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Competitive  electricity  markets  have  arisen  as  a  result  of   power- sector   restructuration   and   power-system   

deregulation.   The   players participating in competitive electricity markets must define strategies and make 

decisions  using  all  the  available  information  and  business     opportunities.1–3 

 Demand response (DR) has proven an 

effective  approach  for  allocating   electri- 

cal loads, gaining a competitive advantage, 

and providing significant benefits for elec- 

tricity market performance. DR programs 

can increase power consumption efficiency 

through active consumer participation, 

showing the value that each consumer attri- 

butes to his or her individualized additional 

demands. 

Recent efforts aim to improve wholesale 

markets with more intensive use of DR. This 

includes, for example, the acceptance of de- 

mand bids and offers for ancillary services; 

the specification by the DR resources of the 

frequency, duration, and level of participa- 

tion in consumption reduction; and the exis- 

tence of aggregators that bid into the market 

on  behalf  of customers.4 

Fully leveraging all of the advantages of 

active consumer participation requires an 

infrastructure able to accommodate all cen- 

tralized and distributed energy resources. 

This  approach  corresponds  to  the practical 

implementation of smart grids,5 which are 

currently the focus of significant research 

efforts. In practice, DR programs imple- 

mentation is in an initial stage, using tech- 

nologies close to smart  metering. 

The available DR opportunities should be 

used in the best way to attain the involved 

agents’ goals. This entails time-consuming 

and complex optimization problems, requir- 

ing huge computational means. Traditional 

optimization methodologies are usually not 

able to cope with this type of problem for 

realistic cases. Researchers have used arti- 

ficial intelligence techniques to address sev- 

eral problems in the scope of power systems 

and electricity markets.6–7 Particle swarm 

optimization (PSO)8–9 has been successfully 

applied to power systems10 and is proposed 

in this work to address DR   management. 

This    article    presents    a    DR    simulator 

(called  DemSi)  that  we  developed  to  simu- 

late  the  use  of  DR  programs.  DemSi  uses 

Power  Systems  CAD  (PSCAD;  see  https:// 

hvdc.ca/pscad)  for  network  simulation  and 

 
  



 

 

 

 
 
 
 
 
 

provides users with optimized DR 

action management. The proposed 

methodology considers DR  in  terms 

of electricity price variation imposed 

by the distribution network operator 

in the presence of a reduction  need 

for any reason, such as lack of gener- 

ation or high market prices. The pro- 

posed method is based on the use of 

real-time pricing. This price-responsive 

approach would help address the dif- 

ficulties in monthly fixed-remuner- 

ation programs, such as direct load 

control, and when the smart grid is at 

an initial implementation  stage. 

 
Demand Response Concepts 

and Programs 
DR includes all intentional electricity- 

consumption pattern modifications 

by end users that alter timing, in- 

stantaneous-demand level, or total 

electricity consumption11 in response 

to changes in electricity’s price over 

time. Further, we can also define DR 

as incentive payments designed to in- 

duce lower electricity use at times of 

high wholesale market prices or when 

system reliability is jeopardized.12 

 
their electricity consumption during 

times of especially high demand13 and 

usually occur through utility-load- 

management programs aiming es- 

sentially at obtaining peak reduction. 

Competitive electricity markets enable 

a wide set of new opportunities for 

more strategic consumer behavior and 

new  models  of DR. 

Several studies have shown that 

loads aren’t rigid, exhibiting elasticity 

that can be used for the mutual ben- 

efit of power systems and  consum- 

ers. Changes in electricity prices over 

time and incentive payments increase 

demand flexibility as users intention- 

ally modify their electricity consump- 

tion patterns in response to exterior 

stimulus. DR can be contracted over 

longer  or  shorter  periods,  either  as 

a result of its inclusion in capacity 

markets or directly through bilateral 

contracts. 

DR,  including  real-time  pricing, 

can be used to optimize distribution- 

network operation, reduce incident 

consequences, and reduce wind cur- 

tailment.14 DR programs can be used 

to  both  increase  and  decrease    load 

 
consumption in these periods helps to 

overcome this problem. 

 
Measures and Programs 

Price elasticity is a measure used in 

economics to evaluate the respon- 

siveness of the demanded quantity  of 

a good or service to a change in its 

price, or the percentage change in 

quantity demanded in response to a 

one percent price change.15 In electric 

loads, price elasticity is a normalized 

measure of the intensity of how usage 

of electricity changes when its price 

changes by one percent. In the oppo- 

site way, demand elasticity is a mea- 

sure of how price changes when usage 

of electricity changes. 

