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Abstract— In this paper, we consider an abstract market model
for demand response where a supply function bidding is applied
to match power supply deficit or surplus. We characterize the
resulting equilibria in competitive and oligopolistic markets and
propose distributed demand response algorithms to achieve the
equilibria. We further show that the equilibrium in competi-
tive market maximizes social welfare, and the equilibrium in
oligopolistic market has bounded efficiency loss under certain
mild assumptions. We also propose distributed demand response
algorithms to achieve the equilibria.

Index Terms— Demand response, Supply function bidding,
Competitive equilibrium, Nash equilibrium, Efficiency loss.

I. INTRODUCTION

The usual practice in power networks is to match supply to

demand. This is challenging because demand is highly time-

varying. The utility company or generator needs to provision

enough generation, transmission and distribution capacities for

peak demand rather than the average. As a result, the power

network has a low load factor and is underutilized most of

the time, which is very costly. For example, the US national

load factor is about 55%, and 10% of generation and 25% of

distribution facilities are used less than 400 hours per year,

i.e., 5% of the time [2]. To improve the load factor and the

efficiency of electricity, demand response has been proposed to

shape the demand to reduce the peak and smooth the variation

[3], [4], [5], [6], [7]. An alternative strategy for improving

efficiency and reducing cost is to match the demand to the

supply. As the proportion of renewable sources such as solar

and wind power steadily rises, power supply will also become

highly time-varying. Matching demand to supply will become

a more effective and common way to improve power system

efficiency and reduce cost [9].

A key role in demand response is the appropriate market

model which incentivizes users to coordinate. Many pricing

schemes and market model has been proposed from different

perspectives. To name a few, [5], [6], [10] develop autonomous

demand response to reduce the peak using game theoretic
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approaches or real-time pricing, [11] studies the volatility of

the power grids under real-time pricing, [12] proposes robust

pricing schemes, [13] includes demand response to determine

the optimal generation mix, and [14] models the pool-based

demand response. However, there is a lack of work designing

demand response to match the uncertain supply fluctuations.

Moreover, because of the intermittency of the renewable

energy, the self-interested nature of the customers, and the

large scale of the system, it remains as a challenge to design a

simple, flexible and scalable market to guarantee the individual

benefit and the global system efficiency simultaneously.

To overcome this challenge, we consider one abstract retail

market model for demand response to match the supply

fluctuations using a linear supply function bidding. The supply

function model has been used in the wholesale electricity

market [15], [16], [17], [18], [19]. It assumes that each supplier

submits a supply function to an auctioneer, who will set a

uniform market clearing price. Supply function as a strategic

variable allows to adapt better to changing market conditions

(such as uncertain demand) than does a simple commitment

to a fixed price or quantity. It also respects practical informa-

tional constraints in the power network, because a properly-

chosen parameterized supply function “controls” information

revelation. The seminal paper [15] studies the supply function

equilibrium (SFE) and gives conditions for the existence and

the uniqueness of the SFE under uncertain demand. Section

II will discuss more advantages of using the (linear) supply

function bidding.

Motivated by the application of SFE in the wholesale market

for the supply side, we apply the supply function bidding

method to the retail market for demand response. We adopt a

special linear form of parameterized supply functions which

is simple to be implemented as an effective demand response

scheme. However, instead of merely focusing on the existence

of SFE, we study how the cost functions affect the struc-

ture and efficiency (loss) of two different market equilibria

(competitive and oligopolistic equilibria) regarding the global

social welfare. Though [20] also studies the efficiency loss of a

parameterized supply function bidding, we focus on a different

group of supply functions which are more closely aligned with

the electricity market literature and practice. We also propose

distributed algorithms to reach the market equilibria. Lastly, to

the best of our knowledge most of the existing analytic results

on the SFE assumed the quadratic cost function, which we

relax to be general increasing convex cost functions.

Specifically, we consider a situation where there is an

inelastic supply deficit (or surplus) on electricity, and study a

supply function bidding scheme for allocating load shedding
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(or load increasing) among different users to match the supply

deficit (or surplus). Each user submits a parameterized linear

supply function to the utility company and the utility company

decides a market-clearing price based on the bids of users.

Then users are committed to shed (or increase) their loads

according to their bids and the market-clearing price and suffer

disutility/cost from the load adjustment. Note that in order

not to limit the applicability of the market model, we do not

specify the type of users, which could be an aggregrated user,

an industry company, a commercial building, or a residential

household. The bidding process can also be applied in either

forward market or spot market, as long as the objective is to

clear supply deficit (or surplus).

Then we study customers’ behavior in two different markets,

competitive and oligopolistic. 1 In order to study the equilibria

at the two markets, we reverse-engineer the conditions of the

equilibria into optimality conditions of different optimization

problems. Not only do those optimization problems allow us to

characterize the existence of the equilibria, but also facilitate

us to study the structure and efficiency of the equilibria. We

show that in a competitive market the system achieves an

efficient equilibrium that maximizes the social welfare, and in

an oligopolistic market the system achieves a Nash equilibrium

that maximizes another additive, global objective function. We

further show that both of the two market equilibria guaran-

tee the individual rationality and develop distributed supply

function bidding algorithms to achieve those equilibria. Those

algorithms require twoway communication between the utility

company and each user, but they only require to communicate

a very small amount of information and are scalable to large

systems.

Due to customers’ price-anticipating and strategic behavior,

the Nash equilibrium is expected to be less efficient than com-

petitive equilibrium. To analyze the efficiency loss, we then

quantify the differences between the two market equilibria.

Specifically, we find out that

• the set of customers who commit positive load adjustment

at the Nash equilibrium is a superset of that at the

competitive equilibrium;

• the market clearing price at the Nash equilibrium is higher

than that at the competitive equilibrium but the ratio of

the two prices are bounded;

• the total customers’ disutility at the Nash equilibrium is

larger than that at the competitive equilibrium but the

ratio is bounded under certain mild assumptions.

An interesting result is that the differences between the two

market equilibria depend on the heterogeneity of the cus-

tomers’ cost functions. If customers have relatively homoge-

neous cost functions, the differences between the two equilib-

ria tend to be very small. If there are extremely heterogeneous

customers, the quantification of the differences can serve as

1In the competitive market, users are price taking and each one would like
to maximize its net revenue under the given price. The competitive equilibrium
is defined as the point at which each user maximizes its net revenue given the
price and the price clears the market. Whereas, in the oligopolistic market,
users are price anticipating, meaning that they know how their bids determine
the price, and each one would like to maximize its net revenue given others
bidding strategy. The game (Nash) equilibrium is defined as the point at which
each user maximize its net revenue given others bidding profile.

rules of thumb to guide the utility company to limit the market

power of large customers in order to promote social welfare.

