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Abstract: In this paper, Chaotic Aquila Optimization has been proposed for the solution of the
demand response program of a grid-connected residential microgrid (GCRMG) system. Here, the
main objective is to optimize the scheduling pattern of connected appliances of the building such
that overall user cost are minimized under the dynamic price rate of electricity. The GCRMG
model considered for analysis is equipped with a fuel cell, combined heat and power (CHP), and
a battery storage system. It has to control and schedule the thermostatically controlled deferrable
and interruptible appliances of the building optimally. A multipowered residential microgrid system
with distinct load demand for appliances and dynamic electricity price makes the objective function
complex and highly constrained in nature, which is difficult to solve efficiently. For the solution
of such a complex highly constrained optimization problem, both Chaotic Aquila Optimization
(CAO) and Aquila optimization (AO) algorithms are implemented, and their performance is analyzed
separately. Obtained simulation results in terms of optimal load scheduling and corresponding user
cost reveal the better searching and constrained handling capability of AO. In addition, experimental
results show that a sinusoidal map significantly improves the performances of AO. Comparison of
results with other reported methods are also made, which supports the claim of superiority of the
proposed approach.

Keywords: smart grid; residential microgrid; demand response; appliances scheduling; Aquila
optimization; sinusoidal map

1. Introduction

Power systems nowadays are facing various challenges such as fossil energy consump-
tion on a large scale, increased carbon emissions, and the growing importance of energy
and environmental issues. Therefore, a shift towards a reliable, effective, and sustainable
energy system has become the current requirement. Smart Grids are being deployed
worldwide due to their ability to improve the efficiency, dependability, and security of the
power system [1]. This knits together a multidisciplinary approach such as multiple energy
resources, sophisticated sensors and automated metering for control, two-way communica-
tions, intelligent electrical distribution equipment, and cutting-edge computing systems [2].
All the above technology together helps to respond to changes in electric demand and
provides benefits to both suppliers and consumers such as integration of renewable energy
resources (RES), increase in the reliability of operation, help in reducing operation and
maintenance costs for the utilities, and also provision of real-time information to consumers
about their power consumption pattern that helps them to shuffle their load as per tar-
iff. The change in electricity consumption patterns by consumers that helps the utility
to balance supply and demand is known as demand response (DR) [3]. DR can provide
secured operation and reduce the need for investment in inefficient peaking power plants
through load curtailment and shifting. It can provide consumers with time-varying prices
of electricity and incentives to ensure the economical and efficient use of energy. Moreover,
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the DR program helps to enhance the reliability of the power system, and therefore, the
consumer obtains the advantage of more stable power with lower outages [4]. However,
uncertainty associated with RES, social, economic, and environmental impact needs to
be investigated.

The challenges of DR programs include the absence of suitable market mechanisms
in the existing market structures. The need to maintain the safety of the system is sub-
tly transferred from the utility to the end-user by switching to a system in which price
adaptive demand is used to deliver various system functions. For DR modeling gener-
ally, the following assumptions are taken into consideration: its economically rational
behavior, aggregated demand with different load types, and in-depth system and demand
knowledge [5]. DR programs can be applied to residential, commercial, and industrial
sectors. They are categorized into two types: (i) incentive-based, where the customers
receive incentives for altering their consumption habits under supply-side demands, and
(ii) price-based, in which the cost of electricity supply is taxed at various rates depending
on when they use electricity [6]. In recent years, researchers have shown their interest in
DR, and they have published various articles.

1.1. Literature Review

Several research works have been conducted with one or more objectives among the
following: minimization of operation cost, minimization of carbon emissions, minimization
of the electric bill of consumers, maximizing the profit of system operator, reliability of the
overall system, etc. The impact of the operational cost incurred with and without coordina-
tion of different distributed energy resources (DER) is investigated using PSO [7]. It helps
to make proper tariff arrangements under the above two scenarios of DER arrangements.
Optimum generation scheduling of a grid-connected microgrid system equipped with solar
PV system, wind, and diesel generator is carried out in [8,9]. Here, incentive-based DR
is incorporated to maximize operator benefit. DR maximizes the profit of the operator
and also facilitates consumers by an incentive for controlling their load during peak load
time [10,11]. A fair comparison under two scenarios, i.e., with and without implementation
of DR for a MG system, was made, which shows the significant probability of energy saving
through DR as it also helps to curtail the electric bill of consumers.

The DR program helps to optimize power generation costs by shifting energy consump-
tion patterns and the possible reduction of load by the consumer, whereas rescheduling
different DER as per day ahead load demand helps to reduce the generation cost for the
operator. In Reference [12], the DR program has been implemented on a grid-connected
33-bus system comprised of RES. The simulation analysis carried out in the paper claims
that a significant reduction in network power loss and hence increase in the profit of oper-
ators can be achieved by it. A multiperiod optimal power flow approach is investigated
on IEEE 9 and IEEE 118 bus systems using linear programming. Here, it was observed
that the DR program in the network helps to provide a cost-effective solution and also
improves the voltage stability of the system [13]. A residential microgrid system is a com-
plex network since it combines different energy resources, and energy storage systems to
fulfill the required load demand of various loads of appliances of building premises. For
this Incentive based DR (IBDR) was applied to enhance reliability. IBDR was found to be
effective in reducing the overall operational cost of microgrids [14–16]. In Reference [17]
IBDR with one selling price among two industrial consumers was analyzed with variation
in discomfort weight factor. Here, also IBDR was found to be effective in solving demand
deficit issues.

