on product j.

ϑj =the random part of the individual perceptive value on product j

An individual’s utility for product j is characterized by U(ϑj, j) = Θj − pj + ϑj, where Θ

is determined in product design, and pj is the pricing decision. The random part ϑj shows the

heterogeneity of consumers’ evaluation on product j. A consumer i’s perceptive utility of these

J products can be expressed as (Θ1 − p1 + θi1, ..., ΘJ − pJ + θiJ), where θij is a realization of

ϑij, representing individual i’s attitude to product j, for j ∈ J . Consumer i selects product

k, whenever k ∈ arg maxj∈J {Θj − pj + θij}.
Guadagni and Little (1983) assumed a consumer will always purchase one product with

the highest utility among these J products. We modify this assumption to count another

zero product with Θ0 = 0 and p0 = 0, which can be regarded as an option of non-purchase.

Moreover, we can let Θ0 > 0 and p0 > 0, representing the average value and price offered by

the competitors. In the following analysis, we simply assume Θ0 = 0 and p0 = 0. We make

the assumption of utility.

Assumption 2 (Logit Model)

(1) A firm manages J products differentiated in their average perceptive value.

(2) A consumer’s utility for product j contains two parts, where Θj − pj shows consumers’

homogeneous perceptive value on product j, and ϑj reflects the heterogeneity of consumers’

evaluation.

Uj = Θj − pj + ϑj, ∀j ∈ J ∪ {0} (3)

(3) The ϑj, for j ∈ J ∪ {0}, is i.i.d distributed with a double exponential distribution.

Pr(ϑj ≤ θ) = e−e−θ

, −∞ < θ < ∞.

Given the above assumptions, it can be shown (Theil 1969, McFadden 1974, Anderson et

al. 1992) that consumer i’s choice probabilities have a simple form

qk(p) =
exp(Θk − pk)

1 +
∑

j∈J exp(Θj − pj)
. (4)

Then we specify the control space, and transform (4) to the inverse market share function.
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Proposition 1 Let Js be any non empty subset of J . For any q = (q1, ..., qJ), satisfying

0 ≤
∑
j∈Js

qj ≤
∑

j∈Js
exp(Θj)

1 +
∑

j∈Js
exp(Θj)

, ∀Js ⊆ J , (5)

which characterize Q, we have

pj = Θj + ln(1− q1 − ...− qJ)− ln(qj), ∀j ∈ J . (6)

Proposition 2 For J products, r(q) is strictly concave in (q1, ..., qJ) ∈ Q, and
∂2r(q)

∂qj∂qk

< 0,

where

r(q) = p(q)q =
∑
j∈J

[Θjqj + qj ln(1− q1 − ...− qJ)− qj ln(qj)]. (7)

Thus the optimal policy can be applied to the logit model.

3.3 Special Case 2: Spatial Choice Model

A spatial model (locational model) concerns a set of products that provides similar quality

but various styles. These products position in a space that describes consumers’ taste. A

consumer’s taste can be represented as a point in the space, called ideal point. If one prod-

uct doesn’t happen to position at the ideal point of a consumer, the consumer feels a little

unsatisfactory due to the taste mismatch. Locational model typically assumes the consumers

are uniformly distributed on a horizontal line, which was introduced by Hotelling in 1929. A

locational model can be adopted to analyze a shirt category consists of Polo T-shirts having

various colors and patterns. Compared to the logit model, locational model provides a more

tractable framework to analyze the horizontal differentiation, and avoid the independence of

irrelevant alternatives (IIA) property, which is the shortcoming of logit model, see Guadagni

and Little (1983), and Talluri and van Ryzin (2005).

In the model, each consumer makes purchase decision based on the price, quality, and style

of products. We use following notations to characterize products and consumers.

Ψj =the average perceptive value of quality on product j.

τj =the position of product j on the taste line.

ηi =the ideal point of consumer i, which represents the taste of the consumer.

κi =the transportation cost of consumer i, measuring the strength of consumer’s

taste preference; κi|ηi − τj| measures the disutility of taste mismatch.
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Consumers self-select a product in the category, which gives them the highest positive

utility. The following assumption characterizes products and describe consumers’ homogeneity

and heterogeneity.

Assumption 3 (Spatial Model)

(1) The firm manages J products, having the same quality, Ψ, but different styles, posi-

tioned at (τ1, ..., τJ) on the taste line.

(2) The consumers are homogeneous in their quality evaluation and their transportation

cost κ, but heterogeneous in their ideal point η. Consumer i’s utility function is

U(η, j) = Ψ− κ|η − τj| − pj, for j ∈ {1, ..., J}, (8)

(3) Consumers’ ideal point is uniformly distributed on the unit line, η ∼ U(0, 1).

We fucus our attention on the simplest case of two products. Nevertheless, the results can

be generalized. To clearly characterize the demand function, we use the following notations.

τ l
j(pj) =the most left point that product j can cover on the real axis, at pj.

τ r
j (pj) =the most right point that product j can cover on the real axis, at pj.

τm
jk(pj, pk) =the medium point of product j and k, at which customer feels indifferent

between product j and k.

We briefly denote them as τ l
j , τ r

j , and τm
jk . According to (8), if a product is priced at Ψ,

it does not provide positive utility to any buyer, and does not intervene the pricing of other

products. So pmax = Ψ can be regarded as the null price, which is introduced by Gallego and

van Ryzin (1994) into dynamic pricing. Therefore, we can calculate τ l
j and τ r

j by setting the

price of other products at Ψ, so that product j monopolizes the market.




τ l
j = τj − Ψ−pj

κ
,

τ r
j = τj +

Ψ−pj

κ
.

(9)

The medium point τm
jk can be expressed as in (10). However, if product j and k provides

positive utility to the consumer at this point, it is an ”actual” medium point, at which the

price competition occurs, otherwise, it is a ”virtual” medium point, in that the consumer at

this point doesn’t purchase.

τm
jk =

1

2

(
τ r
j + τ l

k

)
, for j < k. (10)
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To establish a continuous market share function, we impose an assumption on the control

space, which restricts the price gap.

Assumption 4 The retailer sets the price p ∈ P, such that

P = [0, Ψ]× [0, Ψ] ∪ {(p1, p2) | κ(τ2 − τ1) ≥ |p1 − p2|}. (11)

We also illustrate a lemma to prove the concavity, for Proposition 3 and 4.

Lemma 3.1 If gi(z) is concave in z, for i = 1, ..., I, then mini=1,...,I{gi(z)} is concave in z.

If gi(z) is convex in p, for i = 1, ..., I, then maxi=1,...,I{gi(z)} is convex in z.

Proposition 3 If the control space P satisfies Assumption 4, the market share function is

given by the following equations.




q1(p1, p2) = min{τm
12, τ

r
1} −max{0, τ l

1},
q2(p1, p2) = min{1, τ r

2} −max{τm
12, τ

l
2},

(12)

The market share qj(p) is concave in p, for j ∈ J .

Next we establish the inverse market share p(q), and prove the concavity of r(q).

Proposition 4 (1) (Symmetric positioning) Assume τ1 = 0 and τ2 = 1, and Q = {(q1, q2)| 0 ≤
q1, q2 ≤ 1; q1 + q2 ≤ 1}. The inverse market share can be expressed as





p1(q1, q2) = Ψ− κq1,

p2(q1, q2) = Ψ− κq2,

which are concave in (q1, q2). The revenue function r(q) is concave in q.