For instance, splitting the largest customer or including another

large customer to participate in the demand response will

improve the efficiency of oligopolistic market.

Lastly we discuss a special case where each customer

has a quadratic cost function and we demonstrate that the

“optimal” bidding decision under the two markets are both

independent of the value of supply fluctuations. 2 As a result,

to determine the bidding decision, there is no need for the

utility company and customers to know the precise value of

the supply fluctuations. This is a very appealing property

for the system operation (for both the utility company and

the customers) because it is difficult to estimate the supply

fluctuation precisely due to various uncertainties in power

networks. For instance, it may be difficult to estimate or predict

the power generation from the solar or wind farm accurately.

Moreover, this property also implies that one bidding strategy

can be used by the customers and the utility company over

multi time periods instead of just for one event because the

same bidding strategy is optimal at each time period.

The paper is organized as follows. Section II introduces the

supply bid function model for matching the demand to the

supply; Section III characterizes the competitive equilibrium

where each customer is price taking; Section IV characterizes

the game equilibrium where each customer is price antic-

ipating; Section V studies the efficiency loss of the game

equilibrium; Section VI discuss a special case where each

customer has a quadratic cost function; and lastly Section VII

provide case studies to complement the analysis.

II. SYSTEM MODEL: MATCHING THE SUPPLY

We consider a situation where there is a supply “deficit” or

“surplus” on electricity. The deficit can be due to a decrease in

power generation from, e.g., a wind or solar farm because of

a change to worse weather condition, or an increase in power

demand because of, e.g., a hot weather. The surplus can be

due to an increase in power generation from, e.g., a wind or

solar farm because of a change to better weather condition, or

a decrease in power demand at, e.g., the late night time. We

assume that it is very costly to increase the power supply in the

case of a deficit or decrease the supply in the case of a surplus,

i.e., the power supply is inelastic. If the utility company has

good estimation of electricity deficit or surplus, the utility

company can match the supply by customers shedding or

increasing their loads. In the following we focus on the case

with a supply deficit and consider a bidding scheme for the

demand response over the distribution networks. The case with

a supply surplus can be handled in the same way.

Consider a retail power market with a set N :=
{1, 2, . . . , |N |} of customers that are served by one utility

company (or generator). Here a customer can be a single

residential or commercial customer, or represent a group

of customers that acts as a single demand response entity.

Associated with each customer i ∈ N is a load qi that it is

2This result is consistent with the literature on supply function equilibrium
[15].
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willing to shed in a demand response system. We assume that

the total load shed needs to meet a specific amount d > 0 of

electricity supply deficit, i.e.,
∑

i

qi = d. (1)

Assume that customer i incurs a cost (or disutility) Ci(qi)
when it sheds a load of qi. We assume that cost function Ci(·)
is continuous, strictly increasing, convex, and with Ci(0) = 0.

We consider a market mechanism for the load shedding al-

location, based on supply function bidding [15]. For simplicity

of implementation of the demand response scheme, we assume

that each customer’s “supply” function (for load shedding) is

parameterized by a single parameter bi ≥ 0, i ∈ N , and takes

the form of

qi(bi, p) = bip, i ∈ N. (2)

The supply function qi(bi, p) gives the amount of load cus-

tomer i is committed to shed when the price is p,3 Note that

the linear supply function form gives bi a nature interpretation

as being the sensitivity of customer i’s decision to the market

price.

The utility company will choose a price p that clears the

market, i.e.,
∑

i

qi(bi, p) =
∑

i

bip = d, (3)

from which we get

p(b) =
d

∑

i bi
. (4)

Here b = (b1, b2, · · · , b|N |) is the supply function profile.4

Before closing this section, we would like to comment on

the linear supply function bidding.

A. Why supply function bidding?

Supply function as a strategic variable allows to adapt

better to changing market conditions (such as uncertain and

stochastic supply) than does a simple commitment to a fixed

price or quantity [15], because no matter what the value of

the supply deficit is, the utility company can use the supply

function bid by the customers to clear the deficit. This is

one reason why we use supply function bidding, as we will

further study demand response under uncertain power network

conditions. We will show later that if the cost function is

quadratic, the “optimal” bidding strategy is independent of

d for both competitive and oligopolistic market. Therefore

3Note that in practice a customer usually has a capacity limit, e.g. q̄i, on the
load that she is able to shed. For the purpose of carrying out the closed form
analysis, especially on the effect of cost functions on customer behaviors, we
do not explicitly consider the capacity limit in this paper. As a result, our
model only holds if we assume that the total supply deficit d is small enough
and each customer represents an aggregate of users who has a large capacity
limit. For the scenarios where the capacity limits are important, one way to
incorporate the capacity limits is to translate the capacity constraint into a
cost function, e.g., ci(qi − q̄i) which is added into the original cost function
Ci(qi). If the weight on the cost function ci(qi − q̄i) is large enough, the
demand response solution will satisfy the capacity limit constraint [21].

4We note that p is not well defined if
∑

i bi = 0. Thus we assume that
the utility company will reject the bid if

∑
i bi = 0.

this supply function bidding strategy can be applied to handle

the uncertainty caused by renewable energy and also can

be used over multi time periods. This property is consistent

with the existing literature on supply function equilibrium in

electricity market [15]. The other motivation to use supply

function is to respect practical informational constraints in

the power network. A customer might not want to reveal its

cost function because of incentive or security concerns which

means more communication. A properly-chosen parameter-

ized supply function “controls” information revelation while

requires less communication.

B. Why linear supply function?

Most existing literature on supply function bidding [15],

[16], [17], [18], [19] used the general function as the bidding

strategy. When the bidding action is changed from the linear

form (represented by the single variable, bi,) to a general form,

the analysis of the strategic behavior of agents becomes much

more complicated. To solve the general supply function equi-

librium (SFE) requires solving a set of differential equations.

To the best of our knowledge, there are only existence results

about the SFE while assuming the agents are symmetric (i.e.,

with the same cost function) or assuming there are only two

asymmetric agents. For practical applications, the asymmetric

case is more interesting. The greatest advantage of using linear

supply function over the general forms is the ability to handle

asymmetric agents when there are more than two strategic

agents. Moreover, as shown in our paper, the linear supply

function allows us to get a closed form characterization for

the structure and efficiency of the market equilibria, which

could be impossible to get if using the general supply function.

The closed form analysis is not only of academic interest, but

also appeals to the practical applications because 1) it tells the

utility company and customers what they expect if joining the

demand response, helping them decide whether they should

join the demand response, and 2) it can be used to guide the

utility company to design demand response to improve the

system efficiency.