A day-ahead dynamic price-based DR modal was proposed with the operation of mi-
croturbines with uncertain RES on an hourly basis to maximize the economic benefit [18,19].
This model was found to be effective in achieving higher profits with lower voltage devia-
tion than the conventional strategy. Moreover, proper scheduling of load helps to reduce
the size of DER, improves the load factor of the whole system [20], and is able to maintain
the balance between supply and demand efficiently [21,22]. Cogeneration refers to the
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simultaneous production of thermal and electric energy from a single source. This helps to
reduce carbon emissions and cost of energy and also improves the overall efficiency of the
system [23]. A grid-connected home energy system, which combines fuel cell (FC) with
combined heat and power, and a battery storage system (BSS) have been considered for
optimal scheduling. Analysis was carried out under two different scenarios ((i) without BSS
with fixed tariff and (ii) with BSS and dynamic tariff [24]), combining FC and Gas turbine
plants with combined heat and power (CHP) [25] and using a grid-connected hybrid PV
with storage [26]. Simulation results carried out under different operational constraints
show that optimal scheduling of thermal and electric generation significantly reduces the
overall operational cost.

The high share of integrated RES contributes more economical benefits, reduces green-
house emissions from the environment, and provides better energy security. To analyze
the economic and environmental benefits, a DR program was conducted on the residential
MG system [27–31], CHP-based reconfigurable MG system [32], demand response anal-
ysis framework with multiple BSS [33], and CHP-based MG with multiple markets [34].
The cost of the MG emitted emission and the demand cost are optimized simultaneously
by linear programming. The ε-constraints method is used to solve multi-objective (MO)
problems whereas the scenario generation and reduction approach was used as a tool to
handle uncertainty associated with RES [34]. MO scheduling for a CHP-based MG tied with
compressed air energy storage has been carried out using the ε-constraints method [27]. To
find out the optimal solution, the fuzzy decision approach was used, showing that it helps
to reduce operating costs and emissions significantly.

For a grid-connected residential MG that knits together RES and BSS, NGSA III was
used to minimize consumption cost, inconvenience cost, and pollution [28]. The impact
of using biomass and seawater electrolyzers on operational costs and emitted greenhouse
emissions for residential MG systems empowered by RES and hydrogen power has been
investigated under different cases [29]. Here, it was observed that biomass integration helps
to reduce operating costs whereas FC integrated with seawater electrolyzer reduces emis-
sions significantly. A new demand response analytical framework (DRAF) was analyzed in
a python environment for (i) DR in the production process, (ii) design optimization of bat-
tery with a PV system, and (iii) DR of distributed thermal energy resources. It was observed
that using Pareto front through Price based DR, cost and emissions are reduced [33].

A critical review in the area of DR problems can be found in [4–6,35,36]. Moreover,
the chronological framework of the work carried out in the area of DR with the objective
and applied solution methodology is presented in Table 1 below.

Table 1. Chronological framework in the area of DR.

Year/Reference No. Method Objective Grid Wind PV ESS EV FC

2010 [7] PSO with
stochastic repulsion Maximization of user benefit

√
×

√
×

√
×

2014 [24] CCA Operating cost Minimization
√

× ×
√

×
√

2015 [18] HSS Operating cost minimization
√

× ×
√

×
√

2016 [30] CPLEX, PSO Operating cost minimization
√

× ×
√

× ×

2017 [19] TSRO, MILP solved by
GUROBI, C&CG Operating cost minimization

√ √ √
× × ×

2017 [21] MILP solved
using GUROBI.

Operating cost minimization,
Peak load reduction

√
×

√ √
× CHP

2017 [8] GTDR using AIMMS Fuel cost minimization, Utility
benefit maximization

√ √ √
× × ×

2018 [26] GA Operating cost minimization
√

×
√ √

× CHP

2018 [37] MILP & Greedy method Operating cost minimization
√ √ √ √ √

×
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Table 1. Cont.

Year/Reference No. Method Objective Grid Wind PV ESS EV FC

2019 [14] Hybrid price-based
DR program

Maximize profit, minimize
consumer cost

√ √ √
× × ×

2019 [34] LP with augmented
ε−constraint

Operating cost minimization
and pollution minimization

√ √ √ √
× CHP

2020 [15] IBDR, Monte-Carlo Operating cost minimization
√

×
√ √

× ×

2020 [28] NSGA-III
Operating cost,

inconvenience cost, and
pollution minimization

√ √ √ √ √ √

2020 [25] ABC Operating cost minimization
√

× × × ×
√

2020 [31]
MINLP, PSO,

gradient-based
deterministic approach

Operating cost minimization
√

× ×
√

×
√

2021 [27] RTP-based DR program Operating cost minimization
√ √ √ √

× ×

2021 [12] PSO, (2m + 1) point
estimation

Minimization of fuel cost,
and grid power cost,

Maximization of profit
for MG operator

√ √ √
× × ×

2021 [10] GA Operating cost minimization,
maximizing stability

√
×

√ √
× ×

2021 [32] ε−constraint, fuzzy
decision making

Operating cost and emission
minimization,

√ √
×

√
× CHP

2022 [11] linear regression, PSO. Profit maximization
√ √ √

× × ×
2022 [22] Hybrid Jaya-IPM Operating cost minimization ×

√ √ √
× ×

Designing an efficient DR program for an efficient energy management system is
very difficult due to its complex structure. These complexities arise due to the uncertainty
of DER, the unpredictable pattern of energy consumption, and complicated connected
appliance loads. For the solution of such a highly complex constrained optimization
problem, researchers have applied various analytical as well as nature-inspired (NI) algo-
rithms until now. Among the analytical approaches, game theory [8], linear programming
(LP) [11,13,34], Monte-Carlo simulation [15], and mixed integer nonlinear programming
(MINLP) [31,33,34] were used to solve this problem.. The NI algorithms include particle
swarm optimization (PSO) [7,17], grey wolf optimizer [9], Genetic Algorithm (GA) [10,26],
Jaya algorithm [22], Artificial Bee Colony Algorithm (ABC) [26], and NSGA-III [28]. The
NI technique is found to be very effective for the solution of nonlinear, discontinuous, and
multi-modal functions, and it mostly provides a reasonable solution efficiently [38,39].