Demand price elasticity can be 

evaluated using Equation 1, where 

Quantity is the  quantity  of  the us- 

age of the  good  or  service  and Price 

is the price of this good or service.16 

Quantity and Price refer to the 

quantity of usage and price variations 

between the periods before and after 

the implementation of DR   programs. 

 
DR Benefits 

An  important  advantage  of  DR im- 

demand.   The   use   of   DR   to reduce  

load consumption in peak, congested, 

and/or  incident  periods  helps distri- 

(1) 

plementation is the postponement of 

investments in generation resources 

and transmission and distribution 

lines. This is highly important when 

the generation is near its maximum 

capacity with exponentially increas- 

ing generation costs. In these condi- 

tions, a small reduction in load will 

cause a big reduction in generation 

costs and, therefore, a significant re- 

duction in the price of  electricity. 

Usually the actions that result from 

demand-side behavior or those in- 

tended to manage consumer behavior 

are referred to as DR, load manage- 

ment, and demand-side management. 

Traditionally, these measures are taken 

to    encourage    consumers   to  reduce 

bution network operators by relieving 

the network components. In this way, 

important benefits can be achieved in 

terms of reliability and service qual- 

ity, cost  minimization,  and savings 

on network investments. In  the case 

of incidents, the contracted load cur- 

tailment is expected to minimize the 

nonsupplied load’s monetary global 

value. Increases of wind-based elec- 

tricity generation systems and the 

wind’s intermittent nature often lead 

to periods of excess generated energy. 

This imposes relevant losses in wind 

curtailment, making wind farms less 

efficient and the corresponding in- 

vestment payback period higher. The 

use of DR programs to increase     load 

We can divide DR  programs into 

two general groups: price and incen- 

tive based.17 Price-based DR is related 

to changes in energy consumption by 

customers in response to variation in 

the prices they pay. This group in- 

cludes three key pricing rates: 

 
• Time-of-use pricing includes differ- 

ent prices for usage during different 

periods, usually defined for periods 

of 24 hours. This rate reflects the 

average cost of generating and de- 

livering power during each period. 

• Real-time pricing defines the price 

of electricity for shorter time pe- 

riods, usually one hour, reflecting 

changes in the wholesale price of 

Quantity 
Quantity 

Price 
Price 



 

 

 
 

 
electricity. Customers usually have 

the information of prices  one  day 

or one hour  beforehand. 

• Critical-peak pricing is a hybrid of 

the other two pricing  programs. 

The base program is time-of-use, 

with a much higher peak pricing 

applied under specified conditions 

(for example, when system reliabil- 

ity is compromised or supply costs 

are high). 

 
For different hours or time periods, 

if the price varies significantly, cus- 

tomers can respond with changes in 

energy use. Response to price-based 

DR programs is entirely  voluntary. 

Incentive-based   DR   includes   pro- 

grams   that   give   customers   fixed   or 

time-varying  incentives  and  that  com- 

plement   their   electricity   rate.   Utility 

companies,   load-serving   entities,   or 

a  regional  grid  operator  can  establish 

these  approaches.  Some  of  these  pro- 

grams   penalize   customers   who   fail 

the  contractual  response  when  a  pri- 

ori  specified  events  are  declared.  This 

group  includes  programs  such  as  di- 

rect load control, interruptible/curtail- 

able service, demand bidding/buyback, 

emergency  DR,  capacity  market,  and 

ancillary services market. 

In other work, Lorna Greening ex- 

poses the expected responsibilities 

and functions of each player in a de- 

regulated electricity market.18 Green- 

ing states that larger participation is 

required for DR to be viable in the 

scope of electricity markets, and that 

this requires a more intensive collab- 

oration between regulators, market 

participants, and market and system 

operators. 

Katherine Hamilton and Neel Gul- 

har propose a complex-bid, market- 

clearing mechanism that considers 

price-sensitive bids made by consum- 

ers.19 This work  quantifies  the effect 

of the increasing participation of the 

demand-side   on   various   categories 

of market participants. The authors 

conclude that the increase of demand 

shifting causes the reduction of market- 

clearing prices, benefiting all bidders 

even if they don’t participate in the 

shifting activities. 

Direct load control is a DR  model 

for which the utility is able to control 

customer equipment. This control has 

shown positive results, avoiding the 

use of additional generation. Imple- 

mented models have been applied to 

air conditioners and water heaters. 