III. COMPETITIVE EQUILIBRIUM: OPTIMAL DEMAND

RESPONSE

In this subsection, we consider a competitive market where

customers are price taking. Given price p, each customer i
maximizes its net revenue

max
bi≥0

pqi(bi, p)− Ci(qi(bi, p)), (5)

where the first term is the customer i’s revenue when it sheds

a load of qi(bi, p) at a price of p and the second term is the

cost incurred.

A. Competitive equilibrium

We now analyze the competitive equilibrium of the demand

response system.

Definition 1 A competitive equilibrium for the demand re-

sponse system is defined as a tuple {(b̄i)i∈N , p̄} such that
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b̄i is optimal in (5) for each customer i given the price p̄ and
∑

i qi(b̄i, q̄) = d.

The following result shows the existence and uniqueness

of such competitive equilibrium, and it also shows that the

equilibrium is efficient in terms of maximizing social welfare.

Theorem 1 The competitive equilibrium {(b̄i)i∈N , p̄} for the

demand response system exists. Moreover, the equilibrium is

efficient, i.e., (q̄i)i∈N =
(

qi(b̄i, q̄i)
)

i∈N
maximizes the social

welfare:

max
qi≥0

∑

i

−Ci(qi) (6a)

s.t.
∑

i

qi = d. (6b)

If the cost function Ci(qi) is strictly convex, then the compet-

itive equilibrium is unique.

Proof: Definition 1 tells that {(b̄i)i∈N , p̄} is a competi-

tive equilibrium if and only if:

(C′
i(qi(b̄i, p̄))− p̄)(bi − b̄i) ≥ 0, ∀bi ≥ 0, (7a)

∑

i

qi(b̄i, p̄) = d. (7b)

Here (7a) is from the optimality condition [21] of the con-

vex optimization problem (5) and (7b) is directly from the

definition 1.

Notice that p̄ ≥ 0. Multiplying p̄ to equation (7a), we get

(C′
i(q̄i)− p̄)(qi − q̄i) ≥ 0, ∀qi ≥ 0, (8a)

∑

i

q̄i = d. (8b)

This is just the KKT optimality condition of optimization

problem (6) [22]. Hence (qi)i∈N maximize the social welfare.

And if {(q̄i)i∈N , p̄} is an optimal primal-dual solution of (6),

{(b̄i := q̄i/p̄)i∈N , p̄} satisfies (7) which tells that {(b̄i)i∈N , p̄}
is a competitive equilibrium.

If Ci(qi) is strictly convex for each customer i, then the

social welfare maximization is a strictly convex problem. Thus

there exists a unique optimal solution (q̄i)i∈N . Moreover, (8a)

tells that p̄ = C′
i(q̄i) for any q̄i > 0, implying that p̄ is unique

as well. Thus we know that equilibrium is unique.

Based on this optimization problem characterization, we

further study how a cost function affects a customer’s demand

response at a competitive equilibrium. For each customer i,
define the base load shedding marginal cost as C0

i = C′
i(0

+).
Without loss of generality, we assume that C0

1 ≤ C0
2 ≤ . . . ≤

C0
|N |. For later convenience, we also introduce one virtual

parameter C0
|N |+1 and define C0

|N |+1 = C′
n(d). Therefore we

have C0
1 ≤ C0

2 ≤ . . . ≤ C0
|N | ≤ C0

|N |+1.

Theorem 2 Let {(b̄i)i∈N , p̄} be a competitive equilibrium and

q̄i = qi(b̄i, p̄) be the corresponding load shed by i ∈ N . The

set of customers that shed a positive load at the equilibrium,

i.e. {i : q̄i > 0}, is N̄ = {1, 2, · · · , n̄} with a n̄ that satisfies:

n̄
∑

i

(C′
i)

−1(C0
n̄) ≤ d ≤

n̄
∑

i

(C′
i)

−1(C0
n̄+1). (9)

Moreover, the price p̄ satisfies:

C0
n̄ ≤ p̄ ≤ C0

n̄+1 (10)

and for any i ∈ N̄ , p̄ = C′
i(q̄i).

Proof: From the proof of Theorem 1, we know that

{p̄, (q̄i)i∈N} satisfies Condition (8). From (8a), we know that,

for any i ∈ N ,

i) if q̄i > 0, then p̄ = C′
i(q̄i) ≥ C′

i(0);
ii) if q̄i = 0, then p̄ ≤ C′

i(q̄i) = C′
i(0)

Thus we know that all the customers who shed a positive

load have a smaller C0
i := C′

i(0) than those who do not shed

any load. Since C0
i is increasing in i, N̄ takes the form of

1, 2, · · · , n̄. If n̄ < |N |, Condition i) and ii) implies that

C0
n̄ ≤ p̄ ≤ C0

n̄+1.

If n̄ = |N |, p̄ = C′
|N |(q̄|N |) ≤ C′

|N |(d) = C0
n̄+1, thus:

C0
n̄ ≤ p̄ ≤ C0

n̄+1.

Note that C′
i(qi) is an increasing function. Hence,

n̄
∑

i

(C′
i)

−1(C0
n̄) ≤

n̄
∑

i

(C′
i)

−1(p̄) ≤
n̄
∑

i

(C′
i)

−1(C0
n̄+1),

which is,

n̄
∑

i

(C′
i)

−1(C0
n̄) ≤

n̄
∑

i

q̄i = d ≤
n̄
∑

i

(C′
i)

−1(C0
n̄+1).

This theorem says that the competitive equilibrium has a

water-filling structure. The base load shedding marginal cost

C′
i(0) determines whether the customer i sheds its load or not.

The higher the marginal cost at zero, the less likely they will

join the demand response. Moreover, those customers who join

the demand response at competitive equilibrium have a same

marginal cost.

Moreover, this theorem also implies the following corollary,

which tells that the individual rationality is guaranteed at the

competitive equilibrium.

Corollary 1 Any customer who sheds a positive load receives

positive net revenue at the competitive equilibrium, i.e. p̄q̄i −
Ci(q̄i) ≥ 0 for all i ∈ N̄ .

Proof: From Theorem 2, we know that for all i ∈ N̄ ,

p̄ = C′
i(q̄i). Notice that Ci(·) is a convex function. Thus

Ci(q̄i)− Ci(0) ≤ C′
i(q̄i)q̄i.

As Ci(0) = 0, we have Ci(q̄i) ≤ p̄q̄i. The statement follows.
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B. Distributed supply function bidding

Demand response usually involves a large number of cus-

tomers who are unwilling to reveal their cost functions due

to privacy and security reasons. This motivates the needs of

distributed supply function bidding where the utility company

sets the price and customers submit a bid based on the price.

Such bidding schemes require only light communication and

computation and can be easily scaled to large systems. Note

that the social welfare problem (6) can be easily solved in

a distributed way by the dual gradient algorithm [22] or

the alternative direction multiplier method (ADMM) [23].