Energy management in the residential sector is very important as connected appliances
in it consume the major part of the power generated by the energy sector. Here, the primary
function is to minimize the operational cost associated with fulfilling the demand for the
connected appliances in the building. Therefore, designing an effective DR model for it with
the complicated operational constraints and an effective solution is a difficult task. It needs
a robust optimization technique to solve such type of complex constrained optimization
problem. The “no free lunch theorem” states that no algorithm can guarantee to solve all
types of optimization problems, as there is always a chance for improvement in it [40].
Keeping this statement in mind, Aquila Optimization embedded with a sinusoidal map is
proposed to solve the DR model of a GCRMG system.

Aquila Optimization (AO) belongs to the family of NI algorithms, developed by
Abualigah et al. in 2021 [41]. Since its beginnings, it was implemented to reduce harmonic
from the H Bridge inverter [42], for wind potential estimation [43], and for the solution
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of industrial engineering optimization problems [44]. To the author’s best knowledge, it
is not implemented to solve energy management problems with the DR program to date.
Moreover, AO is very easy to implement and has few control parameters.

1.2. Contribution

The main contribution in the paper is as follows:
DR model for a grid-connected residential microgrid (GCRMG) system has been

developed in a MATLAB environment.

• For practical modeling of GCRMG, fuel cells, combined heat and power (CHP), and
battery storage system (BSS) are also considered here.

• Chaotic Aquila Optimization (CAO) has been proposed for the solution of the DR
model for the GCRMG system. Here, the objective is to analyze the optimal scheduling
pattern of connected thermal and electric appliances such that overall user costs
get minimized.

• The above system is analyzed by implementing CAO and AO individually.
• Finally, to prove the efficacy of the proposed CAO, a comparison of the results in terms

of user cost is made with the result of AO and reported results by PSO [30], hybrid
CONOPT, and PSO [31].

The remaining section of the paper is presented as given below.
Section 2 describes the required problem formulation. Section 3 presents a brief

description of AO and the implementation process of a sinusoidal map in it. Section 4
presents the problem description simulation findings, while Section 5 offers concluding
observations.

2. Problem Formulation

The primary function of an energy management system is to minimize the cost of
operation while fulfilling all related constraints for the proper operation. The residential
model considered here is powered through the grid, fuel cell, and battery storage system as
shown in Figure 1. A micro-CHP using a fuel cell has also been utilized in this study. The
load for the following model consists of a thermostatically controlled appliance, interrupt-
ible appliances, and deferrable appliances. Energy demand and resource operation must
be coordinated to reduce the cost of daily energy usage [31].
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2.1. Objective Function

The objective function that must be minimized can be formulated as follows [31]:

Fmin= ∑24
h=1 [Telec(h) ∗ pgrid(h) + Tgas ∗ pgas(h) + Tgas ∗ PFC(h)] (1)

where Fmin is the total cost for 24 h. Here, h = (1,2 . . . 24), which is the time step and
represents the 24 h in a day. Telec(h) is the hourly electricity price in RMB, and pgrid(h)
represents the quantity of power traded with the utility grid at hour h. The cost of natural
gas is denoted by Tgas, and heat power generated by natural gas is denoted by pgas(h),
and PFC(h) is the total power of the fuel cell.

2.2. Operational Constraints
2.2.1. Electrical Demand–Supply Balance

The electrical power supplied through the grid, battery, and fuel cell has to be equal to
the total electrical demand of the residential building described below.

pgrid(h)+pbatt(h)+peFC(h) = pms(h)+ptd(h)+ pde f e(h)+pinte(h) (2)

where pgrid(h) is the grid power exchange, pbatt(h) is the power supplied by the battery, and
peFC(h) is the electrical power of the fuel cell. The total energy used by unscheduled, must-
run electrical appliances is represented by pms(h). The power usage of a thermostatically
controlled appliance is represented by ptd(h) while pde f e(h) and pinte(h) denote power
consumed by deferrable electrical appliances and interruptible appliances over one hour,
respectively.

2.2.2. Thermal Demand–Supply Balance

The thermal demand–supply balance can be represented by Equation (3) as below:

pgas(h)+PhFC(h)= Phms(h) (3)

where Pgas(h) is the heat power generated by natural gas, and PhFC(h) is the heat power
generated by the fuel cell. Phms(h) is the total thermal consumption.

2.2.3. Constraints for Battery Operation

A battery can operate at either a charging or discharging state at any given time. The
battery storage system is rated its minimum (SOCmin) and maximum (SOCmax) range, to
increase the lifespan; it should be operated in its specified range. The battery constraints
are represented as [9],

0 ≤
pch

batt(h)
ηch

≤ pmax
ch (4)

0 ≤ pdch
batt(h)× ηdch ≤ pmax

dch (5)

pbatt(h)=
pch

batt(h)
ηch

−pdch
batt(h)× ηdch (6)

SOC(h + 1) = SOC(h)+
pch

batt(h)− pdch
batt(h)

Ebatt
(7)

SOCmin≤ SOC(h) ≤ SOCmax (8)

where pch
batt(h) is the charging power, and pdch

batt(h) is the discharging power of the battery
at hour h, where as pmax

ch is the maximum charging power and pmax
dch is the maximum

discharging power. pbatt(h) denotes the output power of the battery, while ηch and ηdch
denote the charging and discharging efficiency. SOC(h) represents the battery’s state of
charge at hour h, and Ebatt represents the battery capacity. SOCmin and SOCmax are the
rated minimum and rated maximum states of charge of the battery.
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2.2.4. Constraints for the Appliance That Is Thermostatically Controlled

At each sub-interval, the thermostatically controlled appliance modifies its energy use
to maintain the appropriate temperature. An air conditioner is used as a thermostatically
controlled appliance in this study. The building’s temperature at each hour is determined
as in (9) given below [7]:

Tin(h + 1) = Tin(h) ∗ e
−∆
τ +(R ∗ Ptd(h) + Tout(h)) ∗ (1− e

−∆
τ ) (9)

where ∆ = 1 h and τ = RC; R = 18◦C
kW and C = 0.525 kWh/◦C.