However, some problems related to 

the functioning of switches installed 

by the utility have been reported. In 

the future, with further implementa- 

tion of the smart grid concept with 

two-way communication ability, it’s 

expected that utilities will have  bet- 

ter control over the target equipment. 

This is important because incentive 

payments are usually paid monthly to 

customers as fixed rates.20 Although 

this concept isn’t presently considered 

useful, utilities  are  planning  to  of- 

fer programs in which they give cus- 

tomers price signals through smart 

pricing programs. These signals are 

expected to give incentives to custom- 

ers to make their own investments in 

DR  equipment.20 

 
Problem Formulation and 

Resolution 
The DR problem that we  consider 

here is motivated by a need to reduce 

the energy supply to a set of con- 

sumers by a specified amount. This 

event is managed by a consumer ag- 

gregator, aiming at minimizing the 

global value paid by the  consumers. 

To achieve this goal, the aggregator 

considers the individual consumers’ 

price elasticity, which relates demand 

reduction with price increase. Indi- 

vidual load reduction and price in- 

creases that minimize the consumers’ 

global cost are determined for each 

consumer. 

Problem Formulation 

The problem we aim to solve consists 

of the optimal minimization of the 

global costs from  the  point  of  view 

of electricity consumers, regarding 

loads managed by a load aggregator. 

The problem’s  characteristics  lead to 

a  nonlinear model. 

In practice, when a reduction in 

electricity consumption  is  needed, 

the aggregator, based on its knowl- 

edge about the consumers, raises the 

price of electricity with the expecta- 

tion that consumers will reduce their 

electricity use. The objective function 

can be expressed as shown in Equa- 

tion 2 and is subjected to several 

constraints. 
 

Min Cost 
nc  ELoad(c)  ELoadRed(c)  



 



c1
 PriceEnergyInitial(c) PriceEnergyVar(c) 

(2) 

 
Here, Cost is the total load 

consumption cost, nc is the number 
of consumers, ELoad(c) is initial energy 

consumption of consumer c, ELoadRed(c) 

is energy consumption reduction of 
consumer c, PriceEnergyInitial(c) is ini- 

tial electricity price for consumer c, 
and PriceEnergyVar(c) is variation in con- 

sumer c electricity price. The objec- 
tive function in Equation 2 aims to 
minimize costs associated with elec- 
tricity consumption (that is, the to- 
tal amount consumers pay) when an 
overall demand reduction is required. 
We can calculate these costs based on 
the final load demand (initial load 
demand minus demand reduction 
value) and on the final price (initial 
price plus the price increment used 
to obtain the required consumption 
reduction). 

Limitations are imposed on each 

customer’s power (see Equation 3) 

and    price    (Equation    4)  variations 



 

 

 
 
 
 
 
 

according to the extent in which they 

can and/or want to participate in the 

DR program and to their price elas- 

ticity. Power system operation re- 

quires the balance between load and 

generation to be guaranteed at all 

times (see Equation 5). 

 
PLoadRed(c)   MaxPLoadRed(c) (3) 

 
PriceEnergyVar(c) MaxPriceEnergyVar(c) 

(4) 

nc nc 

PMain PReserve  PLoad(c ) PLoadRed(c ), 

 
Particle swarm Optimization 

The optimization of the formulated 

nonlinear problem consists of the 

minimization of a multimodal func- 

tion with many local minima and a 

global optimum. This  is  considered 

an NP-hard problem because the 

computational complexity is  high 

even in simple cases. 

In past decades,  AI  techniques 

have deployed a set of effective and 

efficient methods to mitigate the dif- 

ficulties of solving complex com- 

putational     time    problems.    These 

 
Simulator 

DemSi is a DR simulator that we de- 

veloped to simulate the use of DR 

programs. We used PSCAD  as  the 

base platform for the network simu- 

lation, enabling the use of detailed 

models of electrical  equipment and 

the consideration of transient phe- 

nomena. These abilities are  relevant 

to analyze the technical  viability  of 

the DR proposed solutions, both for 

steady state and transients (although 

we don’t present network response to 

load changes here). 

c1 c1  

(5) 
algorithms   explore   a   given    search 
space and return the best solution 

found.  PSO  belongs  to  the   category 

DemSi   considers   the   players   in- 
volved in the DR actions and allows 

result    analysis    from    each  specific 

where MaxPLoadRed(c) is  the  maxi- 

mum permitted variation  in power 
for  consumer  c;   MaxPriceEnergyVar(c) 

is the maximum permitted  variation 
in energy price for consumer c;  PMain 

is power received from the main grid; 
PReserve is reserve power; PLoad(c) is ini- 

tial power consumption of consumer c; 
and PLoadRed(c) is power consumption 

reduction of consumer c. 