This suggests an iterative, distributed supply function bidding

scheme to achieve the market equilibrium for demand response

given that customers are price-takers. As an example, we

adopt the dual-gradient algorithm and design the following

distributed supply function bidding scheme. Similar ideas can

be applied to other distributed optimization methods.

Initially, the utility company randomly picks a price p(0)
and announces the price to each customer over the communi-

cation network. Set the iteration step k = 0. At k-th iteration:

• Upon receiving price p(k) announced by the utility com-

pany, each customer i updates its supply function, i.e.,

bi(k), according to

bi(k) = [
(C′

i)
−1(p(k))

p(k)
]+, (11)

and submits it to the utility company. Here ‘+’ denotes the

projection onto R+, the set of nonnegative real numbers.

• Upon gathering bids bi(k) from customers, the utility

company updates the price according to

p(k + 1) = [p(k)− γ(
∑

i

bi(k)p(k)− d)]+, (12)

and announces the price p(k+1) to the customers. Here

γ > 0 is a constant stepsize.

• Set k + 1← k and repeat

When γ is small enough, the above algorithm converges to

the competitive equilibrium under some assumptions of the

cost function Ci.
5 As for the stopping criterion, we can pre-

scribe an accuracy error ǫ. Whenever |p(k)−p(k−1)| < ǫ, the

iteration stops. Generally speaking, if the algorithm converges,

then the larger γ is, the faster the algorithm converges. The

following theorem provides one way to choose the stepsize to

guarantee the convergence of the algorithm assuming that Ci

is strictly convex and twice continuously differentiable.

Theorem 3 Assume Ci(qi) is twice continuously differen-

tiable and there exists a αi > 0 such that ∇2Ci(qi) ≥ αi for

all qi ≥ 0. If 0 < γ < 2∑
α−1

i

, the above algorithm converges

to the competitive equilibrium.

Proof: Let qi(k) := bi(k)p(k). Firstly we note that (11)

implies that qi(k) is the optimal value of minqi≥0 Ci(qi) −
qip(k). Therefore the above algorithm is actually the dual

gradient algorithm of solving the optimization problem (6)

and p(k) corresponds to the dual variable at each iteration.

5For instance, assume Ci is strictly convex.

Denote the Lagragian dual function as φ(p). Using the results

in Chapter 6.1 of [21], we know that φ(p) is a strictly

concave function, φ(p(k)) =
∑

i d − qi(k), and ∇2φ(p) =
−∑

i(∇2Ci(qi))
−1 ≥ −∑

i α
−1
i . Therefore, using proposi-

tion A.24 in [21], we have

φ(p(k + 1)) ≥ φ(p(k)) + (p(k + 1)− p(k))φ′(p(k))

−
∑

i α
−1
i

2
(p(k + 1)− p(k))2. (13)

By the projection theorem (Proposition 2.1.3 in [21]), we

know that,

(p(k) + γφ′(p(k))− p(k + 1))(p(k)− p(k + 1)) ≤ 0. (14)

Combining (13) and (14), we have,

φ(p(k + 1)) ≥ φ(p(k)) +

(

1

γ
−

1

2

∑

i

α
−1

i

)

(p(k + 1)− p(k))2

Therefore, if 0 < γ < 2∑
i
α−1

i

, φ(p(k + 1)) ≥ φ(p(k)) at

each iteration k and the equality holds if and only if p(k) =
p(k + 1), implying that φ′(p(k)) = 0, i.e. p(k) is the optimal

price. The rest of the proof follows the standard convergence

argument for gradient algorithm [21], [24] which we omit here.

As shown in the proof of the theorem, the supply function

bidding scheme is equivalent to the dual gradient algorithm

of (6). Therefore, the bidding scheme converges at the same

speed as the dual gradient algorithm which is usually at a

linear rate. We refer readers to [21], [24] for more details.

[21], [24] also discuss other criteria for choosing the stepsize

γ to guarantee the convergence. Note that this bidding scheme

requires only light communication and computation, and will

converge in short time with modern communication and com-

puting technologies even for a very large network (see Section

VII for numerical studies.). The utility company and customers

jointly run the market (i.e., the iterative bidding scheme) to

find equilibrium price and allocation before the actual action

of load shedding.

IV. STRATEGIC DEMAND RESPONSE IN AN OLIGOPOLISTIC

MARKET

In this section, we consider an oligopolistic market where

customers know that price p is set according to (4) and behave

strategically. Denote the supply function for all customers but i
by b−i = (b1, b2, · · · , bi−1, bi+1, · · · , b|N |) and write (bi, b−i)
for the supply function profile b. Each customer i chooses bi to

maximize its own net benefit ui(bi, b−i) given others’ bidding

strategy b−i,

ui(bi, b−i) = p(b)qi(p(b), bi)− Ci(qi(p(b), bi))

=
d2bi

(
∑

j bj)
2
− Ci(

dbi
∑

j bj
). (15)

Here the second equality is obtained by substituting the market

clearing price p(b) = d∑
i
bi

and the linear supply bidding

function qi(p(b), bi) = bip(b) into the first equality. As a

result, the net benefit functions {ui(bi, b−i)}i∈N define a

demand response game among customers.
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1) Game-theoretic equilibrium: We now analyze the equi-

librium of the demand response game. The solution concept

we use is the Nash equilibrium [25].

Definition 2 A supply function profile b∗ is a Nash equilib-

rium if for all customers i ∈ N ,

ui(b
∗
i , b

∗
−i) ≥ ui(bi, b

∗
−i), ∀bi ≥ 0.

We see that the Nash equilibrium is a set of strategies for

which no player has an incentive to change unilaterally. In the

following, we will characterize the existence and structure of

the Nash equilibrium.

Lemma 1 If b∗ is a Nash equilibrium of the demand response

game, then
∑

j 6=i b
∗
j > 0 for any i ∈ N .

Proof: We prove the result by contradiction. Suppose

that it does not hold, and without loss of generality, assume

that
∑

j 6=i b
∗
j = 0 for a customer i. Then, the payoff for the

customer i is ui(b
∗
i , b

∗
−i) = 0 if b∗i = 0, and ui(b

∗
i , b

∗
−i) =

d2/b∗i − Ci(d) if b∗i > 0. We see that when b∗i = 0, the

customer i has an incentive to increase it, and when b∗i > 0
the customer has an incentive to decrease it. Hence, there is

no Nash equilibrium with
∑

j 6=i b
∗
j = 0.

The above Lemma also implies the following lemma:

Lemma 2 If b∗ is a Nash equilibrium, then at least two

customers have b∗i > 0.

Let B−i =
∑

j 6=i bj . We further have the following charac-

terization for a Nash equilibrium.

Lemma 3 If b∗ is a Nash equilibrium of the demand response

game, then b∗i < B∗
−i =

∑

j 6=i b
∗
j for any i ∈ N , and

thus, each customer will shed a load of less than d/2 at the

equilibrium.