The initial room temperature has been taken as 20 ◦C. The operational range and
accompanying temperature range can be constrained by imposing the following restrictions:

Tmin
in ≤ Tin(h) ≤ Tmax

in (10)

where Tmin
in and Tmax

in are the specified minimum and maximum indoor temperatures in ◦C.

2.2.5. Constraints for Interruptible Appliances

Interruptible appliances are supposed to operate in the “on” or “off” states in the
desired time window of the consumer (αa, βb). If the appliance is turned on, it uses a
fixed amount of energy during each sub-interval. As a result, the interruptible appliance’s
requirements can be expressed as follows [31]:

δa,t = 0, t /∈ [αa, βb] (11)

∑t0−1
t=αa

δa,t + δa,t0 + ∑βa
τ=t0+1 δa,τ = Ha (12)

∑βa
τ=t0+1 δa,t = Ha (13)

where δa,t denotes the state of the appliance “a” at the time (t) which is equal to “1”, if
the appliance is on and “0” if the appliance is off, and Ha represents time slots needed by
appliance “a”.

2.2.6. Deferrable Appliances Constraints

Unlike the previously stated interruptible appliance, the deferrable appliance should
operate all the way through once it is started. Let H be the entire amount of time slots
necessary for the deferrable appliance to operate at a particular level of energy. According
to (14), the work should begin during the operational window (αi, αi + λi). The non-
interruptible property can be described using (15). The appliances should operate inside
the operational window (αa, βb), according to (16).

∑t0−1
t=αi

δa,t + δi,t0 + ∑αi+λi
t=t0+1 δi,τ ≥ 1 (14)

∑t0+Hi
τ=t0+1 δτ ≥ H × (δt0+1 − δt0 ) (15)

∑βa
t=αa

δt = Htε [αa, βa] (16)

where δa,t represents the on or off state of appliance “a” during time t in hours by either “1”
or “0”.

2.2.7. Constraints for Operation of a Fuel Cell

A fuel cell, which may simultaneously produce electrical and thermal energy, is an
important component of the home energy management system. A fuel cell must therefore
adhere to the following criteria.

PFC,h − PFC,h−1 ≤ ∆PFC,U (17)
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PFC,h−1 − PFC,h ≤ ∆PFC,D (18)

PFC,min ≤ PFC ≤ PFC,max (19)

Here, PFC,h is the power of the fuel cell at hour h. ∆PFC,U and ∆PFC,D are the upper
and lower limit of the ramp rate of the fuel cell. PFC,min and PFC,max are the minimum and
maximum limits of fuel cell-generated power.

Part Load Ratio (PLR) influences the efficiency of a fuel cell and the electrical-to-
thermal ratio and can be described as the ratio of electrical power produced by the fuel cell
to its power rating [31]. The results below are feasible when PLRh ≥ 0.05:

ηFC, h = 0.2716; γFC, h = 0.6816 (20)

If PLRh ≤ 0.05, then the equations given below can be used [31].

ηFC, h = 0.9033PLR5
h − 2.9996PLR4

h + 3.6503PLR3
h − 2.0704PLR2

h+

0.4623PLRh + 0.3747
(21)

γFC, h = 1.0785PLR4
h − 1.9739PLR3

h + 1.5005PLR2
h − 0.2817PLRh (22)

where ηFC, h represents the fuel cell’s efficiency at hour h, and γFC, h is the ratio of the
thermal energy produced by the fuel cell to its electrical energy.

3. Chaotic Aquila Optimization
3.1. Aquila Optimization

Aquila Optimization is an NI optimization algorithm influenced by the hunting
behavior of Aquila found in nature. Aquila hunt for squirrels, rabbits, and various other
creatures using their speed and razor-sharp talons. The Aquila employs four techniques
while hunting prey. They are (i) selection of search area by high flight and vertical stoop,
(ii) exploration within a narrow search space by contour flight along with short gliding
attack, (iii) expanded exploitation by the low-flying descending attack within converge
search space, and (iv) narrowed exploitation by swooping, walking and collecting prey.
The mathematical model for hunting prey can be expressed in the following manner.

Firstly, a population of N no of candidate solutions is generated across a preset range
using (23).

Xi,j = Lj + r× (Uj − Lj) (23)

where r is a random number between 0 and 1; Xi,j is the j th dimension of the i th solution;
Lj and Uj represents lower and upper bound values within the search space for the j th

dimension.
Expanded exploration is performed by Aquila by picking up the hunt location with a

high soar and vertical stoop. It gives an estimate of the prey’s location. Equation (24) is
used to simulate this behavior and is carried out when iter <

( 2
3 ×MaxIter

)
and r < 0.5.

X1(iter + 1) = Xbest(iter)×
(

1− iter
MaxIter

)
+ (XM(iter)− Xbest(iter)× r) (24)

where Xbest(iter) represents the best solution till the current iteration. XM(iter) is the mean
of the solutions available. MaxIter is the maximum iteration, and iter denotes the current
iteration.

Contour flight and short gliding attack while performing narrowed exploration are
simulated using (25).

X2(iter + 1) = Xbest(iter)× Levy(D) + XR(iter) + (y− x)× r (25)
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where XR(iter) is a randomly selected solution from the entire solutions, and Levy(D) is
the flight distribution function.

Levy(D) = s× u× σ∣∣∣∣v 1
β

∣∣∣∣ (26a)

σ = (
Γ(1 + β)× sin (πβ

2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

) (26b)

The exploration process of search space in spiral shape is controlled using parameters
x and y represented as below [41–44].

y = m× cos (θ) (26c)

x = m× sin (θ) (26d)

m = r1 + U × D1 (26e)

θ = −ω× D1 + θ1 (26f)

θ1 =
3× π

2
(26g)

were r1 is the number of search cycle between 1 to 20; U = 0.00565; D1 is the integers from
1 to the dimension of the search space length, and ω = 0.005.