The consideration of load response 

is formulated based on elasticity val- 

ues (see Equation 6). Because the 

elasticity is a fixed and constant value 

for each load, the optimal relation 

between load and price variation is 

determined in the optimization. The 

present study considers the obliga- 

tion of having the same price varia- 

tion for the loads of the same type as 

expressed in Equation  7. 

 
Elasticity(c)  

PLoadRed (c)  PriceEnergyInitial(c)  

of swarm intelligence methods, and 

we use it in this work to solve the DR 

problem because it’s effective in dif- 

ficult optimization tasks such as non- 

linear problems.21 We describe the 

algorithm  as follows: 

 
1. START 

2. Initialization of param- 

eters (maximum veloci- 

ties, minimum velocities, 

position limits, maximum 

iterations) 

3. Random generation of ini- 

tial values (swarm) 

4. REPEAT 

5. Reproduction: Each particle 

generates 1 new descendent 

(movement, new position) 

6. Evaluation: Each particle 

has its fitness value, ac- 

cording to its current po- 

sition in search space 

7. Store the best solution of 

swarm 

8. UNTIL termination criteria 

(Number of generations) 

player’s viewpoint. This includes four 

types of players: electricity consum- 

ers, consumer aggregators, electricity 

retailers (suppliers), and the distri- 

bution network operator. Here, we 

analyze the case study from the view- 

point of a consumers’  aggregator. 

Consumers  can  be  characterized 

on an individual or aggregated basis. 

Based on their profiles, some clients 

can establish flexible supply contracts 

with their suppliers. DemSi considers 

the information concerning the quan- 

tity of load that can be cut or reduced 

and the corresponding compensa- 

tions for each client. 

DemSi classifies the loads as five 

main types based on function of peak 

power consumption, energy destina- 

tion,  and  load diagram: 

 
• domestic, 

• small commerce, 

• medium commerce, 


PLoad(c) PriceEnergyVar(c)  

(6) 9. END PSO 
 

We  then  compared  the  results and 

• large commerce, and 

• industrial. 

PriceEnergyVar(c) 

PriceEnergyVar(T),    c  T, (7) 

 
where Elasticity(c) is  price elasticity 

for consumer c, and T is consumer 
type. 

performance of this technique with 

those obtained with conventional 

techniques using the professional op- 

timization tool, General Algebraic 

Modeling System (GAMS; see www. 

gams.com). 

Figure 1 shows DemSi’s general 

architecture. 

To  fully  attain  our   goals,  PSCAD 

is linked with Matlab (see www. 

mathworks.com) and GAMS. These 

links let us use programmed  modules 

http://www/
http://www/


 

 

 
 
 
 

to model the relevant 

players’ behavior and re- 

lationships, focusing on 

the contracts between 

each client and each 

supplier. The formulated 

optimization problem’s 

solution is found using 

Matlab and/or GAMS. 

Using diverse approaches 

for solving the optimiza- 

tion problems, it’s pos- 

sible to derive the best 

approach for each type of 

situation. 

Once the simulation is 

started, a simulation time- 

line feeds DemSi with time- 

tagged events. PSCAD 

simulates all physical phe- 

nomena related to the 

power system. The man- 

agement of  DR  programs 

is undertaken by a  module 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The DemSi architecture. A simulation timeline is used 

to feed DemSi with time-tagged events. Power Systems CAD 

(PSCAD) simulates the physical phenomena related to the power 

system; the simulation’s end is determined by the end of the 

simulation timeline. 

 

0.12,   0.20,   0.28,   and 

0.38, respectively, for do- 

mestic, small commerce, 

medium commerce, large 

commerce, and indus- 

trial consumer types. 

The corresponding  val- 

ues for electricity price, 

which correspond to re- 

tailer’s flat-rate tariff val- 

ues,  are  0.18,   0.19,   0.20, 

1.16 , and 0.12 euros per 

kW hour. 

As a restriction on the 

proposed formulation, we 

consider a price and 

power cap; we can pa- 

rameterize these cap val- 

ues for each case study. 