Proof: From (15), we can derive:

∂ui(bi, b−i)

∂bi
=

d2(B−i − bi)

(B−i + bi)3
−

dB−i

(B−i + bi)2
C

′

i(
dbi

B−i + bi
)

=
d2

(B−i + bi)2
[
B−i − bi

B−i + bi
−

B−i

d
C

′

i(
dbi

B−i + bi
)]. (16)

The first term in the square bracket is no greater than 1 and

strictly decreasing in bi; the second term is increasing in bi.
So, if

B−i

d C′
i(0) ≥ 1, ∂

∂bi
ui(bi, b−i) ≤ 0 for all bi, and

bi = 0 maximizes the customer i payoff ui(bi, b−i) for the

given b−i. If
B−i

d C′
i(0) < 1, ∂

∂bi
ui(bi, b−i) = 0 only at one

point bi > 0. Furthermore, note that ∂
∂bi

ui(0, b−i) > 0 and
∂
∂bi

ui(B−i, b−i) < 0. So, this point bi maximizes the customer

i payoff ui(bi, b−i) for the given b−i.

Thus, at the Nash equilibrium for the demand response

game, b∗ satisfies

b∗i = 0, (17)

if
B∗

−i

d C′
i(0) ≥ 1; and otherwise,

B∗

−i − b∗i
B∗

−i + b∗i
−

B∗

−i

d
C

′

i(
db∗i

B∗

−i + b∗i
) = 0. (18)

Given a Nash equilibrium, b∗, (i) if b∗i = 0, then b∗i < B∗
−i

from Lemman 1; (ii) otherwise, b∗i satisifies (18). Note that the

second term on the left hand side of equation (18) is positive.

So the first term must be positive as well, which requires

B∗
−i > b∗i . Because for each customer i, q∗i = b∗i

d
b∗
i
+B∗

−i

, each

customer will shed a load of less than d
2 at the equilibrium.

The following result follows directly from Lemma 3.

Corollary 2 No Nash equilibrium exists when |N | = 2.

Using the conditions in (17) and (18), we can charaterize

the existence and structure of the Nash equilibrium in the

following theorem.

Theorem 4 Assume |N | ≥ 3. The demand response game has

a unique Nash equilibrium. Moreover, the equilibrium solves

the following convex optimization problem:

min
0≤qi<d/2

∑

i

Di(qi) (19a)

s.t.
∑

i

qi = d, (19b)

with

Di(qi) = (1 +
qi

d− 2qi
)Ci(qi)−

∫ qi

0

d

(d− 2xi)2
Ci(xi)dxi.

Proof: First, note that

D′
i(qi) = (1 +

qi
d− 2qi

)C′
i(qi), (20)

which is a positive, strictly increasing function in qi ∈ [0, d/2).
So, Di(qi) is a strictly increasing and strictly convex function

in [0, d/2). Because Di(qi) =
∫ qi
0

D′
i(xi)dxi ≥ C′

i(0)
∫ qi
0
(1+

xi

d−2xi
)dxi = C′

i(0)
∫ qi
0 (12 + d/2

d−2xi
)dxi = C′

i(0)(
1
2qi −

d
4 log (d− 2xi)). Therefore limqi→

d

2

Di(qi) = ∞. Thus the

optimization problem (19a)-(19b) is a strictly convex problem

and has a unique optimal solution (see Appendix). Based on

the optimality condition [21] and after a bit mathematical

manipulation, the unique solution q∗ is determined by

(p∗ − (1 +
q∗i

d− 2q∗i
)C′

i(q
∗
i ))(qi − q∗i ) ≤ 0, ∀qi, (21)

∑

i

q∗i = d, (22)

p∗ > 0. (23)

Second, note that the Nash equilibrium condition (17)-(18) can

be written compactly as

(
d

B∗
−i + b∗i

− B∗
−i

B∗
−i − b∗i

C′
i(

db∗i
B∗

−i + b∗i
))(bi − b∗i ) ≤ 0, ∀bi. (24)

Recall that the (Nash) equilibrium price p∗ = d/
∑

i b
∗
i

and (Nash) equilibrium allocation q∗i = b∗i p
∗. We can write

equation (24) as

(p∗ − (1 +
q∗i

d− 2q∗i
)C′

i(q
∗
i ))(bip

∗ − q∗i ) ≤ 0. (25)
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Note that at the Nash equilibrium, p∗ > 0 since
∑

i b
∗
i >

0 by Lemma 1. So, the above equation is equivalent to

equation (21). Thus, the Nash equilibrium of the demand

response game satisfies the optimality condition (21)-(23), and

solves the optimization problem (19a)-(19b). The existence

and uniqueness of the Nash equilibrium is a result of the

existence and uniqueness of the optimal solution of (19a)-

(19b).

Remark 1 Theorem 4 can be seen as reverse-engineering

from the game-theoretic equilibrium into a global optimization

problem.

Similarly as in Section III, we study how a cost function

affects a customer’s demand response at the Nash equilibrium

using this optimization problem characterization. Recall that

the based load shedding marginal cost C0
i is defined as

C0
i = C′

i(0
+) and without loss of generality, we assume that

C0
1 ≤ C0

2 ≤ . . . ≤ C0
|N |. Notice that C′

i(0
+) = D′

i(0
+).

For convenience, the virtual parameter C0
|N |+1 is defined

as C0
|N |+1 = maxi D

′
|N |(d/3) for the following theorem.

Therefore we have C0
1 ≤ C0

2 ≤ . . . ≤ C0
|N | ≤ C0

|N |+1.

Theorem 5 Assume |N | ≥ 3. Let {(b∗i )i∈N} be a Nash

equilibrium, p∗ = d/
∑

i b
∗
i be the Nash equilibrium price,

and q∗i = b∗i p
∗) be the corresponding load shed by i ∈ N .

The set of customers that shed a positive load at the Nash

equilibrium, i.e. {i : q∗i > 0}, is N∗ = {1, 2, · · · , n∗} with a

unique n∗ that satisfies

n∗

∑

i

(D′
i)

−1(C0
n∗) < d ≤

n∗

∑

i

(D′
i)

−1(C0
n∗+1) (26)

Moreover, the price p∗ satisfies

C0
n∗ < p∗ ≤ C0

n∗+1. (27)

and for any i ∈ N∗, p∗ = D′
i(q

∗
i ).

Proof: Noe that D′
i(qi) is an strictly increasing function

of qi and D′
i(0) = C′

i(0). The proof follows the same

argument as in Theorem 2.

This theorem says that the Nash equilibrium also has a

water-filling structure. The base load shedding marginal cost

C′
i(0) also determines whether a customer i sheds its load

or not at the Nash equilibrium. The higher the marginal cost

at zero, the less likely they will join the demand response.