Expanded exploitation with a low-flying descending attack is performed by (27)

X3(iter + 1) = (Xbest(iter)− XM(iter))× α− r + ((U − L)× r + L)× δ (27)

Here the parameters α and δ are set to 0.1.
The fourth method narrowed exploitation where the Aquila attacks by walking and

grabbing prey are performed (28).

X4(iter + 1) = QF(iter)× Xbest(iter)− (G1 × X(iter)× r)− G2 × Levy(D) + r× G1 (28)

where QF represents a quality function, and the movements of the Aquila’s prey are
represented by G1 and G2.

QF(iter) = t
2×r−1

(1−MaxIter)2 (29)

G1 = 2× r− 1 (30)

G2 = 2× (1− iter
MaxIter

) (31)

The continuous Aquila optimizer is transformed into its binary equivalent by convert-
ing each search agent’s dimension to a probability value ranging from 0 to 1 by using (32)

S(Xd
i (iter + 1)) =

1

1 + e−Xd
i (iter)/3

(32)

were,

Xd
i (iter + 1) =

{
1 , i f rand ≤ S(Xd

i (iter + 1))
0, otherwise

(33)

3.2. Chaotic Aquila Optimization

Literature suggests that the chaotic sequence numbers generated by the strategy of
chaotic map enhance the population diversity of the evolutionary algorithm, therefore,
improving the global searching capability of the algorithm and avoiding the local op-
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tima [45,46]. Keeping this in mind sinusoidal chaotic sequence (39) is introduced to replace
random numbers of (24)–(28), and it is visualized over 100 iterations in Figure 2.

Xn+1 = aX 2
n × Sin(πXn), where a = 2.3. (34)
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The solution strategy used for finding the best solution using Chaotic Aquila Opti-
mization (CAO) algorithm is presented in Section 3.3 and by the flowchart in Figure 3.

3.3. Implementation of CAO for the Solution of the Residential Microgrid Problem

The major steps associated with it are given below.
Step 1-N no of initial population is created for each variable for 24 h such as Pbatt{1 . . .

24}, PFC{1 ...24}, Pta{1 . . . 24}, Pgas{1 . . . 24}, Pinte{1 . . . 24}, Pde f er{1 . . . 24} which represents
the battery power, fuel cell power, thermal appliance power, thermal power supplied by
natural gas, and the power consumed by interruptible and deferrable appliances. The
fitness value of the population is evaluated and checked for all associated constraints.

Step 2-AO is applied to these variables of battery, fuel cell, and thermal appliance ac-
cording to each exploration while CAO is applied to interruptible and deferrable appliances
in each of the four exploration and exploitation stages using an equation.

• Expanded exploration:

X1(iter + 1) = Xbest(iter)×
(

1− iter
MaxIter

)
+ (XM(iter)− Xbest(iter)× Chij) (35)

• Narrowed exploration:

X2(iter + 1) = Xbest(iter)× Levy(D) + XR(iter) + (y− x)× Chij (36)

• Expanded exploitation and low flying:

X3(iter + 1) = (Xbest(iter)− XM(iter))× α− r + ((U − L)× Chij + L)× δ (37)

• Narrowed exploitation where the Aquila attacks by walking and grabbing prey:

X4(iter + 1) = QF(iter)× Xbest(iter)− (G1 × X(iter)× r)− G2 × Levy(D) + Chij × G1 (38)

Step 3-The new fitness function is calculated.
Step 4-It is then compared with the previous fitness function and updated if found better.
Step 5-Check if the iteration is reached termination criteria; if yes, then print the best

fitness and its corresponding variables, otherwise repeat step 2.
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4. Simulation Analysis and Results

The DR model of a GCRMG system has been carried out for 24 h of a day. The
DR model consists of a battery, fuel cell, thermal load, and deferrable and interruptible
appliances. Additionally, for reliable and secure operation, the building also has a power
supply from the grid. Here, it is assumed that the price of electricity is dynamic in nature
where the price of electricity during peak hours is more as compared to during non-peak
hours. Hence, optimal energy management of the combined system has been carried out
such that load demand constraints are fully satisfied with minimum cost. The data for
appliances (Interruptible and Deferrable), their power rating, the permissible operational
interval during a day, and maximum operational time are listed in Table 2, whereas room
temperature, parameters of the battery storage system, and fuel cell data are adopted
similarly to Reference [31] and also listed in Table 3. The power demand, heat demands,
and real-time electricity prices over different hours of the day are given in Table 4. Figure 4
shows the outdoor temperature considered over a day for analysis.
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Table 2. Data for residential appliances.

Appliances Tstart (h) Tend (h) Power (watt) Duration of
Operation (h)

Interruptible
Appliance 1 9 24 1500 3

Interruptible
Appliance 2 5 18 2000 4

Deferrable
Appliance 1 12 22 1000 4

Deferrable
Appliance 2 5 24 2000 3

Table 3. Parameters for thermostatically controlled appliance, battery, and fuel cell plant.

Parameter Value/Unit

Tmin
in , Tmax

in 24, 26, ◦C

The initial temperature of the room 20, ◦C

Pmax
ch , Pmax

dch 5, 5, KW

ηch, ηdch 0.9, 0.9, %

SOCmin, SOCmax 0.3, 0.9, p.u

Minimum and the maximum power that can be
supplied from the electric grid 0, 10, kW

Battery volume 6.86, kW

Natural gas cost 0.4, RMB/kW

Maximum limit of power generated by the fuel
cell 4, kW

∆PFC,U, ∆PFC,D 1.5, kW

Maximum limit of power generated by gas 2, kW

Table 4. Must-run electric demand, must-run thermal demand, and real-time electricity price.