(2) (Asymmetric positioning) Assume 0 < τ1 < 1 and τ2 = 1, and Q = {(q1, q2)| 0 ≤ q1 ≤
1; 0 ≤ q2 ≤ 1− τ1; q1 + q2 ≤ 1}. The inverse demand function can be expressed as





p1(q1, q2) = min{Ψ− κq1

2
, Ψ− κ(q1 − τ1), Ψ + κ(1− τ1 − q1 − q2)},

p2(q1, q2) = min{Ψ− κq2, Ψ + κ(3
2
(1− τ1)− q1 − 2q2)},

which are concave in (q1, q2). The revenue function r(q) can be expressed as

r(q1, q2) = min





q1[Ψ− κq1

2
] + q2[Ψ− κq2],

q1[Ψ− κ(q1 − τ1)] + q2[Ψ− κq2],

q1[Ψ + κ(1− τ1 − q1 − q2)] + q2[Ψ + κ(3
2
(1− τ1)− q1 − 2q2)],





which is concave in q.
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In the symmetric case, the market share of two products is still correlated, since Q requires

q1+q2 ≤ 1. The proposition shows the optimal policy can also be used in the locational model.

The case of more than two products can be analyzed similarly, but much more complicated.

We don’t put effort on it in this paper.

4 Joint Inventory and Pricing Decisions

In this section, we analyze the dynamic program in (14), and characterize the structure

of the optimal policy. We also develop an algorithm to compute the optimal policy. For

expositional purposes, all proofs are provided in Appendix.

In general, we use FX , fX , and µX to denote the c.d.f., p.d.f. and mean of random variable

X.

4.1 Dynamic Programming Formulation

We consider a T -period problem. At the beginning period t, t ∈ {1, ..., T}, we review the

current inventory, set product prices and place replenishment orders. The replenishment

orders arrive immediately, before the demand unfolds. The demand for the current period

depends on the newly set product prices. Unsatisfied demands are backlogged. We use the

following notations to describe the state variable, decision variables, and cost parameters of

the joint pricing and inventory problem, where vectors are assumed to be column vectors,

denoted by bold-faced letters:

xjt =inventory level of product j before ordering at the beginning of period t, xt = (x1t, ..., xJt).

yjt =inventory level of product j after ordering at the beginning of period t, yt = (y1t, ..., yJt).

qjt =market share for product j in period t, qt = (q1t, ..., qJt); qt ∈ Qt , the control space.

cjt =unit procurement cost of product j, ct = (c1t, ..., cJt).

hjt =holding cost for unit excess of product j, ht = (h1t, ..., hJt).

bjt =penalty cost for unit shortage of product j, bt = (b1t, ..., bJt).

Let Ht(z) = ht[z]
+ + bt[z]

−, which is a strictly convex function of (z). Then EHt(y−Dt(q))

is the expected inventory cost in period t.
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The expected revenue in period t is given by Rt(q) = E{p(q)(qΛt + L(q)εt)}. Note that

Rt(q) = µ
Λt

p(q)q, because E{εt} = 0. Let r(q) = p(q)q, the revenue rate function, which is

the ratio of the expected revenue to the expected volume of potential customers. We impose

Assumption 1 about r(q).

Let vt(x) be the maximum total expected discounted profit from period t to T , with a

discount rate β. We have

vt(x) = max
y≥x, q∈Qt

{βRt(q)− ct(y − x)− EHt(y −Dt(q)) + βEvt+1(y −Dt(q))} ,

vT+1(x) = 0. (13)

Replace vt(x) by Vt(x), where Vt(x) = vt(x)− ctx. Then,

Vt(x) = max
y≥x, q∈Qt

Gt(y,q), (14)

where

Gt(y,q)

= βRt(q)− cty − E{Ht(y −Dt(q))}+ βct+1E{y −Dt(q)}+ βE{Vt+1(y −Dt(q))}
= βµ

Λt
r(q)− βµ

Λt
ct+1q + (βct+1 − ct)y − EHt(y −Dt(q)) + βEVt+1(y −Dt(q)).

(15)

We shall use the following notation to describe the optimal policy.

J + = overstocking list =
{

j : not to order productj, j ∈ J = {1, .., J}
}

,

J − = =J \ J +,

xJ+ = vector of overstocking levels = (xj)j∈J+ = ,

yJ+ = vector order-up-to levels for products in J + = (yj)j∈J+ .

Define xJ− and yJ− similarly. To ease the notation, let

max
{
Gt (y,q) | yj = xj, j ∈ J +; yj ≥ xj, j ∈ J −; q ∈ Qt

}
= max

y≥x; q∈Qt

Gt (y,q | yJ+ = xJ+) ,

max
{
Gt (y,q) | yj = xj, j ∈ J +; yj ∈ R, j ∈ J −; q ∈ Qt

}
= max

y∈RJ ; q∈Qt

Gt (y,q | yJ+ = xJ+) .

Similar notation is applied to arg max.
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4.2 Optimal Policy and Algorithm

Our first result is:

Theorem 1 Suppose Assumption 1 holds. Consider any time period t with initial inventory

x. We have

(a) Gt(y,q) is jointly concave in y and q, and Vt(x) is concave and non-increasing in x.

(b) Gt(y,q) has at least one maximizer,

(y∗t (∅),q∗t (∅)) ∈ arg max
y∈RJ , q∈Qt

Gt(y,q),

where ∅ means no constraint is put on the ordering decision y, while maximizing Gt(y,q).

(c) If x ≤ y∗t (∅), the retailer will order up to y∗t (∅), thus retailer should order some non-

negative amounts for all products.

The theorem indicates that there is a set of threshold inventory levels that achieves the

global maximum of Gt(y,q), therefore these thresholds are the desired (optimal) inventory

levels for period t. Consequently, if the initial inventory levels are all below the thresholds, it

is optimal to order these products up to the thresholds. In other words, the theorem tells us

what to do when the initial inventory levels of all products are lower than the thresholds.

However, what should one do if the initial inventory levels of some products are higher

than the thresholds? If there is only a single product, then it is optimal not to order the

production if its initial inventory is higher than the threshold. However, the case for multiple

products is much more complicated. For one thing, the comparison between two vectors are

much more complex than the comparison between two scalars. For example, suppose there

are three products, and y∗t (∅) = (25, 27, 28). What should one do if the initial inventory level

is xt = (38, 24, 27)? What if xt = (38, 28, 27)? The remaining of this section will be devoted

to these issues.

To ease understanding, we first study the optimal policy for two products. Given any

initial inventory levels, there are three possible scenarios: (i) the inventory of both products

are lower than the thresholds; (ii) the inventory of one product is over the threshold, but the

inventory of another one is below; (iii) both inventory levels are over the thresholds. The

problem in the first scenario has been solved. Now we proceed to the second scenario.

Suppose y∗t (∅) = (25, 27), but the current inventory level happens to be x = (38, 24). The

retailer faces the following questions: (1) should she stop ordering product 1? (2) should she
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still order product 2? (3) what price should she charge, or what levels of market share should

she allocate to these products? The following lemma characterizes the structure of optimal

action for these two products.

Proposition 5 Consider two products, 1 and 2. Suppose Assumption 1 holds. Consider any

time period t with initial inventory x. If x1 > y∗1t(∅), and x2 ≤ y∗2t(∅), then:

(a) It is optimal to stop ordering product 1, and the optimal solution can be found in the

following constrained maximization problem:

Vt(x) = max
y1=x1, y2≥x2; q∈Qt

Gt(y,q) = max
y≥x ; q∈Qt

Gt(y,q | y1 = x1).