Moreover, those customers who join the demand response at

competitive equilibrium have a same modified marginal cost.

This theorem also implies that the individual rationality

is guaranteed at the Nash equilibrium as shown in the next

corollary.

Corollary 3 Any customer who shed a positive load at the

Nash equilibrium receives positive net revenue, i.e. p∗q∗i −
Ci(q

∗
i ) > 0 for all i ∈ N∗.

Proof: From Theorem 5, we know that for all i ∈ N̄ ,

p∗ = D′
i(q

∗
i ). Notice that Di(·) is a strictly convex function.

Thus

Di(q
∗
i )−Di(0) < D′

i(q
∗
i )q

∗
i .

Because Di(0) = 0, Di(q) > Ci(q), we have,

Ci(q
∗
i ) < p∗q∗i .

The statement follows.

Note that Corollary 1 and Corollary 3 justify the rationality

of customers to join the demand response scheme because

there is no revenue loss in both markets.

Though Theorem 5 and Corollary 3 tell that the Nash

equilibrium and the competitive equilibrium share similar

properties, we will show in the next section that the two

equilibria are different in many perspectives especially in terms

of system efficiency.

A. Distributed supply function bidding

Theorem 4 says that we can solve the Nash equilibrium

of the demand response game by solving convex optimization

problem (19a)-(19b). Therefore, we can apply the same idea

used in III-B and design the following distributed supply

function bidding scheme to reach the Nash equilibrium.

At k-th iteration:

• Upon receiving price p(k) announced by the utility com-

pany, each customer i updates its supply function, i.e.,

bi(k), according to

bi(k) = [
(D′

i)
−1(p(k))

p(k)
]+, (28)

and submits it to the utility company.

• Upon gathering bids bi(k) from customers, the utility

company updates the price according to

p(k + 1) = [p(k)− γ(
∑

i

bi(k)p(k)− d)]+, (29)

and announces price p(k + 1) to customers.

All the convergence results discussed in Section III-B apply

to the above algorithm. Thus we omit the duplication here.

Note that the distributed convergence to the Nash equilibrium

is a difficult problem in general, because of informational

constraints in the system. Here we involve the utility company

in mediating strategic interaction among customers (equation

(29)) in order to achieve the equilibrium in a distributed

manner. The strategic action of the customer is also partially

encapsulated in equation (28).

V. EFFICIENCY LOSS OF THE NASH EQUILIBRIUM

We have shown that the competitive equilibrium maximizes

the social welfare. By contrast, due to customers’ price-

anticipating and strategic behavior, the Nash equilibrium is

expected to be less efficient. Though supply function bidding

has been applied in electricity market in practice [16], [17],

[18], [19], [20], there is a lack of work studying the efficiency

loss of Nash equilibria. In this section, we demonstrate that

if customers have extremely heterogeneous cost functions, the

efficiency loss of the Nash equilibrium may be infinite. Here

the efficiency loss is defined as the ratio of the total disutility at

the Nash equilibrium to the minimum total disutility. However,

under certain mild assumptions the efficiency loss is bounded.

We provide a closed form characterization for the bound,
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which can serve as a guideline for the utility company to limit

market power of certain customers in order to promote global

social welfare. For instance, splitting the largest customer or

including another large customer to participate in the demand

response will improve the efficiency of the oligopolistic mar-

ket.

Specifically, we will first use a 3 customer case to show

that the efficiency loss may be unbounded if one customer

has extremely low cost compared with others; and then we

will provide a general characterization of the efficiency loss

of the Nash equilibrium.

A. A special case with 3 customers

Consider a scenario where there are only 3 customers with

cost functions being c1(q) = 1
2r cq

2, c2(q) = c3(q) = 1
2cq

2

respectively. Here c and n are constant parameters.

Firstly, through Theorem 2, we can calculate the competitive

equilibrium, which is given by q̄1 = r
r+2d, q̄2 = q̄3 = 1

r+2d,

p̄ = cq̄ = r
r+2cd.

Similarly, through Theorem 4, we can calculate the game

Nash equilibrium, which is given by q∗1 =
−r+
√

(16+9r)r

4(2+r) d,

q∗2 = q∗3 =
8+5r−

√
(16+9r)r

8(2+r) d, p∗ =
D−q∗

1

D−2q∗
1

q∗1 .

Let r→∞, for the competitive equilibrium, we have q̄1 →
d, q̄2, q̄3 → 0, p̄ → cd and total cost C̄ → 0; for the Nash

equilibrium, we have q∗1 → d
2 , q∗2 , q

∗
3 → d

4 , p∗ → ∞, and

total cost C∗ → cd2

4 . Therefore we know that p∗

p → ∞ and
C∗

C →∞.

From this simple case, we see that if there exist customers

with extremely heterogeneous cost functions, the efficiency

loss of the Nash equilibrium may be unbounded.

B. General characterization

Now we provide a general characterization of the efficiency

loss of the Nash equilibrium. Besides that, we also compare

other differences between the competitive equilibrium and

Nash equilibrium.

Theorem 6 Let {(b̄i)i∈N , p̄} be a competitive equilibrium,

{(b∗i )i∈N} be a Nash equilibrium and p∗ be the corresponding

price at the Nash equilibrium, we have:

1) N̄ ⊆ N∗, where N̄ := {i : q̄i := bip̄ > 0} is the set of

customers who shed a positive load at the competitive

equilibrium; and N∗ := {q∗i := b∗i p
∗ > 0} is the

set of customers who shed a positive load at the Nash

equilibrium.

2) p̄ ≤ p∗ ≤ n−1
n−2

M
m p̄, where M := maxi∈N C′

i(
d
n ); m :=

mini∈N C′
i(

d
n ).

3) C̄ ≤ C∗, and if we further assume q̄max := maxi q̄i <
d
2 ,

then we have

C∗ ≤ (1 +
q̄max

d− 2q̄max

)C̄.

Here C̄ =
∑

i Ci(q̄i) be the total social cost at the

competitive equilibrium and C∗ =
∑

i Ci(q
∗
i ) is the

total cost at the Nash equilibrium.

Before providing a proof of the theorem, we interpret the

three conditions as follows:

• Condition 1) means that the set of the customers who

shed a positive load at the Nash equilibrium is a superset

of that at the competitive equilibrium.

• Condition 2) means that the price at the Nash equilibrium

is higher than that at the competitive equilibrium, but the

ratio between the two prices are bounded.

• Condition 3) means that the total cost at the Nash equi-

librium is higher than that at the competitive equilibrium,

but the ratio between the two costs are bounded provided

that no one shed more than half of the total load at the

competitive equilibrium.