Interval (h)

Must-Run
Electric

Demand
(kW)

Must-Run
Thermal
Demand

(kW)

Real-Time
Electricity

Price (RMB ¥)
Interval (h)

Must-Run
Electric

Demand
(kW)

Must-Run
Thermal
Demand

(kW)

Real-Time
Electricity

Price (RMB ¥)

1 0.35 1.23 0.21 13 0.48 1.74 0.51

2 0.31 1.34 0.39 14 0.49 1.45 0.41

3 0.30 1.51 0.32 15 0.48 1.40 0.50

4 0.34 1.49 0.49 16 0.71 1.83 0.61

5 0.35 1.47 0.41 17 1.00 3.00 0.71

6 0.41 1.83 0.80 18 2.21 2.98 0.79

7 0.48 2.00 0.71 19 2.80 2.81 0.71

8 1.11 2.15 0.84 20 2.69 2.62 0.61

9 1.12 2.21 0.82 21 1.91 2.89 0.55

10 1.00 2.53 0.71 22 1.20 2.74 0.51

11 0.60 1.57 0.61 23 0.80 1.43 0.41

12 0.49 1.55 0.56 24 0.49 1.36 0.31
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For the solution of such a complicated constrained optimization problem, MATLAB
2019 environment was used. The optimization problem was solved using the proposed
CAO and AO [41]. The simulation analysis was carried out on a CPU configured with an i5
processor having 4 GB of RAM operated at 1.7 GHz of clock speed.

AO has two major control parameters, α and δ, which help to adjust the exploitation
process during optimization. The effect of the population (NP), α, and δ are analyzed, with
variation in NP from 50 to 200 with its step increment of 50, and with and a step increment
of 0.4 for α and δ between 0.1 and 0.9. After analyzing the objective function over thirty
repeated trials, statistical results are tabulated as given in Table 5, where it can be observed
that with NP = 150, α = 0.1, and δ = 0.1, AO was able to attain 38.7016 (RMB) as the
minimum operational cost with a standard deviation (SD) of 0.8435, which is considered as
best control parameters for further analysis. Considering the average computational time,
it is observed that it also increases as the population size increases.

To investigate the effect of chaotic sequence, further analysis on the same problem was
carried out with AO embedded with a sinusoidal chaotic map.

After performing similar simulation analysis over thirty trials, statistical results in
the form of min cost, ave cost, max cost, SD, and ave CPU time are tabulated in Table 6.
Here, it is observed that min cost and ave cost improve; however, max cost, SD, and ave
CPU time slightly increase. This may be due to the additional randomness of the chaotic
sequence. Figure 5 compares the cost convergence curve obtained using AO and CAO over
500 iterations. Here, it is observed that the curve rapidly decreases towards global minima
due to the unique and strong exploitation characteristics of AO.

The operational costs obtained by the proposed method and the reported methods are
compared in Figure 6. It clearly shows that CAO is able to produce the best solution in terms
of cost as 37.221 (RMB) as compared to 38.7016 (RMB) obtained by AO and 43.68 (RMB) by
Hybrid CONOPT with PSO [31] and 54.4839 by PSO [30].

The optimal results in terms of power drawn from the battery, fuel cell, grid, and power
consumption of must-run electric, thermostatically controlled, deferrable, and interruptible
appliances are presented in Tables 7 and 8. These results are corresponding to the best cost
obtained by CAO and AO. Considering the power-sharing between different resources, it
is evident that the power balance constraints as in (2) are fully satisfied.
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Table 5. Effect of Control Parameters of AO on Operational cost.

NP α δ
Min Cost

(RMB)
Avg. Cost

(RMB)
Max Cost

(RMB) SD Avg. CPU
Time (s)

50

0.1

0.1 39.9335 41.8039 44.8229 1.3720 0.0296

0.5 39.1878 42.4136 44.6321 1.6631 0.0294

0.9 39.5802 42.8461 44.0489 1.2963 0.0287

0.5

0.1 40.6965 41.7563 43.6728 1.3456 0.0283

0.5 41.9451 42.5463 44.5559 1.2345 0.0274

0.9 42.1972 42.9657 44.9562 1.1456 0.0245

0.9

0.1 40.7976 42.4673 44.5444 1.3467 0.0265

0.5 40.6244 42.3667 44.9903 1.2514 0.0243

0.9 40.8085 42.4566 45.2061 1.1345 0.0275

100

0.1

0.1 38.8224 40.9666 43.2639 1.3493 0.0552

0.5 39.9459 41.6502 43.4395 1.0668 0.0532

0.9 40.2902 42.0940 43.7440 0.9640 0.0555

0.5

0.1 40.2562 41.0034 43.3675 1.2345 0.0532

0.5 39.6843 41.6654 43.5647 1.2243 0.0534

0.9 40.3672 41.9653 43.8965 1.0764 0.0565

0.9

0.1 39.5648 41.1223 43.4362 1.3532 0.0552

0.5 41.3396 41.6754 43.5784 0.9237 0.0557

0.9 41.0133 41.9765 43.9564 0.9043 0.0550

150

0.1

0.1 38.7016 40.7247 41.7779 0.8435 0.0854

0.5 39.2770 40.8556 42.3374 1.1482 0.0788

0.9 39.5155 41.4336 44.1282 1.2556 0.0783

0.5

0.1 39.2413 40.9675 42.7654 1.2456 0.0843

0.5 40.6953 40.9667 43.6573 1.2344 0.0782

0.9 40.9950 41.5674 44.5693 1.1454 0.0833

0.9

0.1 39.5178 40.9965 42.6754 1.2354 0.0773

0.5 39.6799 41.0023 43.8765 1.2444 0.0842

0.9 39.6864 41.6546 44.6745 1.1674 0.0765

200

0.1

0.1 38.7016 40.7058 42.1987 1.0120 0.1041

0.5 38.7855 40.7394 41.6864 1.0086 0.1036

0.9 38.9860 41.1340 42.4047 0.8530 0.1047

0.5

0.1 39.0991 40.8045 42.3567 0.8765 0.1029

0.5 39.0056 40.2345 42.4567 0.9875 0.1079

0.9 39.3174 41.2345 43.5685 1.2223 0.1065

0.9

0.1 38.7546 40.3456 43.5745 0.9546 0.1042

0.5 39.0607 41.4450 43.6574 1.1576 0.1075

0.9 40.0895 41.4567 44.6574 1.1664 0.0993
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Table 6. Effect of CAO on Operational cost.