(b) We solve another less constrained maximization problem

max
y1=x1, y2∈R; q∈Qt

Gt(y,q) = max
y∈R2; q∈Qt

Gt(y,q | y1 = x1),

and obtain another set of thresholds,

(y∗t (x1),q
∗
t (x1)) ∈ arg max

y∈R2; q∈Qt

Gt(y,q | y1 = x1), where y∗1t(x1) = x1.

If x2 ≤ y∗2t(x1), then the retailer orders product 2 up to y∗2t(x1) and sets market share at

q∗t (x1) = (q∗1t(x1), q
∗
2t(x1)) for these two products. Otherwise, the retailer places no order and

set the market share at q∗t (x) = (q∗1t(x1, x2), q
∗
2t(x1, x2)), where

(y∗t (x),q∗t (x)) ∈ arg max
q∈Qt

Gt(y,q | y = x).

Proposition 5 shows that in scenario 2 the overstocking vector, which records the inventory

level of products that retailer does not need to order, can be computed recursively, and the

thresholds are obtained conditioning on the overstocking vector.

Next, consider the third scenario. Suppose the first set of thresholds is y∗t (∅) = (25, 27),

but the current inventory level happens to be x = (38, 28). Should the retailer stop ordering

both products? The following lemma attempts to answer this question.

Proposition 6 Suppose Assumption 1 holds. Consider any time period t with initial inven-

tory x. If x1 > y∗1t(∅) and x2 > y∗2t(∅), then

(a) it is optimal to stop ordering at least one product, say product k ∈ {1, 2}. The optimal

solution can be given by the following constrained maximization problem

Vt(x) = max
y∈R2; q∈Qt

Gt(y,q | yk = xk);
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(b) we solve another constrained maximization problem, and obtain a new set of thresholds

(y∗t (xk),q
∗
t (xk)) ∈ arg max

y∈R2; q∈Qt

Gt(y,q | yk = xk), where y∗kt(xk) = xk.

Let l = {1, 2} \ {k}. If xl ≤ y∗lt(xk). Then the retailer orders product l up to y∗lt(xk), and

sets market share at q∗t (xk) for these two products. Otherwise, the retailer places no order and

sets the market share at q∗t (x), where

(y∗t (x),q∗t (x)) ∈ arg max
q∈Qt

Gt(y,q |y = x).

Propositions 5 and 6 show the structure of the optimal policy when the initial inventory

levels are not both below the original threshold levels. However, proposition 6 only proves the

existence of the optimal policy, it is by no means an efficient algorithm to compute the policy.

When both inventory levels are over the thresholds, the computational complexity increases,

because we cannot immediately ascertain which one is overstocked. To obtain the optimal

policy, we need to branch the program into two scenarios – product 1 is overstocked, or product

2 is overstocked – and then compared the outcome of the two scenarios. For more than two

products, the computational complexity is beyond practicality. So, our next question is, under

what condition can we confirm both products are overstocked? The following proposition

provides a sufficient condition.

Proposition 7 Consider two products. Take any time period t with initial inventory x, where

x1 > y∗1t(∅) and x2 > y∗2t(∅). Suppose Assumption 1 holds, and the thresholds possess the

following decreasing property with respect to initial inventory:




y∗1t(x2) ≥ y∗1t(x
′
2), for x2 < x′2;

y∗2t(x1) ≥ y∗2t(x
′
1), for x1 < x′1;

where





(y∗t (x1),q
∗
t (x1)) ∈ arg max

y∈R2; q∈Qt

Gt(y,q| y1 = x1);

(y∗t (x2),q
∗
t (x2)) ∈ arg max

y∈R2; q∈Qt

Gt(y,q| y2 = x2).

Then it is optimal to order neither products in period t, and to set the market share at q∗t (x),

where

(y∗t (x),q∗t (x)) ∈ arg max
q∈Qt

Gt(y,q |y = x).
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Thus, under the decreasing property of the thresholds, we can be ascertain that both

products are overstocked, so no branching is needed in the algorithm.

The decreasing property above describes the situation in which the threshold of one product

goes down as the initial inventory level of another product increases. For example, suppose the

retailer confirms that one product, say product 1, is overstocked, she probably will decrease

the price of product 1 and increase (or hold) the price of product 2. Then the market share

for product 1 increases while that for product 2 decreases. As the degree of overstocking of

product 1 increases, she is most likely to set a lower market share, therefore a lower threshold

for product 2. The inventory threshold of product 2 conditioning on the inventory of product

1 is decreasing as the inventory of product 1 increases, until it goes below the initial inventory

level of product 2. We shall demonstrate this effect numerically in Section 3.

The above propositions can be extended to the multiple product setting. Proposition 5

and 6 can be extended to J products. The optimal policy consists of three components: (1)

the overstocking list records the products that need not to order, (2) the order-up-to levels,

conditioned on the overstocking levels, and (3) the target market shares, also conditioned on

the overstocking levels. The overstocking list determines what product the retailer does not

need to order. The order-up-to levels determine the ordering amounts. The target market

shares provide the optimal market share assigned to each product, which, in turn, determines

the optimal price for each product. The following theorem rigorously describes the optimal

policy.

Theorem 2 (Structure of Optimal Policy) Suppose Assumption 1 holds. Consider any time

period t with initial inventory x. We can always recursively make a complete overstocking list,

J +
M , which contains the products for not ordering. M counts the number of total iterations to

reach the final list; M ≤ J (see Algorithm 1). The optimal policy for time t consists of J +
M

and the following inventory thresholds ( order-up-to levels) and the market share values:

(
y∗t (xJ+

M
),q∗t (xJ+

M
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yJ+

M
= xJ+

M

)
,

with y∗jt(xJ+
M

) = xj,∀j ∈ J +
M .

We use an iterative algorithm to prove the existence of the optimal policy. In the algorithm,

we construct two sequences of lists, J +
m and J −

m . The former contains the products that are
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confirmed to be overstocked, and the latter contains the remaining products, which can be

either overstocked or under-stocked. Hence, J +
m is an updated list of overstocked products.

Algorithm 1 (Existence of Optimal Policy) Suppose Assumption 1 holds. We design two

sequences of lists, J +
m and J −

m . The former updates the list of products that do not need to

be ordered at the mth step, and J −
m = J \ J +

m . The algorithm can be terminated in M steps,

where M ≤ J .

Step 0: Let J +
0 = ∅. Set m = 1 and go to Step m.

Step m: Solve max
y∈RJ ; q∈Qt

Gt

(
y,q | yJ+

m−1
= xJ+

m−1

)
to obtain the thresholds

(
y∗t (xJ+

m−1
),q∗t (xJ+

m−1
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yJ+

m−1
= xJ+

m−1

)
,

where y∗jt(xJ+
m−1

) = xj, ∀j ∈ J +
m−1.

If x ≤ y∗t (xJ+
m−1

), let J +
m = J +

m−1, set M = m, and stop the iteration.

Otherwise, Define Am =
{

j | xj > y∗jt(xJ+
m−1

)
}
, a non-empty set. There must exist some

k ∈ Am such that it is optimal not to order product k. Let J +
m = J +

m−1 ∪{k}, and J −
m = J ⊂

J +
m .

If J −
m = ∅, let M = m, stop ordering and set market share at q∗t (x). Otherwise, set

m = m + 1 and go to step m.