Proof: Notice that D′
i(qi), C

′
i(qi) are both strictly in-

creasing function and D′
i(qi) ≥ C′

i(qi) for any qi ∈ [0, d2 ).
For any i ∈ N̄ , (D′

i)
−1(p̄) ≤ C′−1

i (p̄).
Suppose p∗ < p̄. Because C0

n∗ ≤ p∗ ≤ C0
n∗+1, C0

n̄ ≤ p̄ ≤
C0

n̄+1, and C0
1 ≤ C0

2 ≤ · · · ≤ C0
n, we have n∗ ≤ n̄. Therefore

n∗

∑

i

(D′
i)

−1(p∗) <

n∗

∑

i

(D′
i)

−1(p̄)

≤
n∗

∑

i

(C′
i)

−1(p̄) ≤
n̄
∑

i

(C′
i)

−1(p̄) = d.

which contradicts that
∑n∗

i (D′
i)

−1(p∗) = d. Thus p∗ ≤ p̄.

Therefore n̄ ≤ n∗, implying that N̄ ⊂ N∗.

If n∗ < n, then p∗ ≤ D′
n∗+1(0) ≤ D′

n∗+1(
d
n ) =

n−1
n−2C

′
n∗+1(

d
n ) ≤ n−1

n−2M . If n∗ = n, then there exist one

customer j such that 0 < q∗j ≤ d
n . Thus p∗ = D′

j(q
∗
j ) ≤

D′
j(

d
n ) ≤ n−1

n−2M . In summary,

p∗ ≤ n− 1

n− 2
M. (30)

On the other side, there exists at least one customer j such

that C′
j(q̄i) = p̄ and q̄i ≥ d

n . Therefore,

p̄ ≥ C′
j(
d

n
) ≥ m. (31)

Combining (30) and (31) gives

p∗ ≤ n− 1

n− 2

M

m
p̄.

Lastly C̄ ≤ C∗ comes from the fact that (q̄i)i∈N is an

optimal solution of optimization problem (6a) as shown in

Theorem 1.

If q̄max < d
2 , then

∑

iDi(q
∗
i ) ≤

∑

i Di(q̄i) since (q∗i )i∈N

is an optimal solution of problem (19). It is straightforward to

check that Di(q̄i) ≤ (1 + q̄i
d−2q̄i

)Ci(q
∗
i ). Thus

∑

i

Di(q
∗
i ) ≤ (1 +

q̄max

d− 2q̄max

)C̄.

On the other hand, for any qi <
d
2 ,

Di(qi) = (1 +
qi

d− 2qi
)Ci(qi)−

∫ qi

0

d

(d− 2xi)2
Ci(xi)dxi

≥ (1 +
qi

d− 2qi
)Ci(qi)−Ci(qi)

∫ qi

0

d

(d− 2xi)2
dxi

≥ (1 +
qi

d− 2qi
)Ci(qi)−Ci(qi)

qi

d− 2qi
≥ Ci(qi).
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therefore,

C∗ =
∑

i

Ci(q
∗
i ) ≤

∑

i

Di(q
∗
i ) ≤ (1 +

q̄max

d− 2q̄max

)C̄.

From this theorem, we see that as long as there are no one

shed more than one third of the total loads at the competitive

equilibrium, the efficiency loss C∗

C is bounded by 3/2. The

former condition can be guaranteed if there are at least 3

customers having comparably low cost.

Another interesting result which can be derived from Theo-

rem 2 and Theorem 5 is that if the customers are homogeneous

(i.e., symmetric), the differences between the two market

equilibria are small. This is shown in the following corollary.

Corollary 4 Assume that all the customers have a same cost

function. Then we have

1) p∗ = n−1
n−2 p̄. As n→∞, p∗ → p̄

2) C∗ = C̄. As n→∞,C∗ → C̄.

Proof: Using Theorem 2 and Theorem 5, we know that if

all the customers have a same cost function, then q̄i = q∗i = d
n .

Therefore C∗ = C̄ and p∗ = (1 +
d

n

d− 2d

n

)C′( dn ) =
n−1
n−2 p̄.

Note that customers are relatively homogeneous in demand

response, especially residential demand response. Therefore,

applying the supply function bidding scheme will guarantee

the efficiency of the demand response no matter whether the

customers are price-taking or price-anticipating. In Section VII

we will further discuss the effects of the heterogeneity of cost

functions on the efficiency loss of Nash equilibrium using

concrete case studies.

VI. A SPECIAL CASE WITH QUADRATIC COST FUNCTION

A common cost function that has been used in existing

literature and even in practice is the quadratic cost function

[15], [16], [17], [18], [19], i.e. Ci(q) = 1
2ciq

2. Existing

literature has focused on the existence of supply function equi-

libirum(SFE) given an uncertain d or a time sequence of d(t)
where t ∈ T and T has multi time periods. It is shown that if

the cost function is in quadratic form, then a supply function

equilibrium exists and it is independent of d. However, those

literature often require relevant complicated analysis to show

the existence of such SFE and it is more complicated to

characterize the properties of such SFE. We have adopted

a different approach to study the strategic behavior among

customers and obtained an optimization characterization for

the Nash equilibrium. As SFE is defined in a similar way to

Nash equilibrium, we would expect that our analysis will lead

to a same property of the Nash equilibrium given quadratic

cost functions. In the following, we will show that the bidding

strategy at the Nash equilibrium is independent of d if every

customer’s cost function is quadratic.

Now suppose Ci(q) = 1
2ciq

2 for each i. The following

theorem characterizes the competitive equilibrium and the

Nash equilibrium.

Theorem 7 Suppose each customer has a quadratic cost

function, i.e. Ci(q) =
1
2 ciq

2 for each i. i

1) {
(

b̄i
)

i∈N
, p̄} is a competitive equilibrium if and only if

b̄i =
1
ci

.

2) {(b∗i )i∈N} is a Nash equilibrium if and only if

{(b∗i )i∈N} satisfies the following equalities,

b∗i = (1− cib
∗
i )B

∗
−i, ∀i ∈ N. (32)

Proof: It is straightforward to get the first statement.

The second statement follows by substituting C′
i(qi) = ciqi

into equation (18).

This theorem tells that given quadratic cost functions, the

customers’ optimal bidding strategy is independent of d either

in competitive market or oligopolistic market. As a result,

to determine the bidding decision, there is no need for the

utility company and customers to know the precise value of

the supply fluctuations. This is a very appealing property

for the system operations (both the utility company and the

customers) because it is difficult to estimate the supply deficit

precisely due to various uncertainties in power networks, e.g.,

it may be difficult to estimate or predict the power generation

from the solar or wind farm accurately. Moreover, this property

also implies that one bidding strategy can be applied by the

customers and the utility company over multi time periods

instead of just for one event because the same bidding strategy

is optimal at each time period.