NP α δ
Min Cost

(RMB)
Avg Cost

(RMB)
Max Cost

(RMB) SD Avg. CPU
Time (s)

150 0.1 0.1 37.221 40.0785 41.9972 1.1223 0.0882
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It is noted that the battery is charging when the price of electricity is low and gets
discharged to match the required load demand when the electricity price is higher. The
positive values of battery power represent the charging, and the negative values indicate
the discharging mode of battery status as shown in Tables 7 and 8. Moreover, the SOC
is maintained within the limits given in Table 2 over the 24 h interval in an optimal
manner. Here, it can be observed that the fuel cell operates within its specified operational
constraints and shares more power to limit the use of more expensive grid-available power.
All fuel cell constraints are satisfied as given in (17)–(22) as the ramp rate of the fuel cell
and the power derived from the fuel cell are within the limits given in Table 2. Hence, the
battery and fuel cell simultaneously help in minimizing the cost incurred to the consumers.

The price of electricity is high during intervals 8 to 10. In this duration, fuel cell and
battery take turns to fulfill the major power demand of the residential building to reduce
the cost of operation. The optimal power sharing between the grid, fuel cell, and battery
for over 24 h is presented in Figures 7 and 8 for CAO and AO, respectively.
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Table 7. Power drawn from the battery, fuel cell, grid, and power consumption of must-run electric,
thermostatically controlled, deferrable, and interruptible appliances (CAO).

Interval (h) pbatt (kW) PeFC (kW) pgrid (kW) pms (kW) ptd (kW) pdefe (kW) pinte (kW)

1 0.0000 0.5992 2.9955 0.350 3.2446 0 0

2 0.0673 1.2959 0.3320 0.310 1.2506 0 0

3 0.0000 1.6197 0.0166 0.300 1.3363 0 0

4 0.2297 1.4063 0.3114 0.340 1.1480 0 0

5 0.0000 0.8743 2.7314 0.350 1.2557 2 0
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7 0.0000 2.3297 0.6761 0.480 0.5259 2 0
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10 0.5041 2.9084 1.0302 1.000 0.4345 0 2

11 0.0000 1.4491 2.3303 0.600 1.1793 0 2

12 0.0000 1.1430 0.9062 0.490 0.5592 1 0

13 −1.7916 1.2400 0.5224 0.480 0.5740 1 1.5

14 0.0000 1.1881 3.0584 0.490 0.7565 1 2

15 −0.0065 1.2611 1.1759 0.480 0.9635 1 0

16 −0.0634 0.6798 0.7583 0.710 0.7915 0 0

17 0.0000 1.5710 2.2586 1.000 0.8295 0 2

18 0.0000 2.5272 0.4565 2.210 0.7737 0 0

19 0.0000 2.9858 1.0447 2.800 1.2305 0 0

20 0.0000 1.9547 2.8259 2.690 0.5906 0 1.5

21 0.0000 2.6293 0.3070 1.910 1.0263 0 0

22 0.1993 2.3651 0.1428 1.200 1.1085 0 0

23 0.0000 1.0788 0.3131 0.800 0.5919 0 0

24 −0.0649 1.7263 1.4214 0.499 1.2135 0 1.5
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Table 8. Power drawn from the battery, fuel cell, grid, and power consumption of must-run electric,
thermostatically controlled, deferrable, and interruptible appliances (AO).

Interval (h) pbatt (kW) PeFC (kW) pgrid (kW) pms (kW) ptd (kW) pdefe (kW) pinte (kW)

1 0.0000 1.1972 3.2582 0.350 4.1054 0 0.0

2 −0.1766 0.2086 0.5538 0.310 0.6290 0 0.0

3 0.0000 0.5497 0.8902 0.300 1.1399 0 0.0

4 0.0000 1.1484 0.2449 0.340 1.0533 0 0.0

5 0.1511 1.2260 4.5431 0.350 1.2680 2 2.0

6 0.0000 2.2850 1.1309 0.410 1.0059 2 0.0

7 0.0000 2.4432 0.6916 0.480 0.6548 2 0.0

8 0.0627 2.0829 0.2347 1.110 1.1449 0 0.0

9 −0.1374 1.9818 0.2052 1.120 1.2044 0 0.0

10 0.0000 2.6836 0.6813 1.000 0.8650 0 1.5

11 0.0000 1.9657 1.5234 0.600 0.8892 0 2.0

12 0.0000 0.7139 1.2094 0.490 0.4333 1 0.0

13 0.0000 1.6241 0.4970 0.480 0.6412 1 0.0

14 0.0000 1.2323 1.3786 0.490 1.1209 1 0.0

15 0.0000 0.8785 1.1674 0.480 0.5659 1 0.0

16 −0.0220 0.3970 0.7067 0.710 0.4157 0 0.0

17 0.0000 1.8037 3.4000 1.000 0.7036 0 3.5

18 −1.1556 2.6810 1.1169 2.210 0.7436 0 2.0

19 0.0000 2.3997 1.3634 2.800 0.9630 0 0.0

20 0.0806 1.5309 2.1246 2.690 0.8849 0 0.0

21 0.0000 2.9050 0.0785 1.910 1.0735 0 0.0

22 0.0000 1.6525 0.9889 1.200 1.4414 0 0.0

23 0.0000 1.3354 2.0475 0.800 1.0829 0 1.5

24 −0.0509 0.0000 0.7478 0.499 0.2997 0 0.0

As specified in Table 1, the distinct appliances connected in the building have specified
start–end operational window, minimum operational time, and power consumed by the
particular appliances. The electricity tariff rate is dynamically varying with time as shown