The above algorithm can be very time consuming when Am contains several elements. Be-

low we present a condition (Assumption 5), which is the extension of the decreasing property of

the thresholds in the two-product case. Under this condition, we can update J +
m = J +

m−1∪Am.

In other words, Am is exactly the set of products adding on the overstocking list J +
m−1 in the

mth iteration. This leads to an efficient algorithm, which goes from step 1 to M , where

1 ≤ M ≤ J . At the beginning of step m, we have two lists, where J +
m−1 contains the products

already confirmed to be overstocked in the previous steps, and J −
m−1 contains the remaining

products. It the mth step, we recalculate a set of thresholds,
(
y∗t (xJ+

m−1
),q∗t (xJ+

m−1
)
)
, condi-

tioning on the inventory levels of the products in J +
m−1. Then we compare the thresholds to

the inventory levels of the products in J −
m−1. If we find any product in J −

m−1 such that its

inventory level is higher

than the threshold, then the product is confirmed to overstocked. The overstocked products

are then moved into J +
m . The algorism continues, unless we cannot find any product that is

overstocked in the mth step.
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Assumption 5 Let J +, J − be the sets defined at the beginning of Section 4. The inventory

thresholds derived from Gt(y,q) possesses the following property.

If xJ+ ≤ x′J+, then y∗jt(xJ+) ≥ y∗jt(x
′
J+), for j ∈ J −,

where





(y∗t (xJ+),q∗t (xJ+)) ∈ arg maxy∈RJ ; q∈Qt
Gt (y,q | yJ+ = xJ+) ;

(
y∗t (x

′
J+),q∗t (x

′
J+)

) ∈ arg maxy∈RJ ; q∈Qt
Gt

(
y,q | yJ+ = x′J+

)
.

Algorithm 2 (Efficient Computation of the Optimal Policy) Suppose Assumptions 1 and 5

hold. We design two sequences of lists J +
m and J −

m , where J −
m = J /J +

m . The complete

overstocking list, J +
M , can always be made recursively in M steps, where M ≤ J .

Step 0: Let J +
0 = ∅. Set m = 1 and go to Step m.

Step m: Solve max
y∈RJ ; q∈Qt

Gt

(
y,q | yJ+

m−1
= xJ+

m−1

)
to obtain the thresholds

(
y∗t (xJ+

m−1
),q∗t (xJ+

m−1
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yJ+

m−1
= xJ+

m−1

)
.

If x ≤ y∗t (xJ+
m−1

), let J +
m = J +

m−1, set M = m, and stop.

Otherwise, define Am =
{

j | xj > y∗jt(xJ+
m−1

)
}
, a non-empty set. Let J +

m = J +
m−1 ∪ Am,

and J −
m = J \ J +

m .

If J −
m = ∅, let M = m, stop ordering and set market share at q∗t (x). Otherwise, set

m = m + 1 and go to Step m.

We are still working on finding sufficient condition to guarantee the parametric monotonic-

ity. We believe the condition
∂2r(q)

∂qj∂qk

≤ 0 plays an important role in ascertaining the property.

The condition states that if the retailer has to increase q1 from the global optima, it is better

to lower q2 rather than increase q2 to maximize the expected single-period revenue.

The above theorems and algorithms show the way to calculate at least one optimal solution.

It does not theoretically count all optimal solutions. When we have r(q) strictly concave in

q, the optimal solution is guaranteed to be unique, which is stated in the following theorem.

Theorem 3 Assume r(q) is strictly concave in q, for q ∈ Qt. Then (1) Gt(y,q) is strictly

concave in (y,q); (2) the optimal solution generated by Algorithm 1 or Algorithm 2 is unique.
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5 Stationary Analysis

In this section, we assume the demand process is stationary, and the cost parameters are

stable in time. We therefore suppress the index t from these parameters. In particular, the

demand function now is of the following form:

Dt(q) = D(q) = Λq + L(q)ε. (16)

5.1 Myopic Policy

The following analysis of myopic policy is suggested by Heyman and Sobel (1984). The

total expected discount profit during T periods can be expressed as

ΠT =
T∑

t=1

βt−1[β p(qt)D(qt)− c(yt − xt)−H(yt −D(qt))] + βTc(yT −D(qT )), (17)

where the last term outside the bracket is the salvage value, based on the assumption that the

supplier is willing to buy back the remaining products at the wholesales price at the end of

the planning horizon (e.g., a business season), or a discount store is willing to buy the remains

at the price equal to the procurement cost. Substitute yt−1 − D(qt−1) for xt, if t > 1, and

rewrite ΠT :

ΠT = β p(q1)D(q1)− c(y1 − x1)−H(y1 −D(q1))

+
T∑

t=2

βt−1[β p(qt)D(qt)− c(yt − (yt−1 −D(qt−1)))−H(yt −D(qt))]

+βTc(yT −D(qT ))

= cx1 +
T∑

t=1

βt−1[β p(qt)D(qt)− cyt + βc(yt −D(qt))−H(yt −D(qt))].

We have EΠT = cx1 +
∑T

t=1 βt−1Eπ(yt, qt), where

π(yt, qt) = β p(qt)D(qt)− cyt + βc(yt −D(qt))−H(yt −D(qt)). (18)

Eπ(yt, qt) = β µ
Λ

r(qt)− (1− β)cyt − β µ
Λ

cqt − EH(yt −D(qt)).

The following theorem states the existence of the myopic policy, which is optimal for a

single period. It shows that the myopic policy is optimal for multiple periods if the initial

inventory level is under the myopic threshold.
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Theorem 4 (1) π(y, q) is jointly concave in (y, q), and admits an optimum (y∗π, q∗π).

(y∗π, q∗π) ∈ arg max
y∈RJ ; q∈Qt

Eπ(y, q) (19)

(2) If r(q) is strictly concave in q, then π(y, q) is strictly joint concave in (y, q), and

admits a unique optimum.

(3) If x1 ≤ y∗π, then (y∗π, q∗π) is the optimal policy.

(4) If there is any j ∈ J , s.t. xj1 > y∗πj, it is optimal not to order product j in period t.

(5) Due to the concavity of π(y, q), we can recursively compute a myopic policy with the

overstocking list.

The proof of the first two parts is similar to that of Theorem 1 and 3. The proof of the

third and fourth part abides by the analysis suggested by Heyman and Sobel (1984). The

computation of the fifth part is the same as Algorithm 1 and 2.

5.2 Interplay of Marketing and Operations Decisions

The myopic policy depends on the specific form of randomness of demand. We study

three kinds of demand function, specify the myopic policy, and show the degree of interaction

between pricing and replenishment. These can be described as marketing and operations

decision. The proof of the following propositions is provided in Appendix.

Additive-I Demand

We first analyze the additive demand function with L(q) = I. The demand function can

be simply expressed as Λq + ε. Assume Λ ≡ µ
Λ
, and ε = (ε1, ..., εJ), where εj is i.i.d., for

j ∈ {1, ..., J}. The inventory related cost can be specified as

EH(y −D(q)) =
J∑

j=1





hj

yj−µ
Λ

qj∫

−∞

(yj − µ
Λ
qj − εj)fεj

(εj)dεj + bj

∞∫

yj−µ
Λ

qj

(−yj + µ
Λ
qj + εj)fεj

(εj)dεj





.

Define

ξj =
bj − cj(1− β)

bj + hj

,

ωj = F−1
εj

[ξj].