For this case study, the 

price cap is equal to 150 

percent of the  energy 

price value and the power 

cap  is  15  percent  of   the 

developed in Matlab. The simulation’s 

end is determined by the end of the sim- 

ulation timeline. 

Every time the simulator is initi- 

ated, an initial state  (for  example, 

load value, breaker state, and so   on) 

is considered as the departing simu- 

lation point. Once the simulation is 

launched, the supply information and 

the consumer knowledge base have 

the required information that allows 

optimizing DR program  use  over 

time, allowing the simulation to con- 

tinue. The DR program-management 

module optimizes the use of DR op- 

portunities for each  situation. 

 
Case Studies 

Here, we illustrate the use of the pro- 

posed methodology in the developed 

DR simulator DemSi. The case study 

considers a distribution network with 

32 buses from Mesut Baran and Felix 

Wu,22 which we evolved in a scenario 

to the year 2,040 in terms of load 

characterization.23     All     the     results 

presented in this article are obtained 

for two scenarios, with 32 and 320 

consumers, respectively. 

 
Case Characterization 

Table 1 shows  the  load  demand  in 

the first scenario, with 32  consum- 

ers. The second scenario had 10 con- 

sumers in each bus, corresponding  to 

a total of 320 consumers. In this sce- 

nario, the 10 loads connected to each 

bus have the total  power  presented 

in Table 1 and are of the same load 

type. Table 1 also shows each con- 

sumer’s type. 

In both scenarios, we considered 

that all loads of the same  type have 

the same price variation during  the 

DR program application. We solved 

each scenario and reduction  need 

with two approaches: with the devel- 

oped PSO module and with nonlinear 

programming (NLP) implemented in 

GAMS. We compared results in terms 

of time of execution and solution val- 

ues. The values of elasticity are     0.14, 

power consumption value for every 

customer. 

DR program use is triggered by a 

load reduction required by the sup- 

plier. We consider a set of seven re- 

duction values for each scenario. For 

each reduction requirement, the en- 

ergy price for  each  consumer type 

and the load reduction for each con- 

sumer are obtained as a result of the 

optimization problem. 

 
Particle swarm Optimization 

application Details 

The problem described here has five 

variables that are the price variation 

upper limits for the  five  load  types. 

In PSO, these variables are easily 

coded—that is, each particle has a di- 

mension space of five. Table 2 shows 

the results of the performance and 

parameters sensitivity analysis of the 

method  for  1,000 runs. 

Given our results, we adopted con- 

figuration A for this case study. The 

maximum  position  of  each  particle’s 

Start 

Network data 
 
 

Supply information 
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Network simulation 
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Simulation 
timeline events 
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Table 1. Consumer data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimension is the price variation upper 

limit; the minimum position is zero. 

This case study uses 60 particles   and 

200 iterations. The maximum and 

minimum velocity are 0.01 and 0.1, 
respectively. 

We used control penalties to ad- 

dress  the  energy  balance  constraint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We added the penalties to the fitness 

function to control the system energy 

balance (equality equation). 

 
Results 

We analyze the results in terms of 

execution time function and the ob- 

tained solutions. We  verified that   ex- 

ecution time doesn’t depend on the 

consumption reduction need. PSO 

takes   about   0.07   and   0.15 seconds 

for 32 and 320 consumers, respec- 

tively. NLP takes  0.32  seconds  in 

both cases. 

Although the execution time dif- 

ference between PSO and NLP might 

seem irrelevant, the advantage of the 

PSO approach is important for some 

studies  for  which  a   large   number 

of simulations is required in a rela- 

tively short time. This could be the 

case when deciding to declare a DR 

event when the system has a mini- 

mum anticipation time for consumer 

notification. 

Figure 2 shows the values of each 

approach’s objective function  and 

each scenario’s reduction need. These 

values, in euros, correspond to the 

global costs for the  loads  after  the 

DR  program implementation. 

Comparing   PSO   and   NLP,   we 

can conclude that, for lower reduc- 

tion needs, the results are almost the 

same. For higher reduction  needs, 

PSO returns slightly worse results. 

These conclusions are not influenced 

by the problem’s dimension (that is, 

the number of consumers). 