VII. NUMERICAL STUDIES

In this section, we provide numerical examples to com-

plement the analysis in previous sections. We first show the

convergence of the algorithms proposed in Section III-B and

Section IV-A, and then we compare the two market equilibria.

A. Distributed algorithms

We first consider a demand response system with 30 cus-

tomers. We assume that each customer i has a cost function

Ci(qi) = aiqi + hiq
2
i with ai ≥ 0 and hi > 0. The electricity

supply deficit is normalized to be 10, and ai and hi are

randomly drawn from [1, 2] and [0.5, 4.5], respectively.

Figure 1 shows the evolution of the price and 5 customers’

supply functions with stepsize γ = 0.1 for optimal supply

function bidding and for strategic supply function bidding,

respectively. We see that the price and supply functions

approach the market equilibria very quickly, within less than

10 iterations. Moreover, the price at the Nash equilibrium is

higher than the price at competitive equilibrium, which is con-

sistent with Theorem 6. Compared to the supply bidding value

bi at competitive equilibrium, the customers (e.g. customer

10, 20, 25) who have low bids at the competitive equilibrium

tend to bid a higher value at the Nash equilibrium; whereas

the customers (e.g. customer 15) who have high bids at the

competitive equilibrium tend to bid a lower value at the Nash

equilibrium. Loosely speaking, if a customer bids a very low

value at the competitive equilibrium, this customer has an

incentive to increase the bid at the Nash equilibrium because

the price at the Nash equilibrium is higher and this customer

might gain more benefit by increase the bid; in contrast, if a

customer bids a very high value at the competitive equilibrium,

this customer might have incentive to decrease the bid at
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the Nash equilibrium because this customer might gain more

benefit by reducing the load shedding amount but collecting

the same amount of payment due to the higher price at the

Nash equilibrium.
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Fig. 1. 30 customers: Price and supply function evolution of optimal supply
function bidding (upper panels) and strategic supply function bidding (lower
panels) for demand response.

Lastly, in order to show the scalability of the algorithm,

we also simulated a large network with 300 customers. Figure

2 shows the evolution of the price and 5 customers’ supply

function with stepsize γ = 0.05 for optimal supply function

bidding and for strategic supply function bidding respectively.

We see that the algorithm converges very fast.
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Fig. 2. 300 customers: Price and supply function evolution of optimal supply
function bidding (upper panels) and strategic supply function bidding (lower
panels) for demand response.

B. Comparison between the competitive equilibrium and the

Nash equilibrium

To amplify the effect of cost functions on the efficiency

loss of the Nash equilibrium, we simulate three scenarios: 1)

customers are homogeneous (i.e., symmetric), 2) one customer

has a extremely low cost function and other customers have

the same cost functions, and 3) two customers have extremely

low cost functions and other customers have the same cost

functions. In all scenarios, each customer has a quadratic cost

function in the form of Ci(qi) = aiqi + hiq
2
i . In scenario 1,

ai = 2 and hi = 4 for all customer i. In scenario 2, the first

customer has a1 = 0.1 and h1 = 0.2 and all other customers

have ai = 1, and hi = 4. In scenario 3, the first two customers

have a1 = 0.1 and h1 = 0.2 and all other customers have

ai = 1, and hi = 4. We simulate different sizes of systems,

where n = 3, 5, . . . , 99. Figure 3 plots the ratio of price at the

Nash equilibrium to the price at the competitive equilibrium

for the three scenarios and Figure 4 plots the ratio of the total

cost at the Nash equilibrium to the total cost at the competitive

equilibrium for the three scenarios. From the plots, we know

that:

1) in all of the three scenarios, the differences between the

two market equilibria decreases quickly as the system

size increases.

2) if all of the customers are symmetric, the differences

between the two market prices are small and the social

welfare of the two market equilibria are the same. This

is consistent with the theoretical results in Corollary 4.

3) when the system size is small, if there is only one

customer has extremely low cost function, the differ-

ences between the two market equilibria are large. We

say this customer has large market power in this case.

However, as long as there is one more customer who

also has extremely low cost, the differences between

the two market equilibrium decreases by a large degree.

This behavior suggests that if the utility company needs

to limit market power of certain customers, he can

either split the customer into two customers who have

relatively the same cost or include another customer into

the demand response who has relatively the same cost.

4) when the system size is large, the differences between

the two market equilibria are small. One interesting

phenomena is that scenario 3, where there are two users

with low cost functions, has both a larger price ratio and

a larger cost ratio than scenario 2, which is opposite to

the cases when the system size is small. Unfortunately,

we do not have a rigorous reason for this, which leads

to an interesting future direction.

VIII. CONCLUSION

We have studied a market model for demand response in

power networks. We characterize the equilibria in competitive

and oligopolistic markets, and propose distributed demand re-

sponse schemes and algorithms to match electricity supply and

to shape electricity demand accordingly. We also characterize

the efficiency loss of the game-theoretic equilibria.

10



0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

Number of customers

R
at

io
 o

f g
am

e 
pr

ic
e 

ov
er

 c
om

pe
tit

iv
e 

pr
ic

e

 

 

Homogeneous users
One user with low cost
Two users with low cost

Fig. 3. Price at the competitive equilibrium (blue) and the Nash equilibrium
(green) with different number of customers
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Fig. 4. Total costs at the competitive equilibrium (blue) and the Nash
equilibrium (green) with different number of customers

This paper serves as a starting point for designing practical

demand response schemes and algorithms for smart power

grids. We will further bring in the power network constraints

and detailed dynamics of the demand response appliances.

We expect that these new constraints will not change the

general structure of our models (in terms of, e.g, equilibrium

characterization, and distributed decomposition structure, etc),

but they will complicate the analysis and the computation as

we come to the scheduling of individual electronic appliances

over the power network.

APPENDIX

Here we prove the existence and uniqueness of the optimal

solution of optimization problem (19). Firstly, we pick d̂ <
d
2 such that |N |d̂ > d and solve the following optimization

problem:

min
0≤qi<d̂

∑

i

Di(qi) (33a)

s.t.
∑

i

qi = d, (33b)

Denote the optimal value as D∗
d̂
. For each i, find such ǫi

such that Di(qi) ≥ D∗
d̂

for all qi ∈ [d2 − ǫi,
d
2 ). Such ǫi

exists because Di(qi) is a strictly increasing function and

limqi→
d

2

Di(qi) =∞. Therefore, we know that the optimiza-

tion problem (19) is equivalent to the following problem:

min
0≤qi≤d/2−ǫi

∑

i

Di(qi) (34a)

s.t.
∑

i

qi = d, (34b)

which has a unique optimal solution. Therefore we know that

the optimal solution of (19) exists. The uniqueness follows

from the strictly convexity of Di(qi).
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