We have
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Proposition 8 For the additive demand function with the linear transformation L(q) = I,

we can obtain the unconstrained optima (y∗π, q∗π) by solving the following equations.





yj = ωj + µ
Λ
qj ;

β ∂r(q)
∂qj

= cj .

If q∗π ∈ Qt, and y∗π ≥ x1, then (y∗π, q∗π) is the optimal policy.

Under additive-I demand, the retailer can make marketing and operations decision sepa-

rately, when having none product overstocked. The retailer can set market share to make the

marginal revenue equal to the marginal procurement cost, regardless of the inventory decision.

However, when having product overstocked, the retailer must integrally use the marketing and

operations lever to diminish the negative effect of overstock.

Additive-Diag(q) Demand

Second, we analyze the additive demand function with L(q) = Diag(q). The demands

can be expressed as µ
Λ
q + (q1ε1, ..., qJεJ). The inventory-related cost can be expressed as

EH(y −D(q)) = hj

J∑
j=1

∫ yj−µ
Λ

qj
qj

−∞
(yj − µ

Λ
qj − εjqj)fεj

(εj)dεj

+bj

J∑
j=1

∫ ∞

yj−µ
Λ

qj
qj

(−yj + µ
Λ
qj + εjqj)fεj

(εj)dεj.

Proposition 9 For the additive demand function with the linear transformation L(q) =

Diag(q), we can obtain the unconstrained optima (y∗π, q∗π) by solving the following equations.





yj = (ωj + µ
Λ
)qj

β ∂r(q)
∂qj

= cj + (bj + hj)
1

µ
Λ

∫∞
ωj

εjfεj
(εj)dεj.

If q∗π ∈ Qt, and y∗π ≥ x1, then (y∗π, q∗π) is the optimal policy.

Under additive-Diag(q) demand, even though the retailer does not incur overstocking, she

still needs to take into account some operations cost when doing pricing. The operations cost

is measured as (bj + hj)
1

µ
Λ

∫ ∞

ωj

εjfεj
(εj)dεj. Her marketing decision is not only based on the

controllable part r(q), but also on the random part ε. Moreover, her decision should concern

not only the procurement cost, but also the inventory cost. Such interaction is static, since

it doesn’t depend on the realtime operations information (e.g. inventory level). So we call
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it static interaction between operations and marketing management. However, when she has

some products overstocked, she has to price based on the overstocking list. We call it dynamic

interaction.

Multiplicative Demand

Finally, we analyze the multiplicative demand function, which can be simplified as Λq.

The corresponding inventory related cost can be expressed as

EH(yt −D(qt)) = hj

J∑
j=1

∫ yj/qj

0

(yj − λqj)fΛ(λ)dλ + bj

J∑
j=1

∫ ∞

yj/qj

(−yj + λqj)fΛ(λ)dλ.

Proposition 10 For the multiplicative demand function, we can obtain the unconstrained

optima (y∗π, q∗π) by solving the following equations.




yj = qjωj ;

β
∂r(q)

∂qj

= cj + (bj + hj)
1

µ
Λ

∫ ωj

0

(µ
Λ
− λ)fΛ(λ)dλ.

If q∗π ∈ Qt, and y∗π ≥ x1, then (y∗π, q∗π) is the optimal policy.

Under the multiplicative demand, when the retailer doesn’t incur overstocking, she should

consider an additional operations cost, (bj + hj)
1

µ
Λ

∫ ωj

0
(µ

Λ
− λ)fΛ(λ)dλ, when doing pricing.

If overstocking takes place, she has to decide market share conditioning on the overstocking

list, thereafter, the dynamic interaction takes place.

5.3 Numerical Study of Myopic Policy

We now numerically study the dynamic interaction, showing the dynamics of myopic policy

conditioning on the inventory level. To clearly illustrate the main results, we study the myopic

policy, (y∗π, q∗π) ∈ arg maxy≥x; q∈Qt Eπ(y, q), for two substitutable products in the numerical

research.

We have following assumptions about demands. First, q and r(q) are established in the

logit model with parameter (Θ1, Θ2) = (13.2, 13), which means product 1 has higher average

perceptive value than product 2. Second, the demands are in additive form with error terms

proportional to the market share, µ
Λ
q + (q1ε1, ..., qJεJ), where µ

Λ
= 100, εj is i.i.d., and

εj ∼ U(−50, 50), for j = 1, 2. We have the symmetric cost structure, such that h = (0.5, 0.5),

b = (4.5, 4.5), and c = (10, 10). We assume the discount rate β = 0.95.
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We run simulation in two scenarios. (a) We fixed the initial inventory of product 2 at

30, and control the initial inventory level of product 1 from 30 to 69. We tend to see the

dynamics of myopic policy conditioning on the initial inventory level of the relatively popular

product. (b) We fixed the initial inventory level of product 1 at 30, and manipulate the

initial inventory level of product 2 from 30 to 69, to detect the dynamics of myopic policy

conditioning on the initial inventory level of less popular product. In the following pictures,

the left figure describes the myopic policy in scenario a, and the right figure describes the

myopic policy in scenario b.

30 35 40 45 50 55 60 65 70
10

20

30

40

50

60

70

80

Inventory level of product 1

M
yo

pi
c 

ba
se

−
st

oc
k 

le
ve

l

Figure 1.a 

product 1

product 2

30 35 40 45 50 55 60 65 70
10

20

30

40

50

60

70

80

Inventory level of product 2

M
yo

pi
c 

ba
se

−
st

oc
k 

le
ve

l

Figure 1.b

product 2 

product 1 

Figure 1: Optimal myopic base-stock level conditioning on the initial inventory of products.

Figure 1 illustrates the dynamics of myopic base-stock level. It is optimal to set a higher

base-stock level for the popular product, when no product is overstocked. It is optimal to

stop ordering the product with initial inventory level over the threshold. When one product

is overstocked, the myopic threshold of another product decreases dynamically, conditioning

on the degree of overstock. When the threshold finally goes below the initial inventory level

of another product, both products are overstocked. We can explicitly see the parametric

monotonicity, that is, the inventory threshold of the under-stocked product is conditioning on

the initial inventory of the overstocked product, and the threshold decreases as the degree of

overstock increases. The parametric monotonicity of inventory thresholds is consistent with

the monotone property of market share conditioning on the degree of overstock.

Figure 2 reveals the dynamics of myopic market share. It is optimal to set higher market

share for the popular product, when no overstocking occurs. It is good to increase the market
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Figure 2: Optimal myopic market share conditioning on the initial inventory of products.

share of overstocked product, and decrease the market share of under-stocked product. For

the understocked product, the base-stock level is proportional to the market share, therefore,

we have the monotone property of inventory threshold conditioning on the overstocking level.

Figure 3 shows the dynamics of myopic pricing scheme. There are two findings of interest.

First, the same price is charged to both products, although one of them is generally perceived

more valuable by customers. Therefore, it is reasonable to charge a single category price for all

the products having the same cost structure, whenever none of them is overstocked. However

it is not true when the cost structure is different. Second, when one product is overstocked, it

is good to decrease the price of the overstocked product and simultaneously increase the price

of the under-stocked, which results the monotonicity of market share. When both products

are overstocked, price goes down for both of them.

Further, Figure 3 tells a consumer it is not likely to see the markdown of his/her favorite

product, when he/she observes high inventory of some other products in the same category.

However, if the retailer always charges a single price for the whole category, the situation

might be different (see Song and Xue 2007 b).

6 Concluding Remarks

This paper studied demand management and inventory control for substitutable products.