For a more detailed analysis, Fig- 

ure 3 shows the energy price varia- 

tion for the 32 loads scenario for each 

approach. In Figure 3a, results for the 

major reduction need are grouped by 

consumer type. For this reduction 

need, all loads are required to partic- 

ipate. The slight differences between 

the  two  approaches  are   because 

PSO is a stochastic method. Because 

finding the global optimum can’t be 

guaranteed, the obtained solution 

tends to be a local optimum with an 

objective function value close to the 

global optimum. Although the value 

obtained  for  the   objective  function 

is close to the one obtained by  the 

NLP approach, the solution itself can 

present    some   differences—namely, 

Bus Power (kW) Consumer type 

1 169.1 Medium commerce 

2 148.9 Small commerce 

3 147.1 Small commerce 

4 145.5 Small commerce 

5 94.2 Domestic 

6 311.1 Large commerce 

7 308.7 Large commerce 

8 89.3 Domestic 

9 90.6 Domestic 

10 67.0 Domestic 

11 91.1 Domestic 

12 91.3 Domestic 

13 181.3 Medium commerce 

14 91.1 Domestic 

15 91.1 Domestic 

16 91.9 Domestic 

17 135.5 Small commerce 

18 152.4 Medium commerce 

19 151.7 Medium commerce 

20 151.6 Medium commerce 

21 151.5 Medium commerce 

22 147.3 Small commerce 

23 674.8 Industrial 

24 669.3 Industrial 

25 93.8 Domestic 

26 93.2 Domestic 

27 92.2 Domestic 

28 183.0 Medium commerce 

29 295.3 Medium commerce 

30 225.4 Medium commerce 

31 315.1 Large commerce 

32 89.8 Domestic 

Total 5,831.3 — 
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Table 2. Particle swarm optimization parameter-sensitivity analysis. 

 

 

 

Configuration 

 

Maximum 
velocity 

 

Minimum 
velocity 

 

No. of 
iterations 

Solutions 
without 

violations (%) 

 

 

Mean fitness 

 

Worst 
fitness 

 

Best 
fitness 

 

Mean time 
(s) 

A 0.01 0.1 200 94 1,422.20 1,482.00 1,379.80 0.0716 

B 0.01 0.01 200 93 1,427.00 1,534.00 1,377.50 0.0715 

C 0.01 0.1 100 82 1,426.60 1,527.10 1,366.70 0.0387 

D 0.01 0.01 100 82 1,433.10 1,654.70 1,378.50 0.0382 

 

 

 

 

 

 

 

 

Figure 2. The global costs for loads after DR implementation. The costs are determined by each approach’s objective function 

and each scenario’s reduction needs, which are shown here for (a) 32 loads and (b) 320 loads. For lower reduction needs, the 

results are almost the same. For higher reduction needs, PSO returns slightly worse results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Detailed results for energy price variation for the 32 loads scenario. (a) Price variation in the major reduction need for 

each consumer, grouped by consumer type. (b) Major energy price variation in comparison with the maximum permitted. 

 

in what concerns the consumers in- 

volved in the load reduction for each 

specific DR event. In Figure 3b, for 

each reduction need, the maximum 

variation on energy price is compared 

with the maximum allowed varia- 

tion. In all results, the variations are 

largely below the maximum permit- 

ted because the formulation consid- 

ers both price and  power  cap,  and 

the power cap became prevalent,  and 

hence it limited higher response from 

loads. 

Finally, Figure 4 shows the DR 

program’s load participation in the 

two scenarios. In general, compar- 

ing the results for  the  two  scenar- 

ios shows similar behavior. In terms 

of the number of loads affected, the 

PSO  solutions  tend   to   correspond 

to more distributed load participa- 

tion.  For  the  loads  that  reached  the 

maximum power variation, NLP 

performs rational management of 

loads, scheduling loads like using an 

order of merit: the next load is used 

when the load under consideration 

has no more capacity.  In  contrast, 

PSO spreads the variation among the 

loads so the maximum  variation is 

not reached except for higher reduc- 

tion needs when load variations are 

forced to the  limit. 
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Figure 4. The DR program’s load participation. This shows both the number of loads that have participated and the loads that 

reached maximum load variation in terms of reduction need for the (a) 32 load and (b) 320 load scenarios. 

 

In terms of the number of loads af- 

fected by DR, the PSO  solution gives 

higher load participation for each 

imposed consumption reduction. PSO 

tends not to achieve the  maximum 

load reduction for each consumer, 

spreading load  reduction  by  more 

load types. For these reasons, the PSO 

approach leads to more interesting 

solutions, achieving the envisaged con- 

sumption needs involving a large num- 

ber of  participants, with only a   slight 

increase of the total cost. 
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