Sustainability 2023, 15, 1484 18 of 23

in Table 3. For this complicated constrained duration, AO and CAO were also successfully
able to optimally schedule the appliances of the building in the most economical manner.
Figures 9 and 10 exhibit these scheduling results, respectively. It can be seen that the
interruptible appliances do not run continuously and are distributed over the given time
interval to reduce the peak load and energy cost, whereas the deferrable appliances run
continuously until the task is completed.
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The building is also equipped with a thermostatically controlled appliance to control
the indoor room temperature. It has to control the temperature within its specified operating
temperature range as specified in Table 2. These constraints are also handled by the AO and
CAO efficiently. Figure 11 shows the resulting optimal indoor temperatures are within the
specified comfort temperature range of the consumer 24–26 ◦C. The power consumption
in maintaining indoor temperature by appliances is presented in Figure 12. It can be seen
that if the difference between the outdoor temperature and indoor temperature is greater,
then the power consumed by the thermostatically controlled appliance is also greater.
Moreover, more power is consumed during the initial operational hour as it had to increase
the temperature from 20◦C to the desired range. Thereafter, as the temperature reaches the
desired range, the temperature and the power consumed become stable.

The thermal power generated by natural gas and fuel cell and the total thermal demand
as per the optimal scheduling obtained by AO and CAO are compared in Table 9 below.
There, it is also observed that the operational constraint as specified in (3) is also satisfied.
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Table 9. Total thermal demand and thermal power generated by natural gas and fuel cell.

Interval (h) Phms (kW)
Pgas (kW) PhFC (kW) Pgas (kW) PhFC (kW)

CAO AO

1 1.23 0.8290 0.4010 0.4041 0.8259

2 1.34 0.4393 0.9007 1.1996 0.1404

3 1.51 0.3535 1.1565 1.1423 0.3677

4 1.49 0.5039 0.9861 0.7006 0.7894

5 1.47 0.8791 0.5909 0.6225 0.8475

6 1.83 0.2712 1.5588 0.0938 1.7362

7 2.00 0.2218 1.7782 0.1132 1.8868

8 2.15 1.0558 1.0942 0.5983 1.5517

9 2.21 0.7208 1.4892 0.7478 1.4622

10 2.53 0.1584 2.3716 0.4016 2.1284

11 1.57 0.5504 1.0196 0.1218 1.4482

12 1.55 0.7646 0.7854 1.0708 0.4792

13 1.74 0.8819 0.8581 0.5799 1.1601

14 1.45 0.6309 0.8191 0.5977 0.8523

15 1.40 0.5259 0.8741 0.8061 0.5939

16 1.83 1.3742 0.4558 1.5644 0.2656

17 3.00 1.8831 1.1169 1.6909 1.3091

18 2.98 1.0106 1.9694 0.8543 2.1257

19 2.81 0.3498 2.4602 0.9652 1.8448

20 2.62 1.1814 1.4386 1.5353 1.0847

21 2.89 0.8177 2.0723 0.5223 2.3677

22 2.74 0.9283 1.8117 1.5567 1.1833

23 1.43 0.6919 0.7381 0.4990 0.9310

24 1.36 0.1158 1.2442 1.3600 0.0000
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5. Conclusions and Future Work

In this paper, Chaotic Aquila Optimization (CAO) is proposed for the solution of a DR
program for a GCRMG system. The optimal scheduling of connected appliances has been
carried out considering operational constraints such as variable electricity tariffs, customer
comfort, and limitations of the distinct power resources. Obtained simulation results reveal
the better searching capability of AO due to its unique exploration and exploitation phase
and strong constrained handling capability. A comparison of results obtained by AO is
found to be superior than the reported results using PSO [30] and a hybrid algorithm using
CONOPT and PSO [31]. In addition, experimental results show a sinusoidal map that
significantly improves the performances of AO.

The MG system provides flexibility in deploying DER for improving the voltage
stability of the overall system. Integrating wind turbines and solar PV systems helps to
resolve environmental problems and also depletion of conventional resources. The power
flow model is not considered in the paper, and to make the DR program more realistic, we
could get an idea from [13,47]. Future work may include: (i) RES integration with BSS, (ii)
inclusion of electric load as electric vehicle charging, and (iii) optimal power flow with the
dynamic form of DR.
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Nomenclature

Fmin Minimum cost (RMB) Phms(h) total thermal consumption (kW)

h Time step (h) pmax
ch , pmax

dch
Battery maximum charging and discharging
power (kW)

Telec(h) Hourly electricity price (RMB) ηch,ηdch
Battery charging and discharging
efficiency (%)

pgrid(h) quantity of power traded with the utility grid (kW) SOC(h) Battery’s state of charge (p.u.)
Tgas Cost of natural gas (RMB/kW) Tin (h) Inside temperature (◦C)
pgas(h) heat power generated by natural gas (kW) Tout(h) Outside temperature (◦C)

PFC(h) total power of the fuel cell (kW) δ
switching state of appliance: 1 for ON;
0 for OFF.

pbatt(h) Battery power (kW) H Time slot (h)
peFC(h) Electrical power of fuel cell (kW) αa, βa Working time range of electrical appliance. (h)
Ebatt Battery capacity (kW) ∆PFC,U Upper limit of a fuel cell's ramp rate. (kW)

pms(h)
total energy used by unscheduled,

∆PFC,D Lower limit of a fuel cell's ramp rate. (kW)
must-run electrical appliances (kW)

pde f e(h) power consumed by deferrable appliances (kW) PFC,min
Minimum limit for power generated
by the fuel cell (kW)

pinte(h) power consumed by interruptible appliances (kW) PFC,max
Maximum limit for power generated
by the fuel cell (kW)

ptd(h)
power usage of a thermostatically

pch
batt(h), pdch

batt (h)
Battery charging and discharging

controlled appliance (kW) power (KW)
PhFC(h) heat power generated by the fuel cell (kW)
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