In our model, a retailer makes joint price and inventory decision at the beginning of each

period, based on the inventory level. We consider the price driven substitution, so the random
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Figure 3: Optimal myopic price conditioning on the initial inventory of products.

demands are affected by the price vector.

We showed that the optimal policy consists of three components, the overstocking list,

the inventory thresholds, and the target value of market share. It is optimal for the decision

maker to stop ordering the products on the list, and set market share and inventory thresholds

conditioning on the overstocking level. The overstocking list and inventory thresholds can be

recursively calculated by some algorithm. The optimal policy and algorithm are established

under certain mild condition, which holds in the logit and location model. The structure of

optimal policy can also be extended to the lost sales case.

We further studied the interaction between marketing and operations decisions. The op-

timal policy shows the demand management depends on the inventory levels, when some

products are overstocked. The myopic policy reveals the sales department should count op-

erations cost, when setting marginal revenue equal to marginal cost, even if the demand is

stationary and no product is overstocked.

There are still many topics for future research. First, the effective heuristics and simple

form solution are critically important to the quick response in the management of multiple

products. The computation of the optimal policy is demanding and time consuming, due to

the large state space. The myopic policy provides one acceptable heuristic in the stationary

system, but it is not expected to perform well under the non-stationary demand. Second, we

can extend the study to include the fixed ordering cost and lead time. The (s, S) type policy

might be optimal to the system with fixed ordering cost, however the parameter s may be
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very difficult to characterize. Third, we may consider stock-out based substitutions.
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Appendix

Proposition 1

Proof : The qualification condition of market share comes from the fact that price should

be non-negative. Consider any set of products, Js ⊆ J . When retailer sets price at zero for

the products within the set and sets price to infinity (or the highest level allowed) for the

other products, this set occupies the highest possible market share,

∑
j∈Js

exp(Θj)

1 +
∑

j∈Js
exp(Θj)

.

We derive the inverse market share function by direct transformation. The equations of

(4) can be transformed to

exp(Θj − pj) =
qj

1− q1 − ...− qJ

, ∀j ∈ J .

When q satisfies the qualification conditions, we obtain the inverse market share function.

pj(q) = Θj + ln(1− q1 − ...− qJ)− ln(qj), ∀j ∈ J .

Proposition 3

Proof : When Assumption 4 holds, no product will reach the position of other products.

We first consider the left edge of the share of product 1. Product 1 cannot cover the zero

point, if p1 is high enough, otherwise it covers the left end of line, so the left edge of product

1 should be max{0, τ l
1}. Secondly, we consider the right edge of product 1. Product 1 act as

monopolist, if p2 is high enough, otherwise it compete with product 2, thus the right edge of

product 1 should be min{τm
12, τ

r
1}. Therefore the share range q1(p1, p2) is equal to the distance

between the right edge and left edge. Similarly the share of product 2 is given after the same

argument.

Theorem 1

Proof : (a) Similar to Federgruen and Heching (1999), we prove the joint concavity of

Gt(y,p) by induction. The first term of (15) is concave in q, according to Assumption 1. The

second term is linear in q, and the third term is linear in y. The fourth term is jointly concave,

in that the inventory related cost is jointly convex in (y,q). As we set VT+1(x) = 0, GT (y,q)

31



is jointly concave in (y,q). Thus VT (x) is concave in x (see Sundaram 1996 Theorem 9.17),

and it is also non-increasing, since y is controlled in the region such that y ≥ x.

Now we argue by induction. Assuming Gt+1(y,q) is jointly concave for some t ∈ {T −
1, ..., 1}, and then Vt+1(x) is non-increasingly concave in x, we can show Gt(y,q) is jointly

concave also. The joint concavity of the first four terms of Gt+1(y,q) has been proven. To

prove the last term EVt+1(y−Dt(q)) is jointly concave, fix the random part Dt to its realization

dt, consider any pair (y,q) and (y′,q′), we have

dt(αq + (1− α)q′) = αdt(q) + (1− α)dt(q
′),

since dt(q) = λtq + L(q)εt, and L is linear transformation, satisfying L(αq + (1 − α)q′) =

αL(q) + (1− α)L(q′), for 0 ≤ α ≤ 1.

Because Vt+1(x) is non-increasingly concave, we obtain

Vt+1 (αy + (1− α)y′ − dt(αq + (1− α)q′))

= Vt+1 (αy + (1− α)y′ − αdt(q)− (1− α)dt(q
′))

= Vt+1 (α(y − dt(q)) + (1− α)(y′ − dt(q
′)))

≥ αVt+1 (y − dt(q)) + (1− α)Vt+1 (y′ − dt(q
′)) .

(b) The proof needs to discuss the limit of Gt(y,q) as yj goes to positive and negative

infinity, which is similar to that of Federgruen and Heching (1999).

(c) Part (c) immediately results from (a) and (b).

Proposition 5

Proof : (a) Assume (y∗t (∅),q∗t (∅)) ∈ arg max
y∈R2; q∈Qt

Gt(y,q) is one optimal solution of the

less constrained maximization problem, and (y∗t ,q
∗
t ) ∈ arg max

y≥x ; q∈Qt

Gt(y,q) be any optimal

solution under the full constraints.

When x1 > y∗1t(∅) and x2 ≤ y∗2t(∅), we want to prove it is unnecessary to order any positive

amount of product 1. We assume conversely that any optimal solution must have y∗1t > x1,

that is, it is optimal only if retailer orders some positive amount of item 1. Thus, under

the converse assumption, there is no optimal solution such that y∗1t = x1. Now we have

y∗1t > x1 > y∗1t(∅), and obtain a α, where α =
x1 − y∗1t(∅)
y∗1t − y∗1t(∅)

, satisfying 0 < α < 1. Let

(y′t,q
′
t) = α(y∗t ,q

∗
t ) + (1− α)(y∗t (∅),q∗t (∅)).
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We can prove (y′t,q
′
t) is feasible and suboptimal. First, we have y′t ≥ x, since y′1t =

αy∗1t + (1− α)y∗1t(∅) = x1, and y′2t = αy∗2t + (1− α)y∗2t(∅) ≥ αx2 + (1− α)x2 = x2. Second, we

have q′t ∈ Qt, since q′t = αq∗t + (1 − α)q∗t (∅), and the control space Qt is convex. Last, it is

suboptimal, since y′1t = x1.

As (y∗t ,q
∗
t ) is an optimal solution, and (y′t,q

′
t) is feasible and suboptimal, we have Gt(y

∗
t ,q

∗
t ) >

Gt(y
′
t,q

′
t). As (y∗t (∅),q∗t (∅)) is the maximum solution of a less constrained maximization prob-

lem, we have Gt(y
∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t). Thus, we obtain

αGt(y
∗
t ,q

∗
t ) + (1− α)Gt(y

∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t).

It contradicts the concavity of Gt, hence we must have some optimal solution such that

y∗1t = x1, i.e., it is optimal for the retailer to stop ordering item 1.

(b) We add product 1 on the overstocking list, fix y1t = x1, solve

max
y∈R2; q∈Qt

Gt(y,q | y1 = x1),

and obtain some maximum solution (y∗t (x1),q
∗
t (x1)), where y∗1t(x1) = x1.

If y∗2t(x1) ≥ x2, then it is optimal to order product 2 up to y∗2t(x1), and set market share

at (q∗1t(x1), q
∗
2t(x1)). Otherwise, by the similar argument of part (a), it is optimal for retailer

to stop ordering product 2. Further, we solve the following constrained maximum problem,

max
q∈Qt

Gt(y,q | y1 = x1, y2 = x2),

and obtain the market share, q∗t (x) = (q∗1t(x1, x2), q
∗
2t(x1, x2)).

Proposition 6

Proof : (a) When x1 > y∗1t(∅) and x2 > y∗2t(∅), we want to prove it is optimal to stop ordering

at least one product, say k, k ∈ {1, 2}. We assume conversely that any optimal solution must

have y∗(∅) > x, that is, it is optimal only if retailer orders some positive amount of both

products. Then y∗ > x > y∗(∅). We can locate a k, where k ∈ arg max
j∈{1,2}

{
xj − y∗jt(∅)
y∗jt − y∗jt(∅)

}
, and

construct an α =
xk − y∗kt(∅)
y∗kt − y∗kt(∅)

. Then we have xk = αy∗kt + (1− α)y∗kt(∅). Let

(y′t,q
′
t) = α(y∗t ,q

∗
t ) + (1− α)(y∗t (∅),q∗t (∅)).

Similar to the proof of proposition 5, we can prove (y′t,q
′
t) is feasible and suboptimal. As

(y∗t ,q
∗
t ) is an optimal solution, and (y′t,q

′
t) is feasible and suboptimal, we have Gt(y

∗
t ,q

∗
t ) >
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Gt(y
′
t,q

′
t). As (y∗t (∅),q∗t (∅)) is an optima of the less constrained maximization problem, we

have Gt(y
∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t). Thus, we obtain

αGt(y
∗
t ,q

∗
t ) + (1− α)Gt(y

∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t).

It destroys the concavity of Gt. Therefore, we have y∗kt = xk, i.e., it can be optimal for the

retailer to stop ordering item k.

(b) The proof is similar to that of proposition 5.

Proposition 7

Proof : Proposition 6 shows it is optimal to stop ordering at least one product. Without loss

of generality, assume product 1 is overstocked. We tend to prove product 2 is also overstocked,

by using parametric monotonicity. Now we have y∗1t = x1 > y∗1t(∅), and x2 > y∗2t(∅). First, we

are going to show y∗2t(∅) ≥ y∗2t(x1), where




(y∗t (x1),q
∗
t (x1)) ∈ arg max

y∈R2; q∈Qt

Gt(y,q| y1 = x1);

(y∗t (∅),q∗t (∅)) ∈ arg max
y∈R2; q∈Qt

Gt(y,q| y1 = y∗1t(∅)).

The inequality holds due to the assumption of parametric monotonicity, since x1 > y∗1t(∅).
It means if we put product 1 on the overstocking list, and compute an inventory threshold

of product 2, conditioning on x1, the new threshold is no higher than the previous threshold.

Therefore, we have x2 > y∗2t(x1). Next we show y∗2t = x2 by converse argument.

We conversely assume that any optimal solution must have y∗1t = x1, and y∗2t > x2 that is,

it is optimal only if retailer orders some positive amount product 2. Then y∗1t = x1 > y∗1t(∅),
and y∗2t > x2 > y∗2t(∅). Let

(y′t,q
′
t) = α(y∗t ,q

∗
t ) + (1− α)(y∗t (x1),q

∗
t (x1)),

where α =
x2 − y∗2t(x1)

y∗2t − y∗2t(x1)
. We have x2 = αy∗2t + (1− α)y∗2t(x1).

It is not difficult to show (y′t,q
′
t) is feasible and suboptimal, since y′t = x. We have

Gt(y
∗
t ,q

∗
t ) > Gt(y

′
t,q

′
t), and Gt(y

∗
t (x1),q

∗
t (x1)) ≥ Gt(y

′
t,q

′
t). The second inequality holds, in

that y′t = x, and then Gt(y
∗
t (x1),q

∗
t (x1)) ≥ Gt(y

∗
t (x),q∗t (x)) ≥ Gt(y

′
t,q

′
t). Then, we obtain

αGt(y
∗
t ,q

∗
t ) + (1− α)Gt(y

∗
t (x1),q

∗
t (x1)) > Gt(y

′
t,q

′
t),

which contradicts the concavity of Gt. Hence it is optimal for the retailer to stop ordering

item 2 also.
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Theorem 2 & Algorithm 1

Proof : We prove it step by step. In each step, the key is to prove whenever Am ={
j | y∗jt(xJ+

m−1
) < xj

}
is a non-empty set, we can always find a k ∈ Am, for which it is

optimal to stop ordering.

In step 1, let

(y∗t (∅),q∗t (∅)) ∈ arg max
y∈RJ ; q∈Qt

Gt(y,q),

which is the maximum solution without the constraints y ≥ x, and

(y∗t ,q
∗
t ) ∈ arg max

y≥x, q∈Qt

Gt(y,q).

which is the optimal solution under the constraints such that y ≥ x.

If y∗t (∅) ≥ x, then the optimal policy is given by (y∗t (∅),q∗t (∅)). Otherwise, there is some

j ∈ J −
0 = J , such that y∗jt < xj, i.e., A1 =

{
j | y∗jt(∅) < xj

}
is a non-empty set.

We tend to prove there always exist a k ∈ A1, for which it is optimal to stop ordering.

Now we assume conversely that it is optimal only if retailer order some positive amount for

all the products in A1, i.e. y∗jt > xj, for any j ∈ A1.

We can always locate a k ∈ A1, where k ∈ arg max
{j∈A1}

{ xj − y∗jt(∅)
y∗jt − y∗jt(∅)

}, and construct an

α ∈ (0, 1), where α =
xk − y∗kt(∅)
y∗kt − y∗kt(∅)

. Then we have xj ≤ αy∗jt + (1 − α)y∗jt(∅), for all j ∈ A1,

and xk = αy∗kt + (1− α)y∗kt(∅). Let

(y′t,q
′
t) = α(y∗t ,q

∗
t ) + (1− α)(y∗t (∅),q∗t (∅)).

We can show (y′t,q
′
t) is a feasible and suboptimal solution, by the similar argument in the

proof of Proposition 6.

As (y∗t ,q
∗
t ) is assumed to be the optimal solution of the problem, and (y′t,q

′
t) is a feasible

and suboptimal solution, we have Gt(y
∗
t ,q

∗
t ) > Gt(y

′
t,q

′
t). As (y∗t (∅),q∗t (∅)) is a maximum

solution of less constrained problem, we have Gt(y
∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t). Thus, we obtain

αGt(y
∗
t ,q

∗
t ) + (1− α)Gt(y

∗
t (∅),q∗t (∅)) > Gt(y

′
t,q

′
t).

It ruins the concavity of Gt. Hence we must have y∗kt = xk, i.e., it is optimal for the retailer

to stop ordering product k. Then we update J +
1 = J +

0 ∪ {k}, and continue searching the

optimal solution in a maximization problem with more equality constraints.

max
y≥x; q∈Qt

Gt (y,q) = max
y≥x; q∈Qt

Gt

(
y,q | yJ+

1
= xJ+

1

)
.
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If J +
1 ⊂ J , we go to the next step.

In step m, assume the above conclusions are true, by a similar argument, we can show

the results also holds in the m + 1th step. The proof is conducted to (1) make some converse

assumption about the optimal solution, (2) find an α ∈ (0, 1), (3) locate a feasible and

suboptimal solution (y′t,q
′
t), where (y′t,q

′
t) = α(y∗t ,q

∗
t ) + (1−α)

(
y∗t (xJ+

m−1
),q∗t (xJ+

m−1
)
)
, and

(4) show the concavity of Gt is destroyed on the line from
(
y∗t (xJ+

m−1
),q∗t (xJ+

m−1
)
)

to (y′t,q
′
t)

to (y∗t ,q
∗
t ).

Keep doing the iteration, the structure of optimal policy can be obtained in less than J

steps in each period t.

Algorithm 2

Proof : We also prove it step by step. In each step, the key is to prove whenever Am ={
j | y∗jt(xJ+

m−1
) < xj

}
is a non-empty set, it is optimal to stop ordering any product k ∈ Am.

In step 1, let

(y∗t (∅),q∗t (∅)) ∈ arg max
y∈RJ ; q∈Qt

Gt(y,q),

which is the maximum solution without the constraints y ≥ x, and

(y∗t ,q
∗
t ) ∈ arg max

y≥x, q∈Qt

Gt(y,q).

which is the optimal solution under the constraints such that y ≥ x.

If y∗t (∅) ≥ x, then the optimal policy is given by (y∗t (∅),q∗t (∅)). Otherwise, there is some

j ∈ J −
0 = J , such that y∗jt < xj, i.e., A1 =

{
j | y∗jt(∅) < xj

}
is a non-empty set.

Algorithm 1 states there always exist at least one k1 ∈ A1, for which it can be optimal

to stop ordering. Here we tend to prove if A1 contains more than one products, it is optimal

to stop ordering all of them under Assumption 5. First, we make converse assumption that

it is optimal only if retailer order some positive amount for some products in A1, when A1

contains more than one elements, that is, there exists some l ∈ A1, which is understocked.

Hence, A1 can be divided into two mutual exclusive non-empty subsets, A+
1 and A−

1 . The

former contains products overstocked, and the latter contains products understocked. So

k1 ∈ A+
1 , and l ∈ A−

1 .

We can show

(
y∗t (xA+

1
)
)
A−1

≤ (y∗t (∅))A−1 < xA−1 , (20)
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where





(
y∗t (xA+

1
),q∗t (xA+

1
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yA+

1
= xA+

1

)
;

(y∗t (∅),q∗t (∅)) ∈ arg max
y∈RJ ; q∈Qt

Gt

(
y,q | yA+

1
= (y∗t (∅))A+

1

)
.

The first inequality results from the parametric monotonicity, since (y∗t (∅))A+
1
≤ xA+

1
. The

second inequality holds, since (y∗t (∅))A1
< xA1 , and A−

1 ⊆ A1.

Let J +
1 = J +

0 ∪ A+
1 = A+

1 , updating the overstocking list, and go to the next step.

In step 2, there always exists a non-empty set, A2 =
{

j | y∗jt(xJ+
1

) < xj

}
, where A−

1 ⊆ A2.

It is non-empty, since at least product l is still in A2.

According to Algorithm 1, there always exists another element k2 ∈ A2, which is over-

stocked. If k2 comes from A−
1 , then it contradicts the assumption that any element in A−

1

is understocked. Therefore, k2 must be some product other than l. Then we can divide A2

into two mutual exclusive non-empty subsets, A+
2 and A−

2 , where we have A−
1 ⊆ A−

2 ⊂ A2,

A−
1 ∩ A+

2 = ∅, A+
1 ∩ A+

2 = ∅, and A+
2 ⊆ J −

1 /A−
1 .

We can show

(
y∗t (xA+

1 ∪A+
2
)
)
A−1

≤
(
y∗t (xA+

1
)
)
A−1

< xA−1 , (21)

where





(
y∗t (xA+

1 ∪A+
2
),q∗t (xA+

1 ∪A+
2
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yA+

1 ∪A+
2

= xA+
1 ∪A+

2

)
;

(
y∗t (xA+

1
),q∗t (xA+

1
)
)
∈ arg max

y∈RJ ; q∈Qt

Gt

(
y,q | yA+

1 ∪A+
2

=
(
y∗t (xA+

1
)
)
A+

1 ∪A+
2

)
.

The first inequality comes from the parametric monotonicity, since
(
y∗t (xA+

1
)
)
A+

1

= xA+
1
,

and
(
y∗t (xA+

1
)
)
A+

2

< xA+
2
, where A+

2 ⊂ A2 =
{

j | y∗jt(xJ+
1

) < xj

}
, and J +

1 = A+
1 .

The second inequality directly comes from the results in the first step.

Let J +
2 = J +

1 ∪ A+
2 = A+

1 ∪ A+
2 , updating the overstocking list.

By induction, if we insist any product l in A−
1 is understocked, we have to assume A−

1 ∩
A+

m = ∅, for m = 1, 2, .... However, under Assumption 5, we always have

xA−1 >
(
y∗t (xJ+

0
)
)
A−1

≥
(
y∗t (xJ+

1
)
)
A−1

≥
(
y∗t (xJ+

2
)
)
A−1

≥ . . . , (22)

where J +
m = A+

1 ∪ . . . ∪ A+
m. Then Algorithm 1 continues forever. However, J is a finite set,

the algorithm cannot infinitely continue adding A+
m on J +

m−1. Therefore, sooner or later, we

have to put l on the overstocking list.
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Theorem 3

Proof : Obviously, EHt(z) = E{ht[z]
+ + bt[z]

−} is strictly convex in z.

Consider two vectors of decision variables, (y,q) and (y′,q′), and (y,q) 6= (y′,q′). We

consider two cases.

Case 1: If y − dt(q) 6= y′ − dt(q
′), then we have

Ht (αy + (1− α)y′ − dt(αq + (1− α)q′))

= Ht (α(y − dt(q)) + (1− α)(y′ − dt(q
′)))

< αHt (y − dt(q)) + (1− α)Ht (y′ − dt(q
′)) .

Case 2: If y − dt(q) = y′ − dt(q
′), then we have

Ht (αy + (1− α)y′ − dt(αq + (1− α)q′))

= αHt (y − dt(q)) + (1− α)Ht (y′ − dt(q
′)) .

However, we cannot have q = q′, otherwise we must have y = y′, contradicting the

assumption that (y,q) 6= (y′,q′). Then

r(αq + (1− α)q′) > αr(q) + (1− α)r(q′).

Therefore, Gt(y,q) is always strictly concave in (y,q), and the algorism can guarantee a

unique optimal solution.

Proposition 8, Proposition 9, & Proposition 10

Proof : The solution results from the first order condition, by solving 5
(y, q)

Eπ(y, q) = 0.

In proposition 8, we have





Fεj
(yj − µ

Λ
qj) =

bj−cj(1−β)

bj+hj
;

Fεj
(yj − µ

Λ
qj) =

bj−β
∂r(q)
∂qj

+βcj

bj+hj
.

In proposition 9, we have





∫ yj−µ
Λ

qj
qj

−∞
fεj

(εj)dεj =
bj − cj(1− β)

bj + hj

;

∫ yj−µ
Λ

qj
qj

−∞
εjfεj

(εj)dεj = µ
Λ

{
bj − β ∂r(q)

∂qj
+ βcj

bj + hj

− Fεj

(
yj − µ

Λ
qj

qj

)}
.
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In proposition 10, we have





∫ yj/qj

0

fΛ(λ)dλ =
bj − cj(1− β)

bj + hj

;

∫ yj/qj

0

λfΛ(λ)dλ = µ
Λ

bj − β ∂r(q)
∂qj

+ βcj

bj + hj

.

By doing transformation and simplification, we can gain the result.